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ABSTRACT 

With increasing competition in the global market, more 
and more stringent quality standards and specifications 
are being demanded at lower costs. Manufacturing 
applications of computing power are becoming more 
common. The application of neural networks to 
identification and control of dynamic processes has 
been discussed. The limitations of using neural 
networks for control purposes has been pointed out and 
a different technique, evolutionary computation, has 
been discussed. The results of identifying and 
controlling an unstable, dynamic process using 
evolutionary computation methods has been presented. 
A framework for an integrated system, using both 
neural networks and evolutionary computation, has 
been proposed to identify the process and then control 
the product quality, in a dynamic, multivariable system, 
in real-time. * 

Key words: Evolutionary computation, Neural 
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INTRODUCTION 

Currenl times are experiencing a revolution in the 
national and international manufacturing quality area. 
Quality has become a-competitive weapon among 
companies. Consumer protection legislation and 
product liability legislation are demanding increasingly 
stringent standards and specifications at low costs. ' 

Contractors are demanding the same stringent standards 
from suppliers. Quality Control in general and 
automatic quality control in particular are assuming 
ma.jor importance in modern society as technological 
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systems are becoming increasingly complex and highly 
interconnected. Manufacturing processes are 
increasingly being automated. This has to be matched 
by the quality and speed of source inspection. Thus, 
there is a growing demand for integrared dimensional 
control in real-time. Rapid changes are taking place in 
technologies relating to sensors, controt vision, and 
intelligent quality control. Newly developed distributed 
processing systems make it feasible to handle data in 
real-time and relay immediate corrective feedback to 
the manufacturing process. A key function of such a 
system is process monitoring. The system must 
continuously monitor the manufacturing process by 
recording and analyzing, in real-time. the inspection 
data in order to allow intelligent feedback decisions. 

Classical control methods work well for controlling 
linear, single input, single output systems; however 
many real-life control problems are complex nonlinear, 
multiple input, multiple output systems. Classical 
methods are unsuitable for the control o f  such systems. 
Modem manufacturing processes involve complex 
machinery with multiple control settings, highly 
nonlinear dynamics, increased flexibility due to parts 
with tailored geometries and various material types. 
The cost-effective control of such processes requires 
adaptability. Learning control techniques provide a 
flexible capability for designing and building adaptable, 
intelligent process controllers capable or improving 
control of complex manufacturing processes. 

NEURAL N E T  WOK KS 

Most process control models are developed by fitting a 
model to a set of inputloutput data. 'fhesc models are 
usually linear time invariant models. Ncural networks 
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are known to be effective for the identification of 
nonlinear dynamic systems. Universal function 
approximation, resistance to noisy or missing data, and 
accommodation of multiple nonlinear variables, are 
some of the many attractive properties of neural 
networks. Neural networks have been successfully 
tested for process model identification (Haesloop and 
Holt, 1990). Although many attempts have also been 
made to use neural networks for control (Chinnam and 
Kolarik, 1994; Narendra and Mukhopadhyay, 1994). 
several shortcomings limit their applications. 
Backpropagation, a commonly used learning algorithm, 
requires gradient infomation about the search space. 
For some problem domains, such as reinforcement 
learning, gradient information is unavailable or costly to 
obtain (Whitley, et al., 1993). Most networks in 
supervised learning use feed-forward networks with 
sigmoidal transfer functions or radial basis functions. 
These choices make gradient information relatively easy 
to obtain, but if more complex transfer neurodes, such 
as product neurodes, are used, or if fully recurrent 
networks are trained, then computing gradient 
information becomes far more costly (Schaffer, et al., 
1992). The backpropagation learning algorithm cannot 
be used for direct control of a nonlinear process with an 
unknown model since the process dynamics are 
unknown and cannot be used to generate the desired 
partial derivative (Narendra and Parthasarathy, 1990). 
Even if the process model has been identified, a neural 
network controller will risk convergence to local 
optimal solutions, because, during the weight 
optimization, thesearch begins with a single point in the 
search space and therefore, has a high risk of getting 
stuck at a local minima or maxima. This 
“suboptimization” will not be a drawback if the solution 
space is unimodal but advanced manufacturing systems 
are typically complex, resulting in the solution space 
being multimodal. Hence, using a neural network to 
control such processes will not always result in efficient 
control. Another approach to implementing neural 
networks for process control resides in the category of 
inverse control. The inverse method uses the system 
state as the input vector to the network and the control 
signal of the plant as the function being learned. The 
network trains on the system input-output pairs until i t  
learns to map the inverse plant dynamics. Once the 
network has been successfully trained to mimic the 
plant inverse, it can be used to predict the appropriate 
control signal from the measured plant slates and the 
desired plant state. A major limitation of plant inverse 
identification occurs when the plant inverse is not 
uniquely defined. This occurs for a plant when more 
thall one input vector u exists that corresponds to one 
Ontput vectory. In such cases. the neural network 

niodeling the plant inverse attempts to map a single 
inputy to one of the inany target responses u,, it?, ... It 
may be that the eventual mapping learned would 
somewhat tend to average the more than one desired u 
values (Zurada. 1992). 

EVOLUTIONARY COMPUTATION 

It  has been recognized that intelligence displayed by 
living creatures is a result of evolution and therefore, it 
would be prudent to model the evolutionary process in 
order to create entities capable of intelligent behavior. 
The term used for such simulation of evolution on a 
computer is Evolutionary Computation. Evolutionary 
computation methods are implemented as a population 
based search over a fitness response surface. Three 
decades of research in this area have shown that 
modeling the search process of natural evolution can 
yield very robust, direct computer algorithms. 
Evolutionary algorithms are based on the collective 
learning processes within a population of individuals, 
each of which represents a point in the space of 
potential solutions to a given problem. Emulating the 
optimization process inherent in natural selection resuks 
in iteratively improving solution quality. The rate of 
improvement depends on the shape of the response 
surface. Many studies have shown that the procedures 
generally converge to near optimal solutions despite 
difficult-to-optimize response surfaces. These 
stochastic optimization techniques often out-perform 
classical methods of optimization when applied to real- 
world problems (Fogel, 1995). Conventional 
optimization techniques process a single point of the 
search space and therefore, have a high risk of getting 
stuck at a local minima or maxima. In comparison, 
evolutionary techniques maintain a population of 
solutions, allowing a wider coverage of the solution 
space. They therefore, have a greater chance of finding 
the global optimum. 

The implementation of simulated evolutionary 
algorithms begins with an arbitrarily chosen initial 
population of solutions which is allowed to evolve 
toward better and better regions of the search space 
through the randomized processes of selection, 
mutation, and recombination. The fitness of each trial 
solution is assessed by an objective measure of 
performance. and the selection process favors those 
individuals of higher fitness to reproduce more often 
than those of lower fitness. Parental information is 
passed on to the descendants through recombination. 
mutation introduces innovation into the population. 
Evolutionary computation encompasses three broadly 
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similar avenues of investigation in simulated evolution: 
Genetic Algorithms. Strategic Programming and 
Evolutionary Programming. The differences between 
the procedures are characterized by the methods 
employed for selecting new parents, and by the types of 
alterations that arc iniposed on solutions to create 
offspring. 

Evolutionary computation methods require little apriori 
information and they are robust (Fogel, 1995). They 
belong to the class of probabilistic algorithms, yet they 
are different from random algorithms as they combine 
elements of both directed and stochastic searches. 
Many advances have been made in the design of 
adaptive controllers for linear systems but such 
controllers cannot be used for the global control of 
nonlinear systems. When applied to optimal control 
problems, evolutionary methods require no simplifying 
assumptions of linearity, continuity, etc. and they have 
therefore, great potential for addressing engineering 
problems, especially those that have resisted solution by 
classical techniques. Past applications of evolutionary 
techniques for control involved defining the controller 
structure andor tuning controller parameters. For 
example Filipic and Juricic (1993) used genetic 
algorithms to perform optimization of a controller with 
a predefined structure. In this paper, we propose 
utilizing the optimization ability of evolutionary 
computation to generate the optimal control inputs by 
using the neural nctwork process model to provide 
estimates of objective values for the individual control 
actions. 

EXAMPLE APPLICATION 

The evolutionary programming technique has been 
applied to control the cart-pole system, a dynamic, 
unstable system, in real-time'. Basically, the cart and 
pole can be considered as a trolley that moves in the 
plane of a track and upon which is mounted a hinged 
inverted pendulum. The configuration is shown in 
Figure 1 .  The control goal is to keep the pole as near 
the vertical as possible, and the cart within the bounds 
of the track. A bang-bang control of either a right or 
left force of I N  was applied. 

' Control of the can-pole system using evolutionary 
techniques has been attempted before (see Fogel, 1995) 
using different can-pole dynamics. Some notations 
have been borrowed from Fogel, 199s. 

+& 
Figure I .  Configuration of the cart-pole system 

The dynamics of the cart-pole system are: 

where, e( I )  =pole angle with vertical, at time I 
(radians)e ' ( 1 )  = angular velocity (radians /sec) 

x ( I )  = cart position at time t (meters) 
x ' ( f )  = cart velocity (metershec) 
f l f )  = force applied to cart at time I (NCV::,-~' 
m, =mass of the cart ( I  .O Kg) 
mp =mass of the pole (0. I Kg) 

= length of the pole (0.5 meters) 
g = gravitational constant (9.8 meters/sec*) 

For the evolutionary control, the cart and pole system 
model was represented as: 

AI W Y I  0 )  = 4 ( q ) W  + c, (q>e ,  (0 + D, (4)YZ (0 

and D2 ( 4 )  are polynomials in a shift operator y". 

VI ( I )  and yz ( I )  represent the pole and cart positions 
respectively, ~ ( f )  represents the single-force input to 

the system, and e, ( I )  and e ,  ( I )  represent 
discrepancies between the true system and the 
hypothesized models. 



A population of 50 models was randomly constructed. 
Each individual model was evaluated based on how 
well it fit past data. A failure of the system was said IO 

have occurred if either the pole angle exceeded & 12 
degrees or the cart hit one of the ends of the track (2 2.4 
meters). The fittest individual models were allowed to 
reproduce. The best individual in each generation was 
used to generate the control action for the next time 
step. The simulation was allowed to continue for 2000 
time steps (0.02 sec. each). The evolutionary technique 
was able to keep the cart and pole system from going 
out of control for the entire simulation. During the 
simulation, the cart position did not deviate more than 
0.003 meters From the center and the pole did not 
deviate more than 0.004 radians. The results for a 
typical set of IO0 time steps is presented in Figure 2. 

These results, although promising, showed that 
evolutionary methods are very expensive in terms of 
computation time, especially if used for both 
identification and control of a system. As noted earlier, 
using neural networks for such purposes has its own 
limitations. Instead of using either a neural network or 
evolutionary technique, to both identify the process and 
control the quality, it seems reasonable to combine the 
two. A Framework for identification and control of a 
dynamic, multivariable process has been proposed, that 
will retain the neural network identification, but will 
have an evolutionary quality controller. The main idea 
in integrating neural networks with evolutionary 
programming is to use their strengths collectively and at 
the same time overcome any limitations. 

PROTOTYPE DESCRIPTION 

The prototype addresses zero defects product quality by 
monitoring and modifying, in real-time, the production 
process itself. I t  consists of a neural network identifier 
to extract the relationships between the production 
variables and the quality measures and an evolutionary 
algorithm to generate the control action (in order to 
achieve the target quality requirements). Figure 3 
shows the schematic system overview and Figure 4 
shows the evolutionary quality controller in more detail. 

The target quality parameters are obtained by 
converting the customers’ demands into technical 
specifications and requirements within the existing 
equipment capability. The starting weights for the 
neural network identifier are obtained by performing an 
evolutionary search. From then on, the network works 
alone to identify the process. All known and 
measurable inputs (controllable and uncontrollable 
variables) to the production process are also provided to 
the neural network identifier. 

From the given inputs, the network generates a set of 
outputs. The network weights are adjusted, in real-time, 
to minimize the error between the network’s predicted 
output and the output from the actual production 
process. The identified process model (in the form of 
the neural network) is then sent to the evolutionary 
controller which performs an evolutionary search to 
generate the best control action. The control design 
problem consists of finding the best set of control 
parameters that will result in the production process 
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generating the rcqtiired closed-loop quality control 
performance. The control goal is to minimize the error 
between the output predicted by the neural network 
process model (using the best control action) and thc 
target product quality parameters. 

Specifically, the technology involves three broad stages: 
(A) Evolutionary weight search stage, (B) Process 
identification stage, and (C) Quality control stage. 
Stage A, evolutionary weight search, is only performed 
once, initially. AAer finding the initial weights for the 
identifier, stages B and C are completed in real-time. 
Before beginning stage A, sets of input and output data 
are obtained from the process to form the training and 
test data set for the process identifier. 

Stage A 
1 .  

2. 

3. 

4. 

5.  

6.  

Create an initial population of network weight 
matrices (coded as the genotypes). 
Convert each genotype matrix to the phenotype 
(network architecture) and train it. 
Evaluate each individual on the test set data and 
assign fitness. 
Select parents for the next generation, based on the 
fitnesses. 
Perform crossover and mutation to generate 
offspring. 
Repeat steps 2-5 until the stop (tolerance) criterion 
is reached. 

Sage B 
1 .  Connect thc identifier network to the actual 

production process to begin on-line process 
identification. 
Input the identifier network with the required past 
data and the measurable inputs. 
Compare the predicted outputs from the identifier 
network with the actual outputs from the 
production process and calculate the error. 
Backpropagate the error and update the network 
weights. 

2. 

3 .  

4. 

Stage C 
I. 

2.  

3. 

4. 

Copy the process identification model from the 
previous stage into the evolutionary controller. 
Generate an initial population of parent control 
action vectors. 
Generate offspring control vectors by performing 
recombination and mutation on the parents. 
Use each individual control vector, along with the 
past data. as input to the process model and 
perform feedforward of the error. The 
identification model network weights remain 
unchanged. 

5. . Compare each individual's predicted output with 
the target quality requirements and assign fitness. 

6. Use random competition (as suggested by Fogel, 
1995) to rank the controller organisms. 

7. Select parents and repeat steps 3-5 until stop 
criterion is reached. 

8. Apply the control action vector with the highest 
fitness generated so far as the new control 
parameters on the production process and go to the 
beginning of stage B. 

Target Quality 
Requirements 

I 

Figure 3. A schematic overview of the control 
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Figure 4 .  Evolut ionary generation of thc  control aclion 

As mentioned earlier. evolutionary techniques can, 
depcnding on the problem, become computationally 
expensive. To overcome this limitation, the proposed 
evolutionary optimizer will utilize heuristics like 
dynamic parameter encoding and controlled offspring 
generation in order to increase its efficiency. Dynamic 
parameter encoding involves adaptivcly controlling the 



mapping from fixed-length binary codes to real values. 
By doing this, individuals will cover more of the search 
space in the beginning and will gradually concentrate 
more on promising regions than on less promising 
regions. Controlled offspring generation involves 
allowing certain individuals in the population to have 
more offspring than others. For example, more fit 
parents being allowed to produce more offspring will 
allow better solutions to have a higher survival 
probability. 

CONCLUSlONS 

The complexity of a dynamical system model and 
demanding closed loop system performance 
requirements, ‘necessitate the use of sophisticated 
controllers. Based on our limited research to date, i t  
appears that the integration of neural networks with 
evolutionary computation methods, for dynamic, 
multivariable process quality control, is feasible and 
enables each to overcome most of the other’s limitation, 
thus resulting in an efficient and more robust quality 
control of a product or process. This paper proposed a 
framework of one such integrated process. 
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