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Abstract 

The heavy-ion collisions of 56Fe + 232Th, 86Kr + 232Th and 136Xe + 232Th with beam en- 

ergies 15-20% above the Coulomb barrier were used to populate nuclei in the light-actinide 
region. Yield distributions of the binary reaction products stopped in thick targets were 
obtained by measuring y-y coincidence intensities. The 136Xe + 232Th reaction was re- 
peated at Lawrence Berkeley National Laboratory using a recent implementation of the 
GAMMASPHERE array. Many interesting discoveries concerning the high-spin structure of 
octupole-deformed light-actinide nuclei have been made. 

Nuclei with 2-88 and Nz134 have their neutron and proton Fermi levels in close proximity 
to  the octupole-driving ~ ( j 1 5 / 2  and gs/2) and ~(i13/2 and f7/2) orbitals. Thus these light- 
actinide nuclei are susceptible to octupole deformation [l], [2]. Nuclei in this region can be 
studied using fusion-evaporation reactions but low production cross-sections (Smillibarns) 
and large fission cross-sections [3] make these nuclei difficult to study by these means. This 
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Species 
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“Kr 
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Beam 

511 

830 

%above 
CB 

20 

16 

15 

Germanium Detector 

Array 

12 TESSA-type 

(23% efficiency) 

detectors 

TESSA3 frame: 

12 detectors + 50-element 

multiplicity filter 

Argonne-Notre Dame: 

12 25%-efficiency detectors 

+ 50-element BGO ball 

Facility 

K-130 cyclotron, 

JYFL, 

Jyvkkyll  

K-130 cyclotron, 

JYFL, 

Jyvbkyll  

ATLAS, 

Argonne National 

Laboratory 

Table 1: Summary of experimental details. The Coulomb barrier energy is defined as 
1.44( %+l)Z,Zt 

l.16(A:/3+A:/3+2) 
where A,, Z,, At and Zt are the mass and proton numbers of the projectile and ECB = 

target respectively. 

population mechanism is limited further by a lack of suitable projectiles and stable targets 
above 209Bi. Virtually no information exists concerning the excited states in 222Ra and the 
octupole-deformed Rn isotopes with A 2 218. We have used multinucleon transfer reactions 
to populate this region of nuclei. Three experiments were carried out in which thick 232Th 
targets were bombarded by different heavy ions at energies between 15% and 20 % above the 
Coulomb barrier. The details of these experiments are summarised in Table 1. 

For each system, measurements of the yield of the populated nuclei were produced using 
quantitative in-beam and out-of-beam y-y coincidence analyses, where the intensities were 
corrected for efficiency and internal conversion [4]. Figure 1 shows the target-like product 
yields for the reactions 56Fe + 232Th, 86Kr + 232Th and 136Xe + 232Th. The yields were 
normalised by matching the yield of the Coulomb-excited 2+ state in 232Th. The least neutron- 
rich of the projectiles, 56Fe, picks up most neutrons from the target and shifts the distribution 
of heavy products into the region which is already accessible by compound-nucleus reactions. 
The “Kr and 136Xe projectiles populate the region which cannot be accessed by presently- 



* O R n  
Po 

T 

O T h  
Ra 182 192 202 212 222 

1000 
f 

5 100 ; 
lii 

x e .- 
2 
9 10 ; 

1 -  
182 1 92 202 21 2 222 

r 
c1 

I 

'Oo0 [ Fe+Th(N&= 1.15) 
100 

1 10 

P 

n 

'1 82 192 202 21 2 222 
Mass Number 

Figure 1: A comparison of the yields of target-like nuclei produced in the 56Fe + 232Th, "Kr + 232Th and 

'36Xe + 23zTh reactions. 

available fusion-evaporation reactions. The 136Xe projectile, with the largest neutron-to- 
proton ratio, populates octupole-deformed Rn and Ra isotopes in the light-actinide region 
with the greatest intensity. 

The f36Xe + 232Th reaction was repeated at Lawrence Berkeley National Laboratory using 
the high-efficiency GAMMASPHERE array. The array consisted of 73 large-volume (-75% relat- 
ive efficiency) Compton-suppressed germanium detectors [5] , [6] ,  27 of which were segmented 
171. after 54 hours of collecting gamma-ray events of fold 3 or higher, subsequent unpacking 
of events revealed a total of 1.1 x 1010 triple and 6.7 x lo9 fourfold Compton-suppressed 
gamma-ray coincidences. The typical spectra shown in figure 2 serve to illustrate the qual- 
ity of these data. Figure 2(a) is a threefold gamma-ray spectrum which shows transitions 
in 2'8Rn. The spectrum was produced by double-gating on transitions in the ground state 
rotational band in 21SRn in a y-y-y-correlation matrix. Figure 2(b) is a fourfold spectrum 
showing transitions in 224Ra. This spectrum was produced by double-gating on transitions 
in the ground state rotational band in 224Ra in a gated y-y-y-correlation matrix. The initial 
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Figure 2: (a) Threefold gamma-ray spectrum showing transitions in '"Rn. (b) Gamma-ray spectrum showing 

transitions above and inchding the 6+ to 4+ transition in 224Ra. This spectrum is from unpacked fourfold 

coincidence events where one of the gamma rays has the same energy as the 4+ to 2+ transition in 224Ra. 

gate was set on the 4+ to 2+ transition in 224Ra. 
High-spin states in many light-actinide nuclei have been observed. The level schemes of 

218Rn, 220F?,n and 222Rn are shown in figure 3. Previous to the present work, only the 5 lowest- 
lying states in each nucleus were known [8 ] ,  [9]. In the present work, alignment effects for the 
positive parity states in '"Rn and 220Rn have been observed at fiw FZ 0.22 MeV. Cranked shell 
model calculations predict a strong alignment of a pair iI3j2 protons close to this rotational 
frequency in these two nuclei. 

The level schemes of 222Ra, 224Ra and 226Ra are shown in figure 4. Previous knowledge 
of these nuclei can be found in references [lo], [ll], [12] and [13]. The level schemes of 
222Ra, 224Ra and 226Ra have been considerably extended in the present work and interleaving 
positive- and negative-parity states have been observed for the first time in 222Ra. 
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Figure 3: Level scheme of 218Rn, 220Rn and z22Rn pro-xed using energy sums and inten..,y balance 

* arguments. The transition energies have errors which range from 0.2 keV for low-lying transitions in the 

positive parity bands to 0.5 keV for 5- to 3- and 7- to 5- transitions and transitions between the highest 

spin states observed. 
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Figure 4: Level scheme of 222Ra, 224Ra and 220Ra7 produced using energy sums and intensity balance 

arguments. The transition energies have errors which range from 0.2 keV for low-lying transitions in the 

positive parity bands to 0.5 keV for 5- to 3- and 7- to 5- transitions and transitions between the highest 

spin states observed. 



For each state that is depopulated by both E l  and E2 transitions in the six nuclei, intrinsic 
electric dipole-to-quadrupole (e) ratios were extracted from a branching ratios. Upper 
limits were obtained for high-spin states in 224Ra. The 2 values were constant within each 
nucleus. Using weighted mean values of 2 and published values of Qo (141, a measure of 
the intrinsic electric dipole moment, Do, was determined for the Rn and Ra isotopes. The 
intrinsic electric dipole moment measured for 224Ra, 0.030(1) e.fm, is much lower than those 
for 222Ra7 0.27(4) e.fm, and 226Ra, 0.18(2) e.fm. The anomalously low dipole moment in 
224Ra persists to high spins (<0.09 in the spin range I=12-23h). At low spin, the calculations 
of Butler and Nazarewicz 1151 reproduced an anomalously low Do for 224Ra by treating the 
intrinsic electric dipole moment as the sum of a macroscopic (liquid drop) component and a 
microscopic (shell correction) term. These two components cancel for 224Fta but the addition 
of the two contributions results in large intrinsic electric dipole moments for 222Ra and 226Ra. 
Good agreement between the experimental and theoretical Do values for the Rn isotopes was 
observed. 
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