L F- 460775
aex P 90503

Spectroscopy Of Reﬂectmn—ﬁ[ r/xmetrlc
Nuclei Using Multinucleon TransfeﬁECE IVED
Reactions NOV 1 2 139

OST]|

J.F.C.Cocks’, P.A.Butler!, K.J.Cann?, P.T.Greenlees', G.D.Jones!, R.Broda?,
B.Fornal®*, P.M.Jones?, R.Julin?, S.Juutinen?, D.Miiller?, M.Piiparinen?,
A.Savelius?, J.F.Smith®, 1. Ahmad®*, S. Asztalos®, P.Bhattacharyya”, D.J.Blumenthal®
M.P.Carpenter?, R.M.Clark®, B.Crowell?, M.A.Delaplanque®, R.M.Diamond?,
P.Fallon®, R.V.F.Janssens*, T.L.Khoo?, T.Lauritsen*, 1.Y.Lee®, A.O.Macchiavelli®,

R.W.MacLeod®, D.Nisius?, F.S.Stephens®, C.T.Zhang’

(1) Oliver Lodge Laboratory, University of Liverpool, Liverpool. L69 SBX U.K.

{(2) Accelerator Laboratory, University of Jyvdskyld, FIN-403851, Jyvdskyld, Finland
(3) Institute of Nuclear Physics, Radzikowskiego 152, PL-81-342, Krakéw, Poland
(4) Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
(5) Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
(6) State University of New York, Stony Brook, New York, NY11794-3800, USA

(7) Chemistry Department, Purdue University, West Lafayette, Indiana 47907, USA

e MASTER

The heavy-ion collisions of 3Fe + 232Th, 86Kr + 232Th and '36Xe + 232Th with beam en-
ergies 15-20% above the Coulomb barrier were used to populate nuclei in the light-actinide
region. Yield distributions of the binary reaction products stopped in thick targets were
obtained by measuring -y coincidence intensities. The 13%Xe + 232Th reaction was re-
peated at Lawrence Berkeley National Laboratory using a recent implementation of the
GAMMASPHERE array. Many interesting discoveries concerning the high-spin structure of

octupole-deformed light-actinide nuclei have been made.

Nuclei with Z~88 and N~2134 have their neutron and proton Fermi levels in close proximity
to the octupole-driving v(jis/» and go/2) and m(iy3/2 and f;j;) orbitals. Thus these light-
actinide nuclei are susceptible to octupole deformation [1], [2]. Nuclei in this region can be
studied using fusion-evaporation reactions but low production cross-sections (<millibarns)

and large fission cross-sections [3] make these nuclei difficult to study by these means. This
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Reaction Target Beam Germanium Detector Facility
(mg/cm?) | Species ?;,;ZW %?;bém Array
12 TESSA-type K-130 cyclotron,
I 232Th (30) | °CFe 362 20 (23% efficiency) JYFL,
detectors Jyvaskyla
TESSA3 frame: K-130 cyclotron,
II 232Th (30) | %°Kr 511 16 12 detectors + 50-element JYFL,
multiplicity filter Jyvaskyld
Argonne-Notre Dame: ATLAS,
1 Z32Th (40) | '3Xe 830 15 12 25%-efficiency detectors | Argonne National
+ 50-element BGO ball Laboratory

Table 1: Summary of experimental details. The Coulomb barrier energy is defined as
1.44(5B4+1)Z, Z¢
116043+ 413 42)

target respectively.

Ecp = where Ap, Z,, A: and Z; are the mass and proton numbers of the projectile and

population mechanism is limited further by a lack of suitable projectiles and stable targets
above 2°Bi. Virtually no information exists concerning the excited states in ?*?Ra and the
octupole-deformed Rn isotopes with A > 218. We have used multinucleon transfer reactions
to populate this region of nuclei. Three experiments were carried out in which thick #*2Th
targets were bombarded by different heavy ions at energies between 15% and 20 % above the
Coulomb bba.rrier. The details of these experiments are summarised in Table 1.

For each system, measurements of the yield of the populated nuclei were produced using
quantitative in-beam and out-of-beam ~-y coincidence analyses, where the intensities were
corrected for efficiency and internal conversion [4]. Figure 1 shows the target-like product
yields for the reactions *®Fe + ?%2Th, %Kr + #32Th and '¥Xe + ?*2Th. The yields were
normalised by matching the yield of the Coulomb-excited 2* state in 232Th. The least neutron-
rich of the projectiles, 6Fe, picks up most neutrons from the target and shifts the distribution
of heavy products into the region which is already accessible by compound-nucleus reactions.

The %Kr and '%¢Xe projectiles populate the region which cannot be accessed by presently-




1000

Xe + Th( N, beam= 1.52) .l
100 t )
T e
L ]
10} $ty frsll
1132 192 25é 212 222 : :?1
1000 ¢ . ER;
= 1.39)
5 Kr + Th(N;, =
= 3 g o = g oPb
g IIJI. f L2 _ff QHg
g o 3 ¥ EH ts Pt
a Os
1182 192 202 212 222
1000 ¢ 5
Fe+Th(N = 1.15)
100 . a
s 3 - .
10 EI Q;E inm?!!l g
5 § % I QE X3 §
1182 192 202 2§2 222

Mass Number

Figure 1: A comparison of the yields of target-like nuclei produced in the *Fe + **2Th, **Kr + ***Th and
13¢Xe + 232Th reactions.

available fusion-evaporation reactions. The !3®Xe projectile, with the largest neutron-to-
proton ratio, populates octupole-deformed Rn and Ra isotopes in the light-actinide region
with the greatest intensity.

. The %Xe + 232Th reaction was repeated at Lawrence Berkeley National Laboratory using
the high-efficiency GAMMASPHERE array. The array consisted of 73 large-volume (~75% relat-
ive efficiency) Compton-suppressed germanium detectors [5], [6], 27 of which were segmented
[7]. After 54 hours of collecting gamma-ray events of fold 3 or higher, subsequent unpacking
of events revealed a total of 1.1 x 10! triple and 6.7 x 10° fourfold Compton-suppressed
gamma-ray coincidences. The typical spectra shown in figure 2 serve to illustrate the qual-
ity of these data. Figure 2(a) is a threefold gamma-ray spectrum which shows transitions
in ?*®Rn. The spectrum was produced by double-gating on transitions in the ground state
rotational band in 2'®Rn in a y-y-y-correlation matrix. Figure 2(b) is a fourfold spectrum
showing transitions in 22Ra. This spectrum was produced by double-gating on transitions

in the ground state rotational band in ?**Ra in a gated y-y-y-correlation matrix. The initial
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Figure 2: (a) Threefold gamma-ray spectrum showing transitions in 2**Rn. (b) Gamma-ray spectrum showing
transitions above and including the 6 to 4% transition in ?**Ra. This spectrum is from unpacked fourfold

coincidence events where one of the gamma rays has the same energy as the 4% to 2% transition in ***Ra.

gate was set on the 4% to 2% transition in *?**Ra.

_ High-spin states in many light-actinide nuclei have been observed. The level schemes of
218Rn, 22°Rn and 2??Rn are shown in figure 3. Previous to the present work, only the 5 lowest-
lying states in each nucleus were known [8], [9]. In the present work, alignment effects for the
positive parity states in 22Rn and *°Rn have been observed at fiw = 0.22 MeV. Cranked shell
model calculations predict a strong alignment of a pair i;3/2 protons close to this rotational
frequency in these two nuclei.

The level schemes of ?*2Ra, 2?*Ra and ??°Ra are shown in figure 4. Previous knowledge
of these nuclei can be found in references [10], [11], [12] and [13]. The level schemes of
?22Ra, ?2*Ra and ?*°Ra have been considerably extended in the present work and interleaving

positive- and negative-parity states have been observed for the first time in 2>?Ra.
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Figure 3: Level scheme of ?'*Rn, **Rn and 2*?Rn, produced using energy sums and intensity balance
arguments. The transition energies have errors which range from 0.2 keV for low-lying transitions in the
positive parity bands to 0.5 keV for 57 to 3~ and 7~ to 5~ transitions and transitions between the highest

spin states observed.
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Figure 4: Level scheme of ??Ra, ?**Ra and ?*°Ra, produced using energy sums and intensity balance
arguments. The transition energies have errors which range from 0.2 keV for low-lying transitions in the

positive parity bands to 0.5 keV for 5~ to 3~ and 7~ to 5~ tranmsitions and transitions between the highest

spin states observed.




For each state that is depopulated by both E1 and E2 transitions in the six nuclei, intrinsic
electric dipole-to-quadrupole (g—g) ratios were extracted from IB;'E‘% branching ratios. Upper
limits were obtained for high-spin states in ?**Ra. The gg values were constant within each
nucleus. Using weighted mean values of gﬁ- and published values of Qg [14], a measure of
the intrinsic electric dipole moment, Dy, was determined for the Rn and Ra isotopes. The
intrinsic electric dipole moment measured for >**Ra, 0.030(1) e.fm, is much lower than those
for 222Ra, 0.27(4) e.fm, and 2**Ra, 0.18(2) e.fm. The anomalously low dipole moment in
224Ra persists to high spins (<0.09 in the spin range I=12-23%). At low spin, the calculations
of Butler and Nazarewicz [15] reproduced an anomalously low Dy for ?**Ra by treating the
intrinsic electric dipole moment as the sum of a macroscopic (liquid drop) component and a
microscopic (shell correction) term. These two components cancel for 22¢Ra but the addition
of the two contributions results in large intrinsic electric dipole moments for 2*?Ra and **°Ra.
Good agreement between the experimental and theoretical Dy values for the Rn isotopes was

observed.
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