
. 

A Superquadratic Infeasible-Interior-Point Method 
for Linear Complementarity Problems 

Stephen \Vright*wd Yiu Zhangt 

February 8, 1994 
'4 

Abstract 

We consider a uiodification of a path-following infeasible-interior-point algorithm 
described by Wright. In the new algorithm, we attempt to improve each new iterate by 
reusing the coefficient iiintrix factors fro111 the  latest step. We show that the modified 
algorithm h a s  similar theoretical global convergence properties to the  earlier algorithm, 
while its asymptotic convergence rate can be iiiade superquadratic by an appropriate 
parsnieter choice. 

1 Introduction 
We describe an algorithm for solving tlie m o n o t o u e  linear complementarity problem (LCP), 
in  wliich we aim to fixid a vector pair (r.y) with 

* 
wliere q E IR" aiid iM is an tz x ti positive semidefinite matrix. The solution set to (1) is 
denoted by S1 whik the set S" of strictly coniplemeutary solutions is defined as 

S' = {(Lc-,y-) E s I x- + y' > 0). 

Our algorith~n generates positive, not necessarily feasible iterates (2, T J ~ )  and includes the 
infeasible-iuterior-poiut algorithm of Wrigbt [ 101 (which is i n  turn based oti earlier work of 
Zhang [12] aiid Wright [SI) as a syrcial case. As in [lo], the algoritlixii extends immediately 
to  mixed monotoue L(:F' with few c-oniplications. 
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To tiiotivate our method. we c-onsider the following locally convergetit algorithm for solv- 
ing the system of xioxiliuear equations 

F ( z )  = 0, 

wliere F : IR" -+ IRN is c-outitiuously differentiable. 

(jlioose T E (0, I ) ,  I >  0, z" E IR"; Set k t- 0: 

loop: 
'\ 

c-ompute dk = -VF(z"- 'F(z.");  t t- t k  + dh; 
i = 0, 1, - - , I (iriiprovexiient loop) 
compute n = - V F ( z " - ' F ( z ) ;  
if 
then z t z + d  
else 

for 

ll& + 411 I TllF(4ll 
tk+' + 3; k. t k. + 1; go to loop; 

end for 
Zk+l t z; k t k + 1; go to loop. 

Oil eac.11 iteration, this method takes a siugle Newton step aud follows it up with a tiumber 
of Newton-like steps calculated with tlie old Jacobian V F ( z ' ) .  Simple analysis shows that if 
z* is ati isolated solutioxi to the system F ( z )  = o with V F ( z * )  nonsiugular, and if 11-1' - r*ll 
is siiiall enoiigll, then { z k }  re on verges to z*. Moreover, the inner loop (with iteration i d e x  
i) eventually executes for all 1 iterations before control passes back to the xnaiu loop aud, 
assuiiiing that V F ( Z )  is Lipschitz coritixiuous at z*,  tlie convergence has 9-order I + 2 (see, 
for example. [ti]). Xote that for each value of k ,  the Jacobian V F ( z h )  is evaluated and 
factored only once and, iu 1iia11y contexts, the steps d calculated in  the improvement loop 
are not expensive to c.otiipute. 

Our algoritliiii, which we describe in Section 2, is identical to that of [lo] in  that it takes 
steps of two types - safe steps, which ensure. global coiivergence, and fust Steps, which ensure 
fast local convergence. As i n  our niodel algorithm above, each step is followed by an attempt 
to improve the new iterate without recomputing and refactoritig the main coefficient matrix. 
The inner loop teriiiinates wlieu it fails to make significant progress, or after I iterations, 
whichever coxiies first. 

Tlie global convergence properties of the algorithi are at least as good as the algorithm 
of [lo] iu wliicli no atteiiipt at iniyrovenient is made. The global convergence and complexity 
analysis is identical to [lo]. We state the relevant results, omitting most of the details, iu 
Section 3. I n  Sectioii 4, we prove soiiie technical resiilts about the steps computed within the 
inner iniprovexiient loop, anti relate them to steps computed with an exact .Jacobian. Our 
main local co~ivergexic:e result is proved i n  Section 5. We incliide soim preliiiiixiary numerical 
resiilts in Section 6. 

In the remainder of the paper, we use IRI; to denote the nonnegative orthaiit in Ai". 
S 11 bsc r i p t s on 111 at  r i (.es ;~ i i  d vet- tors i ti ti i cat e coin poxi e tits , w hi 1 e sup ersc.r i p t s 011 111 at r i ces and 
vectors and subscripts on scalars (bote iteration nuinbers (usually k ) .  
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2 The Algorithm 
To describe the step between successive iterates, we define for any vector pair (;c,y) E 
IR’; x IR’; the following quantities: 

1’= y - M z  - q ,  e = (1, I , . . .  , 1lT, p = z T y f n ,  

and, for any vector z E Ry, 

 hen (2, y) = (2, yk) (that is, the k-th iterate of the algorithm), we use ? e k ,  p k ,  and x k  to 
denote r ,  p ,  and X ,  respectively. 

During the k-tli iteratioil of the nisin loop, each search directiou (u , v )  and step length 
ti is calculated as follows. 

7’ 

- X Y e  i- 5pe [ yk xk -‘I[;]=[ 
. Set 

where ti is tlie largest number it] [0,11 sucli tliat the following i k p a l i t i e s  are satisfied 
for all cy E [O,&]: 

The ineqiialj ty ( l b )  e~isures that the (:otiipo~ieiitwise products z j y j  approach zero at  ap- 
proxiniately the same rate. They stay i n  a loosely defined ~ieighborhood of the ceutral path, 
where xjyj = 1.1 for all j = 1, - - , n - hence the term “path-following.” The inequality (4a) 
e~isures that when the ciirrent point is infeasible, the decrease iu infeasibility 11r11 on the 
current step is at  least as great as the decrease in the compleme~itarity gap p,  modulo a 
factor of (1 - PI .  

Tlie basic form of our algorithm, given below, is the saint: as the one described in Wright 
[IO] ,  except for the addition of the improve procedure. 
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We refer to tlie steps that are coxiiputed with Er = 0 its fast steps, because they lead to 
rapid local convergence, while the steps with Er E [e, a] are sufc steps, because they ensure 
global ~o~iverge~ice.  

The improve procediire, which reuses the coefficient matrix in (2) to iiiiprove the uew 
iterate, takes a coiiibinatioii of safe aud fast steps, just like the xilain algorithm. The main 
difference is that the procedure is teriiiiuated if an i~iiprovement in p of at least a factor of 
7 E ( p ,  1)  is iiot achieved. The user siippiies the. parameter T and tlie non~iegative integer I ,  
where I is the tiiaxiiiiuni tiumber of steps that can be taken in improve. 

. 

improve ((z, y), t ,  I / .  y, (XI;, yk)) * 

Given T E ( p ,  I ) ,  I >  0, 

for i  = 1,2,---,1 
if 
solve (2)-(4) with 6 = 0, 19 = T ~ ,  $ = yll~,l  + ;y1(yIllax - yllrill); 
if 
then t t t + l , y t T ;  
else 

end if 

p = 0 then retiirn; 

(x + t i u ) * ( y  + i i u ) /n  5 pp 

solve (2)-(4) with 6 E [ir, i], / j  = 0, ;i. = y; 
if (x + & ~ ) ~ ( y  + &v)/7t > r p  then return; 

- 

I /  + .( 1 - f i ) ,  ( x , y )  + ( x , y )  + &(u, v); 
end for. 

In  the special rase I = 0, improve is vaciioiis and the algorithm reduces to the methoct 
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of [IO]. We refer tlie reader to that paper for the intuitive niotivation behind the use of safe 
and fast steps. 

The iiiclusion of improve does not alter some of the fundamental properties of the 
iteration sequence (2, y‘). We still have 

and also the following resirlt, wliic.11 is similar to Lexiiiiia 3.1 of [9]. 

Lemma 2.1 .Suppose that thc initial point is infeasible, that is, ? s o  # 0.  Then the positivc 
eonstant /? drfincd b y  

rn 

/3 = n(1 - 7 k )  
k=l 

is such that 

We also have the followi~ig resuit, wliich shows that 

Vk 2 0. 

the algorithm either terminates finitely 
at a so~iition of (1) or else generates an iiifinite sequence ((2, yk)) of strictly positive iterates. 
The proof is a simple niodific-ation of [IO, Leiiriiia 3.21 and is omitted. 

Lemma 2.2 For all itrratcs generated by  the algorithm, we have cithcr ( z k , y k )  > 0 or e b c  
p‘ = 0. 

We assiiiiie throiighout tlie reriiainder of tlie paper that finite teriiiination does not occur, 
that is. all iterates (2, 9’) and aH the intermecIiate points (L, y)  generated iu the improve 
procediire are stric-tly positive. 

3 Global Convergence , 

The atialysis of global convergeuce auci polyiioiiiial complexity is nearly identical to that of 
[IO, Section :I]. We need only note that ( 5 )  still applies arid that all iterates ( z k , y k )  satisfy 
xjyj 3 TllG~+kr j = 1 , 1 - , 11. The iuter~iiecliate points generated by improve have the SaIiie 
properties. The tec-hnic:al results froin [ 10, Section 31 can tlierefore be applied to show that 
nontrivial progress is macle at each safe step. The presence of improve arid the fast steps 
caiiiiot liiiider (arid very often speed) the C O I I V ~ ~ ~ ~ I I C ‘ ~ .  

I11 this section we  suiiinmrize the main results from [IO, Sectioii 31 and state the sole 
assuniption required for global couvergeuce, whicli is as follows. 

Assumption 1 S # 69. 

k k  

Theorem 3.1 If a safc stcp is t akrn  at iteration IC, then thcrr is a constant w > 0 such that 
tht. s t c p  lrtrgth crk has 

CYI: 2 -. 1 
w 



Pro05 See [lo: Leniriia 3.4, Theorerii 3.51, where a different definitiou of w is used. 
The ~iiairi global couvergence result is as follows. 

Theorem 3.2 The complementarity gap pk converges geometrically to zero. 

Proof As in Wright [ I O ,  Theorein 3.61, we can show that if a safe step is taken at iteration 
k ,  we have 

T k  (xk + Q k 4  (9 + W ) / f L  5 (1 - &) Pk, 

while if a fast step is taken, we have 

T k  (xk Qku) (y + a k ' U ) / l z  5 Ppk. 

Since the coiiiyle~iieiitarity gap niay be decreased further by improve, we have pk+l 5 
(.ck + oku) T k  (y + ~ k v ) / n  and therefore 

* froin whic-h tlie result follows. 
Finally, w e  state the polynomial complexity result. 

Theorem 3.3 [lo, (hrollary 3.71 Lct t > 0 be given. Suppose that the starting point is 
dc f in rd  by (6) .  (7). whwe po = <=cy 5 l/cT for  some constant r 2 0 i n d e p e i i d m t  of 71. Then 
thcrc is an intt-gcr K ,  with 

K,  = O ( I ?  log( l / t ) )  

such that pk 5 6 for all k 2 K ,  . 

4 Technical Results 
In  the reiiiaiiider of tlw paper, w e  turu our attention to the latter stages of the algoritlim. 
We. show that the algorithin eventiially takes only fast steps (that is, the then branch of tlie 
main conditional statenirnt is exwuted). Moreover, the improve routine evetltually takes 
fast steps (XI all I of its iterations, so that a total of I + 1 fast steps are take11 for each 
factorization of the c-oeffic-.ietot niatrix i n  ( 2 ) .  

i 
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111 this section, we  prove some results about the steps generated in this fast phase of tile 
algorithm. In particular, we look at the effects of the inexact coefficient matrix in (2) on the 
steps calculated within improve. 

We start by defining the two assumptions for the local couvergence analysis, which will 
be implicitly assumed to hold throughout the reiiiaiuder of the paper. 

Assumption 2 S' # 8. 

Assumption 3 S is bounded. 

For mouoton;."LC€', a su%cient condition for Assuriiptiou 3 is the existence of a strictly 
feasible pair (3, ij) suc.li that i j  = iVZ + (I, (5, jj} > 0. This can be seen from the fact that for 
auy (z", y') E S 

implying 

(3" - z)T(y* - i j )  = (2- - Z ) T M ( Z *  - z) 2 0, 

.jjTy* + pTz* 5 zTp, 
By choosing any particular strictly complementary solutioii (z*, y*), WE? can define index 

sets H aud N by 
B = ( j  1.; > O}, N = ( j  Iy; > 0). 

I t  is well known that the global convergence of the algorithm guarantees that the iteration 
sequence ((sk7,yk)} approaches the solutiou set S (see the error bound result of Mangasar- 
iau [2] ,  for exaiiiple). Therefore, Assuriiptiou 3 implies the boundedness of the iteratiou 
seqimice {(s k k  ,y )}, as giveu in the following lemma. 

Lemma 4.1 Thtrc is a poaitiot. constant C?, such that I!(. k k  , y )I1 5 C:, for  all IC 2 0. 

The next two resiilts are simple riiodifications of results from Wright [lo, Section 41. 
si1ic.e we will apply tiiese rr,sults to iutermediate points generated by improve as well as to 
the iiiaiii iterates (z ,y ), we: state them in a more general form than in [lo]. The proofs 
are, Iiowever, not affected. Bouiidedness of the i teration sequence is not necessary for either 
result, and Iieither is Assuniption 3. 

k k  

Lemma 4.2 ([IO. Lenima 4.11) Let ( ~ , y )  2 0 be such that 

7' = y - M J  - (1 = 117 for .some 11 E io,;], 
and p = x T y / n  2 j v p o  for this v a k c  of 11. Thcn for  some constant C4 > 0 uw have 

Lemma 4.3 Let (x,y> be any point with the properties def ined in Lemma 4.2, and  supposc 
in addition that x,y, 2 yl,,itrp. Lft ( ii, 6 )  b t  thr srarch dirrctioit obtai~ttd by solving 

I [ "  Y -'][;I=[ .Y - . Y Y e + Z r p e  
1' 

b 
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ulhcrp 5 E [O, 1). The71 thcrc: cxists a posiiivc constant C'S such that 

I f  in addition 5 = 0 ,  thcrc: is a constarit c6 > 0 such that 

ProoJ Follows from Lemma 4.2 and Theorem 4.5 of [lo]. m 
We now turG to the "approximate" fast steps coriipiited by ( a ) ,  where ( L C , ~ )  is either 

tlle curreut iterate (xk, y"j or sonic iutermediate point generated in the call to improve at 
iteration k .  I t  is obvious from the algorithni defiiiitiou that we have 

--, 

~e also a~siinie that the point (2, y) is uot too far from (xk, yk) in the sense that ttiere is a 
constant x 2 1 indepeudent of k siich that 

(1:3) 

The following result describes some characteristics of the actual search direction (u, u )  
calculated frorn (2), partly iu teriiis of the esact search direction (C,.ii) that satisfies (9). 

Lemma 4.4 Let (2, y )  be a vector pair satisfying the assumptions of Lemma 4.3 and, in 
addition, thc properties (12) and (13)). Then i f  8 = 0 ,  there are positive constants C7, CS, 

arid CY9 indcpcnde7it of k and y such that thc follouiiitg bounds arc satisfied: 

Proof. From ( 2 ) ,  we have that 

while  froiii (9), we have 



From (17) and (IS) we obtain 

NOW from (I:?) arid Leimila 4.3, there is a constant C7 independent of k. and x siich that 

I / (  Y k  - Y)ii + ( X k  - X ) q  5 c;xppk. 

D k = ( X )  ( ) 7 

(20) 

Uefin i ng '\ 
k -1/2 y k  1/2 

and iiiultiplying the lower block in the system (19) by (XkYk)- lI2,  we obtain 

X ) v ] .  (21) 
Dk(6 - u )  + (D L ')' 1 -  (v - v) = (XkY"-'/'[(Yk - Y)ii + (Xk - 

Ifsing the upper block of (19), we have (G - v) = M ( i i  - u),  and so it follows froni positive 
semidefiiiiteuess of h.l that 

( 2 1  - u)T(G - v) 2 0. (22) 
By taking tlie Euclidean iioriii of bot11 sides of (a l ) ,  and using (22), we have 

Y)ii + (Xk - X ) i q 2 ,  k k -112 2 yk - I l m c  - 4112 + I l (W>- ' (~ - 4112 L Il(X y II II( 
Therefore 

Taking any j = 1 ,  . . , n, we find that 

~ 

I 
I 
1 '  
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H en ce . 

for C 7  defined in a n  obvious way. We have proved the first iiiequality 
the second inequality is siinilar. 

For (16)) we repeat the logic. above to obtain €or i E N that 

iu (14); the proof of 

where (79 is defined appropriately. The, Lourid for l l i j ~  - v ~ l l  follows similarly. 
To prove (15), we have from Lemma 4.3 and (14) that + 

l l ( u , v ) l !  5 l l ( c , v ) l l  + - - 5)lI 5 2 ( C S  + c 6 ) p  + 2c7xp...5 CSXp,  
‘ e  

where we have. defined CY, = 2 ( C s  + 
We iiow state tlie main result of this section, in which we obtain axi estixnate for the step 

length f i  along a (possibly approxiinate) fast step direction (u,  v). The point (z, y)  considered 
in this theorein represents either tlie riiairi iterate (2, yk) itself or oxit? of the intermediate 
points generated l>y improve (:tiiring iteration k .  For the purpose of this result, we define 
tlie following positive ~onstaiits, all of which are independent of k and x: 

+ C7) arid iised tlie assumption that x 3 1. 

- 
1710 = C&:3 + CC) + C,(C, + (75) 

(710 = 2((?5(?6 + 6 1 0  + C?Tc?g) 



, 

Theorem 4.5 Lct (z,y) 
addition 

Let t be a positiuc integer 

bc a point that satisfies the assumptions of Lemma 4.4, and in 

such that for 7 d t fmed  b y  

(23)  

-;--I Y = Yllli11 + 7 (rmx - 711lin) 
u7c have .c3y3 >_ y p  f o r  j = I , .  - , n,  and suppose for this valuc o f t  that 

'\ CI4&g 5 p. 
7' 

Then if a fast strp is attempted from the point ( x ,  y) with 

5 - 0 ,  / j = y t ,  7 = rillin + T t  (%lax -.  nun) 

and thc search dirrction (u ,v )  is calculated from (2)) the resulting step h g t h  ii obtained 
from (2): (3)) and 

iMoreover, the fast stcp is accepted with 

(25) 

PmoJ The proof is iu three stages. First, we show that the tests (4) are satisfied for all 
0 iu the raiige 

S ~ C O I I ~ ,  we show ttiat p ( a )  ~ i n e d  by (ij) is decreasing 011 the ititerval cy E [o, 11. 111 the 
third stage, we show that 

, 

5 (:14xzgP 5 PP, (27) 
Y 

which proves the result. 
We first consicler the condition (4a). Froin the left-hand side, we obtain 

(z + CYU)*(Y + CY.) 

= (. + Qii + Q(U - G))T(y + Qv + CY(v - v))  
zTy( 1 - C Y )  + a2?SiTB + cy($ + QG)*(. - v) + cr(y + QG)*(U - ii) = 

+ d ( U  - i i )*(V - v). 
Now, using Leuima 4.1 aiid the inequalities (8), ( lo ) ,  ( 1  l ) ,  (14), (Is), and ( IS) ,  we have 

1 1  



and 

Hexice, since x 2 1, we  have from tlie definition of Glo that 

I(. + CYu)T(y + CY.) - (1 - n)&I 5 c:10x2ppk. ('29) 
- 

Siuce /3 = q f ,  we have that (4a) is satisfied provided that 

wliicti is certainly true provided that 

Froni tlie definition of C12,  since 1 - 7 atid T~~~~~ - ?Illin both lie in the range (0, l), we have 

so the ineqiiality (4a) certai~ily holds for all a in tlie rauge (26). 

that 

while  froni (29), we have 

L 

Tiirriing to the seco~id ineqi.iality (3b), we have by an argiiinetit similar to the oue above 

( J j  + O ? L j ) ( y j  + O , U j )  2 " j Y j (  1 - a) - (:1oxzp/lk 2 r p (  1 - CY) - (.:,oxzppk, 

(2 + CYU)=(y + C Y 2 ) ) / 7 L  I ( 1  - a ) p  + (7,0x2ppk/7L. 

Hence, tlie ixiequality (411) holds provided that 

whit-h is c-ertaiuly true whexiever the iueqiiality 

12 

(30) 



w~iicli, by ~ini'tioon of ~ 1 2 ,  is true for CY in the range (26). 

range CY E [0,1]. Taking the derivative, we have 
For the second part of the proof, we show that  CY) defined by (:3) is decreasing on the 

7 q l ( Q )  = (3% + yTu) + 2CYuTv 
= (zTb + y%) + X T ( V  - 6 )  + y T ( u  - G )  + 2cruTv 

-2 -y  + xT(v - G )  + y r ( u  - 6) + %cruTv. = (31) 

(32) 

where we have used p 5 pk i n  the last inequality. A similar bound can be obtained for 
IyT(u  - ii)l. For the final term in  (31), we have 

( 3 3 )  
f 

Substitiiting these relatioiis iu (31) axid using the definition of C13, we obtain 

It follows from ( 2 3 )  that the term in brackets is negative arid hence  CY) 5 0 for all CY E [0,1]. 
Finally, we olxerve that the step length ii a(-tiially selected by the procedure will be at 

least as long as the iippt'r I>oiiiicl of (%), so using (:32), ( :33) ,  and the definitions of C13 and 
c1*, we l1ave 



Therefore (25) holds. Acceptance of this step follows from (24), since we have (z + &u)=(y + 

We close this section with a result that is important in defining the onset of the algorithm's 
& V ) / 7 1  5 pp. m 

fast phase. 

Lemma 4.6 ThcrF is a constant 77 < I such that 

(34) 

Proof. Wlieii'tiie safe brarich of the main algorithiii is taken at iteration k ,  we have froin 
the proof of Theorem 3.2 that 

while the value of t is unaltered. It is possible that in the subsequent call to improve, 
the value of t will be incremented. Whenever this happens, we are guaranteed that the 
c.omplemeutarity gap p decreases by a fac.tor of at least p ,  so the ratio p/qt  will also decrease 
by a factor of at least p/? < 1. Httiice, wlieri the safe branch is taken, we have 

Pk+l 

Wlieu the fast brauch is taken, we have t c t + 1 and 

T k  (2 + &u) (y + & V ) / t L  5 p p k ,  

so the ratio p / r t  decreases hy a factor of at least p / j . .  The commeuts above exisure that the 
subsequent call to improve can only accentuate this decrease, so in this case we have 

The residt is obtained hy drfiniiig 

1 P  
3LJ' 7 = 1nax (1 - - -) . 

5 Local Convergence 
In this section, we state and prove our two inain local co~~verge~ic:e results. First, we define a 
thresliold valiie of below w1iic:h both the main algorithm axid the procedure improve 
take oiily fast steps. Secoiid, we show that the resulting superlinear coxivergence has Q-order 
I + 2. 

* 
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Theorem 5.1 De.finc 

and let Kl be thr smallest index such that V K ~  5 1/2, 

and 

(35) 

(36) 

( 3  7) 

Then the fast braTtch is taken in the main algorithm and, moreover, I fast steps are taken in 
the call to improve. 

Proof. Existeuce of /ill is giiaraiiteed by Letiiiiia 4.6. We choose any k 2 K1. Our proof 
proceeds by showing first that the step takeu froin ( x k , y k )  in the main algorithm is a fast 
step. We then prove by iiidiic-tioti that I fast steps are taken inside the procedure improve. 
Our main tool in  both c-asps is Theoreni 4.5. 

For the first part of the proof. we apply Theorem 4.5 with 

(x .y)  = ( x k , ? j k ) ,  t = tk, 7 = yk. (38) 

Note that the point (x,y) satisfies the assiiiiiptions of Lemriias 4.2 aud 4.3 (by definition of 
Kl ,  7". i l k ,  atc.) and t ~ i e  c.otic~itions (12) aud (1:)) (trivially). Clearly also zsyjk 2 ~ k p k  for 
all j = 1, - - - . n, and the condition (23) also holds. Because 

. 

the cotidition (24) also holds. 
choices (38), aud therefore a fast step is taken by the iiiaiu algorithm. 

tlie ciirretit vector pair at  the ~oiiiI~iaIi(~eI~ieIit of the i-tli iteratioti of this procedure, then 

Hence the cotiditioiis of Theorem 4.5 are satisfied by the 

We turn uow to the procedure improve. Our aitil is to show inductively that if (s,y) is . 

(:39) I 1-1 

ll(-ck,yk) - (.,y)II L [,,G + (:6) + G P ?  P k .  
1=1 

, Moreover, we show that a fast step is taken from this vector (z,y) during the i-th iteration 
of improve. Note for future reference that 



. 

(husider the case z = 1, that is, the first iteration of improve. We ai111 to use Theore111 
4.5 agaiu, so we start by checking that the point just generated by the main algorithm 
satisfies the assuinptious of this theorem. In other words, the choices 

(z,y) = ( Z k , y k )  + ak(u,v) ,  t = t k  + 1, 
must be showu to satisfy these assu~nptions. It is easy to see that the assumptions of Leniinas 
4.2 and 3.3 aud the couctition (12) are satisfied. To see (13). note that the fast step just 
taken at iteration k. of the tiiairi algorithm was computed with a n  esact coefficient matrix, 
that is, we  have '(%,ij) = (u ,  ,u).  Heuce we can apply Lemma 4.3 to deduce that 

l l ( x k ,  y k )  - (X, y)II 5 II(u, v)ll = 6)il 5 2(c:5 + c6)Pk. 
Thus the bound (39). aud therefore also (13), holds for this poiut (z, y). The couditious ('23) 
and xjyj  2 ~p clearly hold, while ('24) also holds because 

Heiice Theorem 4.5 applies, and we have showxi that a fast step is taken on the first iteration 
of improve. 

We now consider tlie geueral iteration i of the internal loop of improve. We assume that 
our assertious liold for iteratious I through i - 1. Let (x-, y-) detiote the. value. of (z, y)  at  
the start of iteration i - 1, and let ( u - , v - )  be the search direction calculated during this 
iteration, while as before ( x , y )  is tlie current point at  tlie start of iteration i. To obtain an , estimate of ]I(. k , y . I ;  ) - (x, y)II, we note by our inductive hypothesis (39) that 

.I i -2  
[I(xk.yy") - (.c-,y-)[l 5 2 ( C S  + Gj) n(l + Cql) pk. [ 1=1 

We iiow apply Lemma 4.4 to tlie step (u- ,  v-) taken during iteration i -'l, with x replaced 
by 2(c5 + nf=:(l + ~ s p ' ) ,  to find tliat 

Il(& 9 9  - (x, Y>II  
5 

< - 

5 

l l (xkJY")  - (x-,Y->ll + l l ( : c Y - )  - (..,Y)l/ 

Z ( C 5  + CY,) U(1 + c * p l ) p k  + l ~ ( u - , v - ) ~ ~  

2 ( C S  + CY6) n( 1 + C , p ' ) p k  + 1:* qc:, + (76)  n( 1 + C@') p- 

2(CS + G;) E( 1 + C * p l )  ( 1  + C * p ) p k .  

i - 2  

1=1 
i -2 1 i - 2  1 f = 1  1=1 

I i - 2  

1=1 

The final ioeqiiztlity follows from tht. fat-t that p- 5 p'-'py", siiic-e (.c-,y-) is arrived at by 
taking i - 1 fast steps (otic s tvp  i n  tlie niain algorithm, followed by i - 2 iterations of the 

1 ti 

b 



improve loop), at  each of which a reduction factor of at  least p is achieved. We have now 
shown. that the bound (:39) continues to hold at iteration i. It is easy to check that the 
reiiiainiqz, couditious required by Theorem 4.5 hold. We mention only (24), which holds for 
t = t k  + i because 

Hence, we can apply Theorem 4.5 again to deduce that a fast step is takeu at iteration i, 

Our final resiilt is to show high-order convergence of the sequence { p k }  to zero. We show 
and our result ii,proved. 

that this convergence lias a Q-order of at least I + 2, that is, for auy 6 > 0 

A n  equivalent cliaracterizatioii of the @order 1 + 2 convergence is the inequality (40) below 
(see Potra [7]). 

Theorem 5.2 Thc subs~qucnc~ { p k } ,  k = 0, 1, - - e ,  convcrgtls to  zero with Q-order I + 2, 
that is, 

lim iuf (40) 
k-.= logpk 

log pk+* 2 I + 2. 

Proof. Consider k 2 Kl.  Since a fast step is taken by the main algorithm and all I 
iterations of improve, and since Theorem 4.5 applies at all 1 + 1 steps, we can apply the 
inequality (25) I + 1 times to boiind pk+1 i n  teriiis of pk. The process yields 

I t  follows froin Lemma 3.6 and (41) that 

. that is, { p k }  converges to zero at  least Q-superlinearly. 
~ 

By taking logarit1iins, we ohtain from (41) that 
I 

I We will assunie that k is sufficiently large such that pk < 1. From the above, 

(43) 

17 



Obviously, as k 4 00, the second term in the right-hand side vanishes. If we cau show that 
the third term also goes to zero, then t h e  conclusion (40) follows. Since t k  5 ( I  + l ) k  + 1, 
it suffices to prove 

Suppose otherwise. Then there exist < E (0 , l )  aud a subsequence { p k } ~  c { p k }  such that 

From (4’2), there exists a positive integer .I such that for all k 2 J ,  pk+, 5 $pk. Hence, for 
all k > .I arid k E h:, 

That is, for all k > .I and k E h:, 2k 5 pj2’/<’. This is clearly a contradiction. 

6 Numerical Examples 

8 

We iriclude some preliminary nuiiierical results that compare the behavior of our algorithm 
with the method of [IO], in which improve is vacuous ( I  = 0). 

Our test yroblexiis have A4 = AAAT, where A E IR”’” is dense with elenieuts drawn 
from a uniform (listribiitiou in [-1, I], and A is a diagonal matrix .with diagoual elements 
Ai; = IO4(’,  where (; is drawn froin a iiiiiform distribution in [0, 11. A solution (z*,y*)  is 
getierated so that even-numbered conipouents of 2- and odd-numbered components of ys 
are zero, arid q is chosen so that tlie nonzero components of hoth vectors are uniformly 
distributed in [0, 11. + 

. .  

The algoritliniic constants have the followiug values: 

YIlUU = lo-”, Tinax = -002, crll& = lo-3, cmax = 1 9  

7 = 2 5 ,  p = .99?.. 

We also modify the algoritliriis slightly so that only safe steps are attempted when the current 
value of p is greater tliari 1 (that is, the f a t  step branch of the coxiditiorial statemexits in 
Imth the xilain algorithm and improve is bypassed). The value of 8 for the safe step at 
iteration k is chosen as 

uk = 11iid(ullUl17 p k / f i >  B111,X)7 

where mid( 1 denotes the median of its t h e e  argii~nents. Terminatiou occurs wlieu pk 5 

F‘erforniauc:e of the algoritImi for T = .8 and T = .9 is shown in Tables 1 and 2, respec- 
tively. We t a h l a t e  tlie niirnber of factorizations (which eqiials the nuniber of iterations of 
the algorithm), togetlier with the total number of linear system solutions performed, and the 



Y 

fac*torizatious 

corrector steps 
fac torizatious 

corrector steps 
factorizations 

corrector steps 
factorizatioiis 

corrector steps 
factorizatious 

corrector steps 

I = 0 solves 
‘4 

I = 1 solves 

1 = 2 solves 

I = :3 solves 

I = 5 solves 

total uuxnber of corrector steps takeu in improve. The behavior 011 these raudorn problems 
is xiot too seusitive to the choices of the paraiiieters I and 7; the choices I = 3 and T = .$ 
would probably be good c.hoices iu geueral. 

11 = 10 71 = S o  71 = 100 
24 3 8 :38 
3 6 56 54 

0 0 0 
20 33 :34 
59 99 97 
10 11 10 
18 :3 1 32 
65 110 105 
14 17 15 
18 :3 1 :3 1 
72 112 109 
17 20 19 
17 3 0 3 1 
74 114 113 
22 23 23 

fat- torizatious 

corrector steps 
far t o r  i zat i o 11 s 

c-orrec-tor steps 
factorizations 

corrector steps 
far torizatioiis 

c-orrwtor steps 

I = 1 solves 

I = 2 solvrs 

I = :3 solves 

I = 5 solves 

Table 2: F’erforriiance of the algoritliiii for T = .9 

72 = 10 n =so 71‘= 100 
20 3 3  3 3  
59 99 93 
10 11 12 
18 3 1 :3 2 
6 #5 110 105 
14 17 15 
17 :3 1 :3 1 
74 114 109 
20 21 19 
17 30 3 1 
76 114 115 
23 24 24 



7 Final Comments 
In this payer, we aualyze an infeasible-iuterior-point algorithm that reuses matrix factors 
to accelerate couvergeiice. In addition to the usual global convergence properties, the uew 
algorithm possesses a local convergence rate of 9-order I + 2. 

Tlie idea of reusiug matrix factors was utilized in a number of works 011 interior-point 
methods. Among tlieni, Mehrotra [3] atid Zhang aiid Zhaug [ll] are. most closely related 
to tlie current work. Melirotra [3] also obtained a Q-order of I + 2 convergence result, but 
it is for a feasib1.e-iuterior-point algorithrii. Moreover, his algorithrii is in the Mizuno-Todd- 
Ye [5] predictor-hm-ector framework, thus always requiring two matrix factorizatious per 
iteration. Zharig aud Zhang [I 11 aualyzed an iiifeasible-interior-point algorithm with I = 1 
that asyniptotically requires otily one matrix factorization per iteratiou. However, they only 
obtained 0-order 2 couvergence iristead of Q-order 3 .  

The higlier-order convergeuce rates are probably of theoretic interest only. In practice, it 
is difficult to observe 011 ~oiiiputer a corivergerice rate higher thau cubic. As can be seeu from 
our prelimiuary iiuiiieric:al results, however: the approach of reusing matrix factors does have 
tlie teudeucy to reduce the number of factorizatious required for solviiig LCP problenis at a 
price of iiicreasiiig the number of back solves. Since at each iteration matrix factorizatiori is 
the doiiiiriaiit work in comparison to back solves, the potential reductiou in coiiiputatioual 
work could be significant for large-scale LCP problems. For linear programming, the practical 
effectiveness of reusing iiiatrix fixtors is already well docunieuted [ 1, 41. 
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