
Science Division 
Mathematics and Computer 

Science Division 
Mathematics and Computer 

Science Division 

AN L-9616 

Users Guide for mpich, a 
Portable Implementation of MPI 

by W. Gropp and E. Lusk 

Argonne National Laboratory, Argonne, Illinois 60439 
operated by The University of Chicago 
for the United States Department of Energy under Contract W-31-109-Eng-38 

b a5 



Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is 
owned by the United States government, and operated by The University of Chicago 
under the provisions of a contract with the Department of Energy. 

DISCLAIMER 
This report was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor 
any agency thereof, nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or pro- 
cess disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof. 

Reproduced from the best available copy. 

Available to DOE and DOE contractors from the 
Office of Scientific and Technical Information 

P.O. Box 62 
Oak Ridge, TN 3783 1 

Prices available from (423) 576-8401 

Available to the public from the 

U.S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161 

. National Technical Information Service 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best avaiiable original 
document. 



ARGONNE NATIONAL LAB0 RATORY 
9700 South Cass Avenue 

Argonne, IL 60439 

ANL-96/6 

Users Guide for mpich, 

a Portable Implementation of MPI 

by 

William Gropp and Ewing Lusk 

Mathematics and Computer Science Division 

July 1996 

This work was supported by the Mathematical, Information, and Computational Sciences Division 
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, 
under Contract W-31-109-Eng-38. 



Contents 

Abstract 1 

1 Introduction 1 

2 Linking and Running Programs 1 

2.1 The mpicc and mpif77 Commands . . . . . . . . . . . . . . . . . . . . . . .  2 

2.2 Running with mpirun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

2.3 More Detailed Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

3 Special Features of Different Systems 4 

3.1 Difference between Workstation Clusters and MPPs . . . . . . . . . . . . .  4 

3.2 Checking Your Machines List . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

3.3 Using the Secure Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

3.4 Heterogeneous Networks and Closer Control . . . . . . . . . . . . . . . . . .  6 

3.4.1 p4 procgroup Files . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

3.4.2 Nexus Startup Files . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

3.4.3 Using Special Switches . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

3.5 MPPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

3.5.1 IBMSPx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

3.5.2 Intel Paragon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

3.6 Symmetric Multiprocessors (SMPs) . . . . . . . . . . . . . . . . . . . . . . .  10 

3.7 The Convex Exemplar SPP . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

4 Sample MPI Programs 11 

5 The MPE Library of Useful Extensions 12 

5.1 Creating Logfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

5.1.1 Parallel X Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

5.1.2 Othermpe Routines . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

5.2 Profiling Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

5.2.1 Accumulation of Time Spent in MPI Routines . . . . . . . . . . . .  13 

5.2.2 Logfile Creation and Upshot . . . . . . . . . . . . . . . . . . . . . . .  14 

... 
111 



5.2.3 Real-Time Animation . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

5.3 Accessing the Profiling Libraries . . . . . . . . . . . . . . . . . . . . . . . .  15 

5.4 Automatic Generation of Profiling Libraries . . . . . . . . . . . . . . . . . .  15 

5.5 Tools for Profiling Library Management . . . . . . . . . . . . . . . . . . . .  16 

5.6 Examining Event Logs with upshot . . . . . . . . . . . . . . . . . . . . . .  18 

6 Debugging MPI Programs 18 

6.1 Error Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

6.2 Command-Line Arguments for mpirun . . . . . . . . . . . . . . . . . . . . .  18 

6.3 MPI Arguments for the Application Program . . . . . . . . . . . . . . . . .  18 

6.4 p4 Arguments for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

6.5 Debugging for Nexus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

6.6 Command-Line Arguments for the Application Program . . . . . . . . . . .  20 

6.7 Starting Jobs with a Debugger . . . . . . . . . . . . . . . . . . . . . . . . .  21 

6.8 Starting the Debugger When an Error Occurs . . . . . . . . . . . . . . . . .  21 

6.9 Attaching the Debugger to a Running Program . . . . . . . . . . . . . . . .  21 

6.10 RelatedTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

6.11 Contents of the Library Files . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

7 Other MPI Documentation 22 

8 In Case of Trouble 23 

8.1 Problems Compiling or Linking Fortran Programs . . . . . . . . . . . . . .  24 

8.2 Problems Linking C Programs . . . . . . . . . . . . . . . . . . . . . . . . .  24 

8.2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

8.2.2 Sun Solaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

8.2.3 HPUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

8.3 Problems Starting Programs . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

8.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

8.3.2 Workstation Networks . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

8.3.3 Intel Paragon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

8.3.4 IBMRS/6000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

8.3.5 IBMSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

iV 



8.4 Programs Fail at Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

8.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

8.4.2 Workstation Networks . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

8.5 Programs Fail after Starting . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

8.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

8.5.2 HPUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

8.6 Trouble with Input and Output . . . . . . . . . . . . . . . . . . . . . . . . .  37 

8.6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

8.6.2 IBMSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

8.6.3 Workstation Networks . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

8.7 Upshot and Nupshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

8.7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

8.7.2 HP-UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

A Automatic Generation of Profiling Libraries 40 

B Options for mpirun 44 

Acknowledgments 47 

References 47 

V 



Users Guide for mpich, 
a Portable Implementation of MPI 

by 

William Gropp and Ewing Lusk 

Abstract 

MPI (Message Passing Interface) is a standard specification for message-passing 
libraries. mpich is a portable implementation of the full MPI specification for a wide 
variety of parallel computing environments. This report describes how to build and run 
MPI programs using the mpich implementation of MPI. 

1 Introduction 

mpich is a freely available implementation of the MPI standard that runs on a wide variety 
of systems. This document assumes that mpich has already been installed; if not, you should 
first read Installation Guide to mpich, a Portable Implementation of MPI. For concreteness, 
this document assumes that the mpich implementation is installed in /usr/local/mpi and 
that you have added /usr/local/mpi/bin to  your path. If mpich is installed somewhere 
else, you should make the appropriate changes. 

In addition, you need to  know what systems mpich has been built and installed for. 
You need to  know the architecture and the device. The architecture indicates the kind 
of processor; examples are sun4 and intelnx. The device indicates how mpich performs 
communication between processes; examples are ch-p4 and ch-nx. The libraries and special 
commands for each architecture/device pair are provided in the directory /usr/local/ 
mp i/l ib/<ar chit ec t ur e>/ <device>. For example, the directory for the sun4 architecture 
and ch-p4 device is in /usr/local/mpi/lib/sun4/ch_p4. This directory should also be in 
your path (or you should use the full path for some commands; we’ll indicate which). 

This approach makes it easy to  have mpich available for several different parallel ma- 
chines. For example, you might have a workstation cluster version and a massively parallel 
version. 

2 Linking and Running Programs 

mpich provides tools that simplify creating MPI executables. Because mpich programs may 
require special libraries and compile options, you should use the commands that mpich 
provides for compiling and linking programs. These commands are mpicc for C programs 
and mpif 77 for Fortran programs. 

1 



2.1 The mpicc and mpiff7 Commands 

The mpich implementation provides two commands for compiling and linking C (mpicc) 
and Fortran (mpif 77) programs. You may use these commands instead of the Makef ile. in 
versions, particularly for programs contained in a small number of files. In addition, they 
have a simple interface to the profiling and visualization libraries described in [6]. This is 
a program to compile or link MPI programs. In addition, the following special options are 
supported: 

-mpilog Build version that generates MPE log files. 

-mpitrace Build version that generates traces. 

-mpianim Build version that generates real-time animation. 

-show Show the commands that would be used, without actually running them. 

Use these commands just like the usual C or Fortran compiler, for example, 

mpicc -c foo-c 
mpif77 -c foo-f 

and 

mpicc -0 foo foo.0 
mpif77 -0 foo foo.0 

Commands for the linker may include additional libraries. For example, to use some routines 
from the M P E  library, enter 

mpicc -0 foo foo.0 -1mpe 

Combining compilation and linking in a single command, as shown here, 

mpicc -0 foo f0o.c 
mpif77 -0 foo fo0.f 

may also be used. Note that just as for regular C programs, you may need to  specify the 
math library with -1m: 

mpicc -0 foo fo0.c -1m 

These commands are set up for a specific architecture and mpich device and are located 
in the directory that contains the MPI libraries. For example, if the architecture is sun4 and 
the device is ch-p4, these commands may be found in /usr/local/mpi/lib/sun4/ch_p4 
(assuming that mpich is installed in /usr/local/mpi). 

2 



2.2 Running with mpirun 

To run an MPI program, use the mpirun command, which is located in 
/usr/local/mpi/bin. For almost all systems, you can use the command 

mpirun -np 4 a.out 

to  run the program a.out on four processors. The command mpirun -help gives you a 
complete list of options, which may also be found in Appendix B. 

On exit, mpirun returns a status of zero unless mpirun detected a problem, in which 
case it returns a nonzero status (currently, all are one, but this may change in the future). 

Multiple architectures may be handled by giving multiple -arch and -np arguments. 
For example, to  run a program on 2 Sun 4s and 3 RS/6000s, with the local machine being 
a Sun 4, use 

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program 

This assumes that program will run on both architectures. If different executables are 
needed, the string '%a' will be replaced with the arch name. For example, if the programs 
are program. sun4 and program.rs6000, the command is 

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program.%a 

If, instead, the execuables are in different directories, for example, /tmp/me/sun4 and 
/tmp/me/rs6000, the command is 

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 /tmp/me/%a/program 

It is important to  specify the architecture with -arch before specifying the number of 
processors. Also, the first arch command must refer to  the processor on which the job 
will be started. Specifically, if -nolocal is not specified, the first -arch must refer to  the 
processor from which mpirun is running. 

2.3 More Detailed Control 

For more control over the process of compiling and linking programs for mpich, you should 
use a Makef ile. Rather than modify your Makef ile for each system, you can use a makefile 
template and use the command mpireconf ig to  convert the makefile template into a valid 
Makef ile. To do this, start with the file Makef ile. in in /usr/local/mpi/examples. 
Modify this Makef ile. in for your program, and then enter 

mpireconfig Makefile 

(not mpireconf ig Makef ile. in). This creates a Makef ile from Makef ile. in. Then enter 

make 

3 



3 Special Features of Different Systems 

MPI makes i t  relatively easy to write portable parallel programs. However, MPI does not 
standardize the environment within which the parallel program is running. There are two 
basic types of parallel environments: parallel computers and clusters of workstations. Nat- 
urally, a parallel computer (usually) provides an integrated, relatively easy way of running 
parallel programs. Clusters of workstations and other computers, on the other hand, usu- 
ally have no standard way of running a parallel program and will require additional setup. 
The MPICH implementation is designed to hide these differences behind the mpirun script; 
however, if you need special features or options or if you are having problems running your 
programs, you will need to  understand the differences between these systems, 

3.1 Difference between Workstation Clusters and MPPs 

Most massively parallel processors (MPPs) provide a way to  start a program on a requested 
number of processors; mpirun makes use of the appropriate command whenever possible. 
In contrast, workstation clusters require that each process in a parallel job be started 
individually, though programs to  help start these processes exist (see 3.3 below). Because 
workstation clusters are not already organized as an MPP, additional information is required 
to make use of them. mpich should be installed with a list of participating workstations 
in the file machines. <arch> in the directory /usr/local/mpi/bin/machines. This file is 
used by mpirun to  choose processors to  run on. (Using heterogeneous clusters is discussed 
below.) The rest of this section discusses some of the details of this process and ways you 
can check for problems. These instructions apply to only the ch-p4 and ch-nexus devices. 
Some differences between them will be noted; however, most options are the same for both 
devices. 

3.2 Checking Your Machines List 

Use the script tstmachines in /usr/local/mpi/lib/<arch>/<device> to ensure that you 
can use all of the machines that you have listed. This script performs an rsh and a short 
directory listing; this tests that you both have access to  the node and that a program in 
the current directory is visible on the remote node. If there are any problems, they will be 
listed. These problems must be fixed before proceeding. 

The only argument to  bin/tstmachines is the name of the architecture; this is the 
same name as the extension on the machines file. For example, 

/usr/local/mpi/bin/tstmachines sun4 

tests that a program in the current directory can be executed by all of the machines in the 
sun4 machines list. This program is silent if all is well; if you wish to see what it is doing, 
use the -v (for verbose) argument: 

/usr/local/mpi/bin/tstmachines -v sun4 

The output from this command might look like 

4 



Trying true on hostl.uoffoo.edu . . .  
Trying true on host2.uoffoo.edu ... 
Trying Is on hostl.uoffoo.edu ... 
Trying 1s on host2.uoffoo.edu ... 
Trying user program on hostl.uoffoo.edu ... 
Trying user program on host2.uoffoo.edu ... 

3.3 Using the Secure Server 

Because each workstation in a cluster (usually) requires that a new user log into it, and 
because this process can be very time-consuming, mpich provides a program that may be 
used to speed this process. This is the secure server, and is located in serv-p4 in the 
directory /usr/local/rnpi/lib/<arch>/<device>.'  The script chp4-servs in the same 
directory may be used to start serv-p4 on those workstations that you can rsh programs 
on. You can also start the server by hand and allow it to  run in the background; this 
approach is appropriate on machines that do not accept rsh connections but on which you 
have accounts. 

" 

Before you start this server, check to see whether the secure server has been installed 
for general use; if so, the same server can be used by everyone. In this mode, root access 
is required to install the server. If the server has not been installed, you can install it for 
your own use, without needing any special privileges, with 

chp4-servs -port=1234 

This starts the secure server on all of the machines listed in the file 
/usr/local/mpi/bin/machines/machines.<arch>. 

The port number, provided with the option -port=, must be different from any other 
port in use on the workstations. 

To make use of the secure server for the ch-p4 device, add the following definitions to 
your environment: 

setenv MPI-USEP4SSPORT yes 
setenv MPLP4SSPORT 1234 

The value of MPI-P4SSPORT must be the port with which you started the secure server. 
When these environment variables are set, mpirun attempts to use the secure server to  
start programs that use the ch-p4 device. (There are command line arguments to  mpirun 
that can be used instead of these environment variables; mpirun -help will give you more 
information.) 

The ch-nexus device requires that you specify these settings in a resource database 
(.rdb) file. This allows you to run the secure servers on different ports on each machine, or 

'The Nexus secure server was built from the p4 server but has added some new functionality that it 
relies on to  start  user programs. If you plan to use the secure server with the chnexus device, use the one 
distributed with the Nexus distribution (/usr/local/nexus/bin/sserver). 

5 

http://hostl.uoffoo.edu
http://host2.uoffoo.edu
http://hostl.uoffoo.edu
http://host2.uoffoo.edu
http://hostl.uoffoo.edu
http://host2.uoffoo.edu


if your username is different on the machines you are interested in running on. The .rdb 
file should look like 

<host> ss,port=<portnumber> ss-login=<username> 

where <host> is the name of the machine running the secure server, <portnumber> is the 
port that the server was started on, and <username> is your username on that machine. 
You may omit the ss-login parameter if your username is the same on both machines. 

For example, if you wish to  use the server on pelican using port 1234 on tern using port 
9876, and on wren using port 16000 with the username guest, your .rdb file would look like 

pelican ss_port=1234 
tern ss_port=9876 
wren ss-port=16000 ss-login=guest 

mpirun can be notified of this file with the ”-nexusdb filename” option, 

3.4 Heterogeneous Networks and Closer Control 

A heterogeneous network is one in which the machines connected by the network have 
different architectures and/or operating systems. For example, a network may contain 3 
Sun SPARC (Sun 4) workstations and 3 SGI IRIX workstations. The mpirun command 
may be told to  use all of these with 

mpirun -arch sun4 -np 3 -arch IRIX -np 3 program.%a 

The special program name program.%a allows you to  specify the different executables for 
the program, since a Sun executable won’t run on an SGI workstation and vice versa. The 
%a is replaced with the architecture name; in this example, program. sun4 runs on the Suns 
and program. IRIX runs on the SGI IRIX workstations. You can also put the programs into 
different directories, for example, 

mpirun -arch sun4 -np 3 -arch IRIX -np 3 /tmp/%a/program 

3.4.1 p4 procgroup Files 

For even more control over how jobs get started, we need to look at how mpirun starts a 
parallel program on a workstation cluster. Each time mpirun runs, it constructs and uses 
a new file of machine names for just that run, using the machines file as input. (The new 
file is called PIyyyy, where yyyy is the process identifier.) If you specify -keep-pg on your 
mpirun invocation, you can use this information to see where mpirun ran your last few jobs. 
You can construct this file yourself and specify it as an argument to  mpirun. To do this for 
ch-p4, use 

mpirun -p4pg pgfile myprog 

6 



where pf ile is the name of the file. The file format is defined below. 

The ch-nexus device uses a similar flag: 

mpirun -nexuspg startupfile myprog 

The format for the startupfile will also be explained below. 

This procedure is necessary when you want closer control over the hosts you run on or 
when mpirun cannot construct it automatically. Such is the case when 

0 you want to run on a different set of machines from those listed in the machines file; 

0 you want to run different executables on different hosts (your program is not SPMD); 

0 you want to run on a heterogeneous network, which requires different executables; 

0 you want to  run all the processes on the same workstation, simulating parallelism by 
time-sharing one machine; or 

0 you want to  run on a network of shared-memory multiprocessors and need to  specify 
the number of processes that will share memory on each machine.2 

The format of a ch-p4 procgroup file is a set of lines of the form 

<hostname> <#procs> <progname> [<login>] 

An example of such a file, where the command is being issued from host sunl, might be 

sunl 0 /users/jones/myprog 
sun2 1 /users/ j ones/myprog 
sun3 1 /users/jones/myprog 
hpl 1 /home/mbj/myprog mbj 

The above file specifies four processes, one on each of three Suns and one on another 
workstation where the user's account name is different. Note the 0 in the first line. It is 
there to indicate that no other processes are to be started on host sunl than the one started 
by the user by his command. 

You might wish to  run all the processes on your own machine, as a test. You can do so 
by repeating its name in the file: 

sunl  0 /users/ jones/myprog 
sunl 1 /users/jones/myprog 
sunl 1 /users/jones/myprog 

This will run three processes on suni, communicating via sockets. 

To run on a shared-memory multiprocessor, with 10 processes, you would use a file like 

'This is a benefit only with the ch-p4 device. Nexus is currently developing a shared-memory module 
that  should be available in its next release. 

7 



sgimp 9 /u/me/prog 

Note that this is for 10 processes, one of them started by the user directly, and the other nine 
specified in this file. This requires that mpich be configured with the option -comm=shared; 
see the installation manual for more information. 

If you are logged into host gyrfalcon and want to start a job with one process on 
gyrfalcon and three processes on alaska, where the alaska processes communicate through 
shared memory, you would use 

local 0 /home/ j bg/main 
alaska 3 /afs/u/graphics 

3.4.2 Nexus Startup Files 

The startup files for the ch-nexus device are somewhat different, but easy to under- 
stand (For a full explanation, see the Nexus users guide at http://www.mcs.anl.gov/nexus/ 
uguide-3.0/index.html). The information contained in a ch-p4 pgfile is a subset of the items 
in a Nexus resource database (.rdb) file. The startup file will list the nodes you wish to 
run on: 

sunl 
sun2 
sun3 
hP1 

This starts the executable on each of the machines listed. To start more than one node 
on a machine, the following syntax is used: 

sun1,2 
sun2 
hp1, I. 

This example will start 3 nodes on sunl, 1 on sun2, and 2 on hpl.  The .rdb file will 
specify any other pieces of information you may need. If the executables for the machines 
are in different locations, you would use the startup-dir attribute: 

sunl startup-dir=/users/jones 
sun2 startup,dir=/users/ j ones 
sun3 startup-dir=/users/j ones 
hpl startup-dir=/home/mb j 

To indicate that the executables have different names, you would use the startup-exe 
attribute: 

8 

http://www.mcs.anl.gov/nexus


sunl startup-exe=myprog 
sun2 startup-exe=myprog 
sun3 startup,exe=myprog 
hpl startup-exe=a.out 

These attributes can be used in conjuction with each other, as well. This feature pro- 
vides the added benefit that one can start the program to read/write data files in different 
directories from the executable. The following example uses a \ as a line continuation 
character (much like a Makefile would) for readability: 

sunl \ 
startup-dir=/users/ j ones/sunl \ 
startup,exe=/users/jones/myprog 

startup~dir=/users/jones/sun2 \ 
startup,exe=/users/jones/myprog 

startup,dir=/users/jones/sun3 \ 
startup-exe=/users/jones/myprog 

startup-dir=/home/mbj/data \ 
startup-dir=/home/mb j /a. out 

sun2 \ 

sun3 \ 

hpl \ 

The rsh-login attribute is used whenever your login name differs on one machine from 
the machine you are starting on: 

sunl rsh-login=jones 
sun2 rsh-login=jones 
sun3 rsh,login= j ones 
hpl rsh-login=mbj 

This attribute can be used in conjunction with any other .rdb attribute (just as 
startup-dir and startup-exe were used together). At this time, shared memory is not 
supported in Nexus, but an alpha-level module has been developed and is being tested. 
Please contact nexus@mcs.anl.gov for current status on the module. For a list of other 
attributes, see the Nexus users guide mentioned earlier. 

3.4.3 Using Special Switches 

In some installations, certain hosts can be connected in multiple ways. For example, the 
“normal” Ethernet may be supplemented by a high-speed FDDI ring. Usually, alternate 
host names are used to  identify the high-speed connection. All you need to do is put these 
alternate names in your machinedmachines .xxxx file. In this case, it is important not to  
use the form local 0 but to  use the name of the local host. For example, if hosts host1 
and host2 have ATM connected to hostl-atm and host2-atm7 respectively, the correct 
ch-p4 procgroup file to  connect them (running the program /home/me/a. out) is 

9 

mailto:nexus@mcs.anl.gov


hostl-atm 0 /home/me/a.out 
host2-atm 1 /home/me/a out 

Using ch-nexus, if you wish to  send TCP over an alternate host name, you would use 
the tcp-interf ace attribute for the .rdb file: 

host 1 tcp-interf ace=hostl-atm 
host2 tcp-interface=host2-atm 

3.5 MPPs 

Each MPP is slightly different, and even systems from the same vendor may have different 
ways for running jobs at different installations. The mpirun program attempts to  adapt to 
this diversity, but you may find that it does not handle your installation. One step that 
you can take is to use the -t option to mpirun. This shows how mpirun would start your 
MPI program, without actually doing so. Often, you can use this information, along with 
the instructions for starting programs at your site, to  discover how to start the program. 
Please let us know (mpi-bugs@mcs + an1 . gov) about any special needs. 

3.5.1 IBM SPx 

Using mpirun with the IBM SP1 and SP2 computers can be tricky, because there are so 
many different (and often mutually exclusive) ways of running programs on them. The 
mpirun distributed with mpich works on systems using the Argonne scheduler (sometimes 
called EASY) and with systems using the default resource manager values (i.e., those not 
requiring the user to choose an RMPOOL). If you have trouble running an mpich program, 
try following the rules at your installation for running an MPL or POE program (if using 
the ch-eui device) or for running P4 (if using the ch-p4 device). 

3.5.2 Intel Paragon 

Using mpirun with an Intel Paragon can be tricky, because there are so many different (and 
often mutually exclusive) ways of running programs. The mpirun distributed with mpich 
works with Paragons that provide a default compute partition. There are some options, 
-paragon, e . for selecting other forms. For example, -paragonpn computel specifies the 
pre-existing partition named computel t o  run on. 

3.6 Symmetric Multiprocessors (SMPs) 

On many of the shared-memory implementations (device ch-shmem, mpich reserves some 
shared memory in which messages are transferred back and forth. By default, mpich reserves 
roughly four MBytes of shared memory. You can change this with the environment variable 
MPI-GLDBMEMSIZE. For example, to  make it 8 MB, enter 

setenv MPI-GLOBMEMSIZE 8388608 

10 



Large messages are transferred in pieces, so MPI-GLOBMEMSIZE does not limit the maximum 
message size, but increasing it may improve performance. 

3.7 The Convex Exemplar SPP 

The Convex Exemplar version has been specially tuned by Convex Computer Corporation 
to take advantage of the specific architecture of the Exemplar. In particular, most of the 
collective communication library has been reimplemented using shared-memory algorithms; 
the result is a significant decrease in latency over implementations layered on top of point- 
to-point functions. 

The environment variable MPI-GLOBMEMSIZE, mentioned above, specifies the size of the 
shared-memory region on each hypernode rather than the total amount of shared memory. 
On the Exemplar, its default value is 16 MB. 

A Convex-specific environment variable is MPI-TOPOLOGY. If you specify 

setenv MPI-TOPOLOGY <i>,<j>,<k>,€l>, ... 

where the sum of the arguments equals the number of processes specified with -np on the 
mpirun command line, the specified number of processes is started on each hypernode. Use 
of this environment variable is optional; the default behavior (keeping the processes on the 
same hypernode as much as possible) is usually more beneficial. 

4 Sample MPI Programs 

The mpich distribution contains a variety of sample programs, which are located in the 
mpich source tree. 

mpich/examples/test Multiple test directories for the various parts of MPI. Enter “make 
testing” in this directory to  run our suite of function tests. 

mpich/examples/test/lederman Tests created by Steve Huss-Lederman of SRC. See 
the README in that directory. 

mpich/examples/perftest Performance benchmarking programs. See the script 
runmpptest for information on how to run the benchmarks. These are relatively 
sophisticated. 

mpich/mpe/contrib/mandel A Mandelbrot program that uses the MPE graphics pack- 
age that comes with mpich. It should work with any other MPI implementation as 
well, but we have not tested it. This is a good demo program if you have a fast X 
server and not too many processes. 

mpich/mpe/contrib/mastermind A program for solving the Mastermind puzzle in par- 
allel. It can use graphics (gmm) or not (mm). 

11 



mpich/examples/contrib/nuclei The closest thing to  a real scientific application that 
we have now; it has not been tested recently. It is the application described at the 
end of Chapter 3 of the Using MPI book. 

Additional examples from the book Using MPI [3] are available by anonymous ftp and 
through the World Wide Web at ftp://info.mcs.anl.gov/pub/mpi/using/. 

5 The MPE Library of Useful Extensions 

It is anticipated that mpich will continue to accumulate extension routines os various kinds. 
Some of them may ultimately become part of an extended MPI standard. In the meantime, 
we keep them in a library we call mpe, for MultiProcessing Environment. Currently the 
main components of the mpe library are 

0 a set of routines for creating logfiles for examination by upshot, 

0 a shared-display parallel X graphics library, 

0 routines for sequentializing a section of code being executed in parallel, and 

0 debugger setup routines. 

5.1 Creating Logfiles 

You can create customized logfiles for viewing with upshot by calls to  the various mpe logging 
routines. For details, see the mpe man pages. A profiling library exists that automatically 
logs all calls to MPI functions. To find out how to link with a profiling library that produces 
log files automatically, see Section 5.4. 

To be added in later editions of this Users Guide: 

0 All mpe logging routines 

0 Format of logfiles 

0 An example logfile 

5.1.1 Parallel X Graphics 

The available graphics routines are shown in Table 1. For arguments, see the m a n  pages. 

You can find an example of the use of the mpe graphics library in the directory 
mpich/mpe/contrib/madel. Enter 

make 
mpirun -np 4 pmandel 

to  see a parallel Mandelbrot calculation algorithm that exploits several features of the mpe 
graphics library. 

12 

ftp://info.mcs.anl.gov/pub/mpi/using


Table 1: MPE graphics routines 
I Control Routines 

MPE-Open-graphics 
MPE-Close-graphics 
MPE-Updat e 

MPEDraw-point 
MPEDraw-point s 
MPEDrawline 
MPEDraw-circle Draws a circle 
M P E J i l l r e c t a n g l e  
MPEDrawlogic 
MPE-Line-thickness Sets thickness of lines 
MPEJlake-color-array 
MPEJum-colors 
MPEAddRGB-color Adds a new color 

(Collectively) opens an X display 
Closes a X11 graphics device 
Updates an X11 display 
Output Routines 

Draws a point on an X display 
Draws points on an X display 
Draws a line on an X11 display 

Draws a filled rectangle on an X11 display 
Sets logical operation for new pixels 

Makes an array of color indices 
Gets the number of available colors 

Input Routines 
MPE-Getmouse-press 
MPE-Get-dragregion Get a rectangular region 

Get current coordinates of the mouse 

5.1.2 Other mpe Routines  

Sometimes during the execution of a parallel program, you need to ensure that only a few 
(often just one) processor at a time is doing something. The routines MPE-Seq-begin and 
MPE-Seq-end allow you to  create a “sequential section” in a parallel program. 

The MPI standard makes it easy for users to define the routine to  be called when an 
error is detected by MPI. Often, what you’d like to  happen is to  have the program start 
a debugger so that you can diagnose the problem immediately. In some environments, the 
error handler in MPE-Errors-call-dbx-in,xterm allows you to do just that. In addition, 
you can compile the mpe library with debugging code included. (See the -mpedbg configure 
option.) 

5.2 Profiling Libraries 

The MPI profiling interface provides a convenient way €or you to add performance analysis 
tools to  any MPI implementation. We demonstrate this mechanism in mpich and give you 
a running start, by supplying three profiling libraries with the mpich distribution. 

5.2.1 Accumulation of Time Spen t  in  MPI Rout ines  

The first profiling library is simple. The profiling version of each MPIXxx routine calls 
PMPI-Wtime (which delivers a time stamp) before and after each call to  the corresponding 
PMPIXxx routine. Times are accumulated in each process and written out, one file per 

13 



process, in the profiling version of MPIJinalize. The files are then available for use in 
either a global or process-by-process report. This version does not take into account nested 
calls, which occur when MPIEcast, for instance, is implemented in terms of MPISend and 
MPI Recv. 

5.2.2 Logfile Creation and Upshot 

The second profiling library generates ZogfiZes, which are files of timestamped events. During 
execution, calls to MPILog-event are made to store events of certain types in memory, and 
these memory buffers are collected and merged in parallel during MPITinalize. During 
execution, MPIPcontrol can be used to  suspend and restart logging operations. You can 
analyze the logfile produced at the end with a variety of tools. One that we use is called 
Nupshot, which is a derivative of Upshot [5 ] ,  written in Tcl/Tk. A screen dump of Upshot 
in use is shown in Figure 1. It shows parallel time lines with process states, like one of the 
ParaGraph [4]. The view can be zoomed in or out, horizontally or vertically, centered on 

1.576 1.581 8 
9 

10 

12 
.a 

1.550 1.555 1.560~~sk-clengths 
Number of t a s k s  states: 

I I 
n a  n a  , ,Total rim: 0.17067 5eC. 1301 1 

Start state length 
I 

O.OOl0- - End state length 

0.0049 ~.~ . . .  
Number of bins - 
cursor: 0.00196 

Figure 1: A screendump from upshot 

14 



any point in the display chosen with the mouse. In Figure 1, the middle window has resulted 
from zooming in on the upper window at a chosen point to  show more detail. The window 
at the bottom of the screen show a histogram of state durations, with several adjustable 
parameters. 

5.2.3 Real-Time Animation 

The third library does a simple form of real-time program animation. The MPE graphics 
library contains routines that allow a set of processes to  share an X display that is not 
associated with any one specific process. Our prototype uses this capability to  draw arrows 
that represent message traffic as the program runs. 

5.3 Accessing the Profiling Libraries 

If the MPE libraries have been built, it is very easy to access the profiling libraries. The 
easiest way is the use the mpicc and mpif77 commands. If you are using the makefile 
templates and mpireconf ig instead, then using the profiling libraries is also simple. The 
sample makefiles contain the makefile variable PROFLIB; by making with different values of 
this symbol, different profiling effects can be accomplished. In the following examples, we 
list the libraries that must be added to the list of libraries before the -1mpi library. 

-1tmpi -1pmpi Trace all MPI calls. Each MPI call is preceded by a line that contains the 
rank in MPI-COMM-WORLD of the calling process, and followed by another line indicating 
that the call has completed. Most send and receive routines also indicate the values 
of count, tag, and partner (destination for sends, source for receives). Output is to  
standard output. 

-1lmpi -1pmpi -1m Generate an upshot-style log file of all MPI calls. The name of the 
output file is executablename-prof ile. log. For example, if the program is 
sendrecv, the generated log file is sendrecv-prof ile .log. 

-1ampi -1mpe -1m -1X11 -1pmpi Produce a real-time animation of the program. This 
requires the MPE graphics and uses X11 Window System operations. You may need 
to provide a specific path for the X11 libraries (instead of -1Xll). 

In Fortran, it is necessary to  include the library -1fmpi ahead of the profiling libraries. 
This allows C routines to be used for implementing the profiling libraries for use by both C 
and Fortran programs. For example, to  generate log files in a Fortran program, the library 
list is -1fmpi -1lmpi -1pmpi -1m. 

5.4 Automatic Generation of Profiling Libraries 

For each of these libraries, the process of building the library was similar. First, profiling 
versions of MPI-Init and MPIiFinalize must be written. The profiling versions of the other 
MPI routines are similar in style. The code in each looks like 

15 



int MPI-Xxx( . * 1 
€ 

do something f o r  p r o f i l i n g  l i b r a r y  

do something e l s e  f o r  p r o f i l i n g  l i b r a r y  
retcode = PMPI,Xxx( . . 1; 

r e t u r n  retcode;  

We generate these routines by writing the “do something” parts only once, in schematic 
form, and then wrapping them around the PMPI- calls automatically. It is thus easy to 
generate profiling libraries. See the README file in mpich/prof i l ing/wrappergen or Ap- 
pendix A. 

Examples of how to write wrapper templates are located in the prof i l i n g / l i b  subdi- 
rectory. There you will find the source code (the .w files) for creating the three profiling 
libraries described above. An example Makefile for trying these out is located in the 
prof i l ing/examples directory. 

5.5 Tools for Profiling Library Management 

The sample profiling wrappers for mpich are distributed as wrapper definition code. The 
wrapper definition code is run through the wrappergen utility to generate C code (see 
Section 5.4). Any number of wrapper definitions can be used together, so any level of 
profiling wrapper nesting is possible when using wrappergen. 

A few sample wrapper definitions are provided with mpich: 

timing Use MPI-Wtimeo to  keep track of the total number of calls to  each MPI function 
and the time spent within that function. This simply checks the timer before and 
after the function call. It does not subtract time spent in calls to  other functions. 

logging Create logfile of all pt2pt function calls. 

vismess Pop up an X window that gives a simple visualization of all messages that are 
passed. 

allprof All of the above. This shows how several profiling libraries may be combined. 

Note: These wrappers do not use any mpich-specific features besides the MPE graphics 
and logging used by ‘vismess’ and ‘logging’, respectively. They should work on any MPI 
implement at ion. 

You can incorporate them manually into your application, which involves three changes 
to  the building of your application: 

Generate the source code for the desired wrapper(s) with wrappergen. This can be a 
one-time task. 

16 



0 Compile the code for the wrapper(s). Be sure to  supply the needed compile-line 
parameters. ‘vismess’ and ‘logging’ require the MPE library (-lmpe), and the ‘vismess’ 
wrapper definition requires MPE-GRAPHICS. 

0 Link the compiled wrapper code, the profiling version of the MPI library, and any 
other necessary libraries (‘vismess’ requires X) into your application. The required 
order is 

$(CLINKER) 
<wrapper object code> \ 
<other necessary libraries (-lmpe)> \ 
<profiling mpi library (-lpmpi)> \ 
<standard mpi library (-lmpi)> 

<application object files . . . > \ 

To simplify it,  some sample makefile sections have been created in 
mp ich/prof il ing/l ib: 

Makefile.timing - timing wrappers 
Makefile.logging - logging wrappers 
Makef ile .vismess - animated messages wrappers 
Makefile.allprof - timing, logging, and vismess 

To use these Makef ile fragments: 

1. (optional) Add $ (PROF-OBJ) to  your application’s dependency list: 

myapp : myapp . o $ (PROFJJBJ) 

2. Add $(PROFSLG) to  your compile line CFLAGS: 

CFLAGS = -0 $(PROF-FLG) 

3. Add $(PROFLIB) to  your link line, after your application’s object code, but before 
the main MPI library: 

$(CLINKER) myapp.0 -L$(MPIR-HOME)/lib/$(ARCH)/$(COMM) $(PROF-LIB) -1mpi 

4. (optional) Add $(PROF-CLN) to  your clean target: 

rm -f *.o *” myapp $(PROF,CLN) 

5. Include the desired Makefile fragment in your makefile: 

include $(MPIR-HOME)/profiling/lib/Makefile.logging 

#include $(MPIR-HOME)/profiling/lib/Makefile.logging 

if you are using the wildly incompatible BSD 4.4-derived make) 

17 



5.6 Examining Event Logs with upshot 

The original upshot was written in C and distributed several years ago [5]. To go with 
mpich, it has been completely rewritten by Ed Karrels to  provide more robustness and 
flexibility. The current version resides in the directory prof iling/upshot, and there is a 
symbolic link to the executable in mpich/bin. A newer version, currently under development 
but functional, providing less functionality but greater speed on large log files, is in 
prof ilinghupshot. 

6 Debugging MPI Programs 

Debugging of parallel programs is notoriously difficult , and we do not have a magical solution 
to this problem. Nonetheless, we have built into mpich a few features that may be of use 
in debugging MPI programs. 

6.1 Error Handlers 

The MPI standard specifies a mechanism for installing one9s own error handler and specifies 
the behavior of two predefined ones, MPI-ERRORS-RETURN and MPI-ERRORS-ARE-FATAL. As 
part of the mpe library, we include two other error handlers to  facilitate the use of dbx in 
debugging MPI programs. 

MPE-Errors-call-dbx-in-xterm 
MPE-Signals-call-debugger 

These error handlers are located in the mpe directory. A configure option (-mpedbg) includes 
these error handlers into the regular MPI libraries and allows the command-line argument 
-mpedbg to make MPE-Errors-call-dbx,in,xterm the default error handler (instead of 
MPI-ERRORS-ARE-FATAL). . 
6.2 Command-Line Arguments for mpirun 

mpirun provides some help in starting programs with a debugger. 

mpirun -dbx -np 2 program 

starts program on two machines, with the local one running under the dbx debugger. The 
option -gdb selects the gdb debugger instead. The option -xxgdb allows you to use the 
xxgdb (X Window GUI interface to gdb). 

6.3 MPI Arguments for the Application Program 

MPI arguments for application programs are currently undocumented, and some require 
configure options to  have been specified (like -mpipktsize and -chmemdebug). The 

18 



-mpiversion option is useful for finding out how your installation of mpich was configured 
and exactly what version it is. 

-mpedbg If an error occurs, start xterms attached to the process that generated the error. 
This requires that the mpich be configured with -mpedbg and works on only some 
workstations systems. 

-mpiversion Print out the version and configuration arguments for the mpich implemen- 
tation being used. 

-mpichdebug Generate detailed information on each operation; this is useful only to ex- 
perts. 

-mpiqueue Describe the state of the queues when MPI-Finalize is called. Can be used 
to find lost messages. 

These arguments are provided to the program, not to mpirun. That is, 

mpirun -np 2 a.out -mpichmsg 

6.4 p4 Arguments for Debugging 

If your configuration of mpich used -device=ch-p4, some of the p4 debugging capabilities 
are available to  you. The most useful of these are the command-line arguments to the 
application program. Thus 

mpirun -np 10 myprog -p4dbg 20 -p$rdbg 20 

results in program-tracing information at  a level of 20 being written to stdout during 
execution. For more information about what is printed at what levels, see the p4 users 
guide [l]. 

If one specifies -p4norem on the command line, mpirun will not actually start the pro- 
cesses. The master process prints a message suggesting how the user can do it. The point of 
this option is to  enable the user to start the remote processes under his favorite debugger? 
for instance. The option makes sense only when processes are being started remotely, such 
as on a workstation network. Note that this is an argument to the program, not to  mpirun. 
For example, to run myprog this way, use 

mpirun -np 4 myprog -p4norem 

6.5 Debugging for Nexus 

The ch-nexus device will allow you to  take advantage of any Nexus debugging facilities 
only if you link against the debug version of both mpich and Nexus. Since configure 
-device=ch,nexus does not create a debug version of the mpich library, the person who 

19 



installed the ch-nexus device should contact geisler@mcs.anl.gov for instructions on how 
to do this. 

If the debug version already exists at your site, and you have linked your program against 
it, you can pass the following parameters to  your program using mpirun: 

0 -Dnexus This command sets the trace level (0-9). 0 will give you nothing, and 9 will 
give you more than you can effectively use. Suggested values are 2 or 3. 

0 -debug,display This command gives the X windows screen name that the debugger 
should be displayed on. One debugger will start for each node (except the starting 
node). Use the go command to start your program with the right parameters. 

0 -debug-command This command tells where to find the script to start up a debug- 
ger for each node. This should be generated automatically with 
configure -device=ch-nexus in either /usr/local/mpi/bin/rdbx or 
/usr/local/mpi/bin/rungdb. 

So, to run a program at trace level 3, one would enter 

mpirun -np 2 program -mpi -Dnexus 3 

Be sure t o  include the -mpi before any of the debugging flags. See the debugging section 
of the Nexus users guide for more details on how to debug ch-nexus programs. 

6.6 Command-Line Arguments for the Application Program 

Arguments on the command line that follow the application program name and are not 
directed to the mpich system (don’t begin with -mpi or -p4) are passed through to all 
processes of the application program. For example, if you execute 

mpirun -echo -np 4 myprog -mpiversion -p4dbg 10 x y z 

then -echo -np 4 is interpreted by mpirun (echo actions of mpirun and run four pro- 
cesses), -mpiversion is interpreted by mpich (each process prints configuration infor- 
mation), -p4dbg 10 is interpreted by the p4 device if your version was configured with 
-device=ch-p4 (sets p4 debugging level to lo),  and x y z are passed through to the appli- 
cation program. In addition, MPI-Init strips out nonapplication arguments, so that after 
the call to BPI-Init in your C program, the argument vector argv contains only 

and your program can process its own command-line arguments in the normal way. 

mailto:geisler@mcs.anl.gov


6.7 Starting Jobs with a Debugger 

The -dbx option to mpirun causes processes to be run under the control of the dbx debugger. 
This depends on cooperation between dbx and mpich and does not always work; if it does 
not, you will know immediately. If it does work, it is often the simplest way to debug MPI 
programs. Similiarly, the argument -gdb makes use of the GNJ debugger. 

For example, enter 

mpirun -dbx or mpirun -gdb a.out 

In some cases, you will have to  wait until the program completes and then type run to  run 
the program again. Also, mpirun relies on the -sr argument to  dbx (this tells dbx to  read 
initial commands from a file). If your dbx does not support that feature, mpirun will fail 
to  start your program under the debugger. 

6.8 Starting the Debugger When an Error Occurs 

Enter 

mpirun ... a.out -mpedbg 

(requires mpich built with -mpedbg option; do -mpiversion and look for -mpedbg option). 

6.9 Attaching the Debugger to a Running Program 

On workstation clusters, you can often attach a debugger to  a running process. For example, 
the debugger dbx often accepts a process id (pid) which you can get by using the ps 
command. The form is either 

dbx a.out pid 

or 

dbx -pid pid a.out 

6.10 Related Tools 

The ScalabZe Uniz Tools (SUT) is a collection for managing workstation networks as an 
MPP. These include programs for looking at all of the processes in a cluster and performing 
operations on them (such as attaching the debugger to every process you own that is 
running a particular program). This is not part of MPI but can be very useful in working 
with workstation clusters. These tools are not available yet, but will be released soon. 

21 



6.11 Contents of the Library Files 

The directory containing the MPI library file (1ibmpi.a) contains a few additional files. 
These are summarized here. 

1ibmpi.a MPI library (MPI-XXXX) 

1ibpmpi.a Profiling version (PMPI-Xxxx) 

1ibmpe.a MPE graphics, logging, and other extensions (PMPE-XXXX) 

libmpe-n0mpi.a MPE graphics without mpi 

mpe-prof.0 Sample profiling library (C) 

mpe-proff.0 Sample profiling library (Fortran) 

7 Other MPI Documentation 

Information about MPI is available from a variety of sources. Some of these, particularly 
WWW pages, include pointers to other resources. 

0 The standard itself: 

- As a technical report: U. of T. report [2] 
- Fall postscript for ftp: at in fo  .mcs .anl.gov in pub/mpi/mpi-report .ps. 
- As hypertext on the World Wide Web: http : //www .mcs , an1 .gov/mpi 
- As a journal article: in the fall 1994 issue of the Journal of Supercomputing 

Applications [7] 

0 MPI Forum discussions 

- The MPI Forum e-mail discussions and both current and earlier versions of the 
standard are available from netlib. 

0 Books: 

- Using MPI: Portable Parallel Programming with the Message-Passing Interface, 

- MPI: The Complete Reference, by Snir et al. 
by Gropp, Lusk, and Skjellum [3]. 

0 Newsgroup: 

- comp.parallel.mpi 

0 Mailing lists: 

- mpi-comm@cs .utk. edu: The MPI Forum discussion list. 
- mpi-implamcs . an1 .gov: The implementors’ discussion list. 

22 

http://anl.gov


- mpi-bugs9mcs. an1 .gov: The address to  report problems with mpich to. 

0 Implementations available by ftp: 

- mpich is available by anonymous ftp from info .mcs . anl. gov in the directory 

- LAM is available by anonymous ftp from tbag. osc . edu in the directory 

- The CHIMP version of MPI is available by anonymous ftp from 

pub/mpi/mpich, file mpich. tar. Z. 

pub/lam. 

ftp. epcc . ed. ac .uk in the directory pub/chimp/release. 

0 Test code repository (new): 

- ftp//:info.mcs .anl.gov/pub/mpi/mpi-test 

8 In Case of Trouble 

This section describes some commonly encountered problems and their solutions. It also 
describes machine-dependent considerations. Send any problem that you cannot solve by 
checking this section to mpi-bugs9mcs . an1 . gov. Please include the following. 

0 The version of mpich (e.g., 1.0.11) 

0 The output of running your program with the -mpiversion argument (e.g., mpirun 
-np i a.out -mpiversion) 

0 The output of 

uname -a 

for your system. If you are on an SGI system, also 

hinv 

0 If the problem is with a script like configure or mpirun, run the script with the -echo 
argument (e.g., mpirun -echo -np 4 a.out ). 

0 If you are using a network of workstations, also send the output of bin/tstmachines 
or util/tstmachines. 

Each section is organized in question and answer format, with questions that relate 
to  more than one environment (workstation, operating system, etc.) first, followed by 
questions that are specific to a particular environment. Problems with workstation clusters 
are collected together as well. 

23 



8.1 Problems Compiling or Linking Fortran Programs 

1. Q: When linking the test program, the following message is generated: 

f77 -g -0 secondf secondf.0 -L/usr/local/mpich/lib/sm4/ch~p4 -1mpi 
invalid option -L/usr/local/mpich/lib/sun4/ch~p4 
Id: -1mpi: No such file or directory 

A: This f77 program does not accept the -L command to  set the library search path. 
Some systems provide a shell script for f77 that is very limited in its abilities. To 
work around this, use the full library path instead of the -L option: 

f77 -g -0 secondf secondf.0 /usr/local/mpich/lib/sun4/ch~p4/libmpi.a 

2. Q: When linking Fortran programs, I get undefined symbols such as 

f77 -c sec0ndf.f 
sec0ndf.f: 

f77 
Undefined first referenced 

get domainname 
/home/mpich/lib/solaris/ch-shmem/libmpi .a(shmempriv.o) 
Id: fatal: Symbol referencing errors. No output written to secondf 

MAIN main: 
-0 secondf secondf.0 -L/home/mpich/lib/solaris/ch-shmem -1mpi 

symbol in file 

There is no problem with C programs. 
A: Your C compiler is providing libraries for you that your Fortran compiler is not 
providing. Find the option for the C compiler and for the Fortran compilers that 
indicate which library files are being used (alternately, you may find an option such as 
-dryrun that shows what commands are being used by the compiler). Build a simple 
C and Fortran program, and compare the libraries used (usually on the Id command 
line). Try the ones that are present for the C compiler and missing for the Fortran 
compiler. 

8.2 Problems Linking C Programs 

8.2.1 General 

1. Q: When linking programs, I get messages about --builtin-saveregs being unde- 
fined. 
A: You may have a system on which C and Fortran routines are incompatible (for 
example, using gcc and the Vendor’s Fortran compiler). If you do not plan to  use 
Fortran, the easiest fix is to  rebuild with the -nof77 option to  configure. 
You should also look into making your C compiler compatible with your Fortran 
compiler. One possibility is use f2c to convert Fortran to C, then use the C compiler 
to  compile everything. If you take this route, remember that every Fortran routine 
has to be compiled using f2c and the C compiler. 

24 



8.2.2 Sun Solaris 

1. Q:  When linking on Solaris, I get an error like this: 

cc -g -0 testtypes testtypes.0 -L/usr/local/mpich/lib/solaris/ch~p4 -1mpi 

Id: warning: symbol ‘-defaultstkcache’ has differing sizes: 
-1socket -1nsl -1thread 

(file /usr/lib/libthread.so value=Ox20; file /usr/lib/libaio.so value=Ox8); 
/usr/lib/libthread.so definition taken 

A: This is a bug in Solaris 2.3 that is fixed in Solaris 2.4. There may be a patch for 
Solaris 2.3; contact Sun for more information. 

8.2.3 HPUX 

1. Q:  When linking on HPUX, I get an error like this: 

cc -0 pgm pgm.0 -L/usr/local/mpi/lib/hpux/ch~p4 -1mpi 
/bin/ld: Unsatisfied symbols : 
sigrelse (code) 
s igset (code) 
sighold (code) 
*** Error code 1 

-1m 

A: You need to  add the link option -1V3. The p4 device uses the System V signals 
on the HP; these are provided in the V 3  library. 

8.3 Problems Starting Programs 

8.3.1 General 

1. Q: When trying to start a program with 

mpirun -np 2 cpi 

either I get an error message or the program hangs. 
A: On Intel Paragons and IBM SP1 and SP2, there are many mutually exclusive ways 
to  run parallel programs; each site can pick the approach(es) that it allows. The script 
mpirun tries one of the more common methods but may make the wrong choice. Use 
the -v or -t option to  mpirun to  see how it is trying to run the program, and then 
compare this with the site-specific instructions for using your system. You may need 
to adapt the code in mpirun to  meet your needs. 

2. Q: When trying to  run a program with, for example, mpirun -np 4 cpi, I get 

usage : mpirun [options] (executable) [<dstnodes>l [-- <args>l 

or 

25 



mpirun [options] <schema> 

A: You have a command named mpirun in your path ahead of the mpich version. 
Execute the command 

which mpirun 

to see which command named mpirun was actually found. The fix is to either change 
the order of directories in your path to  put the mpich version of mpirun first, or to 
define an alias for mpirun that uses an absolute path. For example, in the csh shell, 
you might do 

alias mpirun /usr/local/mpi/bin/mpirun 

3. Q:  When I issue the command 

mpirun -dbx -np 1 foo 

dbx does start up but this message appears: 

dbx version 3.19 Nov 3 1994 19:59:46 
Unexpected argument ignored: -sr 
/scr/MPI/me/PId8704 is not an executable 

A: Your version of dbx does not support the -sr argument; this is needed to give dbx 
the initial commands to execute. You will not be able to use mpirun with the -dbx 
argument. Try using -gdb or -xxgdb instead of -dbx if you have the GNU debugger. 

4. Q: When attempting to run cpilog I get the following message: 

ld.so.1: cpilog: fatal: libXll.so.4: can’t open file: errno 2 

A: The X11 version that configure found isn’t properly installed. This is a common 
problem with Sun/Solaris systems. One possibility is that your Solaris machines are 
running slightly different versions. You can try forcing static linking (-Bstatic on 
SunOS). 
Consider adding these lines to  your .login (assuming C shell): 

setenv OPENWINHOME /usr/openwin 
setenv LD-LIBRARY-PATH /opt/SUNWspro/lib:/usr/openwin/lib 

(you may wish to check with your system administrator first to make sure that the 
paths are correct for your system). Make sure that you add them before any line like 

26 



5 .  Q: My program fails when it tries to  write to  a file. 
A: If you opened the file before calling MPI-INIT, the behavior of MPI (not just 
mpich) is undefined. On the ch-p4 version, only process zero (in MPI-CDMM-WORLD) 
will have the file open; the other processes will not have opened the file. Move the 
operations that open files and interact with the outside world to  after MPI-INIT (and 
before MPI -FINALIZE). 

6. Q:  Programs seem to take forever to  start. 

A: This can be caused by any of several problems. On systems with dynamically linked 
executables, this can be caused by problems with the file system suddenly getting 
requests from many processors for the dynamically linked parts of the executable 
(this has been measured as a problem with some DFS implementations). You can try 
statically linking your application. 
On workstation networks, long startup times can be due to  the time used to  start 
remote processes; see the discussion on the secure server. 

8.3.2 Workstation Networks 

1. Q:  When I use mpirun, I get the message Permission denied. 
A: If you see something like 

1 mpirun -np 2 cpi 
Permission denied, 

when using the c k p 4  or chameleon device, it probably means that you do not have 
permission to use rsh to  start processes. The script tstmachines can be used to  test 
this. For example, if the architecture type (the -arch argument to configure) is sun4, 
try 

tstmachines sun4 

If this fails, you may need a .rhosts or /etc/hosts. equiv file (you may need to  see 
your system administrator) or you may need to  use the p4 server (see Section 3.3). 
Another possible problem is the choice of the remote shell program; some systems 
have several. Check with your systems administrator about which version of rsh or 
remsh you should be using. 
If your system allows a .rhosts file, do the following: 

(a) Create a file .rhosts in your home directory 
(b) Change the protection on it to  user read/write only: chmod og-rwx .rhosts. 
(c) Add one line to  the .rhosts file for each processor that you wish to  use. The 

format is 

host username 

For example, if your username is doe and you wish to  use machines a. our. org 
and b . our. org, your . rhosts file should contain 

27 



a.our .org doe 
b.our.org doe 

Note the use of fully qualified host names (some systems require this). 
On networks where the use of .rhosts files is not allowed, (such as the one in 
MCS at Argonne), you should use the p4 server to run on machines that are not 
trusted by the machine that you are initiating the job from. 
Finally, you may need to use a nonstandard r s h  command within mpich. mpich 
must be reconfigured with -rsh=command-name, and perhaps also with -rshnol 
if the remote shell command does not support the -1 argument. Systems using 
Kerberos and/or AFS may need this. 

2. Q: When I use mpirun, I get the message Try again. 

A: If you see something like 

X mpirun -np 2 cp i  
Try  again.  

it means that you were unable to start a remote job with the remote shell command 
on some machine, even though you would normally be able to. This may mean that 
the destination machine is very busy, out of memory, or out of processes. The man 
page for rshd may give you more information. 
The only fix for this is to  have your system administrator look into the machine that 
is generating this message. 

3. Q: When running the workstation version (-device=ch-p4), I get error messages of 
the form 

s t t y :  TCGETS: Operation not  supported on socket 

or 

s t t y :  t c g e t a t t r :  Permission denied 

or 

s t t y :  : C a n ’ t  ass ign requested address 

A: This means that one your login startup scripts (Le., . log in  and 
. cshrc  or . p ro f i l e )  contains an unguarded use of the s t t y  or t s e t  program. For C 
shell users, one typical fix is to  check for the variables TERM or PROMPT to be initialized, 
for example, 

i f  ($?TERM) then  

endif 
eval  ‘ t s e t  -8 -eA\? -k^U -9 -I $TERM‘ 

Another solution is to see whether it is appropriate to add 

28 

http://a.our.org
http://b.our.org


if ($?USER == 0 I I $?promp == 0) exit 

near the top of your .cshrc file (but after any code that sets up the runtime envi- 
ronment, such as library paths (e.g., LD-LIBRARY-PATH). 

4. Q: When using mpirun, I get strange output like 

arch: No such file or directory 

A: This is usually a problem in your .cshrc file. Try the shell command 

which hostname 

If you see the same strange output, your problem is in your .cshrc file. 

5 .  Q: When I try to  run my program, I get 

PO-4652: 

A: This indicates that the mpirun program did not create the expected input to  run 
the program. The most likely reason is that the mpirun command is trying to  run a 
program build with device ch-p4 (workstation networks) as shared memory or some 
special system. 
Try the following. Run the program using mpirun and the -t argument: 

p4-error: open error on procgroup file (procgroup): 0 

mpirun -t -np 1 foo 

This should show what mpirun would do (-t is for testing). Or you can use the -echo 
argument to  see exactly what mpirun is doing: 

mpirun -echo -np 1 foo 

In general, you should select the mpirun in lib/<architecture>/<device> directory 
over the one in the bin directory. 

6. Q: When trying to  run a program, I get the message 

icy% 
icy: icy: No such file or directory 

mpirun -np 2 cpi -mpiversion 

A: Your problem is that /usr/lib/rsh is not the remote shell program. Try the 
following: 

which rsh 
1s /usr/*/rsh 

You probably have /usr/lib in your path ahead of /usr/ucb or /usr/bin. This 
picks the restricted shell instead of the remote shell. The easiest fix is t o  just remove 
/usr/lib from your path (few people need it); alternately, you can move it t o  after 
the directory that contains the remote shell rsh. 
A4nother choice would be to  add a link in a directory earlier in the search path to  the 
remote shell. For example, if you have /home/gropp/bin/sun4 early in your search 
path, you could use 

29 



cd /home/gropp/bin/ sun4 
In -s  /usr/bin/rsh rsh 

there (assuming /usr/bin/rsh is the remote shell). 

7. Q: When trying to  run a program, I get the message 

trying normal rsh 

A: You are using a version of the remote shell program that does not support the -1 
argument. Reconfigure with -rshnol and rebuild mpich. You may suffer some loss of 
functionality if you try to run on systems where you have different user names. 

. 8. Q: When I run my program, I get messages like 

I 1d.so: warning: /usr/lib/libc.so.l.8 has older revision than expected 9 

A: You are trying to run on another machine with an outdated version of the basic 
C library. For some reason, some manufacturers do not make the shared libraries 
compatible between minor (or even maintenance) releases of their software. You need 
to have you system administrator bring the machines to the same software level. 
One temporary fix that you can use is to  add the link-time option to force static linking 
instead of dynamic linking. For some Sun workstations, the option is -Bstatic. 

9. Q: Programs never get started. Even tstmachines hangs. 
A: Check first that rsh works at  all. For example, if you have workstations wl and 
w2 and you are running on w17 try 

rsh w2 true 

This should complete quickly. If it does not, try 

rsh wl true 

(that is, use rsh to run true on the system that you are running on). If you get 
permission denied, see the help on that. If you get 

krcmd: No ticket file (tf-util) 
rsh: warning, using standard rsh: can’t provide Kerberos auth data. 

your system has a faulty installation of rsh. Some FreeBSD systems have been ob- 
served with this problem. Have your system administrators correct the problem (often 
one of an inconsistent set of rsh/rshd programs). 

10. Q: When running the workstation version (-device=ch-p4), I get error messages of 
the form 

more slaves than message queues 

30 



A: This means that you are trying to  run mpich in one mode when it was configured 
for another. In particular, you are specifying in your p4 procgroup file that several 
processes are to  shared memory on a particular machine by either putting a number 
greater than 0 on the first line (where it signifies number of local processes besides 
the original one) or a number greater than 1 on any of the succeeding lines (where it 
indicates the total number of processes sharing memory on that machine). You should 
either change your procgroup file to specify only one process on line or reconfigure 
mp i ch with 

configure -device=ch-p4 -comm=shared 

which will reconfigure the p4 device so that multiple processes can share memory on 
each host. The reason this is not the default is that with this configuration you will see 
busy waiting on each workstation, as the device goes back and forth between selecting 
on a socket and checking the internal shared-memory queue. 

11. Q: My programs seem to hang in MPI-Init. 
A: There are a number of ways that this can happen: 

(a) One of the workstations you selected to  run on is dead (try tstmachines). 
(b) You linked with the FSU pthreads package; this has been reported to  cause 

problems, particularly with the system select call that is part of Unix and is 
used by mpich. 
Another is if you use the library -1dxldl (extended math library) on Digital Alpha 
systems. This has been observed to  cause MPI-Init to hang. No workaround is 
known at this time; contact Digital for a fix if you need to  use MPI and -1dxml 
toget hero 

12. Q: My program (using device ch-p4) fails with 

~0,2005: p4-error: fork-p4: fork failed: -1 
p4,error: latest msg from perror: Error 0 

A: The executable size of your program may be too large. When a ch-p4 or ch-tcp 
device program starts, it creates a copy of itself t o  handle certain communication 
tasks. Because of the way in which the code is organized, this (at least temporarily) 
is a full copy of your original program and occupies the same amount of space. Thus, 
if your program is over half as large as the maximum space available, you will get 
this error. On SGI systems, you can use the command size to get the size of the 
executable and swap -1 to get the available space. Note that size gives you the size 
in bytes and swap -1 gives you the size in 512-byte blocks. Other systems may offer 
similar commands. 
-4 similar problem can happen on IBM SPx using the ch-eui or ch-mpl device; the 
cause is the same, but it originates within the IBM MPL library. 

13. Q: Sometimes, I get the error 

Exec format error. Wrong Architecture. 

31 



A: You are probably using NFS (Network File System). NFS can fail to  keep files 
updated in a timely way; this problem can be caused by creating an executable on one 
machine and then attempting to use it from another. Usually, NFS catches up with 
the existence of the new file within a few minutes. You can also try using the sync 
command. mpirun in fact tries to run the sync command, but on many systems, sync 
is only advisory and will not guamntee that the file system has been made consistent. 

14. Q: There seem to  be two copies of my program running on each node. This doubles 
the memory requirement of my application. Is this normal? 
A: Yes, this is normal. In the ch,p4 implementation, the second process is used to  
dynamically establish connections to other processes. 

8.3.3 Intel Paragon 

1. Q: How do I run jobs with mpirun under NQS on my Paragon? 
A: Give mpirun the argument -paragontype nqs. 

8.3.4 IBM RS/6000 

1. Q:  When trying to run on an IBM RS/6000 with the ch-p4 device, I got 

X mpirun -np 2 cpi 
Could not load program /home/me/mpich/examples/basic/cpi 
Could not load library libC . a[shr .01 
Error was: No such file or directory 

A: This means that mpich was built with the xlC compiler but that some of the 
machines in your util/machines/machines .rs6000 file do not have xlC installed. 
Either install xlC or rebuild mpich to  use another compiler (either xlc or gcc; gcc 
has the advantage of never having any licensing restrictions). 

2. Q: When trying to run on an IBM RS/6000 with the ch-p4 device, I got 

% mpirun -np 2 cpi 
Could not load program /home/me/mpich/examples/basic/cpi 
Could not load library libC . a[shr .ol 
Error was: No such file or directory 

A: This means that mpich was built with the xlC compiler but that some of the 
machines in your ut il/machines/machines . rs6000 file do not have xlC installed. 
Either install xlC or rebuild mpich to use another compiler (either xlc or gcc; gcc 
has the advantage of never having any licensing restrictions). 

8.3.5 IBM SP 

1. Q: When starting my program on an IBM SP, I get this: 

32 



$ mpirun -np 2 hello 
ERROR: 0031-124 Couldn't allocate nodes for parallel execution. Exiting ... 
ERROR: 0031-603 Resource Manager allocation for task: 0, node: 
me1 . myuniv 
.edu, rc = JM-PARTIONCREATIONFAILURE 
ERROR: 0031-635 Non-zero status -1 returned from pm-mgr-init 

A: This means that either mpirun is trying to start jobs on your SP in a way different 
than your installation supports or that there has been a failure in the IBM software 
that manages the parallel jobs (all of these error messages are from the IBM poe 
command that mpirun uses to  start the MPI job). Contact your system administrator 
for help in fixing this situation. Your system administrator can use 

dsh -av I'ps aux I egrep -i 'poelpmdljmd'" 

from the control workstation to  search for stray IBM POE jobs that can cause this 
behavior. The files /tmp/jmd-err on the individual nodes may also contain useful 
diagnostic information. 

2. Q: When trying to  run on an IBM SPx, I get the message from mpirun: 

ERROR: 0031-214 pmd: chdir </a/user/gamma/home/mpich/examples/basic> 
ERROR: 0031-214 pmd: chdir </a/user/gamma/homempich/examples/basic> 

A: These are messages from tbe IBM system, not from mpirun. They may be caused 
by an incompatibility between POE, the automounter (especially AMD) and the shell, 
especially if you are using a shell other than ksh. There is no good solution; IBM 
often recommends changing your shell to ksh! 

3. Q:  When I tried to  run my program on an IBM SPx, I got 

ERROR : Cannot locate message catalog (pepoe.cat) using current NLSPATH 
INFO : If NLSPATH is set correctly and catalog exists, check LANG or 
LC-MESSAGES variables 
(C) Opening of "pepoe. cat" message catalog failed 

(and other variations that mention NLSPATH and "message catalog"). 
A: This is a problem in your system; contact your support staff. Have them look at 
(a) value of NLSPATH and (b) links from /usr/lib/nls/msg/prime t o  the appro- 
priate language directory. The messages are not from mpich; they are from the IBM 
POE/MPL code the mpich implementation is using. 

4. Q:  When trying to  run on an IBM SP2, I get this message: 

ERROR: 0031-124 Less than 2 nodes available from pool 0 

33 



A: This means that the IBM POE/MPL system could not allocate the requested 
nodes when you tried to  run your program; most likely, someone else was using the 
system. You can try to  use the environment variables MP-RETRY and MP-RETRYCOUNT 
to cause the job to wait until the nodes become available. Use man poe to get more 
information. 

5 .  Q: When running on an IBM SP, my job generates the message 

Message number 0031-254 not found in Message Catalog. 

and then dies. 
A: If your user name is eight characters long, you may be experiencing a bug in the 
IBM POE environment. The only fix at the time this was written was to use an 
account whose user name was seven characters or less. Ask your IBM representative 
about PMR 4017X (poe with userids of length eight fails) and the associated APAR 
1x56566. 

8.4 Programs Fail at Startup 

8.4.1 General 

1. Q: With some systems, you might see 

/lib/dld.sl: Bind-on-reference call failed 
/lib/dld.sl: Invalid argument 

(This example is from HP-UX; similar things happen on other systems). 
A: The problem here is that your program is using shared libraries, and the libraries 
are not available on some of the machines that you are running on. To fix this, relink 
your program without the shared libraries. To do this, add the appropriate command- 
line options to the link step. For example, for the HP system that produced the errors 
above, the fix is to use -Wl, -Binmediate to the link step. For SunOS, the appropriate 
option is -Bstatic. 

8.4.2 Workstation Networks 

1. Q: I can run programs using a small number of processes, but one I ask for more than 
4-8 processes, I do not get output from all of my processes, and the programs never 
finish. 
A: We have seen this problem with installations using AFS. The remote shell program, 
rsh, supplied with some AFS systems seems to limit the number of jobs that can use 
standard output. This seems to  prevent some of the processes from exiting as well, 
causing the job to hang. There are four possible fixes: 

(a) Use a different rsh command. You can probably do this by putting the direc- 
tory containing the non-AFS version first in your PATH. This option may not be 
available to you, depending on your system. At one site, the non-AFS version 
was in /bin/rsh. 

34 



(b) Use the secure server (serv-p4). See the discussion in the Users Guide. 
(c) Redirect all standard output to  a file. 

MPE-IO-Stdout-to-f i l e  may be used to  do this. 
(d) Get a fixed rsh command. The likely source of the problem is an incorrect usage 

of the select system call in the rsh command. If the code is doing something 
like 

The MPE routine 

int mask; 
mask I= 1 << fd; 
select( fd+l, &mask, ... 1; 

instead of 

f d-set mask; 
FD,SET(fd,&mask); 
select( fd+l, &mask, ... 1; 

then the code is incorrect (the select call c,,anged to allow more than 32 file de- 
scriptors many years ago, and the rsh program (or programmer!) hasn’t changed 
with the times). 

A fourth possiblity is to get an AFS version of rsh that fixes this bug. Since we are 
not running AFS ourselves, we do not know whether such a fix is available. 

2. Q: Not all processes start. 
A: This can happen when using the ch-p4 device and a system that has extremely 
small limits on the number of remote shells you can have. Some systems using Ker- 
beros (a network security package) allow only three or four remote shells; on these 
systems, the size of MPI-COMM-WORLD will be limited to the same number (plus one if 
you are using the local host). 
The only way around this is to try the secure server; this is documented in the mpich 
installation guide. Note that you will have to start the servers by hand, since the 
chp4-servs script uses remote shell to  start the servers. 

8.5 Programs Fail after Starting 

8.5.1 General 

1. Q: I use MPI-Allreduce, and I get different answers depending on the number of 
processes I’m using. 
A: The MPI collective routines may make use of associativity to  achieve better par- 
allelism. For example, an 

MPI-Allreduce( &in, tout, MPI-DOUBLE, 1, ... 1; 

might compute 

35 



or it might compute 

where a, b,  . . . are the values of in on each of eight processes. These expressions are 
equivalent for integers, reals, and other familar objects from mathematics but are not 
equivalent for fixed precision datatypes used in computers. The association that MPI 
uses will depend on the number of processes; thus, you may not get exactly the same 
result when you use different numbers of processes. Note that you are not getting a 
wrong result, just a different one (most programs assume the arithmetic operations 
are associative). 

2. Q: I get the message 

No more memory for storing unexpected messages 

when running my program. 
A: mpich has been configured to aggressively deliver messages. This is appropriate 
for certain types of parallel programs and can deliver higher performance. However, it 
can cause applications to run out of memory when messages are delivered faster than 
they are processed. If mpich is configured with the -use-rndv option and rebuilt, 
mpich will use a rendevous method to deliver messages. 

3. Q: My Fortran program fails with a BUS error. 
A: The C compiler that mpich was built with and the Fortran compiler that you are 
using have different alignment rules for things like DOUBLE PRECISION. For example, 
the GNU C compiler gcc may assume that all doubles are aligned on eight-byte 
boundaries, but the Fortran language requires only that DOUBLE PRECISION align 
with INTEGERS, which may be four-byte aligned. 
There is no good fix. Consider rebuilding mpich with a C compiler that supports 
weaker data alignment rules. Some Fortran compilers will allow you to force eight- 
byte alignment for DOUBLE PRECISION (for example, -dalign or -f on some Sun 
Fortran compilers); note, though, that this may break some correct Fortran programs 
that exploit Fortran’s storage association rules. 
Some versions of gcc may support -munaligned-doubles; mpich should be rebuilt 
with this option if you are using gcc, version 2.7 or later. 

8.5-2 HPUX 

1. Q: My Fortran programs seem to fail with SIGSEGV when running on H P  workstations. 
A: Try compiling and linking the Fortran programs with the option +T. This may be 
necessary to make the Fortran environment correctly handle interrupts used by mpich 
to create connections to other processes. 

36 



8.6 Trouble with Input and Output 

8.6.1 General 

1. Q: I want output from printf to  appear immediately. 

A: This is really a feature of your C and/or Fortran runtime system. For C, consider 

setbuf ( stdout, (char *>O 1; 

8.6.2 IBM SP 

1. Q: I have code that prompts the user and then reads from standard input. On IBM 
SPx systems, the prompt does not appear until after the user answers the prompt! 
A: This is a feature of the IBM POE system. There is a POE routine, 
mpc-flush(l), that you can use to  flush the output. Read the man page on this 
routine; it is synchronizing over the entire job and cannot be used unless all processes 
in MPI-COMM-WORLD call it. Alternately, you can always end output with the newline 
character (\); this will cause the output to  be flushed but will also put the user’s input 
on the next line. 

8.6.3 Workstation Networks 

1. Q: I want standard output (stdout) from each process to  go to  a different file. 
A: mpich has no built-in way to  do this. In fact, it prides itself on gathering the 
stdouts for you. You can do one of the following: 

(a) Use Unix built-in commands for redirecting stdout from inside your program 
(dup2, etc.). The MPE routine MPE-IO-Stdout-to-f ile, in 
mpe/mpe-io . c, shows one way to  do this. Note that in Fortran, the approach of 
using dup2 will work only if the Fortran PRINT writes to  stdout. This is common 
but by no means universal. 

(b) Write explicitly to  files instead of to  stdout (use fprintf instead of printf, 
etc.). You can create the file name from the process’s rank. This is the most 
portable way. 

8.7 Upshot and Nupshot 

The upshot and nupshot programs require specific versions of the tcl and tk languages. 
This section describes only problems that may occur once these tools have been successfully 
built. 

8.7.1 General 

1. Q: When I try to  run upshot or nupshot, I get 

37 



No display name and no $DISPLAY environment variables 

A: Your problem is with your X environment. Upshot is an X program. If your 
workstation name is f oobar kscg .gov e tw, then before running any X program, you 
need to  do 

setenv DISPLAY foobar.kscg.gov.tw:O 

If you are running on some other system and displaying on foobar, you might need to  
do 

xhost *othermachine 

on foobar, or even 

xhost * 
which gives all other machines permission to  write on foobar’s display. 
If you do not have an X display (you are logged in from a Windows machine without 
an X capability), you cannot use upshot. 

2. Q: When trying to  run upshot, I get 

upshot: Command not found. 

A: First, check that upshot is in your path. You can use the command 

which upshot 

to  do this. 

If it is in your path, the problem may be that the name of the wish interpreter is 
too long for your Unix system. Look at the first line of the upshot file. It should be 
something like 

# !  /usr/local/bin/wish -f 

If it is something like 

# !  /usr/local/tcl7.4-tk4~2’/bin/wish -f 

this may be too long a name (some Unix systems restrict this first line to  a mere 32 
characters). To fix this, you’ll need to  put a link to  wish somewhere where the name 
will be short enough. Alternately, you can start upshot with 

/usr/local/tcl7.4-tk4.2/bin/wish -f /usr/local/mpi/bin/upshot 

38 



8.7.2 HP-UX 

1. Q: When trying to  run upshot under HP-UX, I get error messages like 

set: Variable name must begin with a letter. 

or 

upshot: syntax error at line 35: ' ( '  unexpected 

A: Your version of HP-UX limits the shell names for very short strings. Upshot is 
a program that is executed by the wish shell, and for some reason HP-UX is both 
refusing to execute in this shell and then trying to  execute the upshot program using 
your current shell (e.g., sh or csh), instead of issuing a sensible error message about 
the command name being too long. There are two possible fixes: 

(a) Add a link with a much shorter name, for example, 

In -s  /usr/local/tk3.6/bin/wish /usr/local/bin/wish 

Then edit the upshot script to  use this shorter name instead. This may require 
root access, depending on where you put the link. 

(b) Create a regular shell program containing the lines 

# !  /bin/sh 
/usr/local/tk3.6/bin/wish -f /usr/local/mpi/bin/upshot 

(with the appropriate names for both the wish and upshot executables). 

Also, file a bug report with HP. At the very least, the error message here is wrong; 
also, there is no reason to restrict general shell choices (as opposed to login shells). 

39 



Appendixes 

A Automatic Generation of Profiling Libraries 

The profiling wrapper generator (wrappergen) has been designed to complement the MPI 
profiling interface. It allows the user to  write any number of meta-wrappers, which can be 
applied to any number of MPI functions. Wrappers can be in separate files and can nest 
properly, so that more than one layer of profiling may exist on indiividual functions. 

Wrappergen needs three sources of input: 

1. A list of functions for which to generate wrappers. 

2. Declarations for the functions that are to  be profiled. For speed and parsing simplicity, 
a special format has been used. See the file proto. 

3. Wrapper definitions. 

The list of functions is simply a file of whitespace-separated function names. If this list 
is omitted, any forallfn or fnall macros will expand for every function in the declaration 
file. 

Writing Wrapper Definitions 

Wrapper definitions themselves consist of C code with special macros. Each macro is sur- 
rounded by the { { }} escape sequence. The following macros are recognized by wrappergen: 

((f ileno)) 

An integral index representing which wrapper file the macro came from. This 
is useful when declaring file-global variables to prevent name collisions. It is 
suggested that all identifiers declared outside functions end with ,((f ileno33. 
For example, 

static double overhead,time-{{fileno)); 

might expand to 

static double overhead-time-0 ; 

(end of example). 

((forallfn (function name escape> <function A> (function B> * . .  3 )  

{(endf orallf n3) 
... 

40 



The code between ((f oral l fn))  and ((endf ora l l fn) )  is copied once for every 
function profiled, except for the functions listed, replacing the escape string 
specified by (function name escape) with the name of each function. For 
example, 

( ( fora l l fn  fn,name))static i n t  ((fn-name))-ncalls-((fileno)); 
((endf ora l l fn) )  

might expand to  

s t a t i c  i n t  MPI-Send-ncalls-1; 
s t a t i c  i n t  MPI-Recv-ncalls-1; 
s t a t i c  i n t  MPI-Bcast-ncalls-1; 

(end of example) 

CCforeachfn (function name escape) (function A> (function B> . . . 3) 

((endforeachfn)) 
. . .  

((foreachfn)) is the same as ({f ora l l fn) )  except that wrappers are written 
only the functions named explicitly. For example: 

( ( fo ra l l fn  fn-name mpi-send mpi-recvl-3 

((endforallfn)) 
s t a t i c  i n t  ((f n-name))-ncalls-((f ileno)) ; 

might expand to: 

s t a t i c  i n t  MPI-Send-ncalls-2; 
s t a t i c  i n t  MPI-Recv-ncalls-2; 

(end of example) 

( ( fna l l  ( funct ion name escape> (funct ion A> (function B> ... 3) 
... 
((callfn)) 

((endfnall)) 
... 

((fnall)) defines a wrapper to  be used on all functions except the functions 
named. Wrappergen will expand into a full function definition in traditional 
C format. The ((callfn)) macro tells wrappergen where to  insert the call 
to the function that is being profiled. There must be exactly one instance 
of the ((callfn33 macro in each wrapper definition. The macro specified by 
(funct ion name escape) will be replaced by the name of each function. 

Within a wrapper definition, extra macros are recognized. 

((vardecl <type> <arg> <arg> ... 3) 

41 



Use vardecl  to  declare variables within a wrapper definition. If nested 
macros request variables through vardecl with the same names, wrap- 
pergen will create unique names by adding consecutive integers to  the 
end of the requested name (var, varl, var2, ...) until a unique name 
is created. It is unwise to declare variables manually in a wrapper 
definition, since variable names may clash with other wrappers, and 
the variable declarations may occur later in the code than statements 
from other wrappers, a situation that is illegal in classical and ANSI 
C. 

CC<varname>)) 

If a variable is declared through vardecl,  the requested name for 
that variable (which may be different from the uniquified form that 
will appear in the final code) becomes a temporary macro that will 
expand to the uniquified form. For example, 

((vardecl i n t  i d)) 

may expand to 
i n t  i, d3; 

(end of example) 

Suggested but not neccessary, a macro consisting of the name of one 
of the arguments to the function being profiled will be expanded to 
the name of the corresponding argument. This macro option serves 
little purpose other than asserting that the function being profilied 
does indeed have an argument with the given name. 

Arguments to the function being profiled may also be referenced by 
number, starting with 0 and increasing. 

{{returnVal)) 

ReturnVal expands to the variable that is used to  hold the return 
value of the function being profiled. 

c a l l f n  expands to the call of the function being profiled. With nested wrapper 
definitions, this also represents the point at which to  insert the code for any 
inner nested functions. The nesting order is determined by the order in which 
the wrappers are encountered by wrappergen. For example, if the two files 
prof 1. w and prof 2 .  w each contain two wrappers for MPISend, the profiling 
code produced when using both files will be of the form 

42 



i n t  MPI-Send( args  ... ) 
arg  dec lara t ions  ... 

/*pre-callfn code from wrapper 1 from prof1.w */ 
/*pre-callfn code from wrapper 2 from prof1.w */ 
/*pre-callfn code from wrapper 1 from prof2.w */ 
/*pre-callfn code from wrapper 2 from prof2.w */ 

returnVal = MPI,Send( args  ... ); 
/*post-callfn code from wrapper 2 from prof2.w */ 
/*post-callfn code from wrapper 1 from prof2.w */ 
/*post-callfn code from wrapper 2 from prof1.w */ 
/*post-cal l fn  code from wrapper 1 from prof1.w */ 

r e t u r n  returnVal; 
3 

((fn <function name escape) <function A> (function B> ... )) 
... 
((callfn)) 

((endf na l l ) )  
... 

f n  is identical to f n a l l  except that it generates wrappers only for functions 
named explicitly. For example, 

((fn t h i s - f n  MPI-Send)) 
(Cvardecl i n t  i)) 
({callfn)) 
p r i n t f  ( "Call t o  ((this-fn)). \n" ) ; 
pr in t f  ( "(Ci))  was not used.\n" ) ; 
p r i n t f (  "The first argument t o  {(this-fn)) is ((O))\n" 1; 

ICendf n)) 

will expand to 

i n t  MPI-Send( buf,  count, datatype,  d e s t ,  t ag ,  comm 
void * buf;  
i n t  count ; 
MP I - Dat a t  yp e da t  a t  yp e ; 
i n t  dest ; 
i n t  t a g ;  
MPI-Comm comm; 
< 

i n t  returnVal;  
i n t  i; 
returnVal = PMPI-Send( buf,  count, datatype, dest ,  t a g ,  COmm ; 

43 



p r i n t f  ( " C a l l  t o  MPI-Send. \n" ) ; 
p r i n t f  ( I t i  was not  used.\n" 
p r i n t f  ( "The f irst  argument t o  MPI-Send is buf\n" ) ; 
r e t u r n  returnVal;  

; 

3 

A sample wrapper file is in sample w, and the corresponding output file is in sample. out. 

B Options for mpirun 

The options for mpirun, as shown by mpirun -help, are 

mpirun Empirun-options ... 1 <progname> [options . . . I  

mpirun-options: 
-arch ( a rch i t ec tu re )  

spec i fy  t h e  a r c h i t e c t u r e  (must have matching machines.<arch> 
f i l e  i n  ${MPIR-HOME)/bin/machines) i f  using t h e  execer 

-h This  he lp  
-machine (machine name> 

use s t a r t u p  procedure f o r  <machine name> 
-machinef i l e  <machine-f i l e  name) 

Take t h e  list of poss ib le  machines t o  run on from t h e  
f i l e  <machine-f i l e  name) 

spec i fy  t h e  number of processors  t o  run on 

don't  run on t h e  l o c a l  machine (only works f o r  
p4 and ch-p4 jobs)  

U s e  f i lename a s  t h e  standard input  f o r  t h e  program. 
i s  needed f o r  programs t h a t  must be run as batch jobs ,  such 
as some IBM SP systems and I n t e l  Paragons using NQS (see 
-paragontype below), 
Tes t ing  - do not  a c t u a l l y  run, j u s t  p r i n t  what would be 
executed 

S t a r t  t h e  first process  under dbx where poss ib l e  
S t a r t  t h e  first process  under gdb where poss ib l e  
S t a r t  t h e  f i r s t  process  under xxgdb where poss ib l e  

-np <np> 

-nolocal 

- s td in  fi lename 
This 

-t 

-V Verbose - throw i n  some comments 
-dbx 
-gdb 
-xxgdb 

(on t h e  Meiko, s e l e c t i n g  e i t h e r  -dbx o r  -gdb s t a r t s  prun 
under to t a lv i ew ins tead)  

Spec ia l  Options f o r  Nexus device: 

-nexuspg f i lename 

44 



Use t h e  given Nexus s t a r t u p  f i l e  ins tead  of c rea t ing  one. 
Overrides -np and -nolocal,  s e l e c t s  -leave-pg 

-nexusdb filename 
Use t h e  given Nexus resource database.  

Special  Options f o r  Workstation Clusters :  

-e Use execer t o  s t a r t  t h e  program on workstation 
c l u s t e r s  
Use a procgroup f i l e  t o  start  t h e  p4 programs, not  execer 
(defaul t )  

Don’t de l e t e  t h e  p4 procgroup f i l e  a f t e r  running 

Use t h e  given p4 procgroup f i l e  ins tead  of c rea t ing  one. 
Overrides -np and -nolocal,  s e l e c t s  -leave-pg. 

Use t h e  given t c p  procgroup f i l e  ins tead  of c rea t ing  one. 
Overrides -np and -nolocal ,  s e l e c t s  -leave-pg. 

Use t h e  p4 secure server  with por t  number num t o  s ta r t  t h e  
programs. 
environment va r i ab le  MPI-P4SSPORT. Using t h e  server  can 
speed up process s t a r t u p .  I f  MPI-USEP4SSPORT as wel l  as 
MPI-P4SSPORT a r e  s e t ,  then  t h a t  has t h e  e f f e c t  of giving 
mpirun t h e  -p4ssport 0 parameters. 

-Pg 

-leave-pg 

-p4pg filename 

-tcppg filename 

-p4ssport num 

I f  num i s  0 ,  use t h e  value of t h e  

Special  Options f o r  Batch Environments: 

-mvhome Move t h e  executable t o  t h e  home d i rec tory .  This 
is needed when a l l  f i l e  systems a r e  not cross-mounted. 
Currently only used by anlspx. 

Move t h e  ind ica ted  f i l e s  back t o  t h e  cur ren t  d i rec tory .  
Needed only when using -mvhome; has no e f f e c t  otherwise. 

Maximum job  run t i m e  i n  minutes. Currently used only 
by anlspx. 

-nopoll Do not  use a polling-mode communication. 
Available only on IBM SPx. 

-mem value 

-mvback f i l e s  

-maxtime min 

Default value i s  $max-time minutes. 

This i s  t h e  pe r  node memory request  ( i n  Mbytes). 
CM-5s .  ( Default $max,mem. ) 

Needed f o r  some 

- cpu t ime 
This is t h e  t h e  hard cpu l i m i t  used f o r  some CM-5s i n  
minutes. (Default $maxtime minutes.) 

45 



Specia l  Options f o r  IBM SP2: 

-cac name 
CAC f o r  ANL scheduler .  
If not  provided w i l l  choose some v a l i d  CAC. 

Current ly  used only by anlspx.  

Spec ia l  Options f o r  I n t e l  Paragon: 

-paragontype name 
Se lec t s  one of d e f a u l t ,  mkpart, NQS, depending on how you want 
t o  submit jobs  t o  a Paragon. 

-paragonname name 
Remote s h e l l s  t o  name t o  run t h e  job (using t h e  -sz method) on 
a Paragon. 

-paragonpn name 
Name of p a r t i t i o n  t o  run on i n  a Paragon (using t h e  -pn name 
command-line argument) 

On exit, mpirun returns a status of zero unless mpirun detected a problem, in which 
case it returns a nonzero status (currently, all are one, but this may change in the future). 

Multiple architectures may be handled by giving multiple -arch and -np arguments. 
For example, to run a program on 2 Sun 4s and 3 RS/6000s, with the local machine being 
a Sun 4, use 

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program 

This assumes that program will run on both architectures. If different executables are 
needed, the string %a will be replaced with the arch name. For example, if the programs 
are program.sun4 and program.rs6000, then the command is 

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 program.%a 

If instead the execuables are in different directories (for example, /tmp/me/sun4 and 
/tmp/me/rs6000), then the command is 

mpirun -arch sun4 -np 2 -arch rs6000 -np 3 /tmp/me/%a/program 

It is important to specify the architecture with -arch before specifying the number of 
processors. Also, the first arch command must refer to  the processor on which the job will 
be started. Specifically, if -nolocal  is not specified, then the first -arch must refer to the 
processor from which mpirun is running. 



Acknowledgments 

The work described in this report has benefited from conversations with and use by a large 
number of people. We also thank those that have helped in the implementation of mpich, 
particularly Patrick Bridges and Edward Karrels. Particular thanks goes to  Nathan Doss 
and Anthony Skjellum for valuable help in the implementation and development of mpich. 

References 

[l] Ralph Butler and Ewing Lusk. User’s guide to  the p4 parallel programming system. 
Technical Report ANL-92/17, Argonne National Laboratory, 1992. 

[a] Message Passing Interface Forum. MPI: A message-passing interface standard. Com- 
puter Science Dept. Technical Report CS-94-230, University of Tennessee, Knoxville, 
TN,  1994. 

[3] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel 
Programming with the Message Passing Interface. MIT Press, 1994. 

[4] M. T. Heath. Recent developments and case studies in performance visualization us- 
ing ParaGraph. In G. Haring and G. Kotsis, editors, Performance Measurement and 
Visualization of Parallel Systems, pages 175-200, Amsterdam, The Netherlands, 1993. 
Elsevier Science Publishers. 

[5 ]  Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot. 
Technical Report ANL-91/15, Argonne National Laboratory, Argonne, IL 60439, 1991. 

[6]  Edward Karrels and Ewing Lusk. Performance analysis of MPI programs. In Jack Don- 
garra and Bernard Tourancheau, editors, Proceedings of the Workshop on Environments 
and Tools For Parallel Scientific Computing. SIAM Publications, 1994. 

[7] Message Passing Interface Forum. MPI: A message-passing interface standard. Inter- 
national Journal of Supercomputer Applications, 8(3/4), 1994. 

47 



Distribution for ANL-96/6 

Internal : 

J. M. Beumer (10) 
F. Y. Fradin 
W. D. Gropp (IO) 
E. L. Lusk (IO) 
G. W. Pieper 
R. L. Stevens 
C, L. Wilkinson 
TIS File 

External : 

DOE-OSTI, for distribution per UC-405 (52) 
ANL-E Library 
ANL-W Library 
Manager, Chicago Operations Office, DOE 
Mathematics and Computer Science Division Review Committee: 

F. Berman, University of California at LaJolla 
G. Cybenko, Dartmouth College 
T. DuPont, The University of Chicago 
J, G ,  Glimm, State University of New York at Stony Brook 
M. T, Heath, University of Illinois, Urbana 
E. F.  Infante, University of Minnesota 
K. Kunen, University of Wisconsin at Madison 
R. E, O’Malley, University of Washington 
L. R. Petzold, University of Minnesota 

F. Howes, Dept. of Energy - Office of Computational and Technology Research 
D. Nelson, Dept. of Energy - Office of Computational and Technology Research 


	Abstract
	1 Introduction
	2 Linking and Running Programs
	2.1 The mpicc and mpif77 Commands
	2.2 Running with mpirun
	2.3 More Detailed Control

	3 Special Features of Different Systems
	3.1 Difference between Workstation Clusters and MPPs
	3.2 Checking Your Machines List
	3.3 Using the Secure Server
	3.4 Heterogeneous Networks and Closer Control
	3.4.1 p4 procgroup Files
	3.4.2 Nexus Startup Files
	3.4.3 Using Special Switches

	3.5 MPPs
	3.5.1 IBMSPx
	3.5.2 Intel Paragon

	3.6 Symmetric Multiprocessors (SMPs)
	3.7 The Convex Exemplar SPP

	4 Sample MPI Programs
	5 The MPE Library of Useful Extensions
	5.1 Creating Logfiles
	5.1.1 Parallel X Graphics
	5.1.2 Othermpe Routines

	5.2 Profiling Libraries
	5.2.1 Accumulation of Time Spent in MPI Routines
	5.2.2 Logfile Creation and Upshot
	5.2.3 Real-Time Animation

	5.3 Accessing the Profiling Libraries
	5.4 Automatic Generation of Profiling Libraries
	5.5 Tools for Profiling Library Management
	5.6 Examining Event Logs with upshot

	6 Debugging MPI Programs
	6.1 Error Handlers
	6.2 Command-Line Arguments for mpirun
	6.3 MPI Arguments for the Application Program
	6.4 p4 Arguments for Debugging
	6.5 Debugging for Nexus
	6.6 Command-Line Arguments for the Application Program
	6.7 Starting Jobs with a Debugger
	6.8 Starting the Debugger When an Error Occurs
	6.9 Attaching the Debugger to a Running Program
	6.10 RelatedTools
	6.11 Contents of the Library Files

	7 Other MPI Documentation
	8 In Case of Trouble
	8.1 Problems Compiling or Linking Fortran Programs
	8.2 Problems Linking C Programs
	8.2.1 General
	8.2.2 Sun Solaris
	8.2.3 HPUX

	8.3 Problems Starting Programs
	8.3.1 General
	8.3.2 Workstation Networks
	8.3.3 Intel Paragon
	8.3.4 IBMRS/6000
	8.3.5 IBMSP

	8.4 Programs Fail at Startup
	8.4.1 General
	8.4.2 Workstation Networks

	8.5 Programs Fail after Starting
	8.5.1 General
	8.5.2 HPUX

	8.6 Trouble with Input and Output
	8.6.1 General
	8.6.2 IBMSP
	8.6.3 Workstation Networks

	8.7 Upshot and Nupshot
	8.7.1 General
	8.7.2 HP-UX


	A Automatic Generation of Profiling Libraries
	B Options for mpirun
	Acknowledgments
	References

