
ROBINSON COLLEGE, 
CAMBRIDGE 

Tutorial Program m e 
Sunday 15 July 1995 

TUTORIAL T5 

The Computational Linguistics 
of Biological Sequences 

(David Searls) 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of &he 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or service by trade name, trademark, manufac- 
turer. or otherwise does not ntcessarily constitute or imply its endorsement, m m -  
mendation. or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



ISMB '95 Tutorial Notes 

Departments of Genetics and 
Computer and Information Science 

University of Pennsylvania 
Clinical Research Building, Rm. 475 

422 Curie Boulevard 
Philadelphia, PA 19104-61445 

dsearls@cbil.humgen.upenn.edu 

mailto:dsearls@cbil.humgen.upenn.edu


1 Background 
Up to now, formal language theory and computational linguistics have dealt primarily 
with natural human languages, artificial computer languages, and little else in the way 
of serious applications. However, because of rapid advances in the field of molecular 
biology it now appears that biological sequences such as DNA and protein, which 
are after all composed quite literally of sets of strings over well-defined chemical 
alphabets, may well become the third major domain of the tools and techniques of 
mathematical and computational linguistics. The work of the author [6,7,8,9,10, 111 
and a number of others [l, 2, 3, 41 has served to establish the “Iinguistic” character 
of biological sequences from a number of formal and practical perspectives, while at 
the same time the international effort to map and sequence the human genome is 
producing data at a prodigious rate. Not only does this data promise to provide a 
substantial corpus for further development of the linguistic theory of DNA, but its 
enormous quantity and variety may demand just such an analytic approach, with 
computational assistance, for its full understanding. 

The language of DNA, consisting of strings over the four-letter alphabet of the 
nucleotide buses ‘a’, ‘c’, ‘g’, and ‘t’, is distinguished first of all by the sizes of those 
strings. The human genome contains 24 distinct types of chromosomes, each in turn 
containing double helices of DNA, with lengths totalling over three billion bases. 
Scattered among the chromosomes are genes which can extend over tens of thousands 
of bases, and which are arguably the “sentences” of the genetic language, possessing 
as they do extensive substructure of their own [8]. Moreover, genes and similar high- 
level features occur in a wide range of forms, with arrangements of “words” of base 
sequences seemingly as varied as those in natural language. Clearly any attempt 
to specify and perhaps to parse such features must deal first and foremost with the 
sheer magnitude of the language, in terms of both lengths of strings and cardinality. 
However, there are other, more subtle challenges, having to do with the nature of 
the strings to be described. Some of these features of the language, around which 
the author has been developing grammatical formalisms and practical domain-specific 
parsers, are described in this and the following.section. The reader may find additional 
biological detail in any standard textbook of molecular biology (e.g. [5, 141, or the 
more concise [13]). 

DNA is a double-stranded molecule, with the strands possessing an opposite di- 
rectionality; the bases that lie across from each other in the two strands pair in a 
complementary fashion, i.e. ‘g’ pairs with ‘c’ and vice versa, and ‘a’ pairs with ‘t’ and 
vice versa. Inverting a substring of DNA actually requires not only that a double- 
stranded segment be excised and reversed, but that the opposite, complementary 
strands be rejoined, to maintain the proper directionality. The result is that in the 
reversed string each base is replaced by its complement. 

The biological “operation” of inversion is just one of many types of mutation to 
which DNA is subject, in the course of evolution; others include deletion, insertion, 
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and transposition, in addition to simple point mutations involving substitution of 
bases. One of the most important operations is duplication, which in fact is a central 
mechanism of molecular evolution: a substring is duplicated, and then the copies may 
evolve apart by further mutation until they assume different functions. This has sev- 
eral important consequences. First, it suggests that duplication will be an important 
feature of the language of DNA. Second, it indicates that features of a similar nature 
can vary as a consequence of mutation, and indeed approximate matching will prove 
to be an important factor. Third, it suggests that features might exhibit movement 
phenomena, perhaps reminiscent of natural language, and again this is borne out by 
observation: regulatory signals, in particular, exhibit a degree of “free word order” 
in their relative placements. 

DN‘A is also noteworthy for the large degree of interleaving and even overlap in the 
information it encodes. The business of a gene is actually to be transcribed to another 
(similar) type of moIecule called RNA, which has its own language determining how it 
can fold up into secondary structure and how it is further processed by internal dele- 
tion (“splicing7’) or other forms of editing. RNA, in turn, is most often systematically 
trunshted to  protein, which has a vastly different alphabet and functional repertoire. 
While DNA has its own signals that determine operations performed directly on it in 
the nucleus of the cell, it also contains within the same regions the encoded sequences 
of RNA and protein and the signals necessary for their processing and functioning at 
different times in other parts of the cell. This overloading of the language of DNA 
can go to extremes, for instance in cases where more than one protein is encoded in 
literally overlapping DNA sequence. 

These various transformations of the information in DNA can be modeled by 
simple finite-state transducers, and in fact such transducers can be used to model 
mutation as well. In a paper in this conference [12], we show how such transducers 
can be used to derive algorithms that are characteristically used to find the best 
alignment of strings that are thought to arise from a common ancestor. 

Another general characteristic of much DNA is the relative sparseness of its in- 
formation content. Genes comprise only a few percent of many genomes, and the 
vast tracts between genes, though they may contain important regulatory regions or 
establish global properties, are almost certainly expendable in some degree. Even 
genes themselves are interrupted by long sequences called introns that do not encode 
anything essential to the final protein gene product, and are in fact spliced out of the 
corresponding RNA. 

Finally, it should be borne in mind that the strings of these biological languages 
are literal, physical objects. In particular, they interact not only with their envi- 
ronment (including DNA-binding proteins that recognize specific “ ~ o r d s ”  ), and with 
other strings (as in the double helix of DNA), but also with themselves (as in RNA 
secondary structure). In the latter case, the RNA actually bends back upon itself 
and base pairs as if it were the two halves of a double helix; this in fact occurs at 
biological palindromes of the sort described above, for reasons that may be apparent. 
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Such structures can become quite complex and highly branched, producing not only 
palindromic regions but additional forms of non-context free phenomena, and showing 
evidence of a purposeful ambiguity in the sense that multiple structures arise from the 
same sequence of bases [S, 91. Such interactions between elements of a string folding 
back on itself form natural dependencies, which we might well wish to capture using 
appropriate grammar formalisms. 

While this tutorial will concentrate on nucleic acid sequences because of their 
relative simplicity, it should be borne in mind that protein sequences are analogous 
in many respects, particularly their folding behavior. Proteins have a much richer 
variety of interactions, but in theory the same linguistic principles could come to 
bear in describing dependencies between distant residues that arise by virtue of three- 
dimensional structure. 
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Proteins (I) 
- proteins are polymers of amino acids, a 20 letter alphabet 

often written as single uppercase letters 
- amino acids have side chains that vary greatly in terms 

of properties such as charge, bulk, hydrophobicity (i.e. 
tendency to avoid water), etc. 

- 
tertiary structure, which is a function of their primary 
structure or sequence 

biological function, e.g. by forming a specific shape 
to fit another molecule, bind to it, and catalyze an 
enzymatic reaction within an active site 

- proteins assume a 3-dimensional shape called their 

- the tertiary structure of a protein determines its 

Proteins (11) 

within the 3D 
shapes certain 
substructures may 
recur, such as 
alpha helices and 
beta sheets, as 
well as regions 
of random coil 
these recurring 
motifs are called 
the secondary 
structure 



Proteins (Ill) 

- secondary struc- 
tural elements 
interact with 
each other in a 
variety of ways, 
e. g. hydrogen 
bonds between 
beta sheets (either 
parallel or anti- 
parallel), charge 
interactions, 
hydrophobicity, 
etc. 

Proteins (IV) 

- although proteins 
(and nucleic acids) 
are viewed as 
strings of symbols, 

I n  5,  recognize that they 
are folded "blobs" 
in actuality 

- a space-filling 
model of thelast 
example (carbonic 
anhydrase) shows 

' the electron clouds 



DNA Structure (r) 
- DNA consists of nucleotide bases g, a, t, and c, strung 

together on a directional sugar-phosphate backbone 

5' I I 1 I I I I I 1 I I w 3 '  
g a t t c c g t a t a  

- molecules of DNA normally exist in anti-parallel pairs, 
bound by complementarity between bases a/t and g/c 

DNA Structure (11) 

- the strands coil around 
each other in a right- 
handed double helix, 
the bases on the interior 
stacked like dishes 

- the bases pair only via 
hydrogen bonds, so can 
be separated by heat 

- g/c bonds are stronger 
than aJt, so have higher 
melting temperature 



RNA Structure 
- RNA is chemically similar to DNA, but has a slightly 

different alphabet (g, a, u, c) and is single-stranded 

5' I i 1 1 1 1 1 i 1 1 i 1 1 1 1 1 1 1 1 i i 1 ~ ~ 3 '  
c c g u a u a a g c u a g u u a u a u a c g g  

- however, RNA is able to 
fold back on itself to form 

i l l f i l  a simple stem-and-loop c c g u a u a  
g $ $ # $ $ g  
g g c a u a u  

secondary structure, e.g. 5' 

perfect; the structure de- 3 4  I 
- base-pairing need not be 

pends on thermodynamics 

Hybridization 

- heating and then renaturing total 
genomic DNA reveals different 
classes of "complexity" (the 
inverse of repetitiveness), 
suggesting not all DNA 

percent has high infor- double- strand mation content intermediate repeats, e.g. alu 

ence, e.g. telomeres, centromeres 

log(DNA concentration * time) - 



Gene Structure 
- eukaryotic genes are interrupted by sequences that 

are spliced out in the process of gene expression 

/ 
/ /  

\ 
/ 

/ 

\ / 

/ polyA tail 

processing 

l11111111lll111 
I 

messenger RNA 
5’UTR ‘\ / 3’UTR \ \ / 

translation \ / 

\ 
protein 
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Gene Distribution 

- genes only constitute a few percent of the genome, 
and are sometimes distributed in related families 
with coordinate control at different times and 
places in development, etc. 

Beta Hemoglobin Gene Cluster (-70kb) 

6 B 8 GY A, 
M M LCR -.- M M I.. 

Alpha Hemoglobin Gene Cluster (-40kb) 
c a2 a1 

LCR hh M M 



Chromosomes 
22 

1s 
- in higher organisms DNA is packaged into 

12 - - chromosomes, where it is highly coiled and 
P 1 *-a supercoiled, and complexed with proteins 

11-1 11.- 
- in diploid organisms, chromosomes occur in 

pairs (with the exception of the sex chromo- 
11-2 somes); humans have 24 distinct chromosomes 
12.1 1 2.z 

- genetic variation arises by mutations of the 
9 1 2 s  DNA, and by recombination between the 

t 2L- paired (but non-identical) chromosomes 
1- - the entire complement of DNA in an organism 
1-1 is called the genome, and it comprises about 3 

billion bases in humans 1- 

4- 

Classical Genetics 
- traits are encoded in the DNA as genes, which vary among 

individuals; different "versions" of a genetic locus are 
called alleles, and the phenomenon is called polymorphism 

- in classical genetics the distance between 
genes was measured in terms of frequency 
of recombinations between them, and this 
is still one of the most important tools for 
discovering the location of diseases, etc. 

I I I - there are currently estimated to be 
about 100,000 genes in the human 
genome, and a polymorphism every 
100-200 bases on average, yet only 
ca. 1% difference from chimpanzee 



Replication 

specificity of base-pairing, allowing enzymes called 
DNA polymerases to  synthesize a new strand from 

- replication of DNA is possible because of the 

a template, in a 5’ to 3’ direction 
- polymerases are mostly processive, 

i.e. they move along the template 
synthesizing the new strand; they 
can be seen as finite transducers: 

primer to  hybridize and initiate 
the reaction, plus bases to add 

- polymerases require a specific 

a/t t/a 

Transcription 
- RNA polymerases mediate the transcription of 

RNA fkom a DNA template, generally under the 
influence of transcription factors that recognize 
specific start signals in the DNA 

- RNA polymgrases also synthesize 
5’ to 3’, but from one strand only 

- reverse transcriptases can copy 
from RNA back to DNA, and are 
made by tumor viruses; they are 
an important tool for creating 
cDNA libraries from mRNA t la 



Translation 

- translation from RNA to protein involves a more 
complex cellular machine called a ribosome 

., /.?-?.>., . . . . . . . . . . . . .  . . . . . . . . . . . . .  .. ribosome .............................. . . . . . . . . . . .  ................ % . . . . . . . . .  .. . . . . . . . . .  
mRNA 5’ 3’ 

- ribosomes map triplets 
of bases to amino acids 
using an adaptor called 
transfer RNA protein :cid 

The Genetic Code 
- the mapping %om triplets or codons to amino acids 

lacks three cases: the stop codons that end proteins 
Second Position 

First 
Position 

Third 
Position 



Mu fa tion 

- substitution of bases may have little effect (e.g. at 
the 3rd codon position, or if a similar amino acid 
is substituted) or  may be fatal (e.g. creating a stop) 

- insertions and deletions (indels) may'or may not 
cause frameshift mutations, usually fatal 

mRNA 

wild type 

insertion 

deletion 

reversion 

5' I 1 I I 1 1 I i I 1 1 I *3' 
c g u u u a g a c c c c  

R U L  D P 

R F R P 

- - 
I_l;(.L_- 
- 

R 

R 
- M 10- 

STOP 

D P 

Evolution 
- evolution proceeds primarily by duplication of genes 

followed by divergence of function through mutation 
- the most important activity ggcatt 

in computational biology is 
the detection of distant 
similarities or homologies 
among present-day 
sequences 

- construction of the most 
p arsirnonious phylogeny 



€dit Distance 

- a finite transducer that models mutation can be 
minimum-distance editor xlx 

Dynamic Programming 
- dynamic programming finds edit distance in O(mn) 
- each position in 

the matrix only 
depends on its 
neighbors to the 
left, above, and 
diagonally, to 
align the inputs 

A 

~ A 

IT C G G A G T C A I  

0 1 2 3 4 5 6 7 8 9  

1 

2 

\ 
1 2 3  
1 

4 4 5  6 7 8  

3 2 2 3 4 5 5 6 6  

4 3 2 2 3 4 5 6 7  
\ 

\ 
5 4' 3 

6 5 4  

7 6 5  

8 7 6  

5 5  
2 - 3 \ 4  

5 
\ 4  

a 3 3  

5 4 4 4 3 \ 4  

6 5 5  5 4 3  



Affine Gaps 

- a more realistic 
Xi€ model of indels 

treats each gap as 
a single event, with 
a large initial cost 
and then a smaller 

d Y  incremental one to  
enlarge it [Gotoh] 

S [ U  - 1: b - 11 
s[a - 1,b - 11 + 0 

4% bl 
i [a ,  b] 3[0:0] = 0 

if x, = yb 
if z, f yb 

d[a, b] = min{ $ - 1: b] + CY 
- 1:b] +t3 

s[a,b- l ] + a  
i[a ,b-  11 + p i[u,b] = min 

s[a: b] = min 

Local Alignment 
- modern search 

algorithms use 
similarity, not 
distance, and 
find short local 
alignments 
[Smith & 
Waterman] 



2 Theory 
In the realm of formal computational linguistics, a language is defined in terms of 
an alphabet C, which is a finite set of symbols; in the case of DNA sequences, such 
symbols should be the nucleotide bases, so that we have EDNA = {g, c, a, t}. A DNA 
molecule can then be represented as a string over EDNA, that is, a finite sequence of 
symbols from EDNA. The set of all possible strings over an alphabet is denoted by 
C*, and a language, formally, is any subset of C*. 

The concern of formal linguistics is the finite representation of languages which 
may themselves be infinite; the goal is an economy of expression, in an abstract rep- 
resentation, as an alternative to exhaustively enumerating all the allowable strings in 
a language. Such cogency may also have the benefit of capturing some kind of es- 
sential, clarifying generalization about the structure or syntax of a linguistic system, 
preferably related to the meaning or semantics of the language elements. For this 
purpose, language generators called grammars have proven extremely useful. Gram- 
mars specify languages through sets of rules or productions, which achieve the desired 
succinctness largely by referring to each other and to themselves recursively. Perhaps 
the most important class of grammars is the context-free grammars (CFGs, which 
specify the contezt-free languages, CFLs). A CFG has the set C of symbols from 
the language, called terminals, and an additional set of symbols called nonterminals; 
these symbols are used in a finite set of rules whose members are denoted by A + u 
where A is a nonterminal and u is a string of terminals and nonterminals. A gram- 
mar generates the string elements of its language by taking a starting symbol S and 
rewriting it, by repeatedly finding a rule whose left-hand side matches some nonter- 
minal in the current string, and substituting that rule’s right-hand side, until the 
string contains all terminals. Such derivation steps are denoted by a double arrow, 
+, so that for the simple grammar with C = { a ,  b, c} ,  nonterminals S and X, and 
rules S 4 US, X ---f b X ,  and X ---t c, one possible derivation is: 

S a X  abX abbX + abbc 

We can say that the language generated by a grammar G is the set of all strings w 
over C such that w is derivable from S, or in set notation {w E E* I S e* w), 
where +* denotes any number of applications of =+. For the example given, this 
grammar formalism would appear to be preferable to either trying to list the infinite 
set of strings {ac,  abc, abbc, abbbc, - - e}, or using the informal description {w I w is an 
a followed by any number of b’s followed by a c} .  For one thing, it makes feasible 
the computational task of parsing a string to determine whether it is in the language 
specified by the grammar. A useful byproduct of parsing is the production of a parse 
tree reflecting the grammar rules applied and giving a kind of structural description 
of grammatical features in the input string-exactly the kind of output that is desired 
in describing certain biological sequence data. 

CFGs have proven to be very useful in the field of compiler construction, where, in 
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the form of BNF (Backus-Naur Form) descriptions, they are used to specify program- 
ming languages and their parsers. An even more interesting application of computa- 
tional linguistics, however, is in understanding natural language-a complex problem 
that has stimulated a large body of research. Although straightforward CFGs can 
be written that cover many aspects of natural language syntax, natural languages in 
their full generality are now thought to require greater than context-free power [SI. 

Regular expressions also specify languages. However, the set of regular languages 
is strictly a subset of the CFLs, for no regular expression can specify certain self- 
embedding structures such as palindromes; computationally, these require a stack to 
store information about dependencies between distant elements of the string. In fact, 
even the CFLs are a strict subset of the context-sensitive languages (CSLs), described 
by grammars that have more than one symbol on the LHS of rules. While CFLs are 
restricted to describing nested dependencies, CSLs can specify crossing dependencies, 
such as those found in copy languages, which contain duplicated strings of arbitrary 
extent. These language classes all take their place on the Chomsky hierarchy of lan- 
guages, which categorizes the linguistic complexity of any given language, and which 
serves as the basis for analysis of the decidability and/or tractability of recognizing 
strings of any language with general-purpose parsers. O(n)  parsers are easily de- 
signed for regular and determinsitic CFLs-those that can be recognized without the 
need to backtrack on the input string-and O(n3) parsers exist for any CFL. Certain 
well-defined characteristics of CFLs may permit more efficient general-purpose pars- 
ing, and for any particular, narrowly-defined language special-purpose linear- time 
recognizers can often be designed. Languages beyond context-free are increasingly 
more difficult to recognize by general-purpose parsers, and much effort has gone into 
defining language classes “slightly greater” than context-free that are adequate to a 
particular domain (such as natural language) yet can be parsed efficiently. 

The mathematical discipline of formal language theory also provides many tools for 
evaluating properties of grammars and languages such as their ambiguity, referring to 
strings that may be derived via multipledistinct parses. A simpleexampleof this from 
natural language would be the sentence I was given the paper by  Watson and Crick, 
which with different syntactic parses could either suggest that someone gave me their 
famous paper, or that those famous persons gave me some paper. Much of the field 
of Natural Language Processing is concerned with reducing the syntactic ambiguity 
of sentences by incorporating knowledge of semantics, etc., into the analysis. 

We suggested in 19SS [9] that nucleic acids were beyond regular and at least 
context-free, based on the phenomenon of secondary structure: the stem portion of 
a stem-and-loop structure entails nested dependencies between base-paired residues, 
which are easily specified by a self-embedding CFG, but which in the general case 
are beyond the capabilities of any formal regular expression. It was also suggested 
[9,10] that DNA may be beyond context-free as well, due to the phenomenon of direct 
repeats, which constitute a copy language with crossing dependencies that cannot be 
described with essentially stack-based context-free formalisms. Subsequent work [ll] 
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formalized these conjectures. 
Formal discussion of the linguistic status of DNA, like that of natural language, 

may be based on empirical phenomenology, but in the case of nucleic acids may also 
rest on the actual physical structure of the molecules, and in particular the ability to 
form secondary structure. We have offered formal proofs that idealized representa- 
tions of such structure are indeed non-regular [ll]. Beyond this, however, the simple 
existence of direct repeats is somewhat unsatisfying as evidence for the purely formal 
status of DNA, since direct repeats can be found even in regular languages (and in 
fact particular repeats are required to exist in both infinite regular languages and 
CFLs, by the so-called pumping lemmas [4]); it is only when direct repeats with no 
particular bounds on their extent can be shown to be necessary in a language that 
it can be said to be greater than context-free on that account. So as not to depend 
entirely upon ad hoc phenomenology, we sought examples which, like that of inyerted 
repeats, could be grounded in actual physical structures and processes arising in the 
molecules themselves. A series of such arguments were presented in [ll], based upon 
(1) the potential for circularization of DNA with terminal direct repeats, (2) unequal 
crossing-over in multiple tandem repeats, and, most importantly, (3) the existence 
of pseudoknots in structural RNA, which entail crossing dependencies between stems 
within each other’s loops. It is interesting that dealing with pseudoknots has required 
major reimplementations of some RNA structure prediction programs [l]; the relative 
difficulty of this can in part be explained by the transition to greater-than-context- 
free recognition which can thus no longer be strictly stack-based. This points again 
to the utility of a solid formal linguistic characterization in the design of recognition 
algorithms in any given domain: 

A number of additional formal results were given in [ll], dealing with other lin- 
guistic attributes, again based on a somewhat idealized model of the structural char- 
acteristics of nucleic acids. Inverted repeats, for example, were shown to be nonde- 
terministic languages, and the branching or recursive nature of secondary structures 
implies their language is non-linear (in this context, meaning that any grammar de- 
scribing them must have a rule with more than one nonterminal on its right hand 
side). These results rule out the use of certain O(n2)  simplifications of general-purpose 
context-free parsers (which are otherwise O(n3)). 3 

The ambiguity of general secondary structural grammars (that is, their ability to 
produce more than one essentially distinct parse for the same primary sequence) was 
also explored in 1111, and it was shown that this grammatical ambiguity reflects alter- 
native secondary structures in a biologically relevant way. (Since that time, we have 
proven that, while the most general language of ideal orthodox secondary structure is 
actually deterministic and thus unambiguous, certain biologically plausible secondary 
structure sublanguages are inherently ambiguous, i.e. impossible to describe by any 
unambiguous grammar). An understanding of the nature and degree of ambiguity 
of languages in a domain is important, for example in implementing deterministic 
speed-ups to parsers. 
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Given that biological sequences are beyond context-free, it is of interest to carefully 
circumscribe their exact boundaries. We suggested in [lo], and demonstrated in [ll), 
that the language encompassing all of the phenomena described above in nucleic 
acid structure lies not only in the CSLs, but within a restricted subset known as 
the indexed languages. (It is interesting that the indexed languages have also been 
claimed to suffice for natural languages 121.) A subset of the indexed languages with a 
very perspicuous grammar formalism particularly well-suited to nucleic acids, known 
as string variable grammar, was developed by us [lo, 111; examples are given in the 
next section. 

We have also explored closure properties of the Chomsky hierarchy under biologi- 
cal operations-that is, whether language classes of interest, after undergoing certain 
biological processes, can be expected to remain at the same level in the Chomsky 
hierarchy or not. It was formally demonstrated in [ll] that regular languages and 
CFLs are closed under double-stranded replication and under simple recombinational 
events such as scission and ligation. Deterministic languages, however, are not closed 
under these operations, so that, for example, certain features can be recognized more 
efficiently on one strand of DNA than on the other, or in other than a leftmost fashion, 
suggesting the use of so-called island parsing strategies. With regard to evolutionary 
operations such as duplication, inversion, and transposition, it was shown that CFLs 
are not closed, suggesting that genomic rearrangements on an evolutionary scale may 
be responsible for increasing the mathematical complexity of the genetic language. 

One of the more remarkable aspects of grammar-based descriptions of folded struc- 
ture is the observation that derivation trees from the grammars physically resemble 
the actual secondary structures as they are usually portrayed. This has Ied to several 
machine learning approaches to prediction of secondary structure based on stochastic 
grammars [3, 71, and has caused us to examine new formalisms that stress the struc- 
tural aspects of derivation trees for grammars that are beyond context-free. Among 
these are tree-adjoining grammars and variations upon them [5, 61. Recently, the 
author has developed a new formalism that directly addresses the problem of repre- 
senting relationships between strings in a language, rather than just within the same 
string. A cut grammar has a new symbol that allows a derived string to be cut at 
multiple places, so that the language derived is actually a set of strings all related by 
having come from the same derivation [12]. This allows us to express the results of 
hybridization of oligonucleotides, for example. 
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Regular Languages 

0 regular languages are those generated by simple 
finite state automata, and (equivalently) by 
grammars whose rewrite rules or productions have 
only single nonterminals at the ends of their right 
hand sides, e.g. for { Oi l j2 '  I i , j ,  k 2 0) :  

S + O S I A  A h l A I B  B + 2 B I &  

Context-Free Languages 

context-free languages are modeled by pushdown 
automata, which have memory in the form of a 
stack, and by grammars with no limitations on their 
right hand sides, e.g. for { 0i1i2i 1 i, j 2 0): 

S - +  OS2 IA A - r l A k  
- s 3 os2 * 00~22 * ooos222 * OOOA222 I 
3 00014222 * 0001114222 * 00011222 



Beyond Context-Free 

{ 0 ~ 1 ~ 2 ~  I i , j ,  k 2 0 )  requires even greater power: 

S-+ OSA2 1012 
S J OI’jA2 O O S A 2 A 2  a O O O 1 2 2 A 2  a 

O O O u 2 2 A 2  0001122142 * 000112A22 + 
+ 0 0 0 1 ~ 2 2 2  * 000111222 

The Chornsky Hierarchy 

0 recursively enumerable languages use an infinite 
tape for memory, i-e. a Turing machine, and are 
equivalent to grammars with any number of 
additional symbols on their left hand sides 
context sensitive languages require a tape bounded 
in the size of the input, and left hand sides cannot 
be longer than right hand sides 

0 the Chomsky hierarchy, RL c C F L  C CSL C RE, 
establishes the subsumption relationships 

0 in ascending the Chomsky hierarchy, language 
classes become less tractable in terms of recognition 
(parsing), decidability and closure properties, etc. 

0 natural language is thought to be “slightly greater” 
than context free 



Reverse Complementarity (I) 

we will uniformly adopt the alphabet of DNA: 

xDYA = (9, t} (1) 

the following function indicates bases that are able 
to physically and informationally base-pair between 
strands of double-helical DNA: 

(2) 
- - g = c ,  c = g ,  a=t, and F = a  

0 this operation can be extended over strings and 
constitutes a homomorphism, since we can say that 

-- 
and - E = €  ( 3 )  - ,u - u = (UV) for u,u E c:~~, 

0 we will abbreviate (3) as WV; this homomorphism 
and string reversal have the following properties: 

(m) = w ,  ( w ~ ) ~ = w ,  and ( . .R)=(w)~ ( 4 )  

Reverse Complementarity (11) 

the composition of base complementarity and 
reversal, written mR7 is the “opposite strand” of a 
string 20 of DXA; it is not  a homomorphism, since 

where u # v ( 5 )  Z R .  V R  # (U;>R = V R  - ZR 

0 rather, it is a group-theoretic involution; this allows 
DhTA to be replicated from opposite strands: 

(mR)R = ((‘ilLiR)R) = (‘w) = w (6) 

(7 )  

VI ( 8 )  

0 consider strings identical to their opposite strands: 

that 

L , = { w E C ~ x A ] w = m R )  

0 dividing any such ’w into equal halves, we see 
where Iu1= w = u’u = W R  = &iR = U a R  

so that L,  is in fact the language 
L,  = {UER I u E (9) 



.. . 

Inverted Rep eats 

0 inverted repeats are common in nucleic acids: 

a\ f3 a’ 
.....................*...............-..*...... 

we could specify these with the following grammar: 
S +. bS6  I A A +. b A  I E where b E ZDxA (10) 

and trivially 
however, the A rule (for the loop) can specify any 
string, so the resulting language is 
regular; therefore, we idealize to hairpins: 

S 4 bS6 1 E (11) 

DNA is Not Regular 

o let an ideal string be one with equal numbers of 
each base type b and its complement b (Le. all bases 
are potentially paired); the self-embedding 
context-free grammar S --+ bS6 I E of ideal inverted 
repeats in fact yields Lo, and is clearly not regular 

0 one way to model non-ideal inverted repeats would 
be to require a minimum length p for the stem and 
a maximum length q for the loop: 

R 
L77 = (uva I u ,v  f 1-42 P, and Iv 15 q }  (12) 

0 this is non-regular and still context-free, even 
“biological”, but may not find the longest stern; for 
purposes of recognition, the following is more useful: 

s 3 b S b  I *4 
A - b 1 ~ l b B d  where b # d (13) 
B 4 b B I €  



DNA Is Not Linear 

0 nucleic acids form recursive secondary structure: 

let an orthodox string be E ,  or the result of adding 
an adjacent complementary pair b6 at any position 
in an orthodox string; this language is given by 

S 4 bS6 I SS  I E (14) 

DNA Is Nondeterministic 

o the language L, of ideal inverted repeats requires 
guessing about the midpoint, so is nondeterministic 

0 surprisingly, the more general language L,  of ortho- 
dox secondary structure is deterministic; though the 
grammar given above is nondeterminstic, it is 
weakly eqiiivalent to the deterministic Griebach 
normal form grammar 

s + bS/,S 1 E 

sh + 6 1 dSrLS/, 
for each b f E,,, 
for d # 5; 

0 nevertheless, constraining this very general language 
of secondary structure to give specific nonlinear 
languages may reintroduce nondeterminism, for 
example the dumbbell language of adjacent stems, 
L d  = {uvRvvR I u ,  v E specified by 

S + A A  A -+ bA6 I E 



DNA Is Not Context-Free (I) 

tandem and direct repeats are frequent in DNA: 

* . ................................................................... - 
4 

a' fl a' fi  

a\ a\ a\ 

a' 4 a' fl  a* fl  
................................................................... 

4 

these are copy languages, e.g. L,. = (ww 1 w E 
which are beyond context-free; structural correlates 
may lead to alternative hybridization, unequal 
crossing over, even circularization: 

a 

DNA Is Not Context-Free 

0 also, consider RhTA pseudoknots: 

0 an ideal language of pseudoknots would 
L k  = {uva R R  77 I u,v  E gy,> 

which is not context-free, since 
L;.. = Lk n g + a + c +t+ 

= {g"&"t.i I i , j  2 1) 

a' 

be 

is not only non-orthodox, but hornomorphic,to a 
well-known non-context-free language 



DNA Is Not Context-Free (111) 

o attenuators are binary switches that control certain 
bacterial genes using alternative secondary structure 

n 

these occur in forms whose formal expressions are 
beyond context-free, since they contain copies: 

Ln2 is a subset of both the hairpin language Lo 
and the dumbbell language L d ,  and in fact is the 
intersection of either with the copy language 

DNA Is Inherently Ambiguous (I) 

in fact, any grammar for Lo2 must give rise to mul- 
tiple leftmost derivations (as does the orthodox): 

S + SS gScS + gaStcS + gatcS 
+ gatcgSc * gatcgaStc + gatcgatc 

+ gatSSc +- gatcSgSc e- gatcgSc 
--I' gatcgaStc gatcgatc 

S gSc gaStc * gatSatc 
+ gatcSgatc * gatcgatc 

s + g s c  * g s s c  + g s s s c  + gaStSSc 



DNA Is Inherently Ambiguous (11) 

alternative structures like those above are obviously 
not captured by the deterministic Griebach normal 
form grammar for L,, which returns only one 
structure for any input 

grammar for L,  also generates more than one 
leftmost derivation for the same secondary 
structure, i.e. ‘it is also s t ruc tura l l y  a m b i g u o u s  
we can design a s t ruc tura l l y  u n a m b i g u o u s  grammar, 
that generates exactly one leftmost derivation per 
secondary structure, though the degree of ambiguity 
is still exponential in the size of the input: 

0 on the other hand, the straightforward ambiguous 

Closure under Replication 

o consider the operation of replication, for L 
RE.P(L) = (w,mR 1 w E L }  = L u L (23) 

-R 

the languages in the Chomsky hierarchy are all 
closed under the operations of homomorphism, 
string reversal, and union, and so also under 
replication; in fact, we observe a fixpoint: 

REP*(L) = REP(L) ( 2 4  
* but, deterministic context-free languages, e-g. 

(25 )  
. . I . *  

L D  = {gWt’c I i = j + I C )  
are not closed under replication, since 

p (1 I’ R E P ( L ~ )  = ( g  a t cs I p = Q + r or s = q + r )  (26) 
is not only nondeterministic but inherently 
ambiguous , necessarily having multiple left most 
derivations whenever p = Q + r = s 



Closure under Recombination 

0 the classifications of the Chomsky hierarchy are also 
closed under ligation (and its closure) 

LIG(L) = {zy I x , . ~  E L }  = L - L (27) 
since DNA can only ligate head-to-tail, and this 
holds true even in populations of double-stranded 
DNA: 

-R LIG(REP(L)) = LIG(L u L ) 
= ( L - L ) u ( L - L  -R ) u ( z ~ - L ) u ( E ~ - L  -R (28) 

the same is true of scission (and its closure) 

(29) 
CUT(L) = { X , Y  1 ZY E L )  = PRE(L) u SUF(L) 

CUT*@) = {U I XUY E L }  = PRE(SVF(L)) 

0 although we cannot directly model Ligation which 
circularizes strings, we can model their scission: 

CUT(LI@(L)) = (VU I uv E L )  = c ~ c ( L )  (30 )  

Closure under Evolution 

evolutionary rearrangements can also be modelled: 
DUP(L)  = {zuuy I XUY E L )  
IW(L) = {xiURy I xuy E L }  
SPOS(L) = {zvuy I xuvy f L} 
DEL(L) = {ZY I XUY E L }  

where x, y, u,v  E and L G 
* regular or context-free languages could not be closed 

under duplication, since this creates copy languages; 
neither are they closed under inversion (which 
makes copy languages from inverted repeats) or 
transposition (which makes pseudoknots from them) 

0 only under deletion are the lower levels of the 
Chomsky hierarchy preserved - thus, evolution may 
tend towards increasing linguistic complexity 



Closure under Expression 

0 during gene expression, transcription, processing, 
and translation may take place at different times 
and/or in different compartments of the cell 

0 thus, the signals relevant to the DNA, various forms 
of RNA, and protein, are all projected back to the 
DNA, and to the extent these can or should be 
viewed as separate languages, the DNA must be 
seen as the in tersect ion of those languages 

0 this is significant since (for example) the context-free 
languages are not closed under intersection 
there is evidence that secondary structure may play 
a role in expression (e.g. regulating alternative 
splicing), and in fact it may interfere with ribosome 
!>inding - and context free languages are not closed 
under complement at ion 

Parse Trees and Structure 

0 secondary structure grammar derivations not only. 
capture base-pairing dependencies in rules, but the 
resulting trees resemble the overall structure 

& 



DNA As An Indexed Language 

the language of all ideal strings can be shown to be 
context-sensitive; however, the phenomena in DNA 
may be subsumed by the indexed languages, which 
lie between context-free and -sensitive 

indexed grammars can be thought of as having 
stacks attached to nonterminals, which are passed 
along to each nonterminal arising in a derivation, 
e.g. €or tandem repeats 

S + bSh  I A A" -+ A b  

similar grammars suffice for inverted repeats, 
pseudoknots, etc. of seemingly arbitrary complexity 

DNA as a TAG Language 

0 certain biologically-relevant languages that are 
beyond context-free can be captured as a more 
tractable tree-adjoining grammar, e.g. the 
attenuator language L,1 = {wwRw I w E xZxA}: 

I: a1.= s 
I 
E (34) 

0 this grammar captures base-pairing and alternative 
base-pairing in constituent structure 

0 however, TAGS do not appear to handle L n 2  or the 
pseudoknot language LI: = { ' Z L V E ~ ~ C T ~  I u,v E 
(though extensions such as multicomponent TAGS 
might suffice) 



Cut Grammars 

0 a cut grammar is an ordinary grammar with a new 
symbol, 6, at which derived strings are simply cut 

0 this will allow us to use grammars to describe 

0 given a string u = u16u2S - - - Sun, where ui E C* for 

intermolecular as well as intramolecular interactions 

1 5 i 5 n (and 6 E), we define a cut function 

(37) 

(38) 

dcf .ii = ( ~ 1 ,  ~ 2 ,  - - - 3 u n . )  

and an uncut function 
- dcf U - UlU2 - - - Un, 

Cut Languages 

0 for a given cut grammar G with start symbol S, we 
define the cut language 

L(G) dcf ( ii E 2”* 1 S -* u3 

Z(G) dcf { ii E C* 1 S a* u} 

(39) 

(40) 

(41) 

- w o )  = { -34 ZR3 I E 3 (42) 

(43) 

(a set of sets), and the uncut language 

0 we will also consider the cut language union 

uL(G) = ( U  E C* 1 S-*v  and u E 5 }  

0 for the double-strand grammar Go : S -+ bS6 I 6, 

which is related to the stem language by 

Lo = E(Go) = { u I (u}  E E(G,)} 



Nick Languages 

0 nicked double-stranded DNA can be modelled by 

S -+ bSb I S S  I S S  I S (44) 

-6 

we can also require a minimum “overhang” to create 
what biologists call “sticky ends”: 

for each w E E:;,, where n is the desired length (or 
for particular w’s to model restriction enzyme sites) 

thus, cut grammars can be used to formally describe 
hybridizat ion of populations of strings, e.g. cut 
language elements as sets of hybridizable “oligos7’ 

Nonlinear Cut Languages 

0 by analogy with orthodox structure, we can model 

- end-cut hybridization: S -+ bS6 I SS I S 
- fork-cut hybridization: S -+ b S 5  I S6S 1 E 

- generalized hybridization networks: 



Circular Cut Languages 

using the start symbol to leave one end of the 
double-stranded molecule open, and a S to cut open 
the other end, seems arbitrary given the symmetry 

the start of a derivation tree, we can 
define a circular cut function 

0 to ‘cclose 

(47) 
0 dcf 
u - {un,u17 U2t  ~ 3 7  - - un,-1} 

which is only defined when at least one S is derived 
0 then, for Go : S +. bS6 I 6, we have ordinary stems 

u E(G,) = Z(G,,) = L, (48) 

which is to say, the set of stems open at the start is 
the same as the set open at the terminus 

for any G we can form a G’ by adding a new start 
symbc! SI and rule S’ +. SS, to get E (GI) = L(G)  

Ligated Languages 

we may wish to distinguish ligateable cuts from 
non-ligateable ones, e.g. nicks vs. gaps or ends 

0 a ligation grammar is a cut grammar with an 
additional new symbol y, where for any 
u = u1yu2y - - . y u ,  with uj E (C U {S})* for each 
1 5 i 5 n, we define the Ligate function 

ii = {GI, G2, - - - , Gn,> (49) 

0 given a ligation grammar G with start symbol S we 
define the ligated language 

L(G) = { ii E 2”* I S a* U }  (50 )  
while the cuts act on both 6’s and y’s, as before 



Regular Hybridization 

m given a right-linear grammar R, Le. one with rules 
of the form A + w B  and A + w, we can create 
oligonucleotides encoding the rules of the grammar, 
together with additional splint oligos, so as to 
hybridize to structures like 

which are described by a grammar Gh,: 

S +rSb 1 A b  
A +bA6 I BS 
B -bB5 I bS6 I bC5 
C + r C b  I r b  

(51) 

0 arbitrary derivations from R can be produced by 
“complete” hybridization 

Context-Free Hybridization 

0 by allowing branched hybridization, we can similarly 
model arbitrary context-free grammars (in Chomsky 
normal form) with oligos like the following: 

:::. 
:;p” >:: :s:.. ..:... .::: 

A @  
t:y 

.... 

A-w 

could non-context-free secondary structures derive 
arbitrary non- cont ext -free languages? 



Cut Language Closure 

0 given a context-free cut grammar G, we can 
- change each 6 to E ,  and for this ordinary e 

clearly L(@ = Z(G), so E ( G )  is context-free 
-create an ordinary G (by a construction due to 

Tilman Becker) which “chooses” each pair of 
adjacent 6’s and generates only the intervening 
substring, so that Ui(G) = L(G) is context free 

S 

G: 

aB 

, .. R/i“. . . .  , 
I- - - , - -  

Cut Language Recognition 

0 the membership problem for cut languages: given a 

a this problem is NP-hard, by reduction from 
cut grammar G and a set V C E*, is V E L(G)? 

Directed Hamiltonian Path (due to Michael Niv): 
Given a graph (V, E ) ,  where !VI = n, t,he start 
vertex is VI, and the end vertex is v , ,  if w e  define a 
cut grammar with alphabet C = V ,  nonterminals 
(A: I 1 < - i , j  5 7 2 )  U (S), and rules 

S + V I A :  

Ai- J I  -+ S V ~ A ,  
A: -+ E 

for all (j, k) E E ,  1 5 i < n (52) i+l 

then V E Z(G) iflthere is a path of length n that 
passes through every vertex in V just once (DHP) 

0 ironically, Adleman “s01ved’~ DHP by hybridization 



3 Implementation 
Linguistic methodology is not limited to computer languages or human natural lan- 
guages, but can be extended to all manner of signals, images, or other data which 
have underlying structure. This observation has led to the development of the field of 
Syntactic Pattern Recognition (SPR) [6]. SPR makes use of the tools and techniques 
of computational linguistics, such as grammars and parsers, to specify and search for 
pat terns in data. Because grammars intrinsically promote the hierarchical abstrac- 
tion of features, these can be built up to a very high level while maintaining a clear, 
modular “knowledge base.” Moreover, grammars by their nature detect individual 
features in this higher-level context, which creates a much greater degree of discrimi- 
nation than isolated searches. SPR benefits from a strong formal foundation, but also 
incorporates features that extend the expressive power of grammars where necessary 
for the domain. For example, “noisy” signals can be dealt with by so-called stochastic 
grammars [6], which incorporate probabilities into grammars in a natural way. SPR, 
in fact , has been classified as a form of pattern-directed inference, and indeed we have 
found that it provides an excellent framework for the incorporation of heuristics at 
many levels. SPR has been successfully applied to such problems as general signal 
processing, handwritten character recognition, and karyotype analysis by the author 
[17, 191 and many others [6], and our results with SPR and the linguistic analysis of 
DNA suggest that they are appropriate approaches to the complexities of this domain 
as well. 

For this purpose we use the Prolog programming language, which implements a 
procedural interpretation of a subset of first-order predicate logic. It uses a particu- 
lar clausal form that allows programs to be written as databases containing atomic 
predicates called facts, e.g., protein(hemog1obin) , and rules which are written in 
the form protease(X) :- protein(Y1, degrades(X,Y) . This can be read “X is a 
protease ifY is a protein and X degrades Y.” Prolog’s rules and facts, together called 
relations, can be queried to perform inferences by backward-chaining proof, using a 
mechanism called resolution, and the resulting system is able to perform computation 
as controlled deduction-in fact, a form of theorem proving. 

Prolog’s history is closely linked with the formalism of Definite Clause Grammars 
(DCGs), and the notion that grammars can be expressed as rules of a Prolog program 
[14]. The process of parsing a string then becomes that of proving a theorem given 
that string as input and the “axioms7’ of a grammar. In practice, such a grammar 
would appear as in the code below. 

s --> [a], x. 
x --> [b], x I [ c ] .  

In Prolog, logical predicates begin with a lower-case letter, and in DCGs these 
correspond to nonterminals. Terminals are shown as Prolog list elements; lists gen- 
erally appear within square brackets, with list elements separated by commas (e.g., 
[a,b,cl). The vertical bar in the second rule is an “or’’ (disjunction). 

1 



DCGs actually require a translation step to become Prolog clauses, because Prolog 
must have a mechanism for manipulating the input string, which it does by main- 
taining the string in "hidden" parameters of the nonterminals. The first DCG rule 
above would be translated to the following Prolog rule: 

(Note that variables in Prolog begin with upper-case letters). When nonterminals 
are translated, they have two variable parameters added-sometimes called digerence 
Eists-corresponding to the lists that will be passed in and then back out, i.e. the input 
string and what is left of it after the nonterminal consumes some initial string from it. 
Terminals are translated such that the specified alphabetic elements are "consumed" 
from the front of the input list. The difference lists are arranged so that the span 
of the LHS nonterminal is that of the entire RHS. Thus, actual top-level calls to s 
would succeed in forms such as s ( [a, c l  , [I ) or s ( [a, b , b , cl , [I (with the empty 
list being the necessary remainder after the parse succeeds); in our implementation, 
a double-arrow infix operator is used to express such queries, following the formal 
notation, e.g. s ==> 'Iabbc" . Note also that a useful alternative notation for lists 
is as strings within double quotes (whose elements actually correspond to ASCII 
character codes); we will use this for DNA, e.g., "gattac".  

DCGs actually have expressive power far beyond context-free, by virtue of the 
fact that Prolog code can be freely embedded (within curly braces); in addition, 
parameters may be attached to nonterminals, and terminals may appear following 
the left hand side nonterminal. We have used DCGs to develop a syntactic pattern 
recognition system for DNA sequences, known as GENLANG [l5, 16, lS, 19, 201. 

One advantage of logic grammars lies in the rapid prototyping capabilities of Pro- 
log, and in particular the ability to easily add new syntactic constructs. For example, 
in GENLANG queries are of the form <pattern>:<parse variable> ==> <input>, 
where new infix operators separate grammar elements: the pattern generally contains 
the top-level nonterminal in the grammar, the parse variable is a logic variable (de- 
noted by an initial uppercase letter) to which a parse tree will be bound, and the input 
is as described below. In the parse tree, nonterminals are typically adorned with in- 
formation about their cost (in number of mismatches), their location in the input, the 
actual primary sequence recognized, etc. Similarly, gaps of either unbounded (. . .) 
or bounded (e.g. 19. . .27) extent are available in the language. 

A more significant extension to DCGs, called string vuriables [16, IS], also benefits 
from the Prolog milieu. A string variable is a logic variable appearing in the body of a 
grammar rule, which stands for a string of arbitrary extent, and which may optionally 
have applied to it operators such as the tilde which denotes reverse complementarity. 
Such a feature'in this domain makes it easy to specify even complex arrangements of 
direct and inverted repeats. such as are characteristic of secondary structure: 

tandem-repeat ---> X, X. stem-loop ---> X, ..., 'X. 
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pseudoknot ---> X ,  ..., Y, - X ,  ..., “Y. 
attenuator ---> X,  ..., -X,  ..., X. 

(A somewhat different notation will be presented in the tutorial.) These descrip- 
tions are at a much higher level than the corresponding context-free grammars [IS], 
and in fact most of them are even beyond context-free, yet despite their widely vary- 
ing linguistic complexity they are expressed with comparable ease in this formalism. 
Even so, these are relatively abstract descriptions and for purposes of parsing require 
“real world” constraints on their length and degree of mismatch allowed in stems; we 
next describe the mechanism for controlling these. 

Objects in GENLANG, e.g. nonterminals, can have attached to them an attribute 
list as shown in this example: 

foo: [cost=S+2*C] ---> “atgll, . . . : Cstep=3,S=sizel, bar: Csize<SO,C=costl . 
Here, the control attribute s tep=3 specifies that the gap (. . .) is to increase in 

increments of 3; the constraint attribute size(50 keeps the span of the nontermi- 
nal bar  under 50; the specification attribute cost=S+2*C redefines the cost of the 
nonterminal foo to an arithmetic function of the size of the gap and the cost of the 
bar; and the assignment attributes S=size and C=cost serve to bind those variables. 
(The default cost of f oo would have been the number of mismatches in the I’atgll 
plus those within bar.) 

Attributes are managed by way of additional “hidden parameters” in the imple- 
mentation of the grammar. Just as the difference lists serve to unburden the grammar 
designer of the low-level programming involved in input list management, a total of 
ten hidden parameters now hide from the user such details as the accumulated cost 
of parse trees and the cost thresholds applied by the grammar, additional constraints 
on the size ranges of individual elements in the grammar, and the parse tree itself. 

Gaps represent regions that are “skipped over”, but in fact it is the gaps that 
do the skipping-they constitute the multiple, embedded search engines of a typical 
grammar, and the source of most of its non-determinism-and so careful attention 
to their implementation has been necessary. One important feature is delayed (lazy) 
evaluation: gaps encountered in the course of a parse are “packaged’, and passed 
down the parse tree, and are not actually evaluated until they in turn encounter some 
feature with which they may combine for more efficient evaluation. For example, the 
combination of a “lazy gap” with a string of bases might under the right circumstances 
allow the string simply to be looked up in a hash table, rather than searched for in 
the primary sequence. GENLANG does, at the option of the user, hash its input into 
b-tuples of varying sizes, and permits many hundred-fold more efficient recognition 
of features such as direct repeats. 

The implementation of lazy gaps also lends itself to finer control over the search 
strategy used by the parser. The logic-based parser is ordinarily breadth-first on 
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the input, in the sense that all applicable rules will be tried at every position in a 
parse before moving on to the next position following a gap. However, a lazy gap 
will be passed to the first applicable rule, and that rule will be tried in every possible 
position permitted by the gap, before the gap is passed on to the next applicable 
r u l e i n  other words, depth-first search on the input. The search style in GENLANG 
can be controlled either at a global level, or locally through the use of the attributes 
deep, wide or b e s t  (the latter performing best-first search within a defined range). 

A rule such as f o o :  [ c ~ n ~ e n ~ u ~ l  ---> "gat" I ''gas'' I "gta" I . . . would 
ordinarily succeed upon recognizing any of the disjuncts on the input string (or, 
any of the disjuncts with mismatches allowed up to the cost threshold established 
higher in the parse tree). However, with the consensus attribute, the disjuncts are 
treated as exemplars in the calculation, at compile time, of a weight matrix which 
now contributes the cost at this point of the parse. Moreover, the order in which 
the parser examines positions in the input string is reordered at compile time, so 
that the most "informative" positions-that is, those for which inappropriate input 
will most rapidly cause the nonterminal to exceed its cost threshold and thus fail- 
are examined first, for optimal efficiency. Base frequency data may also be entered 
into the grammar in tabular form, based on published data; however, there is little 
or no performance penalty at compile time even for large lists of exemplars, and the 
former technique allows the user to enter new data freely, postulate classes by dividing 
exemplars among several nonterminals, etc. There are several methods available for 
calculating costs from base frequency data (e.g. the attribute cost=neglog uses a 
negative logarithm of base frequency), which are user-definable as well. 

We have used GENLANG to develop grammars for a number of higher-order pat- 
terns in sequence data, including transfer RNAs, described in the tutorial. Perhaps 
the most active current area of higher-order pattern recognition in biology is that 
of finding protein-encoding genes. In actual practice, this activity seems to devolve 
to two problems: recognizing splice sites, and distinguishing coding regions (exons) 
from noncoding regions. To a large degree these problems are duals of each other, in 
that completely solving one would essentially provide a solution to the other. Until 
recently, however, they were addressed separately; recognition of splice sites was at- 
tempted using techniques such as weight matrices and neural nets [2, 10, 11, 13, 211, 
while a variety of statistical techniques, beginning with codon usage frequencies and 
extending also to Markov chain models and connectionist methods, have been applied 
to the identification of coding regions [l, 3, 4, 9, 221. While the results of these studies 
have been increasingly impressive, using these distinct approaches in isolation may 
never be completely satisfactory. 

The most successful such system, the multiple-sensor neural net Grail 13-3-1, in fact 
uses a combination of evidence from seven previously-described algorithms to identify 
about 90% of large exons with about one in six false positives. The trend, in fact, 
is toward layered or rule-based architectures which combine evidence about not only 
coding regions but splice sites as well, to better delineate the former and to reduce the 
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combinatoric possibilities of the latter [5, 7,8,12]. These systems owe their success to 
a hierarchical organization of evidence based on statistical measures, and above all to  
their ability to consider that evidence in mutual context. We have implemented gene 
finder based on a simple gene grammar, as described in the tutorial, which has been 
surprisingly successful in comparison with highly-specialized procedural gene finders. 
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Logic Grammars (I) 

e definite clause grammar  is an alternative Prolog 
not ation, creating a recursive-descent parser: 

sentence --> noun-phrase, verb-phrase. 
noun-phrase --> determiner, modif ied-noun. 
modified-noun --> noun I 

determiner --> [the]. noun --> [man]. 
adjective, modif ied-noun. 

e we use a derivation operator to denote a parse query 
(which may be over an initial substring): 

I ?- sentence ==> [the,old,man,saw,me]. 

Yes 

I ?- noun-phrase ==> [the,old,man,saw,me]/R. 
R = [saw,me] 

Logic Grammars (11) 

0 logic grammars also allow parameters, and 
embedded Prolog code (in curly braces) 

sum(S) ---> [XI, sum(SO), ( S  is X+SO)- 
sum(0) ---> [I. 
terminal strings may also be replaced on the input 
string, when they appear after the non-terminal on 
the left hand side of a rule: 

inversion, CY1 ---> [XI, (Y is -XI, inversion 
inversion ---> [I. 

* this allows grammars to alter the input, and to 
perform wholesale operations on strings, when 
invoked in the following pattern: 

inversion ==> Input/Output. 



Logic Grammars (111) 

0 a DCG translator adds “input/output” parameters 
called diflerence lists to a grammar rule, converting 
it into a Prolog rule that accepts an input string 
and returns the “leftover” 

a ---> b y  c .  a ( S O / S )  : - b ( S O / S l )  , 
c ( S l / S ) .  

terminal elements are shown in Prolog lists (or 
double-quoted character strings), which are 
translated to a form that consumes input 

a ---> Cx,y,zl . a<so/s> :- S O = [ x , y , z I S ]  I 

0 parameters and attached code are easily added 

a ( X >  ---> b ( X ) ,  a ( X , S O / S >  :- b(X,SO/S> , 
( C o d e ) .  C o d e .  

A Gene Grammar (I) 

0 genes can be described hierarchically, with 
interspersed “gaps” (bounded or unbounded): 

gene --> upstream, x s c r i p t ,  d o w n s t r e a m .  
upstream --> 

x s c r i p t  ---> 
cat-box, 40.. - 5 0 ,  tata-box, 19.. -27. 

cap-site,  ..., x l a t e ,  ..., p o l y A - s i t e .  

terminal elements are double-quoted DNA bases: 

cat-box ---> p y r i m i d i n e  , clcaat l l .  
tata-box ---> “tata” , base , “a1’. 
cap-si te  --> I l a c ” .  

base ---> purine I p y r i m i d i n e .  
purine --> “g” I llali. 
p y r i m i d i n e  ---> lltll I 11 11 



A Gene Grammar (111) 

to write a grammar for a protein coding region, we 
first specify codons (including stop codons) 

stop-codon --> "tgall I l*ta", purine. 
codon(met) --> 'latg". 
codon(phe) --> 'ltt" , pyrimidine. 
codon(ser) --> "tc" , base- % etc ... 
exons and translated regions are defined recursively: 

xlate ( [met I RestAAs] ) --> codon(met) , 
rest-xlate (RestAAs) , stop-codon. 

rest-xlate (AAs) --> exon(AAs) . 
rest-xlate (AAs) --> exon(AAs1) , intron, 

exon( [I) ---> [I. 
exon( [HI T] ) ---> codon(H) , exon(T) . 

rest_xlate(AAs2), {append(AAsl,AAs2,AAs)), 

A Gene Grammar (IV) 

intron 

exon N exon N+l 
I 

uuuuuu~uuuuuu reading 
u u u u u ~ u u u u u u  rameS 
uuuuu~uuuuuuf 

0 introns are handled using a context-sensitive 
account for splices that straddle any reading 

intron ---> splice- 
intron, [Bl] --> [Bl] , splice. 
intron, [Bl ,B2] --> [Bl ,B2] , splice - 

rule to 
frame: 

splice --> "gt", - .  , 'lag'' . 



String Variable Grammar (I) 

0 in a logic grammar framework? we can extend 
context-free grammars to allow variables on the 
right-hand sides of rules, specifying substrings of 
tokens to which arbitrary substitutions are applied 

[I+- ---> [ I .  
CHITI+F ---> F:H, T+F. 

[I-, ---> c1 
[HITI-F --> T-F, F:H. 

1:x --> Cxl . % identity substitution 

palindrome --> X+1, X-1. 

copy ---> X+l, X+l. 

o thus palindrome and copy languages appear similar 

String Variable Grammar (11) 

o SVGs handle arbitrary numbers of copies (beyond 
the capability of TAGS), and many other non-con- 
text-free formal languages, e.g. (a”bncR I n 2 0) :  

F:- ---> [F]. % functor substitution 

aNbNcN ---> N + a ,  N + b ,  N+c. 

0 complementarity substitutions come in “flavors’? : 
d:t ---> [a]. d:g ---> CC]. % DNA/DNA 
d:a ---> Ctl. d: c ---> [g] . % subst ’n 

x:u --> Cal . 
r : a  ---> Ctl . 

s:u -- 3 [a]. 
s:a ---> CUI. 
s:g ---> CUI 

r:g ---> Ccl . 
r:c --> Cg] . 

s:g ---> CC] I 

s:c ---> Cgl . 
s:u ---> Cgl . 

% RNA/DNA 
% subst’n 

% secondary 
% structure 
% (non-WC) 



String Variable Grammar (111) 

0 some biological SVGs: 

stem-and-loop --> Stem+l, Loop+l, Stem-s. 

pseudoknot --> X+l, Y+l, X-s, Y-s. 

attenuator --> X+l, X-s, X+l. 

tRNA ---> W+l, X+l, X-S, 
Y+l, Y-s, z+1, z-s, w-s. 

0 recursion and string variables as parameters: 

cloverleaf --> X + l ,  leaves, X-s. 
leaves --> Y+I, Y-s, leaves i [ I .  

String Variable Grammar (IV) 

0 used this way, SVGs lie strictly between context-free 
and indexed grammers in generative power 

0 allowing composition of string variable substitutions 
increases their expressive power, e.g. {a2" I n 2 0 ) :  

2:x ---> C X , X l .  % doubling substitution 

double(X) ---> X+l I double(X+2). 

* this allows multi-level grammars: 

p : ' A '  -+ [g,cl, (La1 I [gl I Ccl I CUI). 
p: 'B '  ---> Cg,al, (Ccl I Cull. 

% etc.. . % protein substitution 

protein(X1 ---> rna(X+p) - 
rna(X) ---> dna(X-r). 
dna(X) ---> X-d. 



String Variable Grammar (V) 

left-hand-side string variables are useful for 
modelling mutation and evolution 

duplication, X+l, X + l  --> X+l. 
inversion, X-d --> X+l. 
trmsposition, Y+l, X+l --> X+l, Y+l. 

evolution --> [I I event, evolution. 
event, X+l --> X+l, 

(duplication I inversion 1 transposition). 

o in fact, additional biological knowledge can be 
incorporated, e.g. the fact that repeats S may give 
rise to excision of the intervening sequence X as a 
circle C (created here using recursive derivation) 

excision(C), S+l --> S+l, X+1, S+ly 
< (S , X)==>C/C3. 

String Variable Grammar (VI) 

gene expression can also be modelled by means of 
such “side-effecting” grammars (using an additional 
predicate end that ensures the entire string is con- 
sumed), invoked as expression ==> DNA/Protein 
expression --> 

transcription, processing, translation. 

transcription X-r --> X+l , end. 

processing, X+I ---> X+I, C g y d  9 -+I, Ca,gl 9 

processing. 
processing --> [ I .  

translation, [’MJIXI+l --> -+I, Ca,u,gl, 

termination ---> Cu,g,al I Cu,a,gI I [u,a,a] 
X+p, termination, -+I, end. 



Transfer RNA Syntax 
a 
C 

A ccepror 

TYCArm 
DAnn 

A m  

Yeast ChIII tRNA Parsing 
tRNA("ttg") : span=90470/90583 

"ccttctt": span=90470/90477 cost=0 

loop: list=" ttcgaat " cost=6 
-stem : 1 is t = " c tc t t " cos t =O 

-"ggttgtt": span=90576/90583 cost=0.5 

- -  - 
turn i 1 is t = I' tg " 
D arm: span=90479/90496 

stem: 1 ist="gcc" 
loop: list="gagcggtctaa" cost=O 
-stem: list="ggc" cost=O 

base: list="g" 
anticodon arm: span=90497/90546 

"cctga" : span=90497/90502 
loop: cost=o 

pre-codon : 1 is t = I' t t " 
-codon: list="caa" 
purine: list="g" 
intron: span=90508/90540 ... : size=7 

"ttg" : span=90515/90518 cost=O ... : size=22 
base: list="c" 

-"cctga" : span=90541/90546 cost=O 
extra arm: span=90546/90559 

TpsiC arm: span=90559/90576 
... : size=13 
stem: list="aagag" 



Group I Introns 
n 

I=I 

Fungal Mitochondrion 
Intron Parsing 

group I intron: span=3237/4660 
conserved regions: span=3237/4638 

P region: span=3237/3249 cost=297 
list=.aatttcaaaaac- 

P-Q loop: Span=3249/3283 
... : size=34 

Q region: span=3283/3293 cost.230 

. . . : size=135 
R region: span=3428/3442 cost.258 

list=.gatttgaagc' 

list ='gt tcaacgactaag' 
R-S loop: Span=3442/4626 

... : size=82 
ORF: span=3524/4508 size=984 ... : slze=118 

S region: span=4626/4638 cost=134 
list='aagacatagtct' 

secondary struture: span=3230/4660 
p3: Span=3230/3235 list=*ttggg' 

p5/-p5: span=3249/3283 

p6/-p6: Spa=3290/3431 

p4: span=3240/3246 list='ttcaaa' 

-p4: span=3285/3291 list=.tttgaa. 

p7: span=3435/3440 list='gacta' 
-p3: span=3476/3481 list='cccaa' 
p8/-p8: span=3481/4625 
-p?: span=4632/4637 list='tagtc' 
p9/-p9: Span=4640/4660 



Compositional Gene Search 

Syntactic Gene Search 



Gene Search Combinatorics 
I 

Potential Internal Exons Potential Genes = 2 

Nondeterministic Parsing 



Gene Prediction Metrics 

f-1 predicted exon . 

wvwvw 
? false true false true 

negative positive positive negative 

Parse Tree and Cost Mechanism 

. . . . . . . . . . . . . . . . . . . . . 
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Early Work 

- the earliest references to linguistics of DNA were simply 
the free use of the linguistic metaphor by biologists, e.g. 
in naming processes such as transcription, translation, 
proofreading, editing, etc., and the occasional purely 
philosophical treatise by eminences such as Chargaff 

- the first investigations by linguists (e.g. Shanon) were 
skeptical, based on a very limited view of the genetic 
code and protein translation as devoid of context 

- Jimenez-Montan0 and co-workers made first use of 
grammars, but essentially only as data structures for 
analysis of information-theoretic complexity of 
protein sequences 

- Brendel and Busse proposed a simple automaton for 
gene expression, in what was the first demonstration of 
any faith in the utility of linguistic formalisms, but they 
never pursued the work further 

[I] E. Chargaff. Preface to a grammar of biology. Science: 172:637-642, 1971. 

[2] B. Shanon. The genetic code and human language. Synthese: 39:401-415, 
1978. 

[3] W. Ebeling and 31. A. Jimenez-hlontano. On grammars: compiexity: 
and information measures of biological macromolecules. Math. Biosci., 
52:53-71: 1980. 

[SJ M. A. Jimenez-Montano. On the syntactic structure of protein sequences 
and the concept of grammar complexity. Bull. ,\lath. Bid.. 16(4):641-659. 
1980. 

[5]  V. Brendel and H. G. Busse. Genome structure described by formal 
languages. Xucleic Acids Res.: 122561-2568: 1984. 



Vocabularies and Codes 

- Trifinov and colleagues (Weizmann Institute) coined the 
use of the term "linguistics" in relation to DNA, but use it 
to refer to vocabularies, or tendencies of certain words to 
appear with different frequencies in certain contexts, and 
more recently to the notion of overlapping "codes" or 
signals of various types which overload the DNA and 
increase its infonnation-theoretic complexity 
[l] E.N. Trifinov and V. Brendel. Gnomic - A Dictionary of Genetic Codes. 

Balaban Publishers: Rehovot-Philadelphia: 1986. 

[2] V. Brendel: J.S. Beckrnann, and E.N. Trifinov. Linguistics of nucleotide 
sequences: Morphology and comparison of vocabularies. J .  Biomol. 
Struct. Dynamics, 4:11-21: 1986. 

[3] J.S. Beckmann, V. Brendel: and E.N. Trifinov. Intervening sequences ex- 
hibit distinct vocabulary. J .  BiomoE. Struct. Dynamics, 4:391-400, 1986. 

[4] E.N. Trifinov. Nucleotide sequences as language: morphological classes of 
words. In H.H. Bock: editor, Classification and Related Methods of Data 
Analysis, pages 57-64. Elsevier (North Holland): 1988. 

[5] E.N. Trifinov. The multiple codes of nucleotide sequences. 'Bull. Math. 
Biol., 51:417-432, 1989. 

[6] S. Pietrokovski, J. Hirshon: and E.N. Trifinov. Linguistic measure of 
taxonomic and functional relatedness of nucleotide sequences. J. BiomoE. 
Struct. Dynamics: 7:1251-1268: 1990. 

[7] S. Pietrokovski and E.N. Trifinov. Imported sequences in the mitochon- 
drial yeast genome identified by nucleotide linguistics. Gene, 122:129-137, 
1992. 

[8] E.N. Trifinov. DNA as a language. In H A .  Lim. J. Fickett, C.R. Cantor, 
and R.J. Robbins. editors, Proceedings of the 2nd International Confer- 
ence on Bioinformatics, Supercomputing, and Complex Genome Analysis, 
pages 103-1 10. World Scientific, 1993. 



Vocabularies and Statistics 
- the vocabulary-based approach has been picked up by 

mathematicians (notably Gelfand and Pevzner) studying 
base compositions using Markov models, etc. 
[I] P. A. Pevzner, M. Y. Borodovsky, and A. A. Mironov. Linguistics of nu- 

cleotide sequences: I. The significance of deviation from mean statistical 
characteristics and prediction of the frequency of occurrence of words. J. 
Biomol. Struct. Dynamics, 6:1013-1026, 1989. 

[2] P. A. Pevzner, M. Y .  Borodovsky, and A. A. Mironov. Linguistics of 
nucleotide sequences: 11. Stationary words in genetic texts and zonal 
structure of DNA. J.  Biomol. Struct. Dynamics, 6:1027-1038, 1989. 

[3] M.S. Gelfand, C.G.  Kozhukhin, and P. A. Pevzner. Extendable words in 
nucleotide sequences. CABIOS, 8(2):129-135, 1992. 

[4] M. S. Gelfand. Genetic language: metaphore or analogy? BioSystems, 
30( 1-3):277-288, 1993. 

Stochastic Grammars 
- David Haussler and colleagues (U.C. Santa Cruz) study 

RNA structure using stochastic context-free grammars as 
a generalization of hidden Markov models 
[l) Y .  Sakakibara, M. Brown: I.S. Mian, R. Underwood, and D. Haussler. 

Stochastic context-free grammars for modeling RNA. In Proceedings of 
the Hawaii International Conference on System Sciences, Los Alamitos, 
CA, 1994. IEEE Computer Society Press. 

[2] Y .  Sakakibara, M. Brown: R. Hughey, 15. Mian, K. Sjiilander, R.C. 
Underwood, and D. Haussler. Recent methods for RNA modeling us- 
ing stochastic context-free grammars. In Proceedings of the Asilomar 
Conference on Combinatorial Pattern Matching, New York, NY: 1994. 
Springer-Verlag. In press. 



Regulatory Grammars 

- the work of Julio Collado (now at U. of Mexico, 
Cuernavaca) is based on the application of ideas fkom 
transformational grainmar to account for variation in the 
arrays of regulatory elements associated with bacterial 
genes 

- Collado claims a formal proof that context-free grammars 
are inadequate, based on the pumping lemma and the 
observation that order of regulatory factors are independent 
of the genes they control [2] 

- to date, no practical applications have been developed 
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Splicing Systems 

- Splicing Systems are formal structures developed by Tom 
Head (now at SUNY Binghampton) and others to study 
the generative capacity of restricting and religating sets of 
double-stranded linear and/or circular DNA molecules 
[I] K. Culik I1 and T. Harju* The regularity of splicing systems and DNA. 
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[2] K. Culik I1 and T. Harju. Splicing semigroups of dominoes and DNA. 
Discrete Applied ibfathematics, 3 126 1-277, 1991. 

[3] K.L. Denninghoff and R.W. Gatterdam. On the undecidability of splicing 
systems. International Journal of Computer Mathematics, 27: 133-145, 
1989. 

[4] R.W. Gatterdam. Splicing systems and regularity. International Journal 
of Computer Mathematics: 31:63-67, 1989. 

[5] R.W. Gatterdam. Algorithms for splicing systemsy. SIAM Journal of 
Computing, 2 1 :507-.320 , 1992. 

[6] T. Head. Formal language theory and DNA: A n  analysis of the generative 
capacity of specific recombinant behaviors. Bull. Math. Biol., 49(6):737- 
759, 1987. 

[7] T. Head. Splicing schemes and DNA. In G. Rozenberg and A. Sale  
maa: editors, Lindenmayer Systems - Impacts on Theoretical Computer 
Science, Computer Graphics, and Developmental Biology: pages 335-342. 
Springer-Verlag, Berlin, 1992. (also in Nunobiology 13335342, 1992). 

[SI R. Siromoney, K.G. Subramanian. and V.R. Dare. Circular DNA and 
splicing systems. In Parallel Image Analysis (Lecture Notes in Computer 
Science 654): pages 260-273. Springer-Verlag, Berlin, 1992. 

[9] R. Sirornoney: K.G. Subramanian. and V.R. Dare. On identifying DNA 
splicing systems from examples. In (Lecture Notes in Artificial Intelli- 
gence 642): pages 305-319. Springer-Verlag, Berlin, 1992. 



Structure and Search 

- my own work is based on: 
- the study of structural phenomena in biological sequences 

and their classification in terms of formal language theory 
- the development of domain-specific grammar/parser 

systems and their use in syntactic pattern recognition 
tasks such as gene search 
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