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Abstract 
We describe an algorithm for the monotone linear complementarity problem (LCP) 

that converges from any positive, not necessarily feasible, starting point and exhibits 
polynomial complexity if some additional assumptions are made on the starting point. 
If the problem has a strictly complementary solution, the method converges sub- 
quadratically. We show that the algorithm and its convergence properties extend 
readily to the mixed monotone Linear complementarity problem and, hence, to all 
the usual formulations of the Linear programming and convex quadratic programming 
problems. 

Introduction 
The niotiotoiie linear c-oxnpIeriieiitarit_v problem (LC’P) is to fincl a yector pair (z. y )  E R ” x R ’ ~  
such that 

(1) T y = iv1z + q.  (z. y )  2 0. J y = o ,  

where q E IR” a n d  .Lf is an n x rz positive semidefinite (p.s.ct.) matrix. The mixed rnonotone 
liiiear c-oniplementarity problem (.tIL(:P) is to fi11d a vector triple (-c,y. 2) E IR” x IR” x IR’” 
sllt-h that 

where 
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is p.s.d. All conventional formulations of the linear programming (LP) and convex quadratic 
programming (QP) problems can be posed in the form (2) by writing out their conditions 
for optimality. For instance, consider the QP problem given by 

minp zw  1 T  Qw+cTw 
WEIR (3) 

subject to 

wr 1; (i E LC c ( l , - , p } ) ,  wi L u; (i E u c { l , - * - , p } ) ,  

C w L d ,  A w = b ,  (4) 

where Q is symmetric p.s.d., C E IRmrxn, A E RmEX7a,  and so on. If we define 

EL = [eTl,,,, Eu = [eTIiEU, 

where e; is the i-th uiiit vector from the standard basis, and 

1 = [ l i ] i € ~ ,  u = [ ~ i ] i E ~ r  

then we can state the optimality conditions for (3),(4) in the form (2) by defining 

and 

0 0 0 '  I -EZ E: -CT 

I n  this paper, we focus 011 an algorithm for (1) and its convergence properties. We 
then show, using rec,ent work involving the relationship between problems (1) and (2), that 
this algorithni can be extended painlessly to (2) and, hence, to all the usual LP and QP 
formulatious. Little loss of efficiency is involved in  solving LPs and QPs by embedding them 
i n  algorithms for (2),  provided the linear algebra takes account of the particular structure 
of ea& probleni. Hence we feel that the linear compleiiientarity formulation is the best one 
to consider because of its generality, simplicity of notation, and practical efficiency of the 
algorithms on all its special cases. 

In  two recent papers [9, IO], we have presented algorithins for ( I )  that are globally 
convergent, have polynomial complexity when the starting point (xo, yo) satisfies certain as- 
surnptions, and exhibit superlinear convergence of the complementarity gap pk = ( ~ ~ ) ~ y ~ / n  
to zero with Q-order two. Neither the starting point nor the iterates are feasible in general. 

, 

$ 
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in both algorithms, most of the work at  each iteration consists of a matrix factorization and 
between one and three triangular solves with the computed factors. The local analysis in 
[9] requires existence of a strictly feasible point (2, i j )  such that i j  = ~MJ: + q ,  (5 , i j )  > 0, as 
well as existence of a strictly complementary solution, that is, (x*,y*) solving (1) such that 
d' + y* > 0. (The latter property is usually referred to as nondegeneracy; see, for example, 
Mangasarian [3].) The strict feasibility assumption is undesirable because it is usually not 
satisfied by large practical problems. The analysis of [lo] requires nondegeneracy but uot 
strict feasibility, giving it a significant advantage over [9]. 

In this report: we present an algorithm that is simpler than either of those discussed above 
and requires only the nondegeneracy assumption to attain the convergence properties of 
both algorithms. Monteiro and Wright [6] have showed that we cannot drop this assumption 
without giving up the possibility of superlinear convergence for Newton-based primal-dual 
algorithms, so in this sense our local convergence results are sharp. 

Our algorithm is specified in Section 2. In Section 3 we prove global linear convergence 
and polynomial complexity. Sonie technical results are proved in Section 4; these are used 
to prove superlinear convergence in Section 5. Section 6 shows that the algorithm and 
its convergence properties can be extended to the mixed problem (2) because (2) can be 
reformulated as (1). We stress at the outset that this reformulation need not be performed 
explicitly; it suffices to observe that the (z, y)  iterates generated by our extended algorithm 
are the same as those that would be obtained by reformulating the problem as (1) and 
applying the algorithm of Section 2 directly, except possibly for some swapping of components 
to be discussed later. 

Unless otherwise specified, 11 . 11 denotes the Euclidean norm of a vector. Iteration num- 
bers appear as superscripts on vectors and matrices and as subscripts on scalars. To avoid 
notational clutter in Sections 13, 4, and 5 ,  w e  drop the iteration index k from vector and 
matrix quantities in the proofs. It is retained explicitly in the staternent of each result. 

We denote the soliitiori set and strictly complementary solutioIi set by 

S = { (E", y") I (x", y*) solves ( I ) }  , S" = { (z*, y") E s I t" + y* > O} , 

respec-tively. The range space of a matrix is denoted hy K ( - )  

2 The Algorithm 
8 The algorithin generates a sequence of strictly positive iterates (.E', y'). To describe the step 

between successive iterates, we define 

k y k  = diag(yf, y;, . . , y,,). .Y k = diag(.cf, ~ 5 , .  - ,.E,",), 

We refer to pk as the complrmrntarity gap and to rk as the residual. Each step is calculated 
as follows. i 



Given 7 E (0, l ) ,  8 E [O, I), 5 E [O, I) ,  solve 

Choose 
-\  

where ti is the largest number in [0,1] such that the following inequalities are satisfied 
for all Q E [O,&): 

The search direction obtained from ( 5 )  is simply the Newton step for the system of 

k . k  from the point (x ? y  ). 

do not approach the boiiiidary of the nonnegative orthant too closely. Because we restrict 
to the range [yll~ll~yII1ax] for O < yll~ll  < ylllax 5 1 / 2 ,  (7b) implies that 

The iiiequality (i'b)? tisiially referred to as a centering condition, ensures that the iterates 

The condition (7a) is used to enslire that improvement i n  the complementarity gap pk does 
not outstrip improvement in the infeasibility Ilrkll by too much; a vector pair (.c7y) that is 
complementary hiit not feasible is of no interest. Note that we need not enforce condition 
(7a) if the current poi~it is already feasible. 

, We can now state our algorithm. 
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if pk = 0 then stop; 

end for. 

The algorithm can be motivated in a few sentences. We begin each major iteration by 
trying to take a fast step, which uses an affine scaling .. search direction. To encourage longer 
steps to be taken we use a strictly positive value of 13 and a value ;i. smaller than the current 
~ k .  The fast steps are accepted only if they produce a reduction in pk  of a t  least a factor of 
p. Otherwise, the algorithm reverts to taking a safe step, whose Igajor distinguishing feature 
is its use of a strictly positive value 5 2 6 of the centering parameter. 

Safe steps tend to be taken on early iterations, while fast steps are taken toward the 
tail of the sequence. There may be a gray area in which both safe and fast steps are taken. 
The algorithm can be modified to try fast steps only when there is some reasonable hope 
that they will le accepted. (Earlier versions of the algorithm used a threshold criterion 
p k  5 j i ,  with ,ii a user-defined parameter, to decide whether to calculate the safe step.) For 
the sake of siniplic-ity, we  do riot consider such modifications here, but note simply that the 
superlinear convergence properties of the algoritlim will hold provided that the fast step is 
c v e r ~ t z l a l h ~  tried 011 every iteration. Besides omitting the threshold p, the algorithm above 
differs from the one clescribed i n  [9] in that the duality gap p is used directly i n  place of the 
merit function 4. and the particular choices "/min = 7 and ymax = '29 are relaxed. 

3 Global Convergence and Polynomial Complexity 
111 this section, we show that the algorithm converges globally to the solution set of (1)  
from ally starting poirit (xo, yo) > 0. When the algorithm is initialized in a certain way, the 

b 



number of iterations is quadratic in the problem dimension n. Throughout the section, we 
make the following assumption. 

Assumption 1 The LCP (1) is feasible; that is, there is a pair (x, y) such that y = Mx + q 
and (z,y) 2 0. 

Assuiiiption 1 implies that S # 8 (see, for example, [ I ,  Theorem 3 . 1 2 1 ) .  
If we define the monotonically decreasing sequence { V k }  by 

uo = 0, uk+l  = (1 - a k ) V k 7  '\r 

it is easy to see that rk = v k r o .  We have the following simple result, whose proof follows 
that of [lo, Lemma3.11. 

Lemma 3.1 T h e  constant defined by 

k=O k= 1 

is strictly positive, and we have. f o r  all IC >_ 0 that 

We caii also show that all iterates remain strictly positive, except when finite termination 
occurs. 
Lemma 3.2 For all iterates generated by the algorithm, WE: have either (x k k  :y ) > 0 or 
/!Lk = 0. 

Prooj We prove the result by itiduction. Note first that the assertion is trivially satisfied 
by the initial iterate (z0, yo) > 0. If p k  = 0, the algorithm terminates at  the Ic-th iterate. For 
the remainder of the proof, we assuine that ( x k ,  yk) > 0 and prove that either ( x k + l , y k + * )  > 0 
or pk+1 = 0. We consider the cases rk # O arid rk = O separately. 

If r k  # 0, the constraint (7a) is applied to the choice of a b .  Hence, combining (7a) and 
('ih), we have  that 

(IC: + cru:)(yf + 0.f) 2 (+)( 1 - j)( 1 - a) (z "yk ) ,  VCY E [ O , a k ) .  

Sinw a k  5 1, > 0, fi E [O, 1 ) ,  and x k T y k  > 0, the right-hand side of this expression is 
strictly positive for all cr E [o, a k ) .  ~ i n c e  (xf,  yf> > 0, it follows that (J: +cu.uf, yf +CY$) > O 

that 
for all cy E [0, a k ) .  If IC: + a k u f  = o o r  yi k + = o for so~iie index i, we have froin ('ib) 

k T  k 
/lk+] = ( x k  + CYkU ) (y  akuk) /7 t  0. 

The alternative case is 

k b  
i (gk+ ' ,  ykfl) = (xk + sku , y + Q k u k )  > 0, 
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so our claim holds. 

that there exist CY values in the range [0, CYk] such that 
Consider now the remaining case rk  = 0, for which (?a) is not enforced. Suppose first 

(10) 
k k k 

5; + auf = o or yi + cyvi = 0, 

for some index i = 1, - - - , n, and let 
that 

be the infimum of these values. It follows from (7b) 

(11) 
(xk + &ku k T  ) (y k + &kvk)  = 0. 

' 4  

kT k 
Since rk = 0, equation ( 5 )  implies that vk = M u k .  Hence, by positive semidefiniteness of 
M ,  we have u v 2 0. Using the second part of ( 5 ) ,  we find that 

(zk + CYU k T  ) (y k + a d )  = (z kT y k )(1 - a(1 - 5)) + CY 2 u kT 2, k 2 (5 kT y k )(1 - a(1 - 8)). (12) 

Now since i i k  E [0, crk] C [0,1], the relations ( 1 1 )  and (12) can be satisfied simultaneously 
for CY = 61; only if 5 = 0 and Zik = cYk = 1. Hence we are left with two possibilities. 
Either &k = ak = 1 and pk+1  = 0, or there are no a E [ O , a k ]  with the property (lo),  so 
(xk+', yk++') > 0. Therefore our claim holds again for the case of rk = 0, and we are done. 

Finite termination of the algorithm with ,!ik = 0 and yk = 0 is, of course, the simple 
case. Throughout the remainder of the paper, we make the implicit assumption that finite 
termination does not occur and that the algorithm generates an infinite sequence of iterates 
{ (P, y"}, k = 0, 1, - * -. 

I The next lemma contains an inequality that is used in a number of places in the analysis. 
Similar results appear in Potra [8, Lemiiia 4.11. Mizuno [5 ,  Lemxiia 13.131, arid Wright [ l o ,  



By defining 
C; = min min(aP,yp), 

i=l,...,n 

and noting that 1 - Uk 5 1, we have 

l l~ll l  + 11411 5 G-l [ W P o  + n P k h  + 11~"Ico11~*111 + I IYoI lcoI1~*l I*]  7 

which implies ( 1 3 )  for appropriately defined C1. The other inequality (15) follows trivially 

For purposek of polynomial complexity, we assume that the initial point is defined by 
from (14) and (17). 

(14), where tZ and tY satisfy the following assumptions: 

11~*1103 5 €a IlY"llo0 L t97 (9 L 1 1 ~ 1 1 0 3 7  

We also find the diagonal matrix Dk defined by 

Dk = ( X k ) - ' / ' ( y k ) ' / '  

useful in the subsequent analysis. The next lemma allows us to bound quantities involving 
the steps uk and vk. 

Lemma 3.4 For all k. 2 0,  there is a constant w such that 
k k 2  k - 1 k 2  110 u II + ll(0 ) 2, II I W P k .  

If the. initial step is chosen according to ( I d )  and (181, then 

* 
and so w = 0(n2). 

Proof. It is easy to see that the step ( u , v )  can be partitioned as 

( U ) ' U )  = ( 2 1 ) U )  + (,2)6)) 
w tiere 

(21) 

(22) 

(Because of nonsingularity of the coefficient matrix in (21) and (2), both (U,i?) and ( 6 )  6) 
are well defined.) As i n  [lo, Leninia 3 . 3 1 )  we can show that 

8 

(23) 



For the other component (6 ,  6)7 we have from the second part of (22) that 

D&+D-'.it=O j . i ,= -D2c .  

Hence from the first part of (22) and positive semidefiniteness of M ,  we have 

hI&- . i ,=r  + ( M + D ' ) G = r  =+ cTD2iILGTr. 

Therefore 

Using (8) together with Lemmas 3.1 and 3.3, we have that 

for some appropriately ctefiriecl constant C'. Since 11 0611 = 11 D-3611, we therefore have 

By combining (23) and (25 ) ,  we obtain 

(24) 

where  w is defined in an obvious way. 
The special result (20) is pruve'd by analysis similar to that of Lemma 3.4 in Wright [lo]. 

The key theorem of this section shows that there is a uniform lower bound on the step 
leugth  CY^ 011 each safe step. 
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Theorem 3.5 If u safe step is taken ut iteration k, then 

where w is as defined in Lemma 3.4 

Proof. We prove the result by showing that the conditions (7a) and (7b) hold for all Q 

in the range 
'\ 

We further show that the complementarity gap pk(CY) defined in (6) is decreasing on the 
interval (26). These observations are sufficient to prove the result. 

Because of ( 5 ) ,  we have that (7a) is satisfied if 

Since b k  2 3 and Q is in  the range (26), we have 

> 0. 

Therefore (27) and hence (7a) are satisfied for cy in the range (26). 
By using ( 5 ) ,  we note that (7b) is satisfied if 

Now from (28) and 



we have 

Since ar lies in the range (26) and yk E [ymin,yrnax], we have 

Therefore (29) , t n d  hence (7b) hold for the interval in question. 
Finally, from (6), (28), and (26), we have 

since ck E [a, 1/21. Hence the minimizer of pk(CY) subject to the conditions (7a) and (7b) 

We can now show that p decreases by a factor strictly less than one on each safe iteration. 
lies beyond the interval (26) ,  and we have the result. I 

Theorem 3.6 I f  a safe step is taken at iteration k, then 

,where w is as defined in Lem,ma 3.4. 

ProoJ By Theorem 13.5, p k ( o )  is decreasing for 

L J 

and a k  lies beyond this interval. Because of (B), we have 

pk(a) = p k [ l  - a( 1 - g k ) ]  + a 2 U T v / ' ? t  

giving the desired result. 
i 

1 1  



If we take fast iterations into account, we find that 

so we have geometric convergence of { p k }  to zero from any starting point (zo, yo) > 0. For 
the special choice of starting point (14), (lS),  we have the following polynomial complexity 
result . 

Corollary 3.7 'ret  E > 0 be given. Suppose that the starting point is defined by (id), (18) 
where po = (.& 5 l / e r  f o r  some constant r 2 0 independent  of n. Then  there is an  integer 
h', with 

K,  = O(n2 log(l/E)) 
such that ,uk 5 e for  all k 3 K,. 

Proof. From (30) and the fact that w = O(n2)  (Lemma 3.4), we find that there is a 
constant 6 independent of 71 such that 

(32) 

when a safe step is taken on iteratioil k .  By adjusting 6 if necessary, the inequality (32) also 
holds for fast steps. The result follows from this inequality by a standard argument (see, for 
example, Zhang (14, Theorem 7.21). m 

4 Bounds for the Fast-Step Components 
111 this section we show that wiien crk = 0, the step nornis Ilukll &id livkll are both O(pk)  for 
all sufficiently large k .  This result is essential to the local convergence analysis of the next 
section. For notational couvenience, we use uk to denote the vector whose cornponents are 
uf for i E B, u$ as the subvector made up of u;", i E N ,  and so 011. 

PVe xilake the following assurnptiori throughout the remainder of this section. 

Assumption 2 S' # 8. 

Given any strictly complementary solntion (x*, y*), we can define the partition 

where 
B = { i l x :  > O}, N = { i l y t  > 0). 

( I t  is well kxiowxi that B ancl N are independeiit of the particular choice of ( ~ * , y * ) . )  
We start by showing that xk and y i  can be bounded in terms of pk. 

(33) 



Lemma 4.1 Let K1/2 be the smallest integer such that v k  5 1/2 for all k. 2 K1/2. Then 
there is a constant C 4  > 0 such that 

Proof. Note that h ; / 2  is well defined, by the results of Section 3 and the fact that {Vk} 
is a decreasing sequence. Let (x*, y') be a strictly complementary solution. By rearranging 
(16) and noting that 

(5°)Ty + xTyO > 0, (5 * T  ) y * -  - 0, 
'\ 

we have 

xTy*+yTx* L 

L 

By (9), we can therefore define 

Since (z, y) > 0 and (z*, y*) 2 0 we have 

c 4 p k  .i E B +- ~ f y ;  SC'4pk j yi  C - 5 f  

The result (34) follows when we define 

The next resiilt gives 
( U k ,  v". 

Lemma 4.2 Let  be 

the required bounds on half the components of the vector pair 

as defined in L e m m a  4.1. T h e n  there is a constant  Cs > 0 such 

( 3 5 )  



Hence from (34) and (S), we have 

Therefore 

giving the first inequality in (35). The proof of the second inequality is similar. 
To obtain bmnds on the remaining components of ( z k , v k ) ,  we need the following two 

lernmas. The first is merely technical. 

Lemma 4.3 (Monteiro and Wright [7, Lemma 2.21.) Let f E IRq and H E R p x q  be given. 
Then there exists a nonnegative constant L = L( f, H) with the property that for any diagonal 
matrix 5’ > 0 and any  vector h E Range(H),  the (unique) optimal solution W = W ( S ,  h )  of 

1 
min W J T w  + 5 llSz011~ , subject to Hw = h, (36) 

satisfies 
11% 5 L { IfW + lihllw} - 

The second technical lemma identifies the components uk and I& as the solution of a 
quadratic program. It is an extension of a result of Ye and Anstreicher 112, Lemma 3.51 
and is proved in Wright [9]. We use D i  to denote the diagonal submatrix composed of the 

Lemma 4.4 (Wright f9, Lemma 5.21) The vector pair ( u i ,  v; )  solves the convc2 quadratic 
program 

1 elements D: for i E B,  and so on. 

min + I ~ D ~ ~ I I ~  - cTkpkeg( T xk B ) - * w  + + I \ ( D ~ ~ - ~ z I I ’  -’qpke:(Yk)-’.z, (37) 
(w,=)  

subjwt to 

(38a) 
(38b) 

The main result of this section is as follows. 

Theorem 4.5 Let  Kl,2 be as def ined in Lemma 4.f. The7t if uk = 0 ,  there is a cortstant 
CG > 0 such that I 

l l ~ k l l  5 c G / L k ,  llukl/ 5 CGPk- 
Proof. It follows from Lemmas 4.3 and 4.4 and the inequality (9) that there is a constant 

L > 0 such that 

By comhining this ineqiiality w i t h  (%), we obtain the result. 
I 
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5 Local Superlinear Convergence 
In this section, we. show that for all IC sufficiently large, step k is a fast step and that 
consequently the sequence { pk} converges subquadratically to zero. The treatment in this 
section follows that of Wright [9, Section 61 and [lo, Section 61. 

Throughout the analysis, we will make use of the constant C7 defined by 

We start with a simple technical result. 

Lemma 5.1 For all k 2 0,  we have 

where 

and so the sequence. 

{$} 
converges monotonically and geometrically t o  zero. 

Proof. When a safe step is taken, we have froin (30) and t k  = t k + t  that 

50 - Ymax) c l k  
8W ] rt"' 

For a fast step, we have p k + 1  5 PPk and tk+l = t k  + 1 and so 

The result follows immediately froin these two bounds. 
We tiow show that fast steps are taken for all k sufficiently large. 

Theorem 5.2 .Vefiuc K to be the smallest i n d m  such that 

fo. all k >_ K .  Then a fast  step is taken on  iteration k ,  with step length a k  satisfying 

B 

(42) 



Proof. The proof is structured like that of Theorem 3.5, in that we show that the 
conditions (7a) and (7b) hold for all CY satisfying 

and then show that p k ( a )  is decreasing on this interval. 
We start with condition (7a). Note from Theorem 4.5, (39), and a E (0,1], we have 

Therefore 

since p k  = Ttk  for a fast step. Relation (7a) follows from (44) and (45). 
For (7b), we  again use Theorem 4.5, ( 5 ) ,  (39), and (8) to derive 

(77 2 ( z i fa%)(y i+avi )  = * c i y i ( l - ~ ) + c ~ ~ ~ j ~ j  >_ ~ k ( l - a ) / i k - l } ~ 1 1 1 1 ~ 1 1  2 ~ k ( l - ~ ~ ) / ~ k - y p k .  (46) 

Meanwhile, assuming that a fast step is computed, w e  have 

Combining (46) and (47), we find that (7b) is satisfied if 

Now, sin(-e 5 E (0 .  1/21, we have 

ytk(*/niax - elmin)( 1 - a )  2 CTp/e- (49) 

But (49) is clearly satisfied for all CY i n  the interval (4:3), so we deduce that (7b) holds. 
Finally, we examine p k ( a )  f r o m  (6). For Q E [0 ,  I ]  we  h a v e  

T p i ( n )  = -pk + ' L a U  V/72 5 -pk + = -( 1 - (?7 /Lk) / lk .  

16 



Now from (40), we clearly have C7fLk < 1, and therefore pi (ct )  < 0. Hence the complemen- 
tarity gap is certainly decreasing 011 the interval (43). We deduce that the step length a k  
lies above the upper bound of the interval (43), so the proof of (41) is complete. 

For (42), we use (41) to obtain 

(50) 

giving the first inequality in (42). The second inequality is an immediate consequence of 
(40)- m 

We can now state our asymptotic rate-of-convergence result. 

Theorem 5.3 The sequence { p k }  converges superlinearly to zero with Q-order 2. 

Proof. See [9, Theorem 6.3 (ii)]. B 

so far, we have used the term "convergence" to denote convergence of pk and llrkil to 
zero. (!oiivergei~e of the actual iterates ( x k , y k )  to the solution set foIlows from a result of 
Maugasariau 131, as we now show. 

Theorem 5.4 S'upposc that Assumption 2 holds. Then there is a constant Cs such that . 

Proof. Note first that for any (z*,g*) E S, we have 



If we substitute from (13) and (9), we obtain from the last inequality that there is a constant 
& such that 

(Z*,MZ*+P)€S min 115 - z*llm 5 &uk. (52)  

The result folIows by combining (51) with (52). 

Corollary 5.5 Under Assumption 2, the sequence { (xk, yk)} converges superlinearly to the 
solution set S of ( I )  with Q-order 8. 

'\ 

6 Extension to MLCP, LP, and QP 
We conclude by showing that the algorithm of this paper can be extended to the mixed LCP 
(2) and, hence, to all the usual formulations of linear and convex quadratic programming 
problems. The crucial result here is due to Giiler [2], who showed that any generalized linear 
complementarity problem involving a maximal monotone operator can be reformulated as 
a standard LCP (1). The analysis in this section shows that the operator represented by 
(2a) is in fact inaxiiiial monotone and, hence, satisfies the assumptions of Theorem 3.2 in 
[2]. The following extension of Assumption 1 is essential to our analysis. 

Assumption 3 The MLCP ('2) is feasible; that is, there is a vector triple (x, y,z) with 
(Ic,y) 2 0 satisjying pa). 

We define T to be a multivalued mapping from IR" to subsets of IR" such that y E T ( z )  
whenever there exists a 3 E IR7TL such that (x, y. z) satisfies (2a). The graph of T is given by 

G ( T )  = { ( x 7 y )  1 = M , ~ ~  + it/llZZ + 41, o = M~~~ + M~~~ + (,., soII1e E 1 ~ 7 ~ 7 .  ( 5 ~ )  

Because of Assumption :3,.we have G(T)  # 0. It is easy to check that T is monotone, that is, 
for all (2, y) E G ( T )  and (Z, ij) E G'(T), we have (x - ;i;.)T(y - ij) 2 0. In Theorem 6.3 below, 
we show that T is in fact mazirnal monotone, that is, there is no other monotone operator 

: IR" --+ IR" such that G(T)  is strictly contained in (.'(p). The following two technical 
leriiiiias lay the foundation for this tlieorem. 

Lemma 6.1 S'zlppo.sc ilil is positi,ue semidef ini te .  Then M u  = 0 MTu = 0 .  

Prooj 
il/lu = CJ 3 uTikIu = 0 =$- u (lv I + 1LIT)u = 0, 

aiid so u is a ininiinizer o f  the convex quadratic func.tion J ( u )  = uT(:LI + .LIT)u. Therefore 

T of'(.) = 0 3 (f'ir + :LI*)U = 0 j :VI u = 0, 

sod the forward implication is proved. The converse is similar. 

b 
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Lemma 6.2 Let the p.s.d. matrix il.I be partitioned as 

where MI1 and M22 are square and 

has full columd~ank. Then if D is a diagonal matrix with strictly positive diagonal entries, 
then 

is nonsingular. 

Prooj Let (5, ) be a vector pair such that 

Then, using the p.s.d. property of M ,  we have 

" 1  2 = [ : ] *  (54) 

From (54) we have hl.2~ = 0, and thus z = 0 by the full rank assumption. Hence (54) is 
> satisfied only by (t, z )  = (O,O), and the result is proved. 

Our main result is the following. 

Theorem 6.3 Suppose that Assumption 3 holds. Then the mapping T whose graph is given 
by (.5.?) is maximal monotone. 

Proof. We prove the  result by appealing to a theorem of Minty [4], which states that T 
is maximal monotone i f  and only if R( I + T )  = IR". In the remainder of the proof, we show 
that for any w E IR", there is an (.r,y) E G ( T )  such that x + y  = w, and hence w E R( I+T) .  
In other words, for any w the following linear system must have a solution triple (x, y, 2 ) :  

We sllow first that solutions to ( 5 5 )  can he obtained from solutions to the followirig system: 

(56) 
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where E E IR*', and Cl.2 E IR'" and the matrices 
with the crucial property that the submatrix 

iG21, are quantities to be defined, 

has full column rank. 
Let E R" be any vector such that h . 1 . 2 ~  = 0, where M.2 is defined as in Lemma 6.2. 

Then 
.\ 

and hence, by Lemma 6.1, 

M T  0 
2) 

M [  0 1  = o  

Let Vj E IRmxd (0 5 d 5 m) be the matrix whose columns form a basis for the subspace 
with the property M.221 = 0, and define V, E IRmX(m-d) so that the columns of V, are a basis 
for A(&)'. Then, defining the nonsingular matrix V = [& I &I, we have 

h!!ll i%2 Y - (I1 [ M 2 1  lW22] [ :I = [ - q 2  ] 

(59) 

In order for (59) to be consistent, it is necessary that V . q 2  = 0. This follows, however, from 
Assiiniption 3 atid (?%). since 

T 
(/2 E R( [iC.l2l 1 M 2 2 ] )  + V .  ~2 = 0. 

Defining r i L  = r n  - d atid 

2 = (V-'z)I  (first ~ F L  components of v - ' z ) ,  
= (V-lz), (last rn - 7 ~ i  components of v-'z), 

q., = V h 2 ,  

we find that any solution ( L C , ~ ,  E )  of (56) can be transformed into a solution (z,y, 3 )  of ( 5 5 )  
by setting 

1 

.=v[ 91 
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where 5 is chosen arbitrarily. 

in (56) to the first block row, we obtain the equivalent system 
It remains to show that (56) does in fact have a solution. By adding the third block row 

(60) o r  
Since, by our choice of transformations V, and V,, we clearly have that 

S L  

is p.s.d., while f i . 2  has full rank, it follows from Lemma 6.2 that the upper left 2 x 2 block 
in the coefficient matrix of (60) is nonsingular and, hence, that (60) has a unique solution 
triple (5, y, E ) .  Hence we have identified (z ,y)  E G(T)  with z + y = w, and our proof is 
complete. 

Because of (59), the graph of T can be restated as 

G(T) = {(z,y) J y  = M1lz + + q1, o = Mz1x + ~ 2 2 2 ~  + q 2 ,  some z E IR"}, 

with k f . 2  full rank. If we define a matrix W E IR("+")'" such that the columns of W form a 
basis €or R(A?.z)L7 we can eliminate 2 from the definition of G'(T) altogether and write 

where. 
M11 

- q a  
= GvT [ ] 

The form (6 t )  is the canonical form used by Guler. It is not difficult to vecify that a condition 
iised by Giiler to prove maximal monotonicity of T-namely, nonsingularity of F + G-is 
satisfied by (61). As shown in  12, Theorem 3.21 conversion of (61) to the form (1) can now be 
achieved by premultiplying F z  - C;y = a by a nonsingular operator and possibly swapping 
s o ~ ~ i t '  conipone~its of x ancl y. As Giiler notes, this reformulation process need not actually 
be carried out to apply the algorithm of Section 2 to the problem (2). Instead, we can 
extencl our  algorithm to (2) and note that the sequence of (xk ,yk)  iterates generated by 
the extended algorithm is the same as the sequence that would be generated by the basic 
algorithm applied to the LCP reformulation, subject possibly to the swapping of components 
between 2 and y k  just mentioneci. 

The extensiori of our algorithm to (2) is fairly obvious, so we omit the details, noting 
simply that the linear system to be solved at each iteration is 

. 

- M z , Z k  - hi.& - (12 , (62) 1 y k  - iM11zk - lLi*& - (11 

-XkYke  + 6 p k e  
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which is a generalization of ( 5 ) .  Existence of a solution to (62) follows from the same 
reasoning as in the proof of Theorem 6.3. We need to note that when (2) is feasible, we have 

- M 2 1 X k  - M22z k - q 2  E R([M2, I M22]) 

and, hence, 

Also, we need to apply Lemma (6.2) with D = (Xk)- 'Yk.  Although the step components uk 
and vk  are uniqqely determined by (62)) the wk components are not, unless the submatrix 
M.2 has full rank. 

Finally, we note that our analysis depends crucially on the existence of feasible points 
for (1) and (2). When (2) arises from an LP or QP, a feasible primal-dual point must 
exist. This requirement is a little troubling, since in practice many LPs are either primal or 
dual infeasible. Ye, Todd, and Mizuno [13] and Xu, Hung, and Ye [ll] have alleviated this 
difficulty in the case of linear programming by describing augmentation/reformulation of an 
LP in standard form, which has the property that the resulting mixed LCP possesses both a 
feasible point and a strictly complementary solution. Since all the assumptions of this paper 
are satisfied by these reformulations, our algorithm can be applied with confidence. 

v2 T [-M21Zk - M@ k - 421 = 0. 
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