
ANL/MCS-TM-216

MolView Users Guide

Brian P. Walenz

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER -
This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by theunited States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

Reproduced from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831

Prices available from (423) 576-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

I-- *-_-

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL/MCS-TM-216

MolView Users Guide

by

Brian P. Walenz

Mathematics and Computer Science Division

Technical Memorandum No. 216

June 1996

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38, and by the Argonne Director’s Individual Investigator Program.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

.

Contents

Abstract 1

1

2

3

4

5

6

7

Introduction

Execution
2.1 Advanced Execution .

2.1.1 MPICH. p4 Device .
2.1.2 Nexus .

Driver Programs
3.1 PDB Driver .
3.2 Ion Driver .
The CAVE Interface
4.1 MainMenu .
4.2 Options Menu .
4.3 Frame Menu .
For the Programmer
5.1 Directory Structure .
5.2 Building MolView .
Driver Responsibility and Creation
6.1 Driver Initialization .
6.2 Data Formats .
6.3 Data Transmission .

6.3.1 MVAddMolecule() .
6.3.2 MVAddFrameO .
6.3.3 MVBxit() .

CAVE Program Modification
7.1 MolView Structures .
7.2 MPI Datatypes .
7.3 Driver to CAVE Transfer Functions .
7.4 CAVE Receive Functions .

7.4.1 ReceiveMolecule() .
7.4.2 ReceiveFrameO .

7.5 Display Routine .
7.6 Menu System .

References

iii

1

5
5
5

7
7
8
8

9
9
10

10
11
11
12
13
13
13

13
14
15
15
15
15
16
16
16

16

MolView Users Guide

by

Brian P. Walenz

Abstract

A system for viewing molecular data in a CAVE virtual reality environment is pre-
sented. The system, called MolView, consists of a frontend driver program that prepares
the data and a backend CAVE program that displays the data. Both are written so
that modifications and extensions are relatively easy to accomplish.

,
1 Introduction

MolView is an extensible system for viewing molecular data in the CAVE virtual reality
environment. The user can view the molecule as if it were a physical model, rotating and
viewing the object from different angles.

The MolView system consists of a backend CAVE program, and several routines that al-
low a frontend driver program to easily send data to the CAVE program. All communication
is done via MPI, allowing the driver to be executed on a wide variety of machines.

MolView is capable of storing and displaying an arbitrary number of datasets, each of
which may have an arbitrary number of time steps, or frames. Thus, there are four general
types of data that can be viewed:

Single dataset, single time step

0 Single dataset, multiple time steps

0 Multiple datasets, single time step per dataset

0 Multiple datasets, multiple time steps per dataset

MolView can currently only display data. There are no mechanisms to allow the CAVE
user to modify a dataset and send it back to the driver program for later computation.

The remainder of this document examines the execution of MolView applications (Sec-
tion 2), two example driver programs, ion and pdb (Section 3), and the CAVE interface
(Section 4).

Section 5 introduces the programming level details of MolView. Sections 6 and 7 explain
how to create custom drivers and modify the CAVE program to accept new data from
custom drivers

1

2 Execution

It is the responsibility of the driver program to supply the CAVE with data to show. How a
driver generates the data is arbitrary; some drivers simply read a data file, whereas others
compute the solution to a problem in real time.

For drivers that execute on a machine that the display trusts * execution is straightfor-
ward:

MolView driver options C.. .I displayname

Here, driver is a path to the driver executable that is to be used, options are the
options to the driver, and displayname is the name of the display that the CAVE program
is executed on, chosen from one of four forms, as shown below:

Display Type Action

lo C a l

machine:display.screen

cave Starts the CAVE

idesk Starts the ImmersaDesk

Displays on the local monitor, equivalent to using “:O.O”

Displays on a remote monitor

For example, to run the pdb driver program in bin to show all the pdb files in-/proteins
and display them on the display attached to vogon, cd to the MolView home directory and
type

The display type cave will perform all the magic that is necessary to start MolView
in the CAVE; check first that the CAVE is free for use. The display type idesk will start
MolView and show the display on the ImmersaDesk; you must ensure that the ImmersaDesk
is free and take the projector out of standby mode. t Both cave and idesk are Argonne
specific. See the MolView script itself for low-level execution details.

2.1 Advanced Execution

When the driver is executed on a machine that is not trusted, or is a parallel program, the
MolView script will not work. The first problem is solved by making the machine trusted
or by using a secure server. Consult your support staff or a local MPI guru for help.

‘An easy way to tell if machine A trusts machine B is to attempt a remote shell from machine B to

‘Point the projector remote control at the ImmersaDesk screen and press and hold the “standby” button.
machine A, for example, rsh A date.

Repeat to turn off-just be sure to hold the button down!

2

l o c a l 0
spnode2 1 /sphome/walenz/ION/ion.x
spnode3 1 /sphome/walenz/ION/ion.x
spnode4 1 /sphome/walenz/ION/ion.x
spnode5 1 /sphome/walenz/ION/ion.x
alaska.mcs.anl.gov 1 /afs/fl/home/walenz/ION/bin/StartMolViewCave

Figure 2.1: Sample procgroup file using 5 SP nodes and showing the results in the CAVE

When the driver is executed in parallel on a trusted machine, startup will need to be
handled explicitly. This process depends heavily on which communication device is being
used, and that depends on which machine the driver is being run on. The next two sections
explain two common methods at Argonne.

2.1.1 MPICH, p4 Device

The MPICH communication method exists for most machines and is relatively easy to use.
First, a procgroup file must be created where the driver is executed. This file contains a
list of machines and the program they should run. A sample procgroup file is shown in
Figure 2.1. The first column contains the name of the machine, the second is the number
of processes to run on this machine, and the last is the executable to run. The first entry,
l o c a l 0 says to run 0 additional copies on the current machine.

The p4 device uses Unix sockets to perform the actual communication. This strategy
allows it to run on a wide variety of machines, but also means that performance is not
optimal.

Once the procgroup file is created, the application is launched with dr iver -p4pg
procgroup. Note that this will fail if the machines listed do not trust the local machine,
usually returning permission denied.

2.1.2 Nexus

For better performance when using a multiprocessor driver on the IBM SP, Nexus MPI may
be used. Instead of using p4 for all communication, Nexus uses MPL for communication
between SP nodes, and p4 between the SP and the CAVE.

Like MPICH p4, Nexus needs a list of what to run. Since two different methods of
communication are being used (MPL and p4), two different lists of processors are needed.
Jobs started using the MPL startup routines are specified in much the same way that normal
MPL jobs are specified; the user defines a set of envrionment variables.

For machines that are not started via the MPL startup routines, Nexus consults a
database file (Figure 2.2). Like the p4 procgroup, this file tells Nexus what executable

3

http://alaska.mcs.anl.gov

alaska.mcs.anl.gov \
startup-dir=/afs/fl/home/walenz/WORK/ION/bin \
startup-exe=StartMolViewCave

startup-dir=/af s/f l/home/walenz/WORK/ION/bin \ ,

startup-exe=StartMolViewIdesk

flying .mcs . a n 1 . gov \.

Figure 2.2: Sample Nexus database file

to run on various machines. The example in Figure 2.2 has two entries: the CAVE on
alaska .mcs . a n 1 . gov, and the ImmersaDesk on flying .mcs . an1 . gov. Which one is used
depends on the command line used to start the jobs.

! /bin/sh

MP,HOSTFILE=/sphome/$LOGNAME/SPnodes.'getjid'
MP-PROCS='cat $MP-HOSTFILE I wc -1'
MP-PULSE=O
MP-EUILIB=us

export MP-HOSTFILE MP-PROCS MP-PULSE MP-EUILIB

i0n.x -mpi -dbfile "/SP/demo.rdb -nodes alaska.mcs.anl.gov -nonameexpand

Figure 2.3: Sample Nexus startup script

The script in Figure 2.3 will start the multiprocessor driver on the SP and the CAVE

The magic behind Nexus startup is in the command line ("i0n.x -mpi . . ."):
on alaska.mcs.anl.gov.

0 -mpi tells Nexus that the remaining arguments are for it.

0 The Nexus database file is /sphome/walenz/SP/demo .rdb.

0 In addition to the MPL job startup, start a job on alaska.mcs.anl.gov. The
parameters for the job are defined in the database file.

0 Do not use the name i0n.x when starting the alaska.mcs.anl.gov job.

4

http://alaska.mcs.anl.gov
http://alaska.mcs.anl.gov
http://alaska.mcs.anl.gov
http://alaska.mcs.anl.gov
http://alaska.mcs.anl.gov

3 Driver Programs

3.1 PDB Driver

The PDB driver pdb will accept several input .pdb files, which can be compressed (names
ending with “.gz” or “.Z7’) or uncompressed (names ending with anything else). The pro-
gram will parse the file and send a list of atoms to the CAVE that are sized and colored as
folloJvs:

I Atom Type Color Relative Size

Nitrogen Blue 0.58

Hydrogen White 0.58

Carbon Green 0.73

Sulfur Yellow 0.90

Oxygen Red 0.50

Unknown Dark Gray 0.25

To change these values modify the pdb driver code and recompile.
Note: No bonds are shown between atoms.
Because of speed considerations, only the first 2000 atoms are used. If more than 2000

atoms are present in a given file, a warning message is printed, and the rest are ignored.
This approach is taken because showing large numbers of atoms is exceptionally slow.

The pdb driver accepts any number of command line arguments. All of them are treated
as names of .pdb files to show.

3.2 Ion Driver

The ion driver ion will read in a data file of ion positions, process the data to determine a
shell structure, color each shell differently, and send this processed molecule to the CAVE.

The ion driver allows all four types of execution described in the introduction.
The general format of the data file is shown in Figure 3.1, and a sample input file is in

Figure 3.2.
The ion driver has one mandatory command line argument, the name of the data file to

show. An optional argument, -d, forces ion to use a distance-based coloring scheme rather
than the default shell-based scheme, and is useful for viewing data sets with more than one
frame that do not have a shell s t ruc tu re the visualization of a minimization procedure,
for example. It prevents, (or tries to prevent) the color scheme from changing rapidly while
viewing the minimization process. In some cases, it will come close to coloring each shell
differently; in others, a single shell might have two different colors. The -d argument must
be the first argument on the ion command line.

I

5

{ NAME OF MOLECULE
NUMBER OF ATOMS IN MOLECULE, n
{ “FRAME”

ENERGY OF THIS CONFIGURATION
LIST OF x, y, z POSITIONS OF n ATOMS

1
“END-OFXOLECULE”

1

Figure 3.1: General ion input file format. The brackets represent blocks in the input file.
Each block must be included at least once. There is no limit on the number of blocks.

OneFrame
5
FRAME
.33057547E+O2
-.65301218E+00
.1059334OE+Ol
.48532373E+OO

-.14570831E+OO
-.26061340E+00

END-OF-MOLECULE
TwoFrames
4
FRAME
.3940408OE+O2
-.11071736E+Ol
.47903853E+OO

-.10358628E+00
.12626000E+01

FRAME
.46088283E+02
-.10480169E+Ol
-.22749490E-01
.59944587E+OO
.227494903-01

END-OF-MOLECULE

.57223214E+OO

.56625598E+00

.13598468E+Ol
-.96484823E+OO
-.17363993E+OO

.51080004E+00

.55072851E+OO
-.84134423E+00
.92686556E+00

-.12001274E+Ol
.80373052E+00

-.148297473+01
-.80373052E+OO

-.12000438E+Ol
.86668641E+OO

-.39817273E+OO
-.11143683E+01
.14477256E+01

-.94137694E+OO
.13601102E+Ol
.12899959E+Ol
.81957154E-O1

.14769891E+OO
- .13834594E+01
-.437139733-01
.13834594E+Oi

Figure 3.2: Sample data file for the ion driver

6

4 The CAVE Interface

MolView uses the CaveMenu system [4]. Briefly, interaction with the menus is done by
pointing the wand at a menu gadget and pressing the third (right) button.

The menus in MolView are grouped by function. Each menu is callable from the main
menu by selecting the appropriate button.

4.1 Main Menu

The main menu (Figure 4.1) consists of a few buttons to call other menus (options, frame),
buttons to toggle modes (rotation, translation), a slider to change what data set is shown,
and the “Quit” button.

Figure 4.1: The main menu

Selecting Options or Frame will bring up the options menu (Section 4.2) or frame menu
(Section 4.3), respectively.

Rotate and Translate toggle the ability to rotate and translate the molecule in the CAVE.
When Rotate is selected, pressing the left wand button and rotating the wand will rotate
the molecule. If the left button is released while the wand is still rotating, the molecule
will continue to rotate at a constant rate. To stop the molecule from rotating, either hold
the wand steady and release the left button, or turn off the Rotate menu button. When
Translate is selected, holding the middle wand button and moving the wand will move the
molecule in the CAVE.

The main menu also contains a slider gadget that allows you to select the dataset to
view. Clicking on the slider knob allows you to drag the knob, while clicking on the slider
beams will snap the slider knob to that position. Clicking on the ends of the slider bars will
move the knob in that direction one step.

Selecting Quit will quit the application.

7

4.2 Options Menu

The options menu (Figure 4.2) has three sliders. From the top, there are sliders to change
the detail level of atoms, size of atoms, and size of the molecule.

0.

Figure 4.2: The options menu

The top slider controls how smooth the atoms appear. By increasing the detail, more
polygons are used to draw each sphere. Be forewarned; beauty comes at a large price.
The CAVE can draw only a finite number of polygons.per second, so increa&ng the detail
level will directly affect the response time. The result might not be so terrible when using
the CAVE simulator, but when in the CAVE every move will (usually) change the viewing
angle. If the response time is very high, the CAVE will appear to be jumpy; if the response
time is low, the CAVE can smoothly keep up with your movements, giving a more realistic
three-dimensional illusion.

The middle slider changes the size of all atoms in the molecule. This can be used to
transform the molecule to a space-filling model.

The bottom slider scales the molecule, either bringing the atoms closer together or
spreading them farther apart. This is useful for making large molecules manageable and
small molecules large enough to see. Note that changing the size of the molecule not change
the size of the atoms.

4.3 FrameMenu

For molecules with more than one frame, the frame menu (Figure 4.3) allows you to cycle
through all the frames in the dataset.

Two methods exist for viewing other frames: using the slider, or clicking on Reverse or
Forward. By using the slider, you can quickly view the entire sequence of frames, but using
Reverse or Forward will iterate through the sequence of frames like a movie. Toggling Cycle
will let Forward and Reverse loop from end t o end.

Fasterand Slowerchange the speed that Reverse and Forward iterate through the frames

8

Figure 4.3: The frame menu

MolView . h

Mo1ViewCave.h

To stop playback, either turn off Reverse or Forward (whichever is on), or select Stop.

D at atype definitions

CAVE internal datatypes

5 For the Programmer

The remainder of this document describes MolView from a programmer’s perspective. First,
the directory structure and compilation of MolView are explained. Next, driver responsi-
bilities and driver creation are discussed. Finally, the internals of the CAVE component
of MolView and techniques for extending MolView to show different styles of data are
des crib ed .
5.1 Directory Structure

The’ directory structure is simple:

bin

drivers

include

lib

obj

src

Binaries and the MolView execution script

Driver source code

Header files

Driver library files-libMo1View.a

Object code from building MolView

MolView CAVE and library source code

9

In s r c are the following:
I

C1everMath.C

Datatypes-c

Display. C

DisplayList .C

Initialize.C

Menus.C

Receive.C

Rem0 t e. c

Cave.C

Some mathematics

Handles the creation of MPI datatypes for sending and receiving data

The CAVE draw routine

User display list creation function

Initialization and memory handing routines

Menu creation and handling

Routines for receiving data from driver programs

Routines for sending data from drivers to the CAVE

Main CAVE routine

5.2 Building MolView

To build MolView, one simply types make from the MolView root directory. This will build
MolViewCave in bin/, 1ibMolView.a in l i b / , and any drivers in dr ivers / . If the build
is being done on a multiprocessor machine, a parallel build will be done if the PARALLEL
environment 'variable is set to the number of steps to perform concurrently.

The command make clean will remove the object files, and make d is tc lean will remove
everything that is generated by make, including libraries and executables.

6 Driver Responsibility and Creation

Driver programs are responsible for one important task-creating data for the CAVE to
show. This task comprises three pieces, although the line between each piece is fuzzy.

1. Create the data. This task can be done by the driver program, for example, by em-
bedding the MolView system into a prewritten computational program. Alternatively,
the driver program can just read a data file.

2. Massage the data into the MolView data structures (Section 6.2).

3. Transfer the data to the CAVE (Section 6.3).

These do not need to be distinct steps and, in some cases, must not be distinct. The
simplest example here is a driver program that computes the data using MolView data
structures: computation and packaging step are merged. An example merging all three
steps is a driver that minimizes the energy of a molecule and sends the molecule to the
CAVE after each minimization step.

10

6.1 Driver Initialization

To ease the pain of creating a multiprocessor driver, every driver (even uniprocessor!) must
call MVSplitComhunicator() (or MVFSplitCommunicatorO if in Fortran) immediately
after calling MPIln i t () . This routine will create a new MPI communicator consisting
of all the nodes that are driver nodes, allowing the driver to do collective communication
between driver processors only.

Failure to call this routine will result in the CAVE locking up immediately after startup.

6.2 Data Formats

Three data structures' exist for driver to CAVE communication: s t r u c t MoleculeData,
s t r u c t FrameData, and s t r u c t AtomData, all of which are defined in include/MolView .h.

The s t r u c t MoleculeData data structure contains book-keeping information necessary
to tell the CAVE about each molecule. MoleculeID is how a driver refers to a CAVE
molecule and thus should be unique. The CAVE stores molecules in increasing MoleculeID
order.

A description string is provided; however, its use is not mandatory. If a description is
not needed, the string should the set to zero length.

s t r u c t MoleculeData -(
i n t MoleculeID;
char Desc [Si] ;

3;

The s t r u c t FrameData data structure is an atom-level description of the molecule.
Since frames are added independently of molecules, each frame needs both a FrameID and
a MoleculeID. The FrameID allows the CAVE to order the frames, while the MoleculeID
tells the CAVE which molecule this frame is a part of.

NumAtoms is the number of atoms that this frame contains. No atoms are stored in
FrameData; instead, they are passed in separately to MVAddFrame () (Section 6.3.2).

Center is the coordinate that the CAVE uses to rotate about. To have the molecule
rotate about the center of mass, Center should be set the the center of mass. Likewise, to
rotate about a specific atom, Center should be the location of that atom.

s t r u c t FrameData €
i n t FrameID ;
i n t MoleculeID;
i n t N u m A t oms ;
f l o a t Center [SI ;

3;

11

void
void
void

MVAddMolecule(Mo1eculeData *M)
MVAddFrame(FrameData *F, AtomData *A)
MVBxit (void)

Figure 6.1: C ‘driver to’CAVE interface

MVF AddMolecule(MoleculeID)

MVFAddFrame(MoleculeID, FrameID, NumberOfAtoms, Center
integer MoleculeID

AtomPositions, AtomColors, AtomSizes)
integer MoleculeID , FrameID, NumberOfAtoms
double precision(3) Center
double precision(*) AtomPositions, AtomColors, AtomSizes

MVF3xit()

Figure 6.2: Fortran driver to CAVE interface

The AtomData data structure contains a complete description of a single atom in the
molecule. At the very least, this description must contain the position, color and size of the
atom.

s t r u c t AtomData c
f l o a t PositionC31;
f l o a t Color C41;
f l o a t Size;

3 ;

6.3 Data Transmission
0

A driver program uses three routines to communicate with the CAVE: one to create a
molecule, one to add a frame t o a previously created molecule, and one to tell the CAVE
that the driver is done. Since Fortran is not able to use C structures, separate routines
exist for C (Figure 6.1) and Fortran (Figure 6.2).

For low-level details, see the code in Rem0te.c and Datatypes .c, as well as Section 7.
This section explains only how to use the routines in a driver program and assumes that
the required data structures are completely and correctly created.

Several sample drivers are provided in dr ivers / ; simpledriver. c, framedriver. c,
and simplef o r t . f.

12

6.3.1 MV-AddMolecule()

MVAddMoleculeO requests that the CAVE allocate space for a new molecule with ID
MoleculeID. No frames are transmitted or allocated.

From Fortran, it is not possible to pass a description string to the CAVE.

6.3.2 MV-AddFrameO

MVAddFrameO adds a frame to the molecule with ID MoleculeID. If the molecule has not
been created, the CAVE will print an error message and fail.

The atom list does not need to be sorted, but several optimizations can be made if it
is. See the code in DisplayList .C for ideas.

The choice of double prec is ion in the Fortran interface is reasonably arbitrary. Look
in Remote. c for details on what needs to be changed to use real.

6.3.3 MVJ3xitO

This routine should be called when the driver is done sending data to the CAVE. Once
called, the driver may proceed with any cleanup it needs to do, then call MPI-FinalizeO,
and exit. The CAVE will continue to allow the user to view the data.

7 CAVE Program Modification

The structure of the CAVE portion of MolView roughly consists of two parts: initialization
and communication. Everything else is handled through callback routines by the CaveMenu
or CAVE library.

Them main loop (in cave. C) performs several initialization tasks:

0 Starts MPI, and creates a driver-only communicator.

0 Allocates a large chunk of shared memory for the menus and MolView data.

0 Initializes the basic MolView data structures.

0 Creates the menus.

0 Configures the CAVE, and sets the callback routines.

Once initialized, MolView enters a loop where it receives data from the driver until
either the ESC key is pressed or the driver announces it is done.

The behavior of MolView is changed by modifying the MolView data structures and
then modifying the various callback routines that act on the data structures. The callback
routines that need to be modified are in:

13

Datatypes. c

Remote. c

Receive. C

Display. C

Menus. C

MPI datatypes.

Driver to CAVE transfer functions.

CAVE receive functions.

CAVE display list generation routine.

The Menu system.

Such modifications, even for moderate extensions, are not excessively involved. As an
example, look through the ION code. All the “shell” operations are essentially an extension
to the base MolView system.

Note: Referring to the code while reading this section will greatly enhance comprehen-
sion.

7.1 MolView Structures

The MolView structures specific to the CAVE contain an instance of the appropriate driver
structure (CAVEAtom contains AtomData, for example) and any additional storage that the
CAVE needs.

CAVEAtom currently does not contain any additional information. Later, for example, if
one wishes to draw sticks to connect atoms, an array of pointers to other CAVEAtoms could
be added.

Note that if the AtomData data structure is modified, ReceiveFrameO must be modified
as well. See Section 7.4.2 for an explanation.

s t r u c t CAVEAtom {
AtomData Data;

>;
CAVEFrame contains a list of the atoms in this frame and a pointer to the next frame in

the sequence.
1

s t r u c t CAVEFrame {
FrameDat a Data;
CAVEAt om * A t oms ;
CAVEFrame *next ;

1;

NumFrames, CurrentFrame, cF, and Frames are used to keep track of which frame is
currently being shown, and should be included in all derived data structures.

s t r u c t CAVEMolecule {

14

MoleculeData Data;
i n t NumFrames ;
i n t CurrentFrame ;
CAVEFrame *cF;
CAVEFrame *Frames ;
CAVEMolecule *next;

3 ;

7.2 MPI Datatypes

The routines in Datatypes. c are responsible for informing MPI about the data that one
intends to send. These routines are critical. If they are incorrect, MPI will (probably) send
junk data to the CAVE.

Basically, MD-Create*Datatype () determines the size and relative position of every block
of data. A block of data is any number of structures that all have the same type, so four
i n t variables in a row is one block.

When modifying the MolView structures, one simply modifies MDXreate*Datatype 0
so that the blocks of data are specified. For more information, see an MPI manual such as
[I, 21.

7.3 Driver to CAVE Transfer Functions

The driver to CAVE transfer functions are in Rem0te.c. They create the MPI datatype(s)
needed and call MPISendO. All the work is done by the MPI datatype. These functions
probably will not need to be modified.

7.4 CAVE Receive Functions

The CAVE receive functions in Receive.C are responsible for receiving the data from a
driver and placing it in the CAVE data structures. While doing this, they could optimize
the data, for example, taking array indices and translating them to C pointers.

7.4.1 ReceiveMolecule()

The molecule receive function should need very little attention. The molecule data structure
is responsible for holding all the CAVE related book-keeping information. Any user-defined
data generally is held in s t r u c t MoleculeData, which is received directly to the CAVE
data structure.

15

7.4.2 ReceiveF’rameO

The frame receive function is not nearly as friendly as the molecule receive function. Atoms
are stored in the frames as an array. CAVEFrame contains an array of CAVEAtom to allow
for CAVE local data in’ an atom (a list of pointers to other atoms, for example). Since
CAVEAtom and AtomData generally will be different, atom data must be copied manually
to the array in CAVEFrame. Thus, any changes to struct CAVEAtom must be propagated
through to ReceiveFrameO.

7.5 Display Routine

Modification of the display routine should consist just of changing the display list creation
routine, ComputeDisplayList (> , in DisplayList . C. Anything that is legal in an OpenGL
display list is legal here, but everything that is done here will be treated as part of the
molecule-they will rotate and translate with the molecule. If the behavior of the molecule
needs to be modified, then Draw() in Display. C will need to be modified.

Note: since each processor must have its own local copy of the display list, each processor
must call ComputeMoleculeDisplayList (1 whenever the molecule changes. Failure to do
so will result in the correct molecule being displayed on one CAVE wall, and something else
on other CAVE walls.

See the OpenGL Programming Guide [3] for details on display list creation.

7.6 Menu System

Menu routines are in Menus. C and can be modified according to [4].
Sliders merit special attention: they must be updated whenever the values they are

associated with change. Currently, they are updated whenever something happens, not just
when their value changes. Ambitious programmers could figure out when the sliders must
be updated, and only update there, but most programmers will realize that the overhead
for updating constantly is low.

Also meriting attention is RemakeMolecule(). This function tells the display processes
to create a new display list, in addition to updating sliders.

References

[l] M. P. I. FORUM, MPI: A message-pussing interface standard, International Journal of
Supercomputing Applications, 8 (1994).

[2] W. GROPP, E. LuSK, AND A. SKJELLUM, USING MPI Portable Parallel Programming
with the Message-Passing Interface, The MIT Press, Cambridge, 1994.

16

[3] M. W. J. NEIDER, T. DAVIS, OpenGL Programming Guide, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1993.

[4] B. WALENZ. Unpublished information, Argonne National Laboratory, 1996.

17

	Abstract
	Introduction
	Driver Programs
	3.1 PDB Driver
	3.2 Ion Driver

	The CAVE Interface
	4.1 MainMenu
	4.2 Options Menu
	4.3 Frame Menu

	For the Programmer
	5.1 Directory Structure
	5.2 Building MolView

	Driver Responsibility and Creation
	6.1 Driver Initialization
	6.2 Data Formats
	6.3 Data Transmission
	6.3.1 MVAddMolecule()
	6.3.2 MVAddFrameO
	6.3.3 MVBxit()

	CAVE Program Modification
	7.1 MolView Structures
	7.2 MPI Datatypes
	7.3 Driver to CAVE Transfer Functions
	7.4 CAVE Receive Functions
	7.4.1 ReceiveMolecule()
	7.4.2 ReceiveFrameO

	7.5 Display Routine
	7.6 Menu System

	References

