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Abstract 

A computer code for gain optimization of high-gain free-electron lasers (FELs) is 
described. The electron motion is along precalculated period-averaged trajectories, and the 
finite-emittance electron beam is represented by a set of thin "partial" beams. The 
radiiltion field amplitudes are calculated at these thin beams only. The system of linear 
integral equations for these field amplitudes and the Fourier harmonics of the current of 
each thin beam is solved numerically. 

with nonideal magnetic systems (breaks between undulators with quadrupoles and 
magnetic bunchers; field and steering errors). Both self-amplified spontaneous emission 
(SASE) and external input signal options can be treated. A typical run for a W FEL, 
several gain lengths long, takes only one minute on a Pentium 11 personal computer (333 
MHz), which makes it possible to run the code in optimization loops. Results for the 
Advanced Photon Source FEL project are presented. 

The code is aimed for design optimization of high-gain short-wavelength FELs 
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1. Introduction 

The short-wavelength high-gain free-electron lasers [ 1,2] offer the possibility to 
extend the FEL operation to the x-ray energy range. The advantage of such a device is 
that mirrors are not needed for the operation; however, tight requirements for the quality 
of the electron beam and the undulator magnetic fields are essential. An electron beam 
with high peak current, low transverse emittance and small energy spread is necessary for 
successful operation. The undulator needs to be very long (typically tens of meters) and 
carefully aligned with respect to the magnetic elements and to the beam. To aid in the 
technical design, it is useful to have a fast and versatile computer code that calculates the 
signal growth for a multisectional undulator with brakes between the sections, taking into 
account quadrupoles, magnetic bunchers, steering coils, undulator magnetic field errors, 
and beam-steering errors at the entrance. 

However there are few working codes, especially in the 3-D case. This article 
describes a computer code that calculates the linear time-independent growth rate of 
radiation in a single pass FEL for a multisegmented system. It was applied to the 
optimization of design parameters of the FEL under construction at Argonne National 
Laboratory [3,4]. 

2. Basic equations 

;’ We use a mathematical model based on solving a set of integral equations to describe 
the process of coherent radiation of the beam in the undulator field [ 5 ] .  In this model, the 
internal structure of the beam is represented by a set of N thin beams with different initial 
conditions xq (0), i, (0), y, (0), y, (0). (The point is used to denote a derivative with respect 
to the longitudinal coordinate z, and q is the number of the beam.) Using these initial 
conditions we calculate the trajectories x,(z),y,(z), neglecting the influence of the radiation 
field. (We consider the motion averaged over the undulator period.) Thus one can consider 
the motion of the electrons in the transverse direction as if they were small beans strung on a 
thin rigid wire (trajectory). The problem is therefore reduced to one-dimensional motion 
along precalculated trajectories. A planar undulator with a vertical magnetic field given by 
Bo (2) sin [k,z + cp( z)] is considered. It is convenient to use the z coordinate as the 
independent variable, the relative energy deviation A as the canonical momentum 
( E = ync2 (1 + A) is the electron energy, m is the mass of the electron and c is the speed of 
light), and the time delay z = t - t ,  with respect to the equilibrium unperturbed particle time 
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as the canonical coordinate, where y,: = Y 2  , K=-  eB'' is the deflection parameter, 
2 l + K 2 / 2  k,mc 

and k," and k: the rigidities of horizontal and vertical undulator focusing, respectively. In 
these variables, the projection of the "velocity" in the phase space to the energy axis is 
simply the projection of the force (caused by the radiation electric field) on the particle 
velocity. The longitudinal distribution function F4 (z, A, z) of each beam obeys the Liouville 
equation 

where the electric field of the radiation on the q-th beam is represented by 
2R E; = A ~ ( Z , ~ ) ,  

harmonic of the undulator radiation, ( J J )  is the standard combination of Bessel hctions,  
and e is the charge of the electron. 

In our case, the radiation field may be calculated in the paraxial approximation. As 
the relativistic electron emits in the forward direction, one can neglect the backward 
radiation. This allows us to rewrite the system of N partial differential equations as 
inteFal equations in which the integration is carried out fi-om the undulator entrance to the 
c&ent longitudinal point in z, like in the Volterra equations. This feature allows us to 
construct a simple explicit numerical algorithm. The obtained equations are nonlinear as 
the radiation field depends on the beam current, which is derived from integration of the 
distribution function. To simplify the calculations, we consider only the linear regime 
when the distribution function can be written as a sum of a time-independent part and a 
small perturbation. By making a Fourier transformation and carrying out integration by 
energy, we obtain the equations for the beam current harmonics 

+ complex conjugate, - is the wavelength near the fundamental & (2 -Cf )  

ko 
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d A  d z  for all N thin beams. The final system of 2N equations can j z ( z ) =  I I F q e  i( &+a)? 
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be written as, 
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where f: (A, 0) is the harmonic of the initial distribution function, I is the beam current, 

AaQo (z) = IAaQ (z, t)e'"'dt describes the external wave (input signal), and 
w 

-00 

OD t 3 q  
-.OD t3A 

Qq ( x )  = --ddA, where F: (A) is the unperturbed distribution function. 

3. Description of the code 

To solve the system of integral equations, we use a trapezoidal estimation for the 
integrals. This leads to the following set of equations for the discrete values of J(qy n) and 

A(qy n) at z = Z h(m), where h is the step length, 
n-1 

m=l 

where A0 and Jo corresponds to the inhomogeneous terms of Eq. (2). To calculate J(q, n), 
we need only the preceding values of A(q, m) ( 1 5 m < n). Thus, solving this system 
becomes trivial. 

deflection parameter K, the phase cp of the undulator field, the sextupole focusing 
parameter along each step, the optical strength of the thin quadrupole lens, and the 
vertical and horizontal angle deflections (kicks) at the entrance of each step. 

We use a unit monoenergetic excitation of one of the thin beams to calculate the 
self-amplified spontaneous emission case, which corresponds to the situation of a single 
particle moving into the beam without initial density fluctuations. The output intensity 
will be the sum of the contributions from the different particles because we consider only 
the linear regime and the initial noise is random. 

The magnetic system is described by the following input parameters: the 
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4. Results 

The code has been used for optimization of the UV FEL at Argonne National 
Laboratory. The dashed curve in Fig. 1 shows the results for a homogeneous undulator 
with sextupole focusing. The normalized growth rate is 

2 ' t 2 + y 2 + k ~ x ~ + k ~ y ~  
dz' 

( J J ) .  It 
2 N 

' 
F = - -  ' d l n x e  0 

2k,  D d z  4=1 
j :  ( z )  , where D = 2 

is clear that after approximately two gain lengths Lg the growth rate becomes constant 
indicating that only one eigenmode is prevalent. The normalization was chosen such that 

1 
1 

F(-) = will be equal to the scaling factor for this eigenmode, which was 
2 k, DL, 

calculated earlier (see e.g., [2,5,6]). It was seen from many different runs, that this 
steady-state growth rate did not depend on the initial noise. 

horizontally focusing quadrupoles [7]. The lower but nonzero growth rate in the breaks 
corresponds to the rudimental bunching that take place there. The small growth rate 
reduction in undulators in comparison with the homogeneous case is, probably, due to 
beating of beta-functions, caused by the inhomogeneity of the focusing. 

The solid c w e  in Fig. 1 shows the results for the real project with breaks and 

5. %iscussion 

According to Eq. (3), the calculation time is proportional to the square of the 
number of the partial beams N and to the square of the longitudinal number of steps n, 
which makes it feasible to quickly study very long systems (a typical run for the APS 
W FEL takes only one minute on a 333 MHz Pentium I1 personal computer). 
Commonly, it is sufficient to use about 10 steps per undulator and 3 steps for the breaks 
with the quadrupole inside, however, for simulations using magnetic field errors from 
magnetic measurements the number of steps tends to be larger - typically one step per 
period. 

The typical number of the partial beams for the APS runs was 49, which proved 
to be sufficient. We also found that the results for the APS project parameters were 
insensitive to different initial distributions of the partial beams. For shorter wavelengths 
(x-rays), when the diffraction is less significant, the number of partial beams needs to be 
increased, and more attention to the actual initial beam distributions must be given. The 
code was used to define tolerances for the undulator alignments and to optimize the break 
length and focusing strength for the APS project [7,8]. 

In spite of the fact that the general integral equation [SI is nonlinear and time 
dependent, the corresponding extension of this code for nonlinear phenomena seems 
unrealistic because it uses linearity and stationarity in several places. However, since the 
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major part of the length of a SASE FEL operates with a small signal, the code is a 
convenient design tool to make an optimal system for beam bunching. The last section of 
the superradiant FEL has to be considered separately from both theoretical and 
engineering points of view. 

yet been extensively tested. The calculation of the spectrum of the radiation intensity is 
underway and will be tested in the near future. 

The angle distribution of the radiation intensity was added recently but has not 
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Figure Caption 

Fig. 1. The dimensionless scaling factor versus distance along the undulator for a 
homogeneous undulator (dashed curve) and for an inhomogeneous undulator (solid curve). 
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