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Ultrasonic Wave Propagation in Multilayered 
Piezoelectric Substrates 1 

H.-T. Chien, S.-H. Sheen, and A. C. Raptis 

Abstract-Due to the increasing demand for higher operating frequency, lower 

attenuation, and stronger piezoelectricity, use of the layered structure has become 

necessary. Theoretical studies are carried out for ultrasonic waves propagating in the 

multilayered piezoelectric substrates. Each layer processes up to as low as monoclinic 

symmetry with various thickness and orientation. A plane acoustic wave is assumed 

to be incident, at varied frequency and incidence angle, from a fluid upon a multi- 

layered substrate. Simple analyFica1 expressions for the reflection and transmission 

coefficients are derived from which all propagation characteristics are identified. Such 

expressions contain, as a by-product, the secular equation for the propagation of free 

harmonic waves on the multilayered piezoelectric substrates. Solutions are obtained 

for the individual layers which relate the field variables at the upper layer surfaces. 

The response of the total system proceeds by satisfying appropriate interfacial condi- 

tions across the layers. Based on the boundary conditions, two cases, "shorted" and 

"free", are derived from which a so-called piezoelectric coupling factor is calculated 

to show the piezoelectric efficiency. Our results are rather general and show that the 

phase velocity is a function of frequency, layer thickness, and orientation. 

'Work sponsored by the US. Department of Energy, Arms Control and Nonproliferation, Xd- 

'The authors are with the Energy Technology Division, Argonne National Laboratory, Xrgonne, 
vanced Concept Programs. 

IL 60439. 
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1 INTRODUCTION 

In previous papers [l], [‘2], Nayfeh and Chien presented a unified analytical treatment 

for the interactions of ultrasonic waves in piezoelectric plates and substrates. The 

media are allowed to posses as low as monoclinic symmetry and associated piezo- 

electric coupling. They are also assumed to be immersed in water and subjected to 

inclident acoustic beams at arbitrary polar and azimuthal angles. Simple analytical 

expressions for the reflection and transmission coefficients were derives from which all 

propagation characteristics are identified. Such expressions contain, as a by-product, 

the secular equation for the propagation of free harmonic waves on the piezoelectric 

media. Higher symmetries, such as orthotropic, transverse isotropic and cubic, are 

contained implicitly in this analysis. 

Because that the wave vectors of the incident and reflected waves all lie on 

the same plane [3], a linear transformation can be applied to simplify the analysis 

and to facilitate compact expressions of the final results. Previously, Nayfeh has 

successfully applied the general approach utilized in [4] to develop solutions for the 

interactions of ultrasonic waves with a wide variety of single and multilayered plate 

media in the absence of piezoelectric effects. Techniques utilized in [4] and [5] have 

also been employed to develop solutions for a variety of multilayered anisotropic media 

[6]. A unified analytical treatment supported by extensive experimental data of the 

interaction of ultrasonic waves with an arbitrarily oriented orthotropic elastic plate 

[71, [SI. 
The purpose of this paper is to extend the analysis of a single piezoelectric 

media to the case of a multilayered substrate, which consists an arbitrary number 

of piezoelectric layers rigidly bonded at their interfaces on a solid half-space. The 

analysis will be general and can be handle layers of either different materials or 

layers of the same materials with different orientations. Solutions will be obtained by 

utilizing the single plate’s formal solutions together with the matrix transfer method 

[l]. Using the matrix transfer method, the reflection and transmission coefficients of 

the total system will are derived and from which all of the propagation characteristics 
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are readily extracted. The generic difficulties of the mathematical analysis of waves 

in anisotropic media as compared with those pertaining to isotropic media are fully 

discussed (included extensive literature review) in [l], [2], and [4]-[5], and need not 

to be elaborated upon here. 

2 GOVERNING FIELD EQUATION OF PIEZO- 
ELECTRICITY 

The linear theory of piezoelectricity introduces linear coupling between the acous- 

tic field equations and Maxwell's electromagnetic field equations and governs the 

characteristics of wave propagation in a piezoelectric medium [9], [lo]. The linear 

piezoelectric constitutive equations, derived from the linear theory of piezoelectricity, 

of a piezoelectric medium are 

where T'j represents the stress, Cijkl the elastic stiffness constant, Sij = 1 / 2 ( d u i / d ~ j +  

Ouj/dzi) the strain, ui the mechanical displacement, eki j  the piezoelectric stress con- 

stant, Ek = -d4/dzk  the electric field, 4 a scalar electric potential, Di the electric 

displacement, Ekj the dielectric permittivity, xi = (z1,22,z3) the coordinate system, 

and i, j, I C ,  The coupled piezoelectric field equations are given by the 

motion equations and the electrostatic charge. The linear electrostatic piezoelectric 

equations are derived as 

= 1,2,3. 

where p is the material density. The elastic stiffness constants (C i jkr ) ,  the piezoelectric 

stress constants ( e + ) ,  and the dielectric permittivities ( ~ i j )  are fourth, third and 
second rank tensors, respectively, and follow the tensor transformation [lo]. The 

summation convention applies to equations (1) and ( 2 ) .  
2 
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The field equation and the constitutive equation of a fluid are 

(3) 
Ti,j = p j  ui .. f 

and 

(4) 
Ti = Xf U k , k  f Sij 

respectively, where p j  represents the fluid density, Xj the fluid bulk modulus, and Sjj 

the Kronecker delta. 

3 FORMULATION OF THE PROBLEM 

Consider a multilayered substrate consisting of an arbitrary number, n, of piezoelec- 

tric layers rigidly bonded at their interfaces on a solid half-space. Layers are stacked 

normal to the z3-axis of a global orthogonal Cartesian system xi = ( 5 1 ,  5 2 ,  5 3 ) .  Hence 

the plane of each layer is parallel to the 5 1 - 5 2  plane which is also chosen to coincide 

with the bottom surface of the layered substrate. In order to  maintain generality we 

shall assume each layer to  be arbitrarily oriented in the 5 1 - 5 2  plane. To describe the 

relative orientation of the layers we shall assign for each layer I C ,  k = 1,2,. . . , n, a 

local Cartesian coordinate ( 5 i ) k  coinciding with its axis of symmetry such that its 

origin is located in the middle plane of the layer with (z&)k normal to it. Thus layer 

k extends from -&/2 5 (z&)I: 5 &/2, where d k  is its thickness. The total thickness 

of the layers is d. Equivalently, the orientation of the kth layer in the xi space can 

be described by a rotation of an angle & between ( 5 ; ) k  and zl. Once all orientation 

angles $ ~ k  are specified the geometry of the layered substrate will be defined. The 

geometry and modeling of the multilayered substrate is shown in Fig. 1. 

Without any loss in generality we shall assume that a plane wave is incident 

in the 5 1 - 5 2  plane on the medium from the upper fluid at an arbitrary angle 0. 

The problem here is to study the reflected and transmitted fields. A key condition 

which is found to facilitate our subsequent analysis is the fact that the wave vectors 

of the incident and refracted waves must all lie in the same plane [3]. This is a 

consequence of the continuity conditions at the interfaces. IVe therefore conduct our 
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analysis in a coordinate system formed by incident and reflected planes rather than 

by material symmetry axes. Accordingly, the primed system (xi)r; rotates with one 

material symmetry axis while the global unprimed system xi remains invariant. This 

approach leads to significant simplification in our algebraic analysis and computations 

PI * 

In this section we follow the analytical procedure of [l] to construct a transfer 

matrix for each layer k. In order to derive the reflection and transmission coefficients, 

the field equations of fluid must also be given in a manner similar to those of solid. 

In our problem, we shall assume that the fluid (water) does not support piezoelectric 

effects and hence its electric potential is zero. Accordingly, there will be no change 

in the fluid’s field equations or their formal solutions from those given in our earlier 

work [l], [2]. For this reason we shall only quote such material from them later on in 

this analysis. 

Formally, we can proceed to analyze the most general anisotropic medium (the 

triclinic one) for each layer which has 21 elastic constants, 9 dielectric permittivities, 

and 18 coupling coefficients. The expressions will be algebraically complicated and 

their utility will be numerically limited as was pointed out in [l]. For the slightly 

more symmetric materials, i.e., the monoclinic ones, dramatic simplifications can be 

achieved for the final expressions. Therefore, we shall limit the following analysis to 

monoclinic materials. 

Anisotropic medium with one plane of material symmetry is termed monoclinic. 

Two classes of such materials exist: these belong to an “my’ or :‘2” groups whose con- 

stitutive relations are respectively shown in expanded matrix manner as the following 
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T 2 3  

T13 
T12 

D1 
D 2  

\ D3 

s11 

s 2 2  

s33 

s 1 2  

El 
E 2  

E3 

s 2 3  

s13 

Sll 
s 2 2  

s33 

s 2 3  

s13 

s12 

E1 
E 2  

E3 

( 5 )  

In these expanded forms we used the contracting subscript notation 1 4 11, 

2 --+ 22, 3 + 33, 4 4 23, 5 4 13, and 6 4 12 to relate CPn and ekp to Cjike and e k j i ,  

respectively (p, q = 1,2,. . . ,6 and i , j ,  k , t  = 1,2,3). Thus, c 2 5  stands for c 2 2 1 3  and 

e14 stands for e123, for examples. Notice that the purely elastic or electric portions 

of these relations are identical whereas the coupled portions are different. In fact, by 

further examination we conclude that the vanishing entries in one correspond to the 

nonvanishing entries of the other; i.e., there are no common nonvanishing coupling 

terms. As will be shown later, such unique properties have important consequences in 

the manner in which the various waves interact. For this reason we need to treat both 

cases separately. It is expected that, upon presenting solutions for one case, results 

for the second case will be identified by inspection. Accordingly, we shall proceed to 

first analyze the case of monoclinic-2 case. 

3.1 MONOCLINIC-2 CLASS 

The particle motion generally have three nonzero spatial components ‘u1, u 2 ,  and ~3 

corresponding to longitudinal wave ( P )  along the zl-axis, horizontally and vertically 
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polarized transverse waves (SH and SV) ,  respectively, and the electric potential 4. 
In the absence of material symmetry these three waves will couple together and be 

stiffened lending to a complicated response. For plane waves propagating along the 

zl-axis and independent of s2-axis, a formal solution for ui and 4 can be written as 

where i = g, t is the wave number, w is the circular frequency, c is the phase 

velocity (= w / t ) ,  CY is still an unknown parameter. = (U, V, W, a} are constant 
displacement amplitudes. Combinations of equations (7) and (2) yield four linear 

homogeneous coupled equations 

where the summation convention holds and I?,, = rmn: 
rll(a) = cll - pc2 + cs5CY2 r12(4 = cls + c45CY2 

~ a )  = cs5 - pc2 + cSa2 r23(a) = (cS + c45)CY (9) 

r24(a) = (e14 + e36)a , r44(CY) = - 

r22(CY) = c66 - fc2 + c44a2 rl3(CY) = (c13 + c55)CY 
rl4(a) = (el5 +e31)a r34(a) = e15 + esa2 

Nontrivial solutions for U, demand the vanishing of the determinant in equa- 

tion (8) and yield an eighth-degree polynomial equation in CY as 

which is a characteristic equation relating CY to c and whose coefficients AI, A2, AS, 

and A4 are listed in Appendix A of [2]. Equation (10) now admits four solutions for 

a2 and leads to eight solutions for Q which are restricted such that 

For each a9 we can use equation (S) to relate the amplitude ratios as 

6 
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Using superposition and the amplitude ratios in equation (12), we finally obtain the 

Eormal solutions 

or 

F = [XI [D] 0 

’ (13) 

(14) 

where F is the interfacial components at the interface between two solid layers, Ti3 = 
Tj3/ic, E3 = D3/ic, [XI is the 8 x 8 matrix of equation (13), 0 = {U1q}T, [D]k is the 

8 x 8 diagonal matrix whose entries are Eq = expitaqz3 , q =  1, ..., 8,and 
Dlq = c13 + c36& + c33aqwq + e33aqaq 

D2q = c55aq + c45aq& + c55wq + el5@q (15) 

D3q = c45aq  + c 4 4 a q &  + c45wq + e14@q 

With reference to the relations (11) and by inspection of equations (12)-(15) we 

recognize the restrictions 

By eliminating the common amplitudes 0, equation (14) can be used to relate 

the interfacial components at bottom, ( z i ) k  = -dk/2,  to those at top, (zj), = &/2: 

of the kth layer. After rather lengthy algebraic reductions and manipulations we 

obtain (with the summation holding) 

where 
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constitutes the most general transfer matrix for the monoclinic layer I C .  It allows 
the wave to be incident on layer k at an arbitrary angle 8 from the normal z3 O r  

equivalently (dJ and at any azimuthal angle 9. Matrix transfer for higher symmetry 

material such as orthotropic, transversely isotropic, and cubic can be obtained from 

equation (18) as asymptotically limiting cases. 

The matrix transfer technique then yields, via the continuity of displacements 

and stresses at the various layer interfaces, i.e. F z  = Fk+l, the response vector at 

x3 = d in terms of that at 2 3  = 0: 

F f  = [A] F- 

where 

[A] = [a], [aln-l * [all 

where [A] represents the global transfer matrix, and F+ and F-  the column vectors 

with respect to the top and bottom of the layered medium, respectively. 

Waves propagating in certain crystals and along certain cuts of those crystals can 

be decoupled into two wave types: pure elastic waves of coupled P and SV waves, and 

piezoelectric coupled S H  waves [l]. The same procedure for obtaining the transfer 

matrix can be applied to those decoupled cases, such as in the orthotropic-222 or 

-mm2 group, respectively. 

3.2 MONO CLINIC-M CLASS 

Results for the mono-m case with the constitutive relations (3) can be obtained by 

following identical steps to those given above for the mono-2 case. The steps, resulting 

equations and the final results are similar with the exceptions of some parameter 

definitions as summarized below: 

(21) 



(ii) The appropriate. coefficients of the characteristic equation (13) are listed in 

Appendix A of ['2] under mono-m class. 

(iii) Equations (15) and (16) are replaced with 

3.3 

and 

TOP FLUID BOUNDARY 

(22) 

The multilayered medium is bounded with a fluid half-space on its top surface and a 

substrate on its bottom. The input wave is assumed to be periodic and originating 

in the top fluid half-space and incident on the medium at an arbitrary angle from 

the normal. The displacements and stresses within the top fluid are given by prop- 

erly specializing equation (13) and recognizing the absence of shear deformation and 

electric potential within the fluid so that 

--I I f where T3, = T33/i5, a? = (c2/c?) - 1, U, is the constant amplitude of the incoming 

wave, U[ is that of the reflected wave and the sub and superscripts f denote quantities 

belonging to the fluid. The continuity conditions at the plate-fluid interface are given 

by 

u{ = u;, Ti3 = TG, 4'' = TG = TG = 0, at 2 3  = d. 

9 
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3.4 BOTTOM BOUNDARY SOLID SUBSTRATE 

Since the bottom bounding medium is a solid substrate, its response is given by 

specializing equation (13) to the substrate material and again ensuring boundness of 

the solution by selecting only the appropriate amplitudes within the substrate so that 

the substrate amplitude vector is 

{U,",O, U&O, U&O, U&O}'. (26) 

The appropriate conditions at the bottom plate-substrate interface require the conti- 

nuity of all displacements, stress components, and electric potential. Satisfying such 

conditions for a shorted solid substrate finally yields the reflection coefficient 

and the quasilongitudinal, quasitransverse shear and electric potential transmission 

coefficients 

u,. -P3 Ti=-- - -TL, Tl = u{ Pl 

where Q j  = p j c 2 / a j ,  

I p5l p53 p55 p57 I 
p61 p63 p65 p47 p67 I p41 p43 p45  n/r, = 

I p71 p73 p75 p77 I 
PI = 

P5 = 

p43 p45 p47 

p73 P75 p7; 

p63 p65 p67, 

p41 p43 p47 

p61 p63 p67 

p71 p73 p77 

I p31 p33 p35 p37 

p41 p43 p45  p47 

p6l p63 p65 p67 
A 4 2  = 

I P71 P73 p75 p77 

P3 = 

P7 = 

p41 p45 p47 

p6l p65 p67 

p71 p75 p77 

p41 p43 p45 

p6l p63 p65 

p71 p73 p75 

and [Pij] is the matrix product of iAiq] from equation (20) and the substrate's char- 

acteristic matrix from the specialization of equation (13) to the substrate. 
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4 QUALITATIVE DESCRIPTION O F  RESULTS 

So far we have derived expressions for the reflection and transmission coefficients, 

shown in equation (37), for multilayered monoclinic substrates with piezoelectric in- 

,teraction. Results for arbitrary orientations of the individual layers, arbitrary fre- 

quencies and angles of incidence are readily available. The reflection and transmission 

coefficients contain, as a by-product, the characteristic equation for the propagation of 

leaky surface waves on the corresponding medium. The vanishing of the denominator 

in equation (27), namely, 

MI + QfM2 = 0 (29) 

defines the characteristic equation for the propagation of leaky surface waves on the 

multilayered substrate. In the absence of the fluid equation (29) reduces to 

defining the characteristic equation for the dry system. 

The similar results for free case can be obtained by assuming that there is a 

very thin insulated coating on the surface of the top layer and setting the electric 

displacement D3, rather than the electric potential, to vanish. The free case will not 

be demonstrated here and can be derived without any problem by following the same 

procedure shown for the shorted case. 

The fraction change of phase velocities Av/v, so-called the piezoelectric coupling 

factor, is used to evaluate the coupling efficiency and is defined as 

AV v, -v~ -= , 
V v, 

where vco and vo are the phase velocities of free and shorted cases, respectively. 

(31) 

5 NUMERICAL ILLUSTRATIONS AND DIS- 
CUSSION 

It is known that the Rayleigh wave propagating in a single substrate is not dispersive 

with respect to frequency but to the propagation direction. However, wave prop- 

11 



Table 1: Material properties of selected piezoelectric materials. Units of Cpq, e+, and 
p are lo9 Nt/m2, lo9 Coulomb/m2, and g/cm3, respectively. E i j  is given undimensional 
as eS/e& where e: = 8.854 x loef2 farad/m. 

agating in a multilayered substrate is a function of the propagation direction, the 

frequency, and the thickness of each layer. We have derived the analytical expres- 

sions of the reflection and transmission coefficients, equation (27), and the associated 

characteristic equations, equation (29), for this problem. Numerical results are pre- 

sented below in two categories as the following: in the first, the reflection coefficients 

and the function Ad1 under various phase velocity c (or equivalently with incident an- 

gle 0 since sin0 = c j / c )  and azimuthal angles $ are illustrated. This will display the 

criteria of surface mode identification. The dispersion relations in the form of varia- 

tions of phase velocities with Fcl of a GaAs layer on a zl-cut Quartz substrate are 

illustrated and discussed. Then, the dispersion curves of multilayered substrate with 

different number of layers, orientations, and lamination orders of PZT-65/35 and 

GaAs are presented. The material properties of the selected piezoelectric materials 

are listed in Table 1. 



Fig. 2 shows that the behavior of the reflection coefficient, which is a function of 

frequency and the thickness of each layer, for a multilayered substrate. Analysis of 

the behavior of the reflection coefficient allows us to identify all of the propagation 

characteristics which influence the distribution of the reflected field. Fig. 2a-d shoLv 

the variations of the real and imaginary parts of the reflection coefficients with phase 

velocity at four different Fd for a GaAs plate with $ = 30” rigidly bonded on a 

zl-cut Quartz substrate. Also displayed in these figures are the normalized values of 

the corresponding parameters MI. The wave behavior in the presence of liquid (so- 

called leaky Rayleigh surface wave) [l] is also applied here, Le. where the real part of 

the reflection coefficient approaches -1 which also coincides with the rapid variation ’ 

(through zero) of its phase and-the vanishing of the function MI.  Furthermore, at 

Fd = 0, only one mode occurs and is at the surface wave speed of the substrate which 

is 3.264 km/sec for the sl-cut Quartz substrate. This is expected since at the zero 

frequency limit, Le., for very long wavelengths, the plate will be essentially “washed” 

out. As the frequency increases more modes appear successively; this behavior is 

typical of all softening (loading) materials. By using the criteria stated previously 

and collecting the modes for various Fd,  a dispersion curve for the shorted case of 

this case is obtained and illustrated in Fig. 3. The fundamental mode, as discussed 

above, starts from the surface wave velocity of the s1-cut Quartz substrate. The bulk 

shear velocity of the substrate is the cut-off phase velocity for higher modes and tliese 

modes do not exist if the phase velocity is higher than that velocity. Therefore, higher 

modes start from the so-called cut-off frequencies. For high Fd the fundamental mode 

approaches the surface wave velocity, 2.65 km/sec, of the GaAs. 
In the following demonstrations, the multilayered media are chosen by putting 

either GaAs or PZT-65/35 as the substrate and the other as the top layer with 

different number of laminations of them on the substrate, where each layer has equal 

thickness. The influence of the layer ordering in wave characteristics is also implicitly 

included in this series of demonstrations. Fig. 4 shows the dispersion curve for a 

PZT-65/33 layer on a GuAs substrate with $ = Go, where solid and dashed lines 

13 



are for shorted and free cases, respectively. Because the medium is softened by the 

PZT-65/35 layer, the phase velocity starts from the surface wave velocity of the 

substrate (2.87 km/sec) at fd  = 0 and approaches to that of the layer (2.3s km/sec) 

at high fd. Higher modes exist and have cut-off velocities at the bulk shear velocity 

of the substrate (3.34 km/sec). By selecting a GaAs layer on a PZT-65/35 substrate, 

there exists only one mode because the layer is stiffer than the substrate. This leaky 

type of wave, starting from the surface velocity of the substrate (2.38 km/sec) and 

being cut-off at that of the layer (2.62 km/sec), is shown in Fig. 5. 

Fig. 6 shows the dispersion curve for GaAs and PZT-65/35 layers on a GaAs 

substrate with $ = 45". The fundamental mode starts at 2.87 km/sec and decreases if 

fd increases, like the case in Fig. 4, because of the softening. However, if the frequency 

keeps on increasing, the phase velocity will decrease because of the extra layer of 

GaAs which stiffen the medium at high fd. By adding an addition layer of PZT- 
65/35 on top of the case shown in Fig. 5, higher modes exist rather than just a single 

fundamental mode. Fig. 7 shows that the phase velocity of the fundamental mode 

starts from 2.38 km/sec, increases if fd increased, and will decrease and approach 

to 2.38 km/sec if f d  keeps on increasing, Figs. 8 and 9 illustrate the piezoelectric 

coupling factor for the last two cases, GaAs and PZT-65/35 layers on GaAs substrate 

and PZT-65/35 and GaAs on PZT-65/35 substrate, respectively. 

Fig. 10 show that four GaAs and PZT-65/63 laminations on a GaAs substrate, 

while the Fig. 11 illustrates a PZT-65/63 substrate with four PZT-65/63 and GaAs 

laminations. Both cases exhibits similar behavior as the last two cases, respectively. 

However, with the increasing of the layer number, the phase velocity of the funda- 

mental mode has minor pertubation and the cut-off frequencies of higher modes are 

increased. 

6 CONCLUSION 

A theoretical investigations and formulations for ultrasonic waves in the multilayered 

piezoelectric substrates with fluid loading are presented. Each layer processes up to as 
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low as monoclinic symmetry. Reflection and transmission coefficients are derived from 

which all characteristic behavior of the system is identified. Solutions are obtained 

for the individual layers which relate the field variables a t  the upper and lower layer 

surfaces and by satisfying appropriate interfacial conditions across the layers. It was 

also proved that the results obtained under this assumption from fluid-loaded cases 

are same as that of dry cases. Our results are rather general and contain a wide 

variety of special cases. Multilayered substrates with different orientations, number 

of layers, materials, and lamination order can be studied. Some numerical results for 

mu1 t ilayered piezoelectric substrates are demonst rated. 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or pflect  those of the 
United States Government or any agency thereof. 
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LIST OF FIGURES 
Figure 1: Geometry and modeling of a multilayered medium. Incident beam strikes 

medium at angle 8 between the principle axis of material crystal and the plane 
of incidence. 

Figure 2: Variation of reflection coefficient with phase velocity for various frequency 
of a GaAs layer on a 21-cut Quartz substrate. Solid line is the real part, long 
dashed line is the imaginary part, and the short dashed line is the absolute 
value of secular equation. (2a: Fd = 0; 2b: Fd = 0.5; 2c: Fd = 1; 2d: Fd = 3) 

Figure 3: Dispersion plots for a GaAs layer on a z1-cut Quartz substrate for shorted 
case collected from Fig. 2. 

, 
Figure 4: Dispersion plot for a PZT-65 /35  layer on GaAs substrate with $ = 45". 

Solid and dashed lines are for shorted and free cases, respectively. 

Figure 5: Dispersion plot for a GaAs layer with $ = 45" on PZT-65 /35  substrate. 
Solid and dashed lines are for shorted and free cases, respectively. 

Figure 6:  Dispersion plot for GaAs and PZT-65 /35  layers on GaAs substrate with 
$ = 45". Solid and dashed lines are for shorted and free cases, respectively. 

Figure 7: Dispersion plot for PZT-65 /35  and GaAs, with $ = 45", layers on PZT- 
65/35 substrate. Solid and dashed lines are for shorted and free cases, respec- 
tively. . 

Figure 8: Variation of piezoelectric coupling constant of first two modes with Fd for 
GaAs and P Z T - 6 5 / 3 5  layers on GaAs substrate. 

Figure 9: Variation of piezoelectric coupling constant of first two modes with Fcl for 
PZT-63/:35 and GaAs layers on PZT-65 /35  substrate. 

Figure 10: Dispersion plot for four GaAs and P Z T - 6 5 / 3 5  laminations on GaAs sub- 
strate with ~ = 45". Solid and dashed lines are for shorted and free cases, 
respectively. 

Figure 11: Dispersion plot for four PZT-65/35  and GaAs laminations on P Z T - 6 5 / 3 5  
substrate. Solid and dashed lines are for shorted and free cases, respectively. 
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LIST O F  TABLES 

Table 1: Material properties of selected piezoelectric materials. Units of Cpp, ejp, 

and p are lo9 Nt/m2, lo9 Coulomb/m2, and g/cm3, respectively. e j j  is given 

undimensiond as eS/e& where e: = S.854 x farad/m. 
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