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This dissertation is concerned with the study of multigrid methods for
the solution of elliptic partial differential equations. The primary focus is on
parallel multigrid methods and the application of multigrid methods to reser-
voir simulation. Multicolor Fourier analysis is used to analyze the behavior
of standard multigrid methods for problems in one and two dimensions. The
relationship between multicolor Fourier analysis and standard Fourier analysis
is established. Multiple coarse grid methods for solving certain model prob-
lems in one and two dimensions are considered. For such methods, at each
coarse grid level we use more than one coarse grid to improve convergence. For
the application of multiple coarse grid methods to a given Dirichlet problem
it is convenient to first construct a related extended problem. For solving an
extended problem with a multiple coarse grid method, a “purification” proce-
dure can be used to obtain Moore-Penrose solutions of the singular systems

which are encountered. For solving anisotropic equations, semicoarsening and




line smoothing techniques are used with multiple coarse grid methods to im-
prove convergence. The two-level convergence factors of the multiple coarse
grid methods are estimated by using a multicolor Fourier analysis. In a special
case where each of the operators has the same stencil on each of the grid points
on one level, the exact multilevel convergence factors of the multiple coarse
grid methods can be obtained. For solving partial differential equations with
discontinuous coefficients, the interpolation and restriction operators should
include information about the coefficients of the equations. Matrix-dependent
interpolation and restriction operators based on the Schur complement can be
used in nonsymmetric cases. A semicoarsening multigrid solver with matrix-
dependent interpolation and restriction operators is used in UTCOMP, a three-
dimensional, multiphase, multicomponent, compositional reservoir simulator
developed at The University of Texas at Austin. The numerical experiments
are carried out on different computing systems. The results obtained from the
analysis and the numerical experiments indicate that the multigrid methods
are promising.
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Chapter 1

Introduction

For many problems in science and engineering one is faced with the
need to solve one or more partial differential equations. The use of discretiza-
tion methods such as finite-difference methods or finite element methods usually
leads to the need to solve one or more large systems of linear (or nonlinear)
algebraic equations. The solution of such problems by direct methods or by

conventional iterative methods can be very costly.

Multigrid methods offer the possibility of greatly improved conver-
gence, as compared to iterative methods, for some problems. However, rigor-
ous analysis of multigrid methods is available for only a very limited class of
problems. Moreover, standard multigrid methods are not suitable, in general,

for use with parallel computers.

In this dissertation we are concerned with three aspects of multi-
grid methods: a rigorous analysis of standard multigrid methods for a class
of model problems in one and two dimensions; a description and analysis of
multiple coarse grid methods which are actually multigrid methods where at
each coarse grid level more than one coarse grid is used; and a description of
some applications of multigrid methods to the solution of problems in reservoir

simulation.
In Chapter 2, we define the model problems which will be used in

later chapters. In Chapter 3, we give a brief description of some basic iterative
methods and polynomial acceleration procedures.

In Chapters 4 and 5, we describe the application of standard multigrid
methods to certain model problems in one and two dimensions. We present two




analyses of these methods: one is based on the use of standard Fourier analysis,
the other is based on the use of a two-color Fourier analysis for problems in
one dimension and on the use of a four-color Fourier analysis for problems
in two dimensions. The new multicolor Fourier analysis is especially effective
when certain smoothing iteration methods such as the red/black Gauss—Seidel
method are used. We also study the relationship between the standard Fourier
analysis and the multicolor Fourier analysis and show that they are equivalent

under a similarity transformation.

In Chapters 6 to 9, we consider multiple coarse grid methods for solv-
ing certain model problems in one and two dimensions. For such methods,
more than one coarse grid is used at every coarse grid level. We consider three
types of multiple coarse grid methods including multiple coarse grid multigrid
(MCGMG) methods, frequency decomposition multigrid (FDMG) methods,
and paralle]l multigrid (PMG) methods. For each of these methods we first
construct a related extended problem as described in Chapter 6. The multiple
coarse grid procedures which we consider can be conveniently defined and ana-
lyzed for the extended problems. A “purification” procedure is used to obtain
Moore-Penrose solutions of singular systems which are usually encountered.

Previous work on parallel multigrid methods by Frederickson and
McBryan [28] was applicable to periodic problems. Young and Vona. [73] consid-
ered parallel multigrid methods for certain non-periodic problems. However, it
was necessary to use more complicated operators than those which are involved
with the extended problems.

The convergence factors of two-level multiple coarse grid methods
are estimated by using the multicolor Fourier analysis. The effects of some
red/black smoothing schemes are also described.

For anisotropic problems, the PMG methods based on point smooth-
ing and the standard coarsening schemes are not very efficient. We consider
a new variant of the PMG methods using semicoarsening and line smoothing
techniques. We extend the convergence analysis of the multilevel PMG proce-
dure described by Frederickson and McBryan [29] to the semicoarsening PMG




procedure for anisotropic problems.

In Chapters 10 to 12 we consider the applications of standard multi-
grid methods to problems in petroleum reservoir simulation. Dendy et al.
[24] used multigrid methods to solve some model problems of the type that
arise from pressure equations in reservoir simulation. Fogwell and Brakha-
gen [27] used multigrid methods to solve the equations for incompressible, two
phase flow in a porous medium. We developed a semicoarsening multigrid
procedure which can be used to solve systems of linear equations arising from
the discretization of the governing pressure equation in UTCOMP, a three-
dimensional, multiphase, multicomponent, compositional reservoir simulator
developed at The University of Texas at Austin [12] [13]. The governing pres-
sure equation in the reservoir simulator is an anisotropic differential equation
which may have discontinuous coefficients and the matrices of the linear systems
are nonsymmetric. To obtain a fast convergence rate, we use matrix-dependent
interpolation and restriction operators constructed in a way analogous to the
Schur complement procedure in our multigrid algorithm.

The numerical results show that the multigrid methods compete very
well with other iterative methods as well as with direct methods. We examined
the performance of the multigrid code on a variety of parallel systems.




Chapter 2

Model Problems

2.1 Introduction

In this chapter, we define the model problems which will be used for
the convergence analysis of the multigrid methods discussed in later chapters.
We consider elliptic partial differential equations on the unit square (unit in-
terval in each dimension) with Dirichlet boundary conditions. The standard
3-point and 5-point finite-difference discretizations are used for the problems

in one dimension and in two dimensions respectively.

2.2 A One-Dimensional Model Problem

The 1D model problem we consider is the Poisson equation defined
on the interval (0,1) with Dirichlet boundary conditions:

du(z) _
{ —— = f(z) forz € Q=(0,1), (2.2.1)
u(O) = ¢aa u(l) = ¢b'
Let Q be defined as
2 ={(@) j=0,....N; h=%}, (2.2.2)

where N is an integer and z; = jh. By using the standard finite difference

discretization process we obtain a set of linear equations:

xlf[—“j—l +2u; —uinl=f, j=1...,N-1, (2.2.3)

Up = ¢a, unN = ¢b,
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Figure 2.1: Grid Points for a One-Dimensional Problem: 2 = 1/8

where u; = u(z;) and f; = f(z;). The difference equations can be written in

the matrix form as
APy = b (2.2.4)

where the superscript of the matrix A, indicates the discretization scheme (e.g.
“3” indicates the 3-point standard finite-difference scheme).

In the case of N = 8, the grid §; is defined as in Figure 2.1 and the
corresponding discrete problem (2.2.4) is given by

- - - -

2 -1 Uy [ fi+ 6a/B% |
-1 2 -1 up f2
1 -1 2 -1 us fa
= -1 2 -1 ug | = fa . (2259)
-1 2 -1 Us fs
-1 2 -1 Ug fe
i -1 2 | lur] | fr+é/h? |




It can be verified that the eigenvectors of A?), for the case of ,h = 1/8, are
given by |

[ sin(prh) ]
sin(2pmh)
sin(3pmh)
v = | sin(dprh) |, p=1,...,7 (2.2.6)
sin(5pmh)
sin(6pmh)
sin(7Tpwh) |

N

and the corresponding eigenvalues are given by

1
V,(‘p) = ﬁ(2—2cosp1rh), p=1,...,7. (2.2.7)

2.3 A Two-Dimensional Model Problem

The 2D model problem we consider is an elliptic problem with Dirich-
let boundary conditions defined on the unit square as

2 2
) P e

u = ¢(z,y) (z,y) € 0Q

(2.3.8)

where a > 0. If a = 1, we have the Poisson problem. If a > 1 or a < 1, we

have an anisotropic problem.

As in the one dimensional case, we define an (N +1) x (N + 1) grid
;. covering the domain §} for some integer N. We assume that a uniform step
size h = N! is used for both axis directions. Thus we have

O = {(zj,yx) | ,k=0,...,N} (2.3.9)




Figure 2.2: Grid Points for a Two-Dimensional Problem: A = 1/4

where z; = jh and yx = kh. The 5-point difference representation of the

problem (2.3.8) can be written as

’

1
ﬁ[@ + 20)ujr — QUj_1k — QU 41k — Ujk-1 — Yjke1] = Fik
U0 = 45(2)_1', yo)’
ﬁ uij = ¢(mJ’yN)$ (2.3.10)
uok = ¢(Zo, Yx),

uni = ¢(ZN, Yk),
jk=1,...,N—1

.

where f;x = f(zj,yx) and u;x = u(z;,yx). The boundary values can be col-
lected into the right-hand side of the equations. The difference equations can

be written in the matrix form

Ay = b, (2.3.11)

In the case of N =4, the grid §;, is defined as in Figure 2.2. For the
model problem (2.3.8) with a = 1, the corresponding matrix problem (2.3.11)




is given by

0 -1
-1 0 -1
4 0 O
0 4 -1
0 -1 4
-1 0 -1
-1 0
-1

[ i+ fi(d’u + ¢15) 1
fo+ ;1591512

fs+ ;;15(0513 + ¢16)
fa+ ;12'¢17
fs
fe+ ﬁl}'¢18
Jr+ 55(é19 + 622)
fe+ 7,1=z¢23
| fo+ w5 (P20 + B24) i




It can be verified that the eigenvectors of A}f’, for the case of h = 1/4,

are given by

v,(,p't’) =

sin(prh)sin(gmh)
sin(2pwh) sin(grh)
sin(3prh)sin(grh)
sin(prh) sin(2q7h)
sin(2pmh) sin(2gmh)
sin(3prh)sin(2q7h)
sin(prh)sin(3g7h)
sin(2prh)sin(3q7h)

| sin(3p7h)sin(3¢gmh)

9 p7q=1,273

and the corresponding eigenvalues are given by

u,(fq) -

pqg=123.

(20 — 2a cos prh + 2 — 2cos gmh),

(2.3.14)

(2.3.15)




Chapter 3

Iterative Methods

3.1 Introduction

In this chapter we give a brief description of some basic iterative
methods and polynomial acceleration procedures for solving large sparse ma-
trix problems arising from finite difference discretizations of elliptic partial

differential equations.

We consider the matrix problem
Au=1b (3.1.1)

where A is an N x N nonsingular matrix and b is an N x 1 column vector.

3.2 Basic Iterative Methods

Let u(® be a starting vector. A basic iterative method for solving the

linear system (3.1.1) can be written in the form

) = Gut™ 4 k (3.2.2)
where
G = I—-Q14,
@ (3.2.3)
k = Qb

Here @ is a nonsingular matrix which is called the splitting matriz.

10




11

There are two criteria that need to be considered in choosing the
matrix Q. First, ) should be “close” to A in some sense. (When @ = A, the
method will converge after one step.) Second, @ should be a matrix such that
Qz = y can be “easily” solved for z for any given y, since in the iteration, the
system @z = y needs to be solved for z. For example, Q) can be the diagonal,
the tridiagonal, or the triangular part of A.

3.2.1 Richardson Method

The Richardson method, which is probably the simplest iterative
method, is defined by

ult) = (I — A)u™ +b. (3.2.4)
Here the identity matrix I is the splitting matrix and the iteration matrix is
G=1-A. (3.2.5)
3.2.2 Jacobi Method
The Jacobi method is defined by
u™ = (I — D' A)u™ + D1, (3.2.6)

The splitting matrix Q is given by @ = D where D is the diagonal part of A

and the iteration matrix is given by

B=I-D"A. (3.2.7)

3.3 Acceleration of Basic Iterative Methods

In this section we consider the acceleration process for symmetrizable

basic iterative methods. An iterative method with an iteration matrix G (3.2.2)




12
is symmetrizable if I — G is similar to a symmetric positive definite (SPD)

matrix,* i.e. there exists a nonsingular (symmetrization) matrix W such that
W(I - G)W~1is SPD.

3.3.1 Extrapolation

A symmetrizable basic iterative method itself is not necessarily con-
vergent because the eigenvalues of G can be less than —1. However, there
always exists a so-called extrapolation method based on (3.2.2) which is con-

vergent whenever the basic method is symmetrizable.

The extrapolation method with extrapolation factor 7 for any basic

iterative method is defined by

ut) = 4 (Gu™ +E)+ (1 - 4 )ul™) (3.3.8)
— G[‘Y]u(n) + k[‘)‘] (3.3-9)

where

= 1—NI=I—~Q'A
{Gh] YG+ (1 =y =1-~vQ7'4A, (3.3.10)

ko = Q7.

From (3.3.10), the splitting matrix Q}, for an extrapolation method
is given by Q) = %Q where @ is the splitting matrix of the corresponding
basic iterative method. If the basic iterative method is symmetrizable, then
the optimum eztrapolation factor 7, in the sense of minimizing the spectral
radius of G}, is given by

_ 2
T=37M(G) — m(G)

(3.3.11)

*A real N x N matrix A is SPD if A is symmetric and if (v, Av) > 0 for any nonzero
vector v.
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where M(G) and M(G) are the largest and smallest eigenvalues of G respec-
tively. (See e.g. Hageman and Young [35].) From (3.3.11) and (3.3.10), the

spectral radius of the optimum extrapolation method is given by

M(G) - m(G)
Ty p=eit (3.3.12)

S(G) =
The number of iterations required to reduce the error by a factor of 0.1 can be
estimated as (see Hageman and Young [35])

K(I-G)

= (3.3.13)

n = —(log;o §(G)) ™" ~

where K(I — G) is the condition number of the matrix I — G.

3.3.2 Polynomial Acceleration

Let 2 = A~'b be the true solution to equation (3.1.1). We define
the error vector e™ associated with the ntD iterate u(® of the basic iterative
methods (3.2.2) as

e™ =y g, (3.3.14)

Since

u = Gu+k,

u(") = Gu("“l).i.k, (3.3.15)

it is easy to show that
e™ = Gnel®, | (3.3.16)

For a symmetrizable basic iterative method with extrapolation, the error vector

is given by

™ = Gpe®

(YG + (1 — 7)), (3.3.17)
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A natural way to generalize the extrapolation procedure (3.3.9) is to use a
different value for v in each iteration instead of a fixed value. The variable

extrapolation procedure can be written as
2 = 4 (Gu™ 4 k) + (1 — o Jul™. (3.3.18)

If we let \; and v;, 2 =1,..., N, be the eigenvalues and the eigenvectors of the

matrix G respectively and represent ¢(® in the form

N
e© = z k;v; - (3.3.19)

=1

then from (3.3.18), the nth error of the variable extrapolation procedure can

be written as

N
e("') — Pn(G)e(o) = ZP,,(A,')IC;'U,‘ (3320)
=1
where
Pi(z) = Iz +(1=")]
=1
n (n)
z — a;
= —_—. 3.3.21
g o (3.3.21)
Here af") are the zeros of P,(z) and are given by

a™ =1+41/4". (3.3.22)

We note that P,(z) is a polynomial of degree n satisfying P,(1) = 1. We denote
by P, the set of all such polynomials. We seek a polynomial P,(z) € P, such
that

pax, |Pa(2e)] < ax, |@a( )] (3.3.23)
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for any polynomial @,(z) € Py. Such a P,(z) is usually called the optimal poly-
nomial and the corresponding ¥; 7™ are called the optimal variable extrapolation

factors.

One commonly used polynomial acceleration is the Chebyshev semi-

iterative method which is defined by

uA(”'H) = put1[1(Gu™ + k) + (1 — 1)u™] + (1 — pagr)u™™V (3.3.24)

where
2
T = MG - m(G) (3:3.29)
M(G) — m(G)
o 3= M(G) —m(C) (3.3.26)
1 n=20
prir = § (1-2)1 n=1 (3.3.27)

Q-Zpa)" n2>2.

It can be shown (e.g. Young [70]) that the error reduction matrix of
the Chebyshev semi-iterative method can be written in the polynomial form

(3.3.20) with the polynomial given by

rer=1 (Srm ) /= (i ) 02

where T,,(z) is the Chebyshev polynomial of degree n and M(G), m(G) are the
largest and the smallest eigenvalues of the matrix G.

The polynomial defined in (3 3.28) has an optimal property in the

sense that

|Pn(2)] < |Qn ()] (3.3.29)

m(G)<z<M(G) (G)< <M(G)

for any polynomial Q,(z) € P, It can also be shown (Young, [70]) that

(3.3.30)

S(PAG) = jmax,  |P(@)] =
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where S(P,(G)) is the virtual spectral radius of P,(G) and

—_ ,/ — 72
+ -0

The number of semi-iterations required to reduce the error by a factor of 0.1

can be estimated as

. vKI -G
n = —(logo [S(P(G))) " = _(_12__) (3.3.32)

where K(I — G) is the condition number of the matrix I — G. Here we assume
that K(I - G) > 1.

Generally the eigenvalues M(G) and m(G) are not known. In prac-
tice, estimated values are used initially and these estimated values can be
improved adaptedly during the process. (See Hageman and Young [35]).

3.4 Optimal Iterative Methods

The vectors defined in (2.2.6) and (2.3.14) are also called Fourier
modes. The integers p and ¢ represent the number of half sine waves which
constitute the Fourier modes. Figure 3.1 shows the relationship between the
eigenvalues of the extrapolation Jacobi iteration matrix and the Fourier modes
(eigenvectors of A) for the one-dimensional problem (2.2.4) with N = 64. It
illustrates that changing the value of 4 can affect the damping factors |),|
corresponding to the high-frequency modes ( %’— <p<N-1).

Although the polynomial acceleration process can improve the con-
vergence rate of the basic iterative methods, there is an intrinsic limitation.
The idea of a classical polynomial acceleration is to choose the P,(z) so that
all the coefficients of e(™ are as small as possible. In other words, each of the
coefficients |P,();)| in (3.3.20) should be small. From (3.3.21), it follows that
in order to make |P,(A;)| small for a given i one could choose P,(z) so that

there is a root a}c") near )\;. However, if J; is close to one (low frequency mode),
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Eigenvalues of Iteration Matrix

-2

0 10 20 30 40 50 60
Nunber of waves p

Figure 3.1: Damping Factor of Extrapolation Jacobi vs. Fourier Mode

i") near A; will introduce large factors (1 — a}c") )~ for other

choosing some a
components. Therefore, to make every P,();) small, the components related
to the eigenvalues close to one cannot be damped rapidly by a polynomial

acceleration.

For the 5-point discrete Laplacian, if we use the Richardson method
with the optimal polynomial acceleration (Chebyshev acceleration), the number
of iterations is on the order of

n ~ O(/K(A) ~ O(h™). | (3.4.33)

3.5 Iterative Methods for Red/Black Systems

In this section, we give a short discussion about some iterative meth-

ods for red/black systems. These methods are often used with multigrid meth-
ods.
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—e
6

&~ O
w o

O red ® black

Figure 3.2: Red/Black Ordering of Grid Points in 1D: h = 1/8

For the linear systems arising from finite difference discretizations of
elliptic partial differential equations, the properties of the matrix A depend on
the partitioning and ordering of the unknowns in the problem defined in Section
2.2. The system (2.2.5) corresponds to the natural ordering of §j, illustrated in
Figure 2.1, where z; follows z; if z; > z;. Here we give a brief discussion of an
alternate ordering, namely, red/black ordering. In the 2D cases, the standard

5-point discretized scheme is assumed.

In red/black ordering, every other grid point is given the same color
(i.e. all the points with an odd sequential index number are marked red and all
the points with an even sequential index number are marked black) and then
the points are partitioned by their color (e.g. the red points are counted first).

For the model problem (2.2.1) with N = 8, one red/black ordering
of the grid points is illustrated in Figure 3.2 and the corresponding 3-point
finite-difference matrix problem is given by
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9 -1 0 O u; [ f1+ ¢a/h?
2 -1 -1 0 U f2
2 0 -1 -1 Uz f3
1
= 2 0 0 —1||usl|=]fate/h® |- (3534)
-1 -1 0 O 2 Us fs
0 -1 -1 0 2 Ug Je
0 0 -1 -1 2 || ur i fr |
If we let
i “ -
Us
up = v and up=| ug (3.5.35)
Us
Uz
| Us |

then (3.5.34) can be written in the form

Dr H ur | br (3.5.36)
HT DB up bB
where
2
D = P—I‘;, (3.5.37)
2
Dg = 72-5]3, (3.5.38)
P g 0 -
11-1 -1 0
H = — . 3.5.39
B2 0 -1 -1 ( )
| 0 0 -1 |

Here we use I, to denote the identity matrix of order n.
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(0,1) (1,1)
(‘4 ‘9 05 O red
07 <>3 '8 ® black

(0,0) (1,0)
Figure 3.3: Red/Black Ordering of Grid Points in 2D: A = 1/4

In the two-dimensional case with N = 4, the red/black grid points
are illustrated in Figure 3.3. For the model problem (2.3.8) with a = 1, the
corresponding 5-point finite difference matrix is given by

4 -1 -1 0 0
4 -1 0 -1 0
4 -1 -1 -1 -1
4 0 -1 0 -1
;%; 4 0 0 -1 -1]. (3.5.40)
-1 -1 -1 0 0 4
-1 0 -1 -1 0 4
0 -1 -1 0 -1 4
0 0 -1 -1 -1 4

Red/Black Gauss-Seidel (RBGS) Method
The Gauss-Seidel iteration with red/black ordering is given by

3.5.41
uftV = D'HTWGM + D3les. B

{ug+" = Dp'Huf) + Dy'ba,
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One can see from (3.5.41) that all the unknowns with the same color can be up-
dated simultaneously with red/black ordering. Therefore the RBGS procedure

can be carried out very efficiently on a vector/parallel machine.
Red/Black Successive Overrelaxation (RBSOR) Method
The SOR iteration with red/black ordering is given by

ug‘“) w(DElHug) + Dglbp) + (1 — w)ug),
uSt = w(DngTugH) + Dg'bg) + (1 — w)u(;).

(3.5.42)

Like the RBGS method, the SOR method with red/black ordering (RBSOR)

can be carried out with a high degree of parallelism.

In the next chapter, we will discuss another kind of acceleration tech-

nique, namely the standard multigrid technique which can substantially reduce

the components of the error corresponding to the low frequencies without am-
plifying the other components too much. The number of cycles needed for
convergence will be O(1) which is independent of A.




Chapter 4

Standard Multigrid Method in 1D

4.1 Introduction

In this chapter, we give a brief introduction to the standard multigrid
method (MG), and an analysis of the convergence properties of the method us-
ing standard Fourier analysis for the one-dimensional Poisson model problem.
We also give an alternative analysis based on a two-color Fourier analysis pro-
cedure. We show that this procedure can also be used to analyze the standard
multigrid method where a red/black ordering iterative method is used as the
smoothing procedure. In later chapters, this alternative analysis will also be
used to analyze a multiple coarse grid multigrid method.

4.2 Standard Multigrid Method

The standard multigrid algorithm consists of several pre-smoothing
iterations, a coarse grid correction procedure and several post-smoothing itera-
tions. The smoothing iterations are carried out by a smoothing iterative method
which is usually a basic iterative method. The coarse grid correction procedure

can be described as follows.

Given an initial guess uﬁo) of the system
Ahuh = bh, (4.2.1)
we wish to solve the correction equation

Ahéh =Ty = bh = Ahugo) (4.2.2)

22




Qo | —o - ® !
W —eo—eo—o—o—o—o—o—]
0 1 2 3 4 5 6 7 8
(z=0) (z=1)
Figure 4.1: Multigrids in 1D: N =8
for the correction
bp = Uy, — u}lo) (4.2.3)

where @ is the true solution of (4.2.1). If we obtain the solution 65 of (4.2.2),
the solution of the original problem (4.2.1) will be u§,°’ + &p.

Instead of attempting to solve the correction equation (4.2.2) on the
original grid, we solve it on a coarse grid. The coarse grid usually consists of
every other point of the fine grid and the distance between two adjacent points
is twice as great as on the fine grid. For the case N = 8, the coarse grids are
shown in Figure 4.1, where there are three levels of grids Qp, Qp, and 4.

First, we restrict the residual to the coarse grid. The simplest restric-

tion operator is an injection which is defined by
ran(z) = (Rarn)(z) = ra(z), = € Qan. (4.2.4)

An alternate restriction operator is called full weighting which is defined by

ran(z) = (Rars)(z)
= e —W 42 raz+R), =€ D (42.5)
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The next step is to solve the coarse grid correction equation
Aznbon = T2 (4.2.6)

for 6(3%), Here the coarse grid matrix A, is created by using the standard
finite difference discretization for the original partial differential equation on
the coarse grid. The coarse grid equation (4.2.6) itself can be solved using this
procedure based on an even coarser grid.

Finally, we interpolate the correction §(**) onto the fine grid and add
the result vector to the old solution. A commonly used interpolation scheme
is linear interpolation which is defined by

62h($) T € Qgh

1 (4.2.7)
5(62},(50 = h) + 62h($ + h)) T ¢ Q?h

64(z) = (Préan)(z) = {
where we assume that §,,(0) = 0 and 62,(1) = 0.

For the model problem (2.2.4) with N = 8, the full weighting restric-
tion of the residual on the finest grid is given by

[ ru(z1) ]
T'h($2)
ron(z2) . 121 ri(z3)
rn=| raa(zd) | =7 121 ra(2a) | = Barn.  (42.8)
2n(T6) 1 21 Th(zs)
rn(%e)
| ra(z7) |
- The coarse grid matrix on €3, is given by
. 2 -1
Agp = @h) -1 2 -1}. (4.2.9)

-1 2
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The interpolation of the correction vector 625 onto € can be written in the

form

én(z1) 1
on(z2) 2
bn(z3)
= Gn(zy) | =
On(zs)
Sn(z6)
én(z7) | :

[
— N

[ I

521:(312)
bon(z4) | = Prbap. (4.2.10)

52h($6)

This two-level standard multigrid algorithm, for the solution of Aju; = bz,
starting with an initial guess uﬁo) , is described by

Algorithm SMG(An, ul?, b):

1. Do m, pre-smoothing iterations using the smoothing iterative method (a

basic iterative method) to obtain uj},.

2. Compute the residual r, = by — A,u, and restrict the residual to the

coarse grid to obtain
r2n = Rpra.
3. Solve the coarse grid system

Aznbon =123

(4.2.11)

(4.2.12)

4. Interpolate the coarse grid correction 8z, onto the fine grid and obtain

the new approximate solution

” '
Uy = U, <+ Ph&zh-

(4.2.13)




26

5. Do m, post-smoothing iterations using the smoothing iterative method

to obtain and return ug).

The procedure from step 2 to step 4 corresponds to the coarse grid correction.

If we let e}f’) = u§,°) — %y, be the error before the coarse grid correction
and eg) = u{! — @, be the error after the coarse grid correction, where @, =
A;1by, then from (4.2.11) to (4.2.13) we have

ul) = ul) + P
ugo) =+ PhA;hlrgh
uglo) + PhAgthrh

u® + P AZ Ry An(—e)

el = (I - PiAZI RaAr)el)) = Chel). EA1E)

Here, we use C}, to denote the coarse grid correction matrix. If G is the iterative
matrix of the smoothing iterative method, the matrix of the standard two-level
multigrid method T}, can then be expressed as

T, = G™C\,G™. (4.2.16)

4.3 Standard Fourier Analysis

In this section, we present the standard Fourier analysis of the two-
level standard multigrid method for the matrix problem (2.2.4). We use the
full weighting restriction defined in (4.2.5) with the corresponding matrix R}
and the linear interpolation defined in (4.2.7) with the matrix P,. Most basic
iterative methods can be used for smoothing iterations. For simplicity, we use
the damped Jacobi method with the iteration matrix

By=1- yD™1 A, (4.3.17)
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where v is the damping factor. For any of the matrices which we will consider

in the analysis, say Z, it can be shown that

Zo®) = ZPy) 4 (B, (N-P) (4.3.18)
and

ZoW-7) = 2 y@) 4 By (N-P) (4.3.19)

for some values zg), zg), zgfl’), zg) depending on p. Therefore we can write

Z(vP, o) = (o, v ) 2P (4.3.20)
where
(»n
Z o | F Az (4.3.21)
z(”) 2(?) '
21 %22

Also, we say that the subspace E® spanned by v{” and v

under Z. The matrix Z{ is called the v-transform matriz because in some
sense it can be regarded as a kind of “transform” of the matrix Z on the

v-basis vectors v and v" 7.

N-p) s : .
(N=P) is invariant

The eigenvectors of the coarse grid matrix Az, 'vg’,), are the projec-
tions of the fine grid eigenvectors v,(f ) onto the coarse grid. Thus in the case of

N = 8, we have the coarse grid eigenvectors

sin(2pmh)
o) = | sin(4prh) |, p=1,2,3. (4.3.22)
sin(6prh)

and the corresponding eigenvalues

w_ _1
vy = (2—h)7(2 — 2cos 2prh). (4.3.23)




Without loss of generality, we assume that NV is even

N—p,forp= 1,...,%, we can write
Ao, o) = (v, o)A,
RaCl? o) = o D,

Al = o9,

Pl = 0, )0,

Beaoff o) = 0, o) B
where

A}lp) — 1

) _ _~ (9 __
Ay = 4h2(2 2 cos 2pmh),
- 1
PO=3| T,
2 e —1

with

¢p = cos prh.
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. Ifwelet p =

(4.3.24)
(4.3.25)
(4.3.26)
(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

(4.3.31)

(4.3.32)

(4.3.33)

(4.3.34)
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From (4.2.15) and (4.3.24) through (4.3.33), we obtain the v-transform

matrices of the coarse grid correction operator

P = 1- BPARRPAP = 1| 17 1T (43.35)
l—-¢ 1+¢
and the two level multigrid operator
7P = (BO)™ P (BE™ = [ tu t ] (4.3.36)
i1 122
where
tn = —(1 — &)1 =7 + e ™™,
tz = 5(1 o)1 =7+ 76)™ (1 =7 — 7)™,
tn = 3(1-e)(1—7+76)™(1 =7~ 76)™,
tr = %(1 + )1 =y — e, (4.3.37)

From (4.3.35) it is easy to see that the determinant of the matrix C’,Ep) is zero.

Because of (4.3.36), we also have
det(T") = 0. (4.3.38)

Hence the eigenvalues of T\*) are 0 and trace(T{™). Therefore, the nonzero

eigenvalue of the matrix T(” ) is given by
), = trace (T{P). (4.3.39)

Suppose that the initial error has the expansion

N-1
e® =3 o). (4.3.40)

p=l




Then after one multigrid cycle the new error is given by
N-1
e = T1.e® = Z d;vl(lp)’
=1

ie. for p=1,...,N/2, we have

=T | o e e G (4.3.42)
dN—p ta1 l22 dN—p

where the t;; are defined in (4.3.37). The value #;2 (¢21) represents the aliasing
from mode v{¥ 7 (v{?) to mode o) (NP,

When the extrapolated Jacobi method with extrapolation factor v =
2/3 is used for the smoothing iteration, from (4.3.37) we have

- -2
) { te(Mitnymutms Ly (A

} . (4.3.43)

lﬁ(l+2cg )m1(1—2cg )m2 _li-_:_:g(l—kg )m1+mg
2 3 3 2 3

The trace of the matrix T\ is given by

A (TISP)) = 1- S ( 14 2CP )m1+m2 + 1+ CP( 1- 2CP )m1+m2. (4_3_44)
2 3 2 3

For tra.ce(T,Sp )), if p is small (corresponding to the low frequency modes), then

¢y = 1, 152 is small and |2=22| < 1. Also if p is large (corresponding to the

high frequency modes),llz‘-’2 ~~ 1, but 1—';5"— is small and |1L32°2| <i

The convergence factor of the two-level multigrid method is defined
as the spectral radius p(T}). Since the spectral radius of the matrix A,Ep ) is the
absolute value of its trace, we have

p(Th) = 13;2)_()! trace (T,fp)). (4.3.45)
—F—=2
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Table 4.1: Two-Level Convergence Factors g, of 1D MG-Jacobi

Y (m1, my)

0,1) | (1,1) [ (1,2) |(1,3)
0.5 | .4997 | .2499 | .1250 | .08331
0.6 | .3997 | .1599 | .08798 | .06819
0.7 | .3984 | .2198 | .09329 | .06016
0.8 | .5981 | .4293 | .2543 | .1593
0.9 | .7979 | .6885 | .5391 | .4377
1.0 | .9977 | .9977 | .9953 | .9953

If we let m = m; + m,, the upper bound of the convergence factor of the

two-level SMG is given by
7(p)
Ty) < max 1 = Pm- 4.3.46
p(Th) 15p$N/2trace( h)=Pm (4.3.46)

Table 4.1 lists the two-level convergence factor p,, for different values of the
extrapolation factor 4 in the case of N = 64. As the number of smoothing
iterations m increases, less convergence improvement is obtained because the

smoothing iterations cannot reduce the low frequency modes effectively.

If we let  be the ratio of the work required for carrying out coarse
grid correction to the work required for carrying out one smoothing iteration,

then the optimal m should be chosen to maximize the function

—lnp,,

. (4.3.47)

®y(m) =

When 7 is large, the optimal m will be large, and when 7 is small, the optimal
m will be small. Table 4.2 lists the values of ®,(m) and m for = 1,2,3,4.
For the cases listed in Table 4.2, m = 2 is the best choice.




Table 4.2: @,(m) vs. m

m &, (m) ®,(m) ®3(m) ®4(m)
1 .5493 .3662 2747 2197
2 7323 .5493 4394 .3662
3 6355 .5084 4237 3631
4 .5580 .4650 .3986 .3488

4.4 Two-Color Fourier Analysis

In this section we describe a two-color Fourier procedure for analyzing
the convergence properties of the two-level standard multigrid method for prob-
lem (2.2.4). This is an alternative to the standard Fourier analysis. Although
this analysis gives the same result, it will be more effective for the analysis of

other schemes.

We consider two sets of grid points, which we refer to as red points
(Q4) and black points (). Instead of carrying out the analysis in terms of
the eigenvectors v}f’) for p =1,2,..., N — 1 corresponding to the fine grid we
work in terms of vectors w{*"”, wﬁ-’p ) where p=12,...,N/2, which are the

projections of v,(,” ) onto 2, and §)_ respectively.

4.4.1 The Two Coarse Grids
In the one dimensional case, the fine grid §2;, defined in (2.2.2) can be

partitioned into two coarse grids as red points:
Q, = {:z:j l T; € 2, and (j = Odd)}, (4.4.48)
and black points

Q_ = {z;|z; € and (j =even)}. (4.4.49)
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Q% —e & © 6—— O red
Q| —— * @ { @ black
QB —e—eo—o—0o—0—0—0 |
0 1 2 3 4 5 6 T -8
(z =0) (z=1)

Figure 4.2: Two Coarse Grids for a One-Dimensional Problem: A = 1/8

Figure 4.2 illustrates these two sets of grid points for N = 8.

The vectors w}(f’p ) and w,(:’p ) are defined by

(wi™); = (4.4.50)

(WP); if z; is red
0 if z; is black

and

(w(""))- _ 0 if z; is red (4.4.51)
P (viP); if z; is black o

For the case of N = 8, we have

[ sin(prh) |
0
sin(3prh)

w£+,p) — 0
sin(5prh)
0

) p=1,...,4 (4.4.52)

| sin(7prh) |
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and

0
sin(2prh)
0
wg—-m) = | sin(4prh) |, p=123. (4.4.53)
0
sin(6pmh)
0

. . . - N/2
For convenience of discussion, we define wg N2 t6 be the zero vector.

We notice that the black grid Q_ is the same as the coarse grid Q25
for the standard multigrid method. It is convenient to write the coarse grid
matrix in an expanded form so that it can be applied to the vectors wﬁ_’p ). For
example, the expanded coarse grid difference matrix defined in (4.2.9) can be

written as
[0 0 0 ]
0 2 0 -1 0
. 0 0 O 0
(B) _
2h (2h)2 '_1 0 0 —1 o (4.4.54)
0 0 0 O
0 -1 0 2 0
i 0 0 0]

Here, we use the superscript “E” to indicate the expanded matrix. Similarly,

we can write the expanded restriction matrix and the expanded interpolation
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matrix as
[0 0 ]
121 0
000
RQE)=2 121 (4.4.55)
000
0 121
L 0 0.
and
2 0 0
101
P,SE)=2(R§,E))T=-;— 020 (4.4.56)
p 101
0 020
i 10|

respectively.

4.4.2 Convergence Analysis

(—p)

,(;{"’p) and wh

For the two-color Fourier analysis we use the vectors w
corresponding to the red points (4.4.48) and the black points (4.4.49) respec-
tively as a basis for the invariant subspace EP) defined in Section 4.3. For any
matrix Z with an invariant subspace E(®, we can write

Z(w](;}.,p)) w}(;_,p)) = (w£+’p), w](;_’p))Zg(up)' (4.4'57)




36

where Z{) is a 2 x 2 w-transform matriz because it can be regarded as a kind
of “transform” of the matrix T corresponding to the w basis. Therefore, for

p=1,. ,2,wehave

An(witP, wi™) = (Wit wiT M) AP, (4.4.58)
RP (wfr ), wi™?) = wim "R, (4.4.59)
Agf)wg_’p) ("vp)A(p)’w’ (4,4,60)
P(E) ( rp) (w(+sp)’ ’p))P(’w, (4.4.61)
B[-y] (w§1+'p), w};—,p)) = (w§',+,p), 1?))B(;’)w, (4.4.62)
where
. 1 2 =2
AP, =— [ e ] , (4.4.63)
ey 2
a 1
B =2]e 1 | (4.4.64)
A(P)
Adiw = 7 h2 ——(2 — 2 cos 2pwh), (4.4.65)
B = [ ";” } : (4.4.66)
and
. 1—
B, = T (4.4.67)
v 1-—v

Here ¢, = cos prh.




37

From (4.4.58) through (4.4.67), the w-transform matrix of the coarse

grid correction operator on the subspace £ can be written as

. Ay n ary a 1 -
c,saa=z—dﬂ%ﬁu-w&&%:[ ‘ i)
’ ’ ’ - 0 0
If we let
{ = 1-7+7%
7 = 1=-7-7% (4.4.69)
we have
. m m mi; __ ,,m
BE" =1 S (4.4.70)
digm—_gm g™

and the w-transform matrix of the two-level multigrid operator on the subspace

E®) can be written as

R R A o tin t
T(P) - (B(P) )mzCl(:Z(B(P) )ml — [ 1 na2 } (4,4,71)

i s tay 122

o= FE A TE + ™) - €™ — ™)),
ha = € HTN(E™ — ™) = (€™ +1™)),
o= 3 = )(E ™) — (€™ — ™),
tn = (€™ =1 (E — ™) = (€™ + ™). (44.72)

Since det(é’,‘ﬁ,) = 0, we have

det(T{?) = 0. (4.4.73)
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Therefore, for each p, the nonzero eigenvalue of the matrix T(p ) is the trace of

T(p ). If we let the initial error be expressed in the form
e® = Z(k pwh ) 4k Wi ’p)), (4.4.74)

then the error e(!) after one multigrid cycle is given by

e = Ty = Z(k* ) e wl™), (4.4.75)

p=1

and for p=1,...,N/2, we have

Bip | o | Ttz || oo (4.4.76)
kX, tnn t22 k_p

where the t;; are defined in (4.4.72). In the case with the extrapolation factor
v = 2/3, we have

= (S5 () () 5

ey

e (0 i 0 Nt (S AR G ol
(o)

= %{( ) 1 (1—32%) l_cp-(1+3ch)m:_(1_3ch)m1:}
(52"~ (57},

= H)" - (5" o (1) (522))

{( 3c,.>mz (1 —32%)’"2} (4.4.77)

and the trace (11 + t22), as expected, is the same as the trace of the matrix
T,fp ) defined in (4.3.44). Thus we get the same result as that obtained from the

conventional Fourier analysis.
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4.5 Relation Between the v-basis and w-basis

In this section, we discuss the relationship between the v-basis corre-
sponding to the standard Fourier analysis and the w-basis used in the two-color
Fourier analysis. By comparing the definition of the v-basis (2.2.6) and of the
w-basis (4.4.50) and (4.4.51), we have the following relations:

v}f’) = w£+.p) + wﬁ—,p) - N (45.78)
'U}(;N-p) - w£+.p) — wg-,p) T g” )

The relation between the v-basis and the w-basis (4.5.78) can be writ-

ten in the matrix form

(o8, 0" ™) = (wi", wi ™) Hy (4.5.79)
where

|| } (589
We note that

H'= %Hl. (4.5.81)

If we let Z be any matrix of order N —1 with invariant subspaces E(®)
spanned by the eigenvectors v”) and v{" ", and Z( and Z{) (4.3.20) be the
transform matrices associated with the v-basis and the w-basis respectively,
then we have the following result.

Lemma 4.1 Let Z® and Z{) be defined as in (4.9.20) and (4.4.57) respec-
tively. Then the following relation holds:

n 1
ZP = §le,(,5’)Hl. (4.5.82)




40

Proof: By using the relation (4.5.79), we have

2P o ) = 2, w ) Hy
= (w{", ") ZPH, (4.5.83)
= (v,(f),v%N-p))%le&")Hl,

when p # N/2, and v,(f) and v,(lN'p) are linearly independent. Therefore, the
result follows by comparison to (4.3.20). When p = N/2, we have

oV =yt (4.5.84)
Suppose Any; is the eigenvalue of the matrix Z corresponding to v,(lN/ 2), and let
ZWNID) = ZWNID) = Ay, (4.5.85)

the relation (4.5.82) still holds.

Lemma 4.1 shows that in any case where the standard Fourier analysis
or the two-color Fourier analysis can apply, the other can also apply. Since in
a given situation, one of the two Fourier analyses may be easier, it might be
appropriate to transform an operator representation form on one basis to the
corresponding representation form on another basis. For instance, the RBGS
smoothing operator is not easy to write in the v-basis form, but is easy to write
in the w-basis form. One can write the v-basis form by using the transformation
described in Lemma 4.1. For example, the red iteration operator on the v-basis
is

Sl(z-,:'p) — % H, S’(l"i:;’z’) H,

(4.5.86)




41

4.6 Red/Black Gauss-Seidel Smoothing

We now consider the use of the red/black Gauss-Seidel (RBGS) method
as the smoothing iteration method in the standard multigrid procedure. One
RBGS iteration can be regarded as consisting of two sub-iterations: a red sub-
iteration followed by a black sub-iteration. Let the red points and the black
points be defined in (4.4.48) and (4.4.49) respectively (refer to Figures 3.2 and
4.2). The red sub-iteration operator S},"') and the black sub-iteration operator

S,(,-) are defined by

)y, = | 3((unia + (un)j1) = odd (red),
(Sp"un)j {(u,.)j = even (black), (4.6.87)

(4.6.88)

$Fup); = 3((un)isr + (un)j-1) J = even (black),
(5i"us) { (un); J = odd (red).

for j = 1,...,N — 1. These two operators can be written in the w-transform
matrix form as

S’(;")(wl(;",p), w’(l—tp)) . (w£+7p), wg"‘ﬂ’))g](;"ﬂp) (4.6.89)
and
where
a 0 @
St = 4.6.91
: [ 0 (4.6.91)
and

o 10
S = [ ] . (4.6.92)

¢ 0
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Let the set of black grid points be used as the coarse grid. If linear
interpolation of the corrections and the full weighting restriction of the residuals
are used, the two-level standard multigrid method will converge in one cycle
with one smoothing iteration on the red grid points that corresponds to the
operator .S',(;H defined in (4.6.87). This is because

e 0o || 00
Gnem _ 4.6.93)
TR 0 1 00 (

and

e 1 —c | (0 0]

CRS = * (4.6.94)
' 0 0 00

where the coarse grid correction operator C ,(f ) is defined in (4.4.68).

Let us now look more closely at this procedure. If we use one red
sub-iteration for pre-smoothing, the full weighting restriction is equivalent to
an injection multiplied by % On the other hand, if we use one red sub-iteration
for post-smoothing, the linear interpolation is equivalent to a pull back injection
which is given by

ban(z) = € Qyp

64(2) = (Pban)(z) = { o g (4.6.95)

To see this, we write
RS;_ 1P) Ah w‘é"(l‘"’p)

I 2

BRI

] 2
| & 1]7;5

[ 2
0 1]2
- h? [0 1—cos2p7rh]
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and the matrix

[ 01 ] (4.6.97)

is the w-transform-space matrix of the injection restriction operator defined in
(4.2.4). For the second case, we notice that

e N [ 0 1T
S}(;{'yp)P)s"yp) - Cp cp ]

01 |]1
_ |00 (4.6.98)
011

and the matrix

[ 0 } (4.6.99)
1 .

is the w-transform-space matrix of the pull back injection interpolation operator
defined in (4.6.95).

Based on the analysis above, it can be shown that the following 1D

standard multigrid algorithm converges in one cycle for any given initial guess
(0)
Uy

1. Do one red iteration: uj, = ,(,"')uf,o) + by.
2. Inject the residual multiplied by % on the black points
1
Tap = E(bh - Ahu;‘).
3. Solve the correction equation on the black coarse grid
A2rbon = ran.

4. Get the final solution by linearly interpolating the coarse grid correction
and adding the result to the old estimated solution

ugl) = u;; + Ph52h,
(1)
h

where u;,’ is the true solution of the problem Aju; = by,.
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4.7 Numerical Results

In this section we present some numerical results of the standard
multigrid method for the following model equation:

dz?
u=1l+z z € 0f.

{ _dulz) _ 642 z€Q=(0,1), (4.7.100)

We use the linear interpolation of correction and the full weighting restric-
tion of the residual in the algorithm. The damped Jacobi method is used for

smoothing.

Table 4.3 shows the convergence factors using the two-level scheme
where v is the extrapolation factor of the damped Jacobi method, and m;
and mg are the number of pre-smoothing and post-smoothing iterations re-
spectively. The grid size we used is 64. The convergence factors listed are the
average convergence factors of 3 multigrid cycles measured by

1
nr<3>u2)'f
. 4.7.101
(""(0)"2 (4.7.101)

Table 4.4 shows the convergence factors for the same case with six
levels. In the case of more than two levels, the coarse grid problem (4.2.12)
is solved by using a similar coarse grid correction procedure based on an even
coarser grid (€243). In general, this process can be recursively carried out down
to the coarsest grid on which the problem is solved directly. Figure 4.3 shows
the schedule for the three-level multigrid method. Because of the shape of the
diagram, the multigrid algorithm described here is called the V-cycle.

Comparing these two tables to Table 4.1, one sees that the two-level
numerical convergence factors are bounded from above by the estimated up-
per bounds and the multilevel numerical convergence factors are close to the
corresponding two-level ones.

One of the nice properties of multigrid methods is that the conver-
gence factor is independent of the problem size. Figure 4.4 shows that the




45

2h

4h

Figure 4.3: Schedule of Grids for Three-Level V-Cycle MG Method

Table 4.3: Numerical Convergence Factors of Two-Level 1D SMG-Jacobi

7 (m1, my)
(6,1) (1,1) (1,2) 1,3) |

0.50 0.3043 0.1527 0.0822 0.0534
0.60 0.2455 0.1004 0.0550 0.0410
0.70 0.3862 0.2096 0.0838 0.0405
0.80 0.5805 0.4107 0.2434 0.1468
0.90 0.7758 0.6626 0.5261 0.4212
1.00 0.9711 0.9603 0.9550 0.9543
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Table 4.4: Numerical Convergence Factors of Six-Level 1D SMG-Jacobi

y (ma, ma) II
(0,1) wy | @2 (1,3) |
0.50 0.4011 0.2334 0.1394 0.1079
0.60 0.2920 0.1869 0.1095 0.0901 |
0.70 0.3324 0.2724 0.1130 0.0877
0.80 0.5266 0.4370 0.2152 0.1758
0.90 0.7390 0.5708 0.4869 0.4351
1.00 0.9661 0.9603 0.9082 0.9536

convergence factor has only a minor change when the number of points N
varies from 32 to 512. In these runs we use 4y = 0.6 and m; = my; = 1.

In our experiments, we found that the solution of the system on the
coarsest grid does not need to be exact to obtain fast convergence. The conver-
gence factor of a multigrid method will not degenerate as long as the accuracy
of the solution on the coarsest grid is within a certain limit, say 10 times smaller
than the average convergence factor. Figure 4.5 shows the residual reduction
history for using solutions with different accuracy on the coarsest grid. In the
plot, n is the number of smoothing iterations on the coarsest grid. If the num-
ber of iterations is more than 8, the result is the same as that using the exact
solution on the coarsest grid.
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Figure 4.4: Residual Reduction History for Different Problem Sizes (1D)
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Figure 4.5: Residual Reduction for Different Coarsest Solution Accuracy (1D)




Chapter 5

Standard Multigrid Method in 2D

5.1 Introduction

In this chapter, we describe the two dimensional standard multigrid
method, and extend the convergence analysis of the standard multigrid method
to the 2D model problem (2.3.11). We again provide both the regular Fourier
analysis and the multi-color Fourier analysis.

5.2 Definition of the SMG Algorithm in 2D

The standard multigrid method in 2D is a direct extension of the
standard multigrid method in 1D described in the previous chapter. If we let
z; = jh and yx = kh with h = 1/N, the fine grid on the area (0,1)? is defined
by

Q= {(-Tj,yk) Ij,k: 1:--"N_1}- (5.2.1)
The fine grid Q; contains four subsets which are defined by

Qe+ = {(ziy) | (zj,yx) € U and (j, k) = (odd, odd)},

Q_y = {(zjyu)| (zj,yx) € O and (j, k) = (even, odd)},
a Q- = {(zj,9:) | (z5,y%) € D and (5, k) = (odd, even)},
Q- = {(zj,y%) | (zj,yx) € Qs and (j, k) = (even, even)}.

(5.2.2)

One of these subsets (usually £2__) is used as the coarse grid §2;; for the coarse
grid correction in the SMG.

49
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The full weighting restriction operator R, in 2D is defined by

ra(z,y) = (Rars)(z,y)
76(2ri(z — h,y) + dra(z,y) + 2ra(z + b, y)
rh(z —hyy +h) +2ra(z,y+ A) + (e + A,y +h) (5.23)
ri(z — b,y — h) + 2ra(z,y — k) + ra(z + b,y — R))
(z,y) € Qan.

+ +

The bilinear interpolation operator P; is defined by

6;,(37,3]) = (Ph62h)($9y)

b2n(z,y) (z,y) € Q-
%(&h(z — hy) + Ean(z + h,y)) et oy
= 4 -2-(62;,(z,y — k) + ban(z,y + h)) (z,y) € Q-4

1
Z(5zh($ —h,y — h)+ bp(z — b,y + h)

+éan(z + A,y — h)+ ban(z + h,y+ 1)) (z,y) € Dty

The coarse grid matrix A, is created by using the standard finite-
difference discretization of the original partial differential equation on the coarse
grid. It is easy to verify that the eigenvectors of the matrix A, are given by
vg’}’f) for p,g=1,...,% — 1 where

(v, . = sin(pn2jh)sin(qnr2kh) . k=1,... -"-;’— -1 (5.2.5)
The corresponding eigenvalues »{*? are given by
1
V,(fq) = -’;5(20 — 2a cos(pn2h) + 2 — 2 cos(gn2h)). (5.2.6)

We assume the damped Jacobi method is used as the smoothing it-
erative method and the corresponding matrix is given by

By=1I-

An. (5.2.7)

~
2(1 4+ a)




51

5.3 Standard Fourier Analysis

In the 2D case, for any of the matrices which we will consider in the

analysis, say Z, it can be shown that

Z'v,(f’q) — zg’q)v,(f"q) + zg’;"’)v,(f"” + z{ﬁ'”vﬁp'q‘) + z{i"’)v,(f”q’),
Zvl(zp"Q) = zg’q)v,(f’q) + zgz;,q)v}(‘p’,q) + zgg,q)v’(‘m’) + zéﬂ’q)v}f’"q'),
(5:4) (0), (P0) | 00) (#0) | (20) () | (pd). (") (5.3.8)
thpﬂ —_ zsxirq vhp,q + zaqu vhp g + 2331 vh 'y + 2341 vh s ,
Zv,(f"q') = zg;{,q)vgp,q) + zﬁ’;"')v,(f”q) + zgg,q)vl(f,q') + zgﬁ"’)v,(f"q')

for some values z{7'? depending on (p,q) where p’ = N—pand ¢ = N —q. We

4
can also write (5.3.8) in matrix form as

ZE®9 = ESP,Q)Z‘SPJ) (5.3.9)
where
E,(,”"’) — (v,(f’Q), v,(f’""), v}f'q’), v,(f"q’)) (5.3.10)

and the v-transform matrix is

zg,q) z%;,q) zg,q) z{z;.q)

zgz;,q) (rg) _(p9) zgﬂ"')

Zpe) = 22 13 (5.3.11)
zg.q) z:(;;,q) zg.q) z:(;;,q)
i z‘(‘r{,q) zg,q) zgg.q) z‘(‘z.q)
Also, we say that the subspace
E®9) = span(v{P9), pF'9) P (" (5.3.12)

is invariant under Z. In some sense the matrix Z9) can be regarded as a kind
of “transform” of the matrix Z. Note that the rank of the matrix E®9 is 2
when one of indices p and g, but not both, is N/2, and is 1 when both p and ¢
are N/2.
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For problem (2.3.11), the matrices used in the standard 2D multigrid
algorithm can be written in the forms

AREPD = EPD AP (5.3.13)
RLEP = oI RED) (5.3.14)
Agpoi® = oD A5, (5.3.15)
Pood? = EPp9 piro), (5.3.16)

B,E®9 = El) B‘(Yz’vg) (5.3.17)

where

ARD = —

(5.3.19)

(5.3.20)
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Table 5.1: Two-Level Convergence Factors of 2D MG-Jacobi

0 m=1 m = 2 m=3 m=4

0.50 0.7496 0.5619 0.4212 0.3158
0.60 0.6995 0.4893 0.3423 0.2395

i 0.70 0.6494 0.4218 0.2740 0.1780
0.80 0.5993 0.3593 0.2154 0.1365
0.90 0.7989 0.6383 0.5100 0.4075
1.00 0.9988 0.9977 0.9965 0.9953

Here cg = cos(prh/2), cg = cos(qnh/2), sp = sin(prh/2), and sg = sin(gmh/2).

From (4.2.15), the v-transform matrix of the coarse grid correction

operator can be computed by
Gl =1 BIP(AGID T RED ALY, (5.3.23)

The v-transform matrix of the two-level multigrid operator with m; Jacobi
pre-iterations and m, Jacobi post-iterations is given by

i) = (B O By, (5324

Therefore, the convergence factor of the two-level 2D standard multi-
grid method with the damped Jacobi method as the smoothing iterations can
be computed by

AT ™) = max p(TEe™ ™)y = p,, (5.3.25)

1<p.9<¥ '

where m = m; + m,. Table 5.1 lists the two-level convergence factor p,, in the
case of h = 1/64 with different values of 7.
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5.4 Four-Color Fourier Analysis

The 2D w-basis vectors are defined by

(w(s,Pﬂ))‘k _ { (vl(zp,q))j,k if(z,-,yk) €N,
h s =

0 otherwise
N
D,e¢= 17 cey _2—
Jk=1,...,N-1
s=4+, —+, +—, — — (5.4.26)

where the v-basis v™" are defined in (2.3.14). Here, (p,q) is the vector index,
s is the coarse grid index, and (jk) is the vector element index.

The subspaces E®) defined in (5.3.12) can also be represented in
terms of

E®e) — span(w£++,p,q),w£—+.p,q), w£+—,p.q), wﬁ——,p,q))' (5.4.27)
If we let
E.(.?'Q) — (w§l++'p"'), w£-+,p,q), w}f"”"'), w},“”"")) - (5.4.28)
PD=1,..., 9

For any matrix Z with an invariant subspace E®9, we can write
ZE®9 = EPa) Z(0) (5.4.29)

where fo'q) is a 4 x 4 matrix which can be regarded as a w-transform matrix

of Z.
For each of the operators used in the 2D SMG algorithm, we have

ALE®D = E@9) A}:::) (5.4.30)

RLEPD = =9 plpa) (5.4.31)




where
[ 1+a —ac, —Cg 0
+(p0) 2| —ag 1+« 0 -
Ah,:u = "5
h —C, 0 l1l4a —ac
| 0 - —a¢ l+a |

and

Azhw;;—'p'q) — w;;—,p,q) Ag’;i),
phwg’;ﬂ = E@9) PIS:LQ)

B,E(®9) = E®) B‘(ypg)

A 1
Rf:lz)=z[cpcq ¢ G 1]’

- 1
Ag’,’,’:‘), = ﬁ(asﬁ + s?)
e
. c
B =17,
cp
1 -

B — g _ % i)
T 2(1+ ) Abw
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(5.4.32)
(5.4.33)

(5.4.34)

(5.4.35)

(5.4.36)

(5.4.37)

(5.4.38)

(5.4.39)

The w-transform matrix of the coarse grid correction operator is given

G = 1 B AGRY D A

(5.4.40)
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The w-transform matrix of the two-level multigrid operator with m; Jacobi

pre-iterations and m, Jacobi post-iterations is given by

Tls’p1;91m1 ,m2) = (B‘(Y?:Dq))ml é}‘P!Q)(B(F’oq))m2 (5,4,41 )

VYW

Therefore the convergence factor can be calculated by

AT ) = max, p(T7™") = pm (5.4.42)

ISPoQS‘g‘

The numerical calculation of p(T,fm"m’)) has verified that the convergence fac-
tors calculated by the four-color Fourier analysis are the same as those calcu-
lated by the standard Fourier analysis.

5.4.1 Relationship Between the v-Basis and w-Basis

Since the w-basis defined in (5.4.26) is constructed from the v-basis
defined in (2.3.14), there is a linear transform relationship between these two
sets of bases. By comparing the definitions of the two bases, we have

v,(zp.q) - w£++,p,q) + w£-+,p.q) + w£+—,p.q) + wi——.m)’
v,(fl’Q) - w£++,p,q) _ wf:'"”"q) + w£+-,pm) - w,(,“””q),
v'(lp,q’) - w£++.p,q) + w£—+.p.q) - w£+-,p,q) - wﬁ“-""q), (5.4.43)
vl(lp’.q') - w£++.p,q) _ wl(z—+.p,9) _ w§l+—,p,q) + wﬁ——,pvq).

pe=1,...,%a

where p' = N —p and ¢’ = N — g. Since the wavenumber p’ (or ¢’) is larger
than %, the corresponding p’ (or ¢') modes are referred as the high-frequency
modes in the z-direction (or the y-direction). Equation (5.4.43) can be written
in the matrix form

(v'(lPﬂ), vl(lp 19), vﬁpvq )’ v)(;p 1 )) —

(w£++.p,q)’ w£‘+vPvQ)’ wf:"-’p'q), wg——’p’q))Hg (54’44)
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where
(11 1 1]
1 -1 1 -1
Hy = (5.4.45)
1 1 -1 -1
1 -1 -1 1 |
It can be directly verified that the inverse of H; is given by
a1
H'= ZHg. (5.4.46)

If we let Z be a matrix of order (V —1)? with the invariant subspaces
E®9) defined in (5.4.27), and Z(P9) and Z{P9 be transform-space matrices
associated with the v-basis and the w-basis respectively, then we have the

following lemma.

Lemma 5.1 Let Z#9 and Z#9 be defined as in (5.5.9) and (5.4.29). Then
the following relation holds: .

. 1. 4 '
Z{pa) = ZJargz,(,,M)Hz. (5.4.47)

Proof: From (5.4.44), we have

Z('v}f‘q), 'vffl'Q), v’(‘?.q’), v’(lp'.q’))
— Z(w§,++’p'Q), w’(z—-+.p,q)’ w£+—.p,q), wg——m.q)) H, )
= (w§t++1P1Q) , w£—+m,9) , w£+—'p'q) , wg_-'p,Q))Zi(f’q)Hz .

— (vgp,q), v,(fl’Q), 'v,(f”q’), v’(lp',q’))‘ll H, Z&p,q) H,

The result follows by comparing this to (5.3.9).




We remark that if Z{P9 has the form

(6 b c d]
. b d
LI R (5.4.49)
c dab
| d ¢ b a |
the corresponding matrix Z&p'q) is given by
a+b+c+d 0 0 0
230 = 0 a-bte-d 0 0 (5.4.50)
¥ 0 0 a+b—c—d 0
0 0 0 a—b—c+d

5.5 Numerical Results

The problem we used in our numerical experiments with the 2D stan-
dard multigrid method is given by

Pulz,y)  Ouls,y)
oz? oyz
u=1+zy (z,y) € 00

642 (z,y) € Q= (0,1)?, (5.5.51)

We use 2D linear interpolation of correction and full weighting restriction of
the residual in the algorithm. Avga.in‘, the damped Jacobi method is used for
smoothing.

Tables 5.2 and 5.3 list the convergence factors of the two-level multi-
grid algorithm and the multilevel multigrid algorithm respectively. The grid
size we used is 64 x 64. The convergence factors are obtained by averaging the

convergence factors in 3 multigrid cycles.

The two-level numerical convergence factors of the two-dimensional

multigrid method, as in the one-dimensional case, are bounded from above by
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Table 5.2: Numerical Convergence Factors of Two-Level 2D SMG-Jacobi

¥ (ma, ™)

(0,1) (1,1) (1,2) (1,3)
0.50 0.6643 0.4621 0.3209 0.2088
0.60 0.6061 0.3346 0.2595 0.1788
0.70 0.5511 0.3384 0.1793 0.1194
0.80 0.3984 0.2911 0.1691 0.1371
0.90 0.4584 0.1956 0.1134 0.0827
1.00 0.3185 0.2173 0.1335 0.1196

Table 5.3: Numerical Convergence Factors of Six-Level 2D SMG-Jacobi

v (M1, ma)
(0,1) (1,1) (1,2) (1,3)
0.50 0.7702 0.6296 0.4390 0.3237
0.60 0.7189 0.4918 0.3332 0.2494
0.70 0.6671 0.4957 0.2987 0.2150
0.80 0.5303 0.3561 0.2346 0.1827
0.90 0.5599 0.3845 0.2119 0.1631
1.00 0.4227 0.2580 0.1863 0.1525
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Figure 5.1: Residual Reduction History for Different Problem Sizes (2D)
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the estimated upper bounds presented in Table 5.1 and the multilevel numerical

convergence factors are close to the corresponding two-level ones.

Figure 5.1 illustrates the residual reduction factors of the multigrid
method with different grid sizes. It confirms that the convergence factor of
multigrid methods is independent of the size of problems. In these runs we
used ¥ = 0.6 and m; = m, = 1. The problem sizes are from 8 x 8 to 128 x 128.
The system on the coarsest grid does not have to be solved exactly. In practice,
the system on the coarsest grid can be solved approximately by performing a
few smoothing iterations. Figure 5.2 shows that the difference between the
convergence factors when the system on the coarsest grid is solved to different
accuracy. Here n is the number of smoothing iterations performed on the

coarsest grid. In this case two smoothing iterations are enough.




Chapter 6

The Construction of Extended
Systems

6.1 Introduction

In the next two chapters, we will discuss multigrid methods involving
the use of more than one coarse grid for the 1D problem (2.2.1) and for the
2D problem (2.3.8). Since such kinds of methods can be more conveniently
applied to periodic systems, we will first consider periodically extended systems

corresponding to the problems (2.2.1) and (2.3.8).

6.2 A Sample Problem in 1D

We consider the numerical solution of the model problem with the

Dirichlet boundary condition defined by

dz? (6.2.1)

{ _M = f(z) forz € Q=(0,1),
u(0) = a, u(l) = go.

This problem was considered in Chapter 2.
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Qn f——e—e—|

Figure 6.1: The Original Grid with 2 =1/4

For a grid with grid size b = 1/4 (see Figure 6.1), the standard 3-point
finite-difference equation system is given by

f U = ¢, = b
—uo+2u; —u; = hify = b

J —uy+2u; —uz = hif, = b, (6.2.2)
—uy+2uz—uy = hifs = bs
[ U4 = ¢ = b,

where f; = f(z;).

We now consider the “modified system” given by

[ & = 0 = i
—tig+ 2l —il; = R fi+d, = b
§ =iy + 26, — s = hf = by (6.2.3)
—ty+ 23— Gy = Rfs+¢y = b
| = 0 = b,

Evidently, if u, given by

[ 4. |
Uy
U=l ug (6.2.4)

us

b
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—by —by =By O B by b

Figure 6.2: The Periodically Extended Grid and the Vector b

satisfies (6.2.2), then 4, given by

(0 ]

Ui
o (6.2.5)

141
I

us

0

L. -

satisfies (6.2.3).

6.3 The Periodically Extended System in 1D

We now replace the modified system (6.2.3) by a “periodically ex-
tended system” involving the entire real line. We construct a vector b on the
entire real line by first extending b asymmetrically from the interval [0, 1] to the
interval [—1,1] and then extending it periodically with period 2 to the entire
real line as shown in Figure 6.2.

We now define the periodically extended system by requiring that
satisfy the following conditions:

1. At every grid point z; = jh (including j = 0,+1,+2,...) we have

—z:z,-_l + 22:1']' - 'lij.'.l = 3,- (6.36)




i 0 —di3 —Gy —i; 0
- —@ & & L 4 *——©
Ty Ty T3 T_9 T3 Zo

(z=-1) (z =0)

Figure 6.3: A Solution of the Periodically Extended System

where @; = (z;);

. @ is periodic with period 2, i.e.

Ujpon = U; (6.3.7)

for y =0,%1,£2,.. ;

. The sum of the values of {t;} over any period of length 2, excluding one
of the end points, vanishes.

Let @* given by

- -

be the solution of the modified system (6.2.3). We claim that % is a solution
of the periodically extended system where i is obtained from @* by extending
4* asymmetrically to the interval [~1,1] and then extending the asymmetric

vector periodically, with period 2, to the entire real line as shown in Figure 6.3.
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Suppose now that # is any other solution of the periodically extended

system and let

%, (6.3.9)

en
on

W=

Evidently, v is periodic and the sum of the {;} taken over any period of
length 2, excluding one of the end points vanish. Moreover

_&J.‘i—l + 2&31 - &)j+1 =0, .7 =0,%1,%2,... (6.310)

where ©; = w(z;) for all j. The solution of (6.3.10) can be obtained by
rewriting (6.3.10) in the form

W41 = 20; — Wj-1, J=0,+£1,%2,... (6.3.11)

Thus, we have

’&32 = 2'&)1 - ’&;)o

= 2(th; — Wo) + Wo, (6.3.12)
1.?)3 = 213.'12 - '&'}1

= 2(2(&; — o) + o) —

= 3(’3)1 - ?.-l;Jg) + ‘l?)o (6.3.13)

and so on. In general, we have
'I.‘.l;)n = n(ﬁ)l == 'l})o) -+ ’l?)o. (63.14)

By periodicity, @; — o = 0. Also since the sum of the {’[23,} over a period must

vanish it follows that w, = 0. Hence % = 0 and

. (6.3.15)

e
2

Therefore, the periodically extended system has a unique solution % . More-

over, from % we can obtain the solution of the modified system.
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6.4 The Extended System in 1D

We will now show that one can derive a finite-number of equations
from the periodically extended system such that the solution of the periodically
extended system, the solution of the modified system and thus the solution of

the original system can be obtained.

To derive the extended system, we first consider the equations of the
periodically extended system corresponding to the points z_4,z_3,...,z4. We

- obtain the system

;

—-1:1_5 + 21:1,_4 - ’l:,:l,_3 = 7)..4 =0
—Gig+2ig—ti_; = b

g (6.4.16)
~Uj-1+ 2u,- — Ujqy bj j=-2,-1, ,3

{ i3 + 2iiq — iis = ~4 =0

We then use the periodicity to replace s by #%_3, t_s by s and ti_q by 4 and

we obtain

'S ~ -~ ~ =
—~U3 + 2’(1,4 ~—U_3 = b-4
—'&4 + 2'&,_3 - ﬁ..z = b..3
J ) . . (6.4.17)
—Uj_ 142U —Ujpy = b j=-2,-1,...,3
| —u3 + 2%y — U3 = 04

Since 5.4 = 54. We then discard the first equation since it is the same as the
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last equation and obtain the conditions

]
1
]
3
1

2 -1 0 0o 0 0 -1][3d. b_s
-1 2 -1 0 0 0 0 iz b_s
0 -1 2 -1 0 0 0 O fi_y b_y
- -1 0 0 O 5 b
bowo=t i I (6.4.18)
0 0 0 -1 2 -1 0 0 i by
0 0 0 0 -1 2 -1 0 fig bs
0 0 0 0 0 -1 2 -1 i3 b3
| -1 0 0 0 0 o0 -1 2 || s | by |
or
AB)(B) = p(B), (6.4.19)

In addition, since Z;*:_;, {1_7' = 0 for the periodically extended problem we have

4
> uf? =0 (6.4.20)

j=-3

We refer to the system defined by (6.4.19) and (6.4.20) as the eztended system.

It is easy to show that any N x N matrix of the form of A®) has rank
N —1 and has as its null space the one-dimensional subspace spanned by the
vector

z=(1,1,...,1)T. (6.4.21)




Moreover, the vector

-

satisfies (6.4.18). Hence the general solution of (6.4.18) is

u®) = (B + az. (6.4.23)

If one requires that the sum of the components of u(¥) vanish, then o must
vanish, since the sum of the components of (u())* vanishes.

We remark that the process of replacing a vector w by a vector w' =
w + az such that the sum of the components of w’ vanishes is referred to as
purification. Thus if w is a vector of order N and if w’ is given by

N
w=w-— (% > w;)z, (6.4.24)

Jj=1

then w' is the purification vector of w and we let

w' = P(w)
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Suppose now that we want to solve an N X NN system of the form

[ 2 1 0 . 0 -1|[w [ 5,
1 2 —1 - 0 0 || w b,
2 (6.4.26)
1 0 0 -1 2 [|wv] [bn]
or
Aw=b (6.4.27)

where the sum of the components of b do not necessarily vanish. Since the sums
of the rows of A vanish, the system is inconsistent. However, the following

procedure can be used to obtain an approximate solution

1. Purify b to obtain & = P(b). Thus

6;=b_,-—-a, ;j=12,...,N (6.4.28)
where
. Ag;
a= b;; 6.4.29
N = ’ ( )

2. Find a solution, , of the consistent system Aw = ¥’;

3. Purify W to obtain @/'P(w). Thus

f=t;—f, j=1,2,...,N (6.4.30)

1 X '
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It can be shown (see Appendix A), that the approximate solution of (6.4.26)
obtained in this way is the same as the “Moore-Penrose solution” of (6.4.26).
In general the Moore-Penrose solution of a linear system Au = b minimizes
l|b— Au|| and [ju]|.

In later chapters we will need to solve linear systems of the form

(6.4.26) which may not be consistent.
From the discussion above, the procedure for solving the difference

equation system

(6.4.32)

—ujo1 4+ 2u; — uj = B2 f(z;), j=1,...,N-1
U = ¢a, UN = P,

where h = 1/N, u; = u(z;), o = 0 and zx = 1, can be described as follows.

1. Construct the modified system

{ g 20— =b, j=1,....N—1 o

’&0 = 0, '&N = 0,
where
Z1 = h2f($1) + ¢a2a

b; = R f(z;) j=2,...,N-=2 (6.4.34)
bvo1 =k f(znoa) + ¢
2. Construct the periodically extended system
e Extend b to get i;
L4 —‘l:tj_l + 2'5,_,' - ‘lij+1 = z,-;
e iiis periodic;

e sum of {u;} over a period vanishes.
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3. Construct the extended system

e use periodicity to get equations for z1_n,Z2-nN,...,TN;

e sum of {ugE)} vanishes.
4. Find a solution @& of the extended system.
5. Purify 4(®) to get (a(®))".
6. Obtain the solution u* of the modified system by letting

w);=@®); j=1,.. ,N-L (6.4.35)

-3

. The solution of (6.4.32) is the vector ©* with two end values ¢, and ¢.

6.5 The Construction of an Extended System
in 2D
The discussion in the one-dimensional case can be extended to a two

dimensional case. We consider the following anisotropic problem in two dimen-

sions:

_JFulz:y) _ Pu(z,y) _ flz,y) (z,y) € Q=(0,1)

O0z? 0y:
u = ¢(z,y) (z,y) € 69

(6.5.36)
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where the constant coefficient > 0. The 5-point finite-difference representa-

tion of the above problem can be written in the form

[ Lalujx] = (2+ 20)ujx — atj1p — QUjp1k — Yjko1 — Ujkt
= h*f(z;,yx) = i,

ujo = #(z5,%0) = bjo,

§ uiN = o(z;,yn) = biN, (6.5.37)
uox = ¢(o, ¥x) = box,
unk = $(zn,yx) = bnx,
| jk=1,...,N-1
The modified system corresponding to (6.5.37) is given by
[ Lifja] = bin,
ﬁjvo = E'ro = 09
iin=b;n=0,
BN = 00N (6.5.38)
tor = box =0,
Gng = byg =0,
| G k=1,...,N—1
where
bix = b2 f(z;,u:) jk=2,N—2
El,k = hzf(xl, yk) + (}5(.’170, yk) k= 2’ N -2
$ byorp= R f(zn_1,ui) + d(zn,vx) kE=2,N —2 (6.5.39)
bJ',l = hzf(xj)yl) +¢($jyy0) .7 =2,N-2
| binv-1= R f(zj,yn-1) + S(z59n) J=2,N -2
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and

( b1 = R f(21,91) + 6(T0, y1) + B(21, ¥o)

?N—l,l =] h2f(a:N-1,y1) + ¢($Na y1) + ¢($N—1, yo) (6.5.40)
byN-1= hzf(wl, yn-1) + ¢(zo, yn-1) + #(z1,yn)

| dv-1,n-1 = B2 f(aN-1,UN-1) + B(zN,yN-1) + ¢(TN-1,YN)

As in the one dimensional case, we construct a vector i on the entire
plane by first extending b asymmetrically in both the z- and y-directions from
the area [0,1]? to the area [~1,1]? and then extending it periodically with
period 2 in both directions to the entire plane. The 2D periodically extended
system is defined by requiring that & satisfy

1. At every grid point (z;,yx) (including j, k = 0,+£1,+2,...)
Li[t] = bjx (6.5.41)
2. @ is periodic with period 2 in both directions;

3. The sum of {#;3} over any period of 2 in both direction, excluding the

points on any one of the end edges in both directions.

It can be shown, as in the one-dimensional case, that the solution of the 2D
periodically extended system is unique. Moreover, the solution of the 2D modi-
fied problem can be obtained from the solution of the 2D periodically extended

system.

We now consider the following extended system in 2D:

Lilu (E)]._b(E) j,k=1-N,....N

(_?-k—ug,), k=1—N,...
J ughr=ulh, k=1-N,..., (6.5.42)
WPy =uf)  j=1-N,

j—N = cog

2 2 2

E E 0
§,,3+1_u§1)_,v j=1-N,...,
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(%) (QgE) )

Figure 6.4: The Original Grid and the Extended Grid in 2D with A = 1/4

where
' ij LEk=1...,N-1
—E_,-,k j=1—-N,...,-1;k=1,..., N-1
WD =< b j=1,..,N—1;k=1-N,...,—1 (6.5.43)
—b_jx j=1-N,...,-1; k=1-N,...,-1
| 0 J,k=0,N
or
AB),E) — y(E) (6.5.44)

This system is defined on the extended grid in the area [—1,1]2. Figure 6.4
illustrates the extended grid QF in the case of 2 = 1/4. It can be shown that
any 2N x 2N matrix of the form A(®) has rank 2N — 1 and that its null space
is spanned by the vector z defined in (6.4.21). Therefore, we can use the same

purification procedure in solving the 2D extended system.




Chapter 7

Multiple Coarse Grid Methods in 1D

7.1 Introduction

In this chapter we discuss a class of multigrid methods where, unlike
the standard multigrid method, more than one coarse grid is used at each
coarse grid level. In our discussion we will refer to this class of methods as
multiple coarse grid (MCG) methods. We are concerned with three classes
of such methods, namely, multiple coarse grid multigrid methods (MCGMG),
frequency decomposition multigrid methods (FDMG) and parallel multigrid
methods (PMG). We will use these methods to solve the extended system
(6.4.19). For convenience of description, we divide the extended system (6.4.19)

by h? to obtain an equivalent system which is referred to as

Apup = by. (7.1.1)

7.2 MCGMG Methods in 1D
7.2.1 The Two-Level MCGMG Algorithm in 1D
Let z; = jh with A = 1/N and

Qh={x5|j=l—N,...,N}. (7.2.2)

be a grid on the interval (—1,1], where N = 2* for some positive integer k.
We construct two coarse grids in such a way that all the even-numbered grid
points belong to one coarse grid and all the odd-numbered grid points belong
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Figure 7.1: Two-Level Grids in 1D with A =1/4

to another. Then, we have

Q. = {z;|z; € QY and (j = even)}, (7.2.3)
Q = {:cj | z; € Q4 and (7= odd)}. (7.2.4)

Figure 7.1 illustrates the grids on two levels, h and 2k for the case N = 4.

For problem (7.1.1) a two-level MCGMG algorithm is given in Fig-
ure 7.2. For the following analysis, we assume that the full weighting restriction
of residuals and linear interpolation of corrections are used. The full weighting

restriction is defined by

(ra(z — )+ 2rp(z) +ra(z + k) z€Qy

() ) (z) = 2.
(Ryra)(z) {0 e (7.2.8)

0 $€Q+

(7.2.9)
ira(z — )+ 2ru(z) + ra(z + 1)) z €.

(R rn)(z) = {

and the linear interpolation is defined by

San(z) z €,

P’S+)62 T)=
WU { L(6a(z — )+ San(z + b)) z€Q
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Algorithm: MCGMGID2L(Ax, u, bs)

. Do m; pre-smoothing iterations using the smoothing iterative method
(e.g. damped Jacobi method) to obtain uj.

. Compute the residual r, = by — Anuj,, restrict the residual onto the coarse
grids and perform purification defined in (6.4.24) if necessary to obtain

i) = PR, 20),  5) = PR m, 253)) (7.2.5)

where zg',’;) and zz(,',:) are the eigenvectors in the null spaces of AS;) and

Ag;) respectively.

. Solve the coarse grid systems
ADED =), AP = D (126
to obtain the purified solutions 5&';) and 6§;).

. Interpolate 6§’,’;) and 65;) onto the fine grid to obtain the new approximate
solution

! 1 TIENT
up = uj + §(P;£+)5z(>t) + P6)) (7.2.7)

. Do m; post-smoothing iterations using the smoothing iterative method
and purify the result, if needed, to obtain ugl .

Figure 7.2: The 1D Two-Level MCGMG Algorithm
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2(6an(z — h) + ban(z + ) z €0y

. e (7.2.11)

(P 6am) () = {

The coarse grid difference operators are defined by the 3-point difference for-

mula, e.g.
(AP @) = (@) 2[265)(z) — &) (z — 2k) — 6 (o + 2h)]

e, (7.2.12)
(A6 (@) = (2k) (265 (z) — 65)(z — 2h) — 65 (= + 2h)]

z €N (7.2.13)

In general, the restriction of a purified vector on the fine grid may not
be a purified vector on coarse grids. However, we have the following lemma.

Lemma 7.1 Let b, be a purified vector on the fine grid. If the number of fine
grid points is 2N for some positive integer N, then the full weighting restriction
of by, on a coarse grid, say ba, is also a purified vector. In fact the element
sum of by, is one half of the element sum of by,.

Proof: It can be directly verified by using the restriction operator definition.
In fact, each of the elements of b, contributes half of its value to bss.

On the other hand, we have

Lemma 7.2 Let ug, be a purified vector on a coarse grid. If the number of
fine grid points is 2N for some integer N, then the linear interpolation of usp
on the fine grid is also a purified vector uy.

Proof: It can be directly verified that the sum of the elements in uy is the

same as the sum of the elements of us;.

Therefore, the purification in step 2 of the MCGMGI1D2L algorithm
defined in Figure 7.2 is not needed if the full weighting restriction of residuals
is used. Moreover, if the Jacobi method is used for smoothing iterations, then

the purification in step 6 is also not needed.
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7.2.2 Two-Level Convergence Analysis

Let v, p =1~ N,..., N, be the Fourier modes (v-basis vectors)
defined by

(v®); = exp(—iprjk), j=1-N,...,N (7.2.14)
The two-color Fourier modes (w-basis vectors) are defined by

; -N
w}f P) _ %(v,(:’) b v;f )) (7.2.15)

- -N
w}(l P) _ %('Ul(zp) _ v,(‘p ))
where p =1— N/2,...,N/2. Note that vﬁp—N) — 'v,(f’+N). In the case of N = 4,

we have

- - -

I exp(—i3pmh) 0
0 exp(—:2prh)
exp(—tprh) 0
wit? = 0 , wi? = ! (7.2.16)
exp(ipmh) 0
0 exp(i2prh)
exp(i3pmh) 0
i 0 ] i exp(zdprh) ]

for p=-1,0,1,2.

We are interested in the combined effect of the two coarse grids on the
coarse grid correction of the MCGMG algorithm (step 2 to step 6 in Figure 7.2).
We denote 4, = A,’:bh the purified solution of Ayu, = by. Let e}, = uj — @, be
the error before the coarse grid correction and e} = u} — @y, be the error after
the coarse grid correction. We note that both e}, and e} are in the range of A,.
From (7.2.5) to (7.2.7) we have

4 = - BIED - P
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1 ), A= -
eh = (P (AR Anel, + P (45))1 R Anel)

where

1 23 (=)t (e
Ch=1- §(P§+)(A§;‘))*R§,+)Ah + POASHT R 4,). (7.2.18)

Here the Moore-Penrose inverses (A$))t and (A$;”)! mean that the two coarse
grid systems are solved exactly for the purified solutions 5&') and 6&;) respec-
tively.
We now show that after one MCGMG cycle, the new error vector has
. s © _, 0 _ - b b
no imaginary component. The initial error e;’ = u; ’ — 1), can be expressed by

a linear combination of the Fourier modes

N N/2
= Y dvP= 3 (kwPP + LuwP?) (7.2.19)
p=1-N p=1-N/2

where the coefficients dp, k, and I, can be complex values. Since each compo-
nent in v,(:’) is the complex conjugate of the corresponding component in v,(f’ ),

eﬁo) is real if and only if

dy=d_, (7.2.20)

where d_, is the complex conjugate of d_,. After one multigrid cycle, the error
eg) = ugl) — iy, is given by

N N/2
e}(;l) - Z d;,v}(lp) _ Z (k;’w;f’ﬂ-l— I;’w}(‘p’_)). (7.2.21)
p=1-N p=1-N/2

If we let T}, be the operator of the two-level MCGMG method and let
T,Sﬁ,) be the v-transform matrix which is defined by

Tu(vf, ™) = (P, oM (7.2.22)
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then (7.2.29) can be written in the form

% =T @ | (7.2.23)
;-N dp—N
If T,f’? = T,E;,” ), which is the case in our analysis, we also have
b |- e | = i % | o ‘fj” . (7.2.24)
d;-N dP—N dN-P N-p

From (7.2.24) one sees that after one MCGMG iteration the error is still real.
In the two-color Fourier analysis, we use the w-basis given by (7.2.15). From
(4.5.79), we have

el el
l, dp-nN dn-p lp

If the w-transform matrices T,ng of T} are given by

Th('w;;*-'p), wg—m)) = (w£+,P)’ w}(;—m))T}sz (7.2.26)

and T,f’,}, = T{P which is the case in our analysis, we also have

hw 9
, d_ k*
=T 7P (= (7.2.27)
dN—p l:p

[ lp

Ideally, one would like to have

d, = Apdy. (7.2.28)

This is true, for example, for the Jacobi method itself. However, in general,
because of aliasing in the coarse grid correction process, for a normal standard

multigrid cycle, we have

d, = Apdp + tp-Ndp-N,
p-N = Hpdp+ Ap_NEN_p.

(7.2.29)
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If pp—n = 0 and g, = 0 there would be no aliasing. We will show that this is
the case for the MCGMG algorithm.
Forp=1-— %, ceny % the w-transform matrices of the difference op-

erator, the interpolation operators, the restriction operators, the coarse grid
difference operators and the damped Jacobi operator are given by

An(wt?, wl?) = (wit?), W) AT, (7.2.30)
Rf)(w,(f’p), wff”’)) = w}f”’) Rg-:-j),

(=) (, () , (=P) (=2) H(=p) (7.2.31)
Rh (wh s Wy )—_- wy Rh,w 0
A 2 o (+p) 4(+p)

2h" Wh b A2hwo o

AP0l = ufP 4G,

P,f”w,(f"’) — (w£+,p)’ w,(,_’p)) p’f’-:;p),
(-),, (=) (+.2) (=2 D(-p) (7-2.33)
'Ph Wy = (wh s Wy )P haw 9

B, (wi"™, wi?) = (i, w™") A%, (7.2.34)
where

“ 2 [ 1 -

AP = = ? |, (7.2.35)
| 1

o 1r

REP = 311 & ] : (7.2.36)

Al 1T

B =2(e 1] (7.2.37)

; o 1

AG® = AP = (2 — 2cos 2prh), (7.2.38)

" 4h?
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Bt L (7.2.39)
- % -
o e (7.2.40)
’ 1
and
o h? .
BY, = 1-T-AD,
_ 1= e | (7.2.41)
Y6 1=7

The w-transform matrix of the coarse grid correction operator C}, can

be written in the form
C'}(zp) =] — ( (+,p)( A(+,p)) -1 R(+,p) A(P)

+ECP(AGD) R AD) s

-1
A(+’p) “(+'p)

=1-1 [ p®  pm ] Azhw 0 {?»h,w) 4
S o AT | | ALY

Because of the purification process, the coarse grid correction has no effect on
the modes w(+’°) and w( ) Therefore, C(o) = I. From (7.2.36) to (7.2.40),

we have

P(+.P)( A(+,r))-1 R(+,p) A(P)

1 4h?

1
B %}2——2cos2p7rh§[1 cp};ﬁ

2 -2
—2¢, 2 (7.2.43)

L.

A
|10
& 0]
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and

BLP(AGI) T RD AR,

| 4h? l[ 1]_1_ 2 =2
“ |1 | 2=2cos2prh2 | ? K 2, 2 (7.2.44)
|0 @

0 1]

Substituting (7.2.43) and (7.2.44) into (7.2.42), we obtain

o _ ;L1 0] 1|06
R 2 210
e 0 0 1

1 -g

(7.2.45)

1
2
By using Lemma 4.1, the corresponding v-transform matrix is given by

) 1 .
¢ = -H P H,

2
_ gy l1te 1+ | 1| 1+ —(+¢)
ll-¢ 1| 4| -(1-¢) 1-¢
1- 0
=1 & . (7.2.46)
2] 0 1+4¢

From (7.2.46) one sees that there is no aliasing in the combined coarse
grid correction because the aliasing on even and odd grid points is of opposite
sign and therefore cancels.

An upper bound on the two-level convergence factor of the MCGMG
algorithm is given by

p(Ty) = BMCiBM™
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Table 7.1: Two-Level Convergence Factors of 1D MCGMG-Jacobi

Y (m1,m)
(0,1) (1,1) (1,2) (1,3)
0.50 0.2455 0.1480 0.1054 0.0819
0.6 .2083 1235 .08781 .06819
0.7 .3990 .1593 .07533 .05851
0.8 .5987 3587 .2149 1287
0.9 .7985 6380 5097 4072
1.0 .9982 9971 9959 9948
= max p((BO)™CRL(BRI™) (7.2.47)

N N
1-5<p<%

Table 7.1 lists the two-level convergence factor p(7}) using the Jacobi
smoothing iteration with the extrapolation factor v in the case of N = 64. The
w-transform matrix of the Jacobi operator is defined in (4.4.67). Comparing
the convergence factors of the standard multigrid method in Table 4.1, one sees
that the convergence rate of the MCGMG method will generally be faster than
the corresponding standard multigrid method for each multigrid cycle. This
is because the coarse grid correction process of the MCGMG does not have
aliasing errors. Hence, each pair of components in the error of the problem
will be damped effectively by the coarse grid correction and by the smoothing
iterations without affecting each other. On massively parallel machines the
improved convergence rate is attained at no extra computational cost because
the coarse grid correction on all coarse grids on each level can be carried out

simultaneously.
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' Qe o —e |
-3 1
Q- | g —e—]
4h -1 3
Q_ | *— » }
+ = 5
Q__ | ® °
| ! 0 4
[ Q, |—e— -o —e— o |
2% | ~3 -1 1 3
Q. | ® —o - °
\ -2 0 2 4
h{ Q. }|—eo—e—o—0—0—0—0—0
-3 -2 -1 0 1 2 3 4
(z=-1) (z=0) (z=1)

Figure 7.3: Coarse Grids for an Extended Fine Grid: N =4

7.2.3 The Multilevel MCGMG Algorithm in 1D

The 2h coarse grids can be divided into even coarser grids in a similar
way. Figure 7.3 illustrates all the grids on three levels, k, 2h and 4h for the
case N = 4. Figure 7.4 shows the corresponding hierarchical relations among
these grids.

A multilevel MCGMG algorithm is similar to the two-level version ex-
cept the coarse grid problems in step 3 are solved by using the MCGMG1D2L
algorithm recursively. For a better understanding of the multilevel MCGMG
algorithm, we list a three-level MCGMG algorithm in the following. For con-
venience of representation, we use the symbol v instead of é to represent the
solutions and b to represent the right-hand side vectors on all levels. The solu-

tions on coarse grids should be thought of as corrections to the solution of the

fine grid.
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Figure 7.4: Hierarchical Relations Among Grids: N =4

Algorithm: MCGMG1D3L(A;.,u,, ,bn)

1. Do m, smoothing iterations on Apus = by with initial guess vy.

2. Compute
B = PR, 25)), (7.2.48)
bgh’=7°(R Yn, 230). (7.2.49)

3. Do m; smoothing iterations on

A = 8P, (7.2.50)
Afuly) = 83, (7.2.51)

with initial guesses vgz) =0 and vgz) = 0.

4. Compute
83 = (RGP, ), (7.2.52)
557 = PR, ), (7.2.53)
G = P(RGY, G, (7.2.54)

857 = PRG G, 257)). (7.2.55)
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5. Solve
AGHEY = ), (7.2.56)
ALy ("‘) =), (7.2.57)
AN ('” =, (7.2.58)
Aﬁ;‘)uf,;” = b7, (7.2.59)
6. Correct
of) — o 4 (P(++) ) 4 Pl Yol (7.2.60)
v =gy + §(P2‘;+’v£h+’ + P o). (7.2.61)
7. Do my smoothing iterations on
AU =33 (7.2.62)
A(Zh)uzh = b(2h) (7.2.63)
with initial guesses vg}’;) and vgz) respectively and purify the results if
necessary.
8. Correct
1 ) (-
v — vn + E(P,f”vg‘{) + PO (7.2.64)

9. Do m;, smoothing iterations on Axus = by with initial guess vy and purify
the results if necessary.

Here we used the purification notation P(v, z) defined in (6.4.24). In the case
of N = 4, there can be three levels. On the second level, the two 2k coarse
grid systems are given by

2 -1 0 —1]] (van)=s |
Ag.’t) g.’t) 1 -1 2 -1 0 (van)-1
@R2 | 0 -1 2 —1|| (vah

| -1 0 -1 2 || (van)s |
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[ (b2r)-3 ! (b(+))- ]
(bat)-1 (®5)o

- = = b{H) (7.2.65)
(ba)s (b5
| (an)s | | @52
and
(2 -1 0 —1]] (v2n)-2 ]
-1 2 -1 0
AGG = (vae)
(2R 0 -1 2 -1 (van)2
] -1 0 -1 2 (‘02},)4 i
[ (ban)-2 | (b )—1
s
_ | @ado f_f (B o = b{;) (7.2.66)
(b2n)2 M
| Baw)e | | )2
Here we use vy, and by, to represent the fine grid vectors which consist of the

coarse grid vectors vgh), vgh) and bg',';), b(,, respectively.

On the third level, the four 4A coarse grid systems are given by
AG e o 1 2 -2 || (va)-3
< (4h)2 -2 2 (’04),)1

bap)-3 R
B [((b;))l ]= [E‘“’; ]zbﬁ#)’ (1260

AG) o L 2 -2 (van)r
R Tyl PR (ven)s

= [ (b4h)—1 } [ (b " )0 ] = bi‘l‘;—)s (7268)

(ban)s @5
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(9,4 — _1 2 =2 ]| (van)-2
A 4h B (4h)2 { -2 2 } [ (’U4h)2 }

| Bl
Pl

() = L [ 2 —2 || (vao
A 4h (4h)2 [ -2 2 ] [ (‘U4h)4 :]

_ | (ko 60 | _yem 7.2.70
[ (b4h)4 :I [ (b(__))l ] 4h ( )

Here each of the fine grid vectors vg, and by, consists of four corresponding 4k
coarse grid vectors. On the third level, the grid points on a coarse grid are not
always distributed symmetrically about zero. The systems (7.2.67) and (7.2.68)
may not be consistent in general. However, as we showed in Lemma 7.1, for
the full weighting of residuals, purification of the right hand sides is not needed
as long as the number of grid points can be divided by 2.

7.2.4 Numerical Results

The problem we used for the numerical experiments of a MCG method
is the Poisson equation defined in (4.7.100). In solving the extended problem,
we use the MCGMG algorithm with linear interpolation of corrections and
full weighting restriction of residuals. The damped Jacobi method is used for
smoothing.

In our experiments, the grid size is chosen to be A = 1/64. Tables 7.2
and 7.3 list the convergence factors of the two-level algorithm and the multilevel
scheme algorithm respectively. In this case, we use a six-level scheme which is
the maximum number of levels allowed (2% = 64). v is the extrapolation factor
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Table 7.2: Numerical Convergence Factors of Two-Level 1D MCGMG-J

v (m1,my) “
0y | &Ly | 1 |

0.5 181 | .07 | 0827

0.6 149 .0913 0672

0.7 192 0822 0642

0.8 294 163 0011 |

0.9 400 297 143

1.0 506 AT 448

of the damped Jacobi method, m; and m; are the number of pre-smoothing
and post-smoothing iterations respectively. The convergence factors are the
average values of 5 multigrid cycles.

From these two tables, one sees that the numerical 6-level cdnvergence
factors are close to the numerical 2-level convergence factors which are bounded
by the theoretical upper bounds given in Table 7.1.

To see that the convergence factors of the MCGMG algorithm are
independent of the problem size, we used the MCGMG algorithm to solve
problem (4.7.100) with different grid sizes. Figure 7.5 plots the convergence
histories of the runs with grid sizes N = 16,64,256, and 512. The maximum
number of levels were used (i.e. 4, 6, 8 and 9 levels respectively). The other
parameters are m = 1 and ¥ = 0.6. The figure shows that the convergence
factors are almost constant for problem sizes N = 64,256, and 512. Also the

convergence factors remain the same at each cycle.




Table 7.3: Numerical Convergence Factors of Six-Level 1D MCGMG-J

y (1, m2) |
(0,1) (1,1) (1,2) |
0.5 273 169 129
0.6 210 145 116
0.7 195 132 110
0.8 .296 .164 122
0.9 401 208 226
1.0 507 472 449

Normalized Residual

1 L

2 3
Number of MG cycles

Figure 7.5: Convergence Histories for Different Problem Sizes
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7.3 FDMG Methods in 1D
7.3.1 The Two-Level FDMG Algorithm in 1D

We now consider a multigrid method for solving the extended problem
(7.1.1), which is similar to the “robust” multigrid method of Hackbusch [34] and
which we refer to as the frequency decomposition multigrid method (FDMG
method).

The procedure of the FDMG method is the same as the procedure of
the MCGMG method defined in Section 7.2.1 except that some of the opera-
tors are defined in a different way. In the FDMG method one uses different
interpolation operators and different restriction operators on the different grids

at each level. The restriction operators are defined by

1
= —h)+2 h Q
(BPr)(z) = 4 2@~ R +2ma(z) + e+ b)) o€y (7.3.71)
0 z €N
0 z€N
(RO (@) =4 1 * (7.3.72)
Z(-—-rh(z —h)+2rp(z) —ra(z + k) z€ -
and the interpolation operators are defined by
dan(z z €}
(PP8as)(a) = { ) + (1373)
5(62;,(.1: = h) + 62h($ + h)) x € Q_
» —1(an(z — h) + & h €N
(P)6)(z) = 1(0an(@ — k) + bu(z+ 1)) z€Qy (7.3.74)
52};(21) zeN_
The coarse grid difference operators are defined by
A = P AR, (7.3.75)

AR = POIARD. (7.3.76)




In the case of problem (2.2.4) with N = 4, for example, we have

O O O O O N O O
O O O = O - O O
QO O N O O O O
(= = T R = T e B o B o )
S N O OO0 O O
O = OO O O O

1 4 . L]
O O O O O O O W
O O © O O = O =

o

o O 0 o N O O O
! |

o o | ), @ o0

o o N O o o o o

N O O O O O O O

|
[ay

The interpolation matrices P,$+), and P,f_) are the transposes of the correspond-
ing restriction matrices R;f) , and Rg_) respectively multiplied by a factor of 2.
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The coarse grid matrices can be written in the form

2 0 -1 0 0 -1 0|
0 0 0 O 0 0 0
-10 2 0-10 0 0
A;p:_l- 0000 000 (7.3.79)
(2R* | 0 0 -1 0 0 -1 0
0 0 0 0 0 0
-10 0 0 -10 0
00 00 00 0|
(00 00000 O]
0100 300 0 3
000000 0T OO
Ag;)=__;_o30100300 (7.3.80)
(2R3>0 0 0 0 0 0 0O
0 00 3 0100 3
000 0O0OO0DO
(0 3000 3010

It should be noted that the matrix Ag‘,‘;) is consistent with the differential equa-
tion (2.2.1) while the matrix Ag;) is not. In some sense, the correction obtained
from grid §; is more important than that obtained from grid Q. in this case.
As in the MCGMG algorithm, if the coarse grid problems are solved using the
same FDMG method recursively, one gets a multilevel version of the FDMG
algorithm.

7.3.2 Two-Level Convergence Analysis

We first consider the coarse grid correction operator. It is easy to
verify that the w-transform matrices of the the operators Rff), R;f) s P,f"') ,




P,f'), Ag’,';), Ag") have the following forms:

R [1 c,,]

R

(7.3.82)

(7.3.85)

(7.3.86)
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The w-transform matrix of the coarse grid correction operator can then be

calculated by
-1
é}(;p) = J— 1 —c h? 1- ciz’ .1. LI
"" ¢ 1 1432 | 2| -¢ 1
2(1l-¢ 0 (7.3.87)
B2l 0 1+¢
- Cp ——2Cp 1 + C:

The eigenvalues of this matrix are given by

2(1 — ¢2)
) lcp(l______p 3.88
A £\ 5 Tia (7.3.88)

To study the eigenvalues of C ,(,’,’3,, we first discuss the function

z™(1 — z)

e (7.3.89)

fm(z) =
For the function f,,(z) we have the following lemma.

Lemma 7.8 For any positive integer m, the function fn.(z) given by (7.3.89)
has a unique mazimum point in the interval (0,1).

Proof: By (7.3.89) we have

Ofm(z)  —3ma?+(2m—4)z+m
oz (1+ 3z)?

™1 (7.3.90)

The roots of the equation

—3mz?+ (2m—-4)z+m=0 (7.3.91)
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are

r

_m—2:!:2\/(m—%)2+% (7.3.92)

3m

The larger root satisfies

m—2+2{/(m-13)2+32

Ty =
Im
- -1
m-2+2m—3) _,_ 15, (7.3.93)
Im m
and
m—2+2/(m-1)2+3
Iry =
Im
m—2+2m—1+\/§=1_3-—\/§<1 (7.3.94)
3m 3Im
The other root
m—2-2/(m-1)242
Iy =
3m
m—242(m—1) m+1
= — 7.3.95
3 3m <0 (7.3.95)

The conclusion follows from the negative coefficient of the second order term
in 2%9. Here we used the relations

Va+b<a+vh

for any two positive numbers a and b.

Table 7.4 lists the maximum values of function (7.3.89) with the cor-
responding position z for m =1 to 4.

By substituting ¢2 with z in (7.3.88), we can compute the spectral
radius of the combination operator of the coarse grid corrections of the two-level

1D FDMG algorithm:

P(Chw) = nax, |A] £ max v/ fi(z) (7.3.96)
<r<¥

= 0<z<1

Thus we have the following result.
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Table 7.4: Maximum Values of Function fn(z) = ﬂl:&;’l

[» | =-2 fulz) = p
" 1

0.3333333 0.1111111

E 05773502 0.0515668
E 0.6990558 0.0331937
4 0.7675918 0.0244283

Theorem 7.1 The convergence factor of the two-level 1D FDMG algorithm

without any smoothing iterations for the model problem (2.2.4) does not exceed
1

5.

This convergence factor is consistent with the result obtained by Tu-
minaro [64]. Figure 7.6 illustrates the relation between the convergence factor
|Ap| and the frequency mode index p. It shows that the coarse grid correc-
tion operator of the FDMG method eliminates effectively three modes in the
error: the highest, the lowest and the middle frequency modes. The largest

convergence factor is % and this corresponds to the modes with p =~ % and
PR IN
~ 0

7.3.3 Effect of Smoothing

Now we consider the FDMG algorithm with smoothing iterations. We
examine three basic iterative methods defined in Chapter 2, the Jacobi method,
the RB-GS method and the RB-SOR method.

Smoothing by the Red/Black Gauss-Seidel (RBGS) Method

We are interested in investigating the behavior of the FDMG algo-
rithm with RBGS smoothing iterations. First we consider the case with one

red sub-iteration before the coarse grid correction. From (7.3.87) and (4.6.91),




1
B-SOR —
B-GS -
JACOBI
No-Relaxation ~-=~ 9

[]
N
o
&
0
L
B
L]
14}
[~}
[
o
-
[
>
g
(o]
o

30 40
Fourier Mode Index

Figure 7.6: Two-Level Convergence Factors of 1D FDMG
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we have
é}(LP) g£+,p) — S —2¢ 1+4¢ 0 o
* 1+3¢2 | 1-32 2, ||0 1
(0 1-¢
= 2 ® 1. (7.3.97)
143 [ 0 3¢(1-¢2)
The spectral radius of Ch,wS,(f) is given by
3c3(1 — ) 1, 1
(+)y < S\ ") g2 = =, 3.
PChuSiT) S max, e =33) =3 )

This shows that the red sub-iteration does not improve the convergence factor of
the FDMG with the restriction and interpolation operators defined in (7.3.71)
and (7.3.73). We now consider the use of one black sub-iteration before the
coarse grid correction. From (7.3.87) and (4.6.92), we have

cRg-n — G | % 4 || 1 0
' 1+363_1—3c§ 2¢, ¢ 0
% | Tell-g) 0} (7.3.99)
1+3c2 1 - 0
The spectral radius of Ch,wS,(l—) is given by
e1l-¢) 1. 1
C w (‘) < P p -— —_) = - Y 8
P(ChwSh )_lrsnzx% 1732 @) =3 (7.3.100)

The black sub-iteration improves the convergence factor bound from 1/3 to
1/9. We now examine the FDMG algorithm with both red and black smoothing
sub-iterations. If we perform one red sub-iteration first followed by one black
sub-iteration, from (7.3.87), (4.6.91) and (4.6.92), the w-transform matrix of
the FDMG operator is given by

0 ¢

01

-2, 1+¢

él(:al Sn}(;—m) 5‘v,£+.p) - C
1-3c¢ 2

T 143

1 0
¢ 0
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0 —c3(1-¢)
0 —c(l-¢)

Cp
1+32

. (7.3.101)

By comparing to (7.3.99) and considering (7.3.100), we know that the spectral
radius of Ch,wS,(:)S,(f) is 5. If we use the black sub-iteration first, then we have

cogungen - S | T2 1+G 106110
v 1+3¢ | 1-3¢ 2 0 1(]|c 0
[ o(l-c) 0
= 2 a(l-c) 0} (7.3.102)
1+3¢ | 3c2(1—¢2) 0

It is obvious that the spectral radius of C;,,,US,(;*)S,(:) and C} S ,(l_)S',(f) are the

same.

If m > 0 steps of RBGS iteration are used, the spectral radius
C’h,w(S,(f)S,(:))m can also be calculated. From (4.6.92) and (4.6.91), we have

(Sr’(‘-hp)s'}(l—»?))m = ( 0 S 10
\ 0 1 ¢ 0
- B A (7.3.103)
| & 0 &m0

From (7.3.102) and (7.3.103) we have the spectral radius of Ch,w(5£+)5£_))m:

: c™(1-c?)
Cho(SHg(hymy P P
P(Chw(ShS1)™) s S 7
< Dax fm(2), m > 0. (7.3.104)

Similarly it can be shown that p(Chw(Si" S ”)™) has the same expression as
(7.3.104). Thus we have the following resuit.

Theorem 7.2 The two-level convergence factor of the 1D FDMG algorithm
with m RBGS iterations as the smoothing iteration is bounded by (7.3.104).
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Specifically we have

p(Cru(SVS)) <
p(Cru(SEVSTN?) <

©| -

.0515667 (7.3.105)

o

Smoothing by the Jacobi Method

Since the coarse grid correction in the FDMG algorithm works partic-
ularly well on the modes with p close to 1, N/2, and N, the smoothing iteration
should be chosen to damp the other modes (e.g. p = 2¥). We consider the use
of m steps of simple Jacobi iteration. From (4.4.70) with v = 1, we have

’ 0 ]
p if m is odd
0 m C;‘ O
(BEH™ @l ={ _ (7.3.106)
Cp 0 c™ 0
4 if m is even
0 c;‘
L J

From (7.3.87), the w-transform matrix of the 1D FDMG operator
with m Jacobi iterations can be written in the following forms. For m odd we

have

- .
é;(f) ( é(p))m _ S —2¢ 1+ c: 0 c;n
e 1433 | 1-32 2, ¢ 0

cm+1 i 1 +c2 -2
= 2 P T (7.3.107)

143 | 2, 1-3¢

The eigenvalues of this matrix are complex numbers:

ol - c2 —(1 —
Ay = — 1~ ) £2y—( C?’)c’z’]. (7.3.108)

? 1+3c




The moduli of these two eigenvalues are the same and are given by

2m+2{1 . 2
I/\p|=J——-—c’ U-g), (7.3.109)

1432
When m is even, we have

- -2¢, 1+¢

A(P)  H(P)ym
Ch,w(Bh ) 1+3 1—363 2Cp

et -2¢, 14¢

7.3.110

It is easy to verify that the eigenvalues of this matrix are given by

2m+2(1 — ¢2)
= e N S 1y 3.111
Ap i\l 32 (7.3.111)

In general, we have

2m+2(1 — c2)
1432

p(ChwBr) max \J ’

1<

= o?f’xgl vV fms1(2) m > 0. (7.3.112)

Thus we have the following result.

Theorem 7.3 The two-level convergence factors of the 1D FDMG algorithm
with m Jacobi relazations are bounded by the values specified in (7.8.112).

Specifically from Table 7.4, the convergence factors of FDMG with one or two
Jacobi relaxations are respectively

p(ChwBir) < 0.227083
p(Crw(Br)?) < 0.1821913. (7.3.113)

Smoothing by the Red/Black SOR Method (RBSOR)
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In this section, we are concerned with using the red/black SOR method
(RBSOR) as the smoothing method in the FDMG algorithm. Like the RBGS
method, the RBSOR procedure defined in (3.5.42) can also be partitioned into

two sub-iterations defined by

(Lg+)uh)j = { (&2;(:;"’!)]+1 + (uh)j—l) + (1 — w)(Uh)j j : :3:; (7.3114)
(L},"uh),- - { (%u(g‘h)zﬂ + (un)j-1) + (1 — w)(un); j : :‘(’1‘:’111, (7.3.115)

for j = 1,...,N — 1. Here the odd-numbered points are red and the even-
numbered points are black. The corresponding w-transform matrices are given
by

j+pw) [1;“’ “’lc” } (7.3.116)
and

. 1 0

LEw) = e, 1—w } (7.3.117)

From (7.3.87) and (7.3.117), the w-transform matrix of the FDMG with one
black SOR sub-iteration can be written in the form

. .
CRfrw) = G —% 1+

1 0
143G 11-32 26 ||we l—w]
& | W-2gtwg (1-w)l+q)

. (7.3.118)

143G | 14(u-3)g  2Al-w)g




Table 7.5: Convergence Factors of 1D FDMG SOR vs. w

I we let

s, b
C,(:,Z,L(-’p"") = (a(p,w) (P,“’)) _ (7.3.119)

c(p,w) d(p,w)
then the spectral radius of this matrix is
la(p, w) + d(p,w)| + VA

2
(la(p,w) + d(p,w)[? + |A])2
2

ifA>0

p(CE) L=2e)y = (7.3.120)

if A L0.

where A = (a(p,w) — d(p,w))? + 4b(p,w)c(p,w). We are looking for a w* such
that

(—*) ; (-w)
P(Chuwl™") = min p(ChwLl™*)

S A (P) 7 (—,p,W)
in, llslzzx% p(Cyr,L ) (7.3.121)
We solve this optimization problem numerically. The relationship
among the spectrum of p(éﬁfz,ﬁ("""")), the mode index p and the iteration
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*B-SOR" ===
“B~SOR* —

Convergence Factors

0.95
Iteration Parameter w

50
Fourier Mode Index p €0

Figure 7.7: Two-Level Convergence Factors of 1D FDMG with B-SOR
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parameter w is plotted in Figure 7.7. Table 7.5 lists the two-level convergence
factors of 1D FDMG with one black SOR sub-iteration (p) vs. the corresponding
iteration parameter w. Like the RBGS, the red sub-iteration has little effect
on the performance of the 1D FDMG algorithm.

74 PMG Methods in 1D
7.4.1 The Two-Level PMG Algorithm in 1D

In this section we consider a class of parallel multigrid algorithms
(PMG) for solving the extended problem (7.1.1). In the MCGMG method
one averages the two coarse grid corrections. This is equivalent to what one
would get by using a single grid at each level but with different scale or grid
spacing h; = 2~'. The combined restriction and interpolation operators can be
regarded as smoothing operators on the single grid. In fact, one could consider
more general operators with the PMG methods.

The two-level PMG algorithm for the solution of the extended matrix
problem Aju; = b, starting with an initial guess u{o), is described in Figure 7.8.
As in the MCGMG algorithm, the coarse level problem in step 4 can be solved
by transfering to an even coarser level. This process can be repeated down to
the coarsest level where the problem is solved directly. If more than two levels
are involved, one has a multilevel PMG algorithm.

To show that the MCGMG method with averaging is equivalent to a
PMG method in the two-level case, it is enough to show that the combination
of the restriction operators, the combination of the interpolation operators
and the combination of the coarse grid difference operators in the MCGMG
method are equivalent to the corresponding operators in the PMG method.
This is because that the two coarse grid problems in the MCGMG method are
solved independently.

For solving the 1D extended system (7.1.1) using the PMG method,
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Two-Level Algorithm PMG(A;, uf,o), br):

1. Carry out m; pre smoothing interations to get u},.
2. Compute the residual: ry = b, — Apu}.

3. Carry out one restriction-like smoothing operation, possibly

full weighting:

ran(e) = (Rara)(2) = H(ra(e — h) + 2rn(2) + ra( + h)),

or injection ron(z) = (Rira)(z) = ru(z)

and then purify r;; if needed.

. Solve the correction equation for the 2h scale

Agnban = 1o

. Carry out one interpolation-like smoothing operation, possibly
linear:

(6s)(z) = (Pab2n)(z) = §[620(z — k) + 262n(z) + b20(z + 1)},
or injection: (6,)(z) = (Prban)(z) = (621)(2)

and update the solution uj} = u}, + &

. Carry out m, post smoothing iterations and purify the result,

if needed, to obtain the new solution ug).

Figure 7.8: The PMG Algorithm




the coarse level difference matrix Az is defined by

(A2nu2n)(2) = == [2ugn(z) — usn(z — 2k) — ugp(z +2R)] z € U (7.4.122)

(2h)"’

which can be written in the form

(AP un)(z) = (217)2[2'@;;(3:) — ugn(z — 2k) — ugn(z + 2h)] z € N, (7.4.123)

and
(A 2h uzh)( )= (2h)2 [2ugn(z) — usn(z — 2h) — uan(z + 2h)] z € Q- (7.4.124)

From (7.2.12), (7.2.13), (7.4.123) and (7.4.124), one sees that the coarse grid
difference operator of the PMG method is the same as the combination of the
two coarse grid difference operators of the MCGMG method.

Similarly, the full weighting operator Rj of the PMG method defined
in Figure 7.8 is the combination of of the two restriction operators R;ﬁ') and
Rf,-) of the MCGMG method defined in (7.2.8) and (7.2.9). The linear inter-
polation operator P, of the PMG method is the combination of the two coarse
grid interpolation operators P(+) and P ) of the MCGMG method defined
in (7.2.10) and (7.2.11), multiplied by 0.5. As in the MCGMG methods, the
purification of the residual is not needed if the full weighting operator is used
for the restriction-like smoothing. The system on the coarse level can also be
solved by using the two-level PMG algorithm on the coarse level in which case
one has a three-level PMG algorithm. If this process is carried out recursively,
one gets a multilevel PMG algorithm.

Although the PMG method we discussed here seems to be similar
to the MCGMG method, they are two different classes of methods in general.
For instance, with the MCGMG methods one could use different operators
on different coarse grids on a given level, while with the PMG methods one
would normally use the same operator on different coarse grids on a given level.
On the other hand, in the PMG methods, the coarse level operators can use
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any neighboring grid points; while in the MCGMG methods the coarse grid
operators can only use the grid points of the corresponding finer grids. For
example, in the MCGMG methods the restriction of residuals on the 4h grids
one only uses points at the related 2h grids, while in the PMG methods one

could use any points on the 2k level.

7.4.2 Two-Level Convergence Analysis

The w-transform matrices corresponding to the operators Azh , ;h),

P,E"') and P,E ) are glven by

A+2)
Agy = 4}22(2 2cos 2prh),
4 (—p) —_—
Ay = 4}12(2 2 cos 2prh), (7.4.125)
PP = 1]
cp -
Bon = cl” . (7.4.126)
For full weighting restriction operators R$;+) and Rg_), we have
B = 3[1 6],
RGP = 2{0, 1] (7.4.127)

The A(”) is defined in (4.4.63). For the coarse grid correction operator
C) we have

C",(fz, = J— P(p) ) ( A(P) ) )-1 R(P) A("’L

A(+:p)
= I — l [ P(+J’) P(_’p) ] [ A2h,w 0

f(+:p)
Rh,w.p ] A(p)

0 ARD | | R
1l ¢ [f1=-2\']|1 ¢l2] 1 -¢
= I— X (T’I) = (7.4.128)
S & 1 —%
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Comparing (7.4.128) to (7.2.42), one sees, that in this case, the PMG method
is equivalent to the MCGMG method. If the trivial injection is used instead of
the full weighting operator Rj, we have

G, = I-PEAD) AL,

1{1 | 1= .2 1 —¢
= I—< —L)1 = 7.4.129
2[%1(,,2),,2{_%1} (1129

=0

This means that for the 1D model problem (7.1.1), the coarse grid correction
of the two-level PMG method is exact. This two-level convergence result can
be extended to the multilevel case.

Theorem 7.4 The multilevel PMG method with the injection restriction of
residuals and the linear interpolation of corrections is ezact for the 1D model
problem (7.1.1), if the solution on the coarsest level is ezact.

Proof: By induction, the result follows (7.4.129).




Chapter 8

Multiple Coarse Grid Multigrid
Methods in 2D

8.1 Introduction

In this chapter, we extend the discussion of the multiple coarse grid
methods (MCG) to two-dimensional cases. The three classes of MCG methods
described in the previous chapter, namely MCGMG methods, PMG methods
and FDMG methods, are considered here for the two-dimensional extended
system (6.5.41). Again, for convenience, we will divide (6.5.41) by A? to get an

equivalent system

Ahuh = bh. (8.1.1)

8.2 MCGMG Methods in 2D
8.2.1 The Two-Level MCGMG Algorithm in 2D
If we let z; = jh and y; = kh with A = 1/N, the fine grid on the area
(—1,1]? is defined by
O = {(zj,y) | j,k=1-N,...,N}. (8.2.2)

On this fine grid, the four coarse grids can be defined by (5.2.2) which are
illustrated in Figure 8.1 in the case of N = 4.

A two-level MCGMG algorithm in 2D is a straightforward extension
of the corresponding two-level MCGMG algorithm in 1D defined in Figure 7.2.
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Figure 8.1: Coarse Grid Points for a 2D Problem with A = 1/4
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Algorithm: MCGMG2D2L( A, u®, by)

. Do m; pre-smoothing iterations using the smoothing iterative method
(e.g. damped Jacobi method) to obtain uj}.

. Compute the residual r, = by — Apuj}, restrict the residual onto each
of the four coarse grids and perform purification defined in (6.4.24) if

necessary to obtain
) = PR, ), s = 4=t +—,——, (8.2.3)

where 2{?) is the eigenvector in the null space of AL,

. Solve the coarse grid systems
AR = 1), s=44,—4, 4=, —, (8.2.4)

for 5;;;(’).

. Purify 8% and interpolate the purified corrections 6{2 onto the fine grid
to obtain the new approximate solution

80 = PP, 2D), s=++,—+,4—,—, (8.2.5)
' 1 o) cls
up =+ 7 Y. Pss). (8.2.6)

. Do m; post-smoothing iterations using the smoothing iterative method
to obtain and return us).

Figure 8.2: The 2D Two-Level MCGMG Algorithm
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For a problem Aju;, = b, with a given initial guess u}f’), a two-level MCGMG
algorithm in 2D is given in Figure 8.2.

A specific version of the MCGMG algorithm is determined by the
selection of operators R\, P and A{). In the following analysis, we assume
that the full weighting restriction of residuals defined in (5.2.3) and a simple
injection mapping of corrections 6x(z,y) = 2x(z,y) are used. This choice of
the restriction operators and the interpolation operators is equivalent to that
using the injection restriction operators and the linear interpolation operators
with an averaging factor of 1/4. The coarse grid difference operators are defined

by the 5-point difference formula on the corresponding coarse grids

(Qi) (2 +22)83(2,9) ~ 2833 (@ — 2h,y)

—ab{)(z + 2h,y) — 65z, y — 2h) — 853 (z,y + 2h)]
(z,y) € Qs (8.2.7)
s = ++’ _+’ +“", -

(AS)6) (=, )

For smoothing iteration, we use the Jacobi method or the SOR method in

red/black ordering.

As in the one dimensional case, if the coarse grid linear systems them-
selves (8.2.4) are solved using the two-level MCGMG algorithm

8% = MCGMG2D(AY,0,r), (8.2.8)

one gets a three-level two-dimensional MCGMG algorithm. This process can
be done recursively and one gets a multilevel 2D MCGMG algorithm.

8.2.2 Two-Level Convergence Analysis

For p,g = 1 - N,...,N, let v(»9 be the two dimensional Fourier
modes (v-basis vectors) defined by

(v7);1 = exp(ith(pj + qk)), j,k=1-N,...,N. (8:2.9)
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(s.p9)
h

The four-color Fourier modes (the w-basis vectors) w , corresponding to

the four coarse grids s = ++,—+,+~—, ——, are defined by

(p$9) Q
(8:0,9) (o )iw (25, m) €9Q,
w ik = 8.2.10
(o™i { 0 otherwise ( )
7, k=1—-N,...,N
(8.2.11)

for p,g=1-N/2,...,N/2.

We first consider the coarse grid correction operator C}. As in the
discussion of the 1D case, the coarse grid correction operator can be written in
the form (referring to (7.2.18))

Co=1-3_ POANRY A, (8.2.12)

We note that there is no factor 1/4 before the combination of the coarse grid
corrections because the simple injection mapping of corrections is used. For
p,q =1—-N/f2,...,N/2 and (p,q) # (0,0), the w-transform matrices of the
operators on the basis

E®) = (w}f‘“”’"), w£-+.p,q)’ w{"'"”"’), wf,“”"")) (8.2.13)

are given by

A}.E,(f’q) = E‘(‘?ﬂ)Ag’g), (8.2.14)
RO E®D = 020 flera), (8.2.15)
Aﬁ},’w}f’”") - w’(‘a,m) A;Z,';f)s (8.2.16)

POw(?d = Elra) Blra), (8.2.17)
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where s = ++,—+,+—, ——. The w-transform matrix of the coarse grid cor-

rection operator can be written in the form

D) = [ 5, PEPOAGRDY R AR

o o o . (8.2.18)
= I-BID(ARD) T REDALD
where for the selected operators we have
[ Hl++.p.) ] [ ]
Ritrea) 1 6 ¢ &g
. 1}(_'{'1?,?) 1 1 c c
Ry & o4 1 o
LB lew o 6 1
[ Ag}l;hp,q) T
YW
/i(‘;:q) _ Ag;'-:;p,q)
2hpe T A (+=,p,
Ao
i Ag;’—wmyq) ]
1
= ﬁ(l +a- ac: - c:)I, (8.2.20)
f)'f,p;?) — [ P}E:ﬂ""pﬂ) P}E:ﬂ"'vp'Q) ﬁ’f:’”-vp'Q) P}S;’_spﬂ) ] — I (8.2.21)

where ¢, and ¢, are cos prh and cos g7 h respectively. /iﬁf ,’3) is given in (5.4.35).

The w-transform matrix of the coarse grid correction operator can then be
calculated using (8.2.18) to (8.2.21) and (5.4.35):
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1 & G GG
C‘,(p,q) - - h2 _1_ S 1 CpCq Cq
how l+a—ac2-c24
PTG ¢ 66 1 o
[ &¢ ¢ & 1]
[ 1+a —ac, —Cg 0 |
2| —a, 1+a 0 —c,
h? —¢ 0 l4+a —aqg
| 0 —-c; —ac l+a |
RN
_|mm 0m (8.2.22)
73 0 m %2
| 0 73 72 m i
where
L/} =%a
= cp(1—=c3)
"= ~iet-ac-3) (8.2.23)
— ___o%(1-5)
B = Teri-ai-a)"

From (8.2.2), (5.4.49) and (5.4.50), the corresponding v-transform matrix is

- m+n+9; 0 0 0
crd = 0 AP 0 0 (8.2.24)
' 0 0 7 +102—193 0
] 0 0 0 m=—1"n2—173 |

Here we see that the aliasing errors caused by each of the coarse grids are

eliminated.
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We now consider the two-level multigrid operator given by
T, = GR2ChGR? (8.2.25)

where G, is the smoothing operator. If we let G{P9) be the w-transform matrix
of the smoothing iteration operator, the two-level convergence factor of the

MCGMG algorithm can be calculated by

—_ #{(9,9)
pTy) = | max o o(Thw
= max_ p[(GEm NG )™). (8.2.26)

1 -lesponSle

Suppose the damped Jacobi method is used for smoothing iterations.
The damped Jacobi operator is defined by

vh?

B=l5iva

Ap (8.2.27)
and the corresponding w-transform matrix is given by

B — 1 _ _ah Alp9) 8.2.28
v 2(1 + a) h,w ( odue )

From (5.4.35), we have
e e
SR ie e

Bpa)ym _ ,
(B'y,w ) - C:gm) 4(,’") ](.m) C;m) . (8.2.29)

(m) »(m) »(m) »(m)
| $4 3 2 1

where
Cl(m) — %[(”(P,q))m + (ﬂ(P—th))m + (F(Prq"N))m + (p(P-Nﬂ"N))m],
™ = L(ueaym — (ue-Naym 4 (4pa-N)ym _ (,p~Ng=N)ym]
G = SU(HCOY™ + (WMDY — (ura=NIym — (4O-Na=N)ym],

¢m = L(p@aym — (u-Nadym _ (4(pa=N)ym 4 (;y(p=Na=N)ym]
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and
(h) = ] _y 4 4321 8.2.31
H l-v+r9o (8.2.31)
If we let m = m; + mg, it can be verified by calculation that
(BEDymCE(BEM™ = CRi(BEa™

YW
(m)

) ) gm) ) ]

52 K3
_ ngm) ngm) K,(;m) n:(sm) (8.2.32)
e O
o
where
4 m m
ng ) = "hdm) + ﬂz(g ) 4 ﬂacz(im)a
(m) _ . »(m) (m) (m)
] m" =m0 +mG™ +nal™ (8.2.33)

R = )+ el + e,
k™ = n3¢i™ + 268" + md™.

The convergence factor of the two-level MCGMG algorithm with Ja-
cobi smoothing iterations can be then calculated by

= A(Pa)( f(p.g)ym
p(Th) B S,\,/,‘,MC’;;,.,, BYI" (8.2.34)
Table 8.1 lists values of p(7}). Here the number of smoothing it-
erations m = 1 and the number of grid points N = 64. It shows that at
extrapolation factor ¥ = 0.66, p(TL) reaches a minimum of 0.319.

Table 8.2 shows the relationship between the convergence factor and
the coefficient a. One sees the deterioration of the convergence in anisotropic

cases. We will discuss this issue in the next chapter.

In the case of using the Red/Black SOR iterative method defined
in (3.5.42) for smoothing, the w-transform matrices corresponding to the red
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Table 8.1: Convergence Factors of MCGMG-Jacobi vs. 4 (a = 1)

g P

! 0.50 0.4763

0.60 0.3771

0.65 0.3276

0.66 0.3190

0.67 0.3390

0.70 0.3989
I 0.75 0.4988 I
l 1.00 0.9982

Table 8.2: Convergence Factor of MCGMG-Jacobi vs. o (7. = 0.66)

e Y |
0.00001 or 100000 |  0.998623
h 0.00010 or 10000, 0.998414
0.00100 or 1000.0 0.996334
0.01000 or 100,00 0.980861

0.10000 or 10.000 0.863659 F
1 0.319042
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sub-iteration (the first formula in (3.5.42)) and to the black sub-iteration (the
second formula in (3.5.42)) are given by

(1-w & & 0
) 0 10 0
Strpa) = o o1 o (8.2.35)

0 & & 1—-w |
and

(1 0 0 o0
& 1-w 0 &

Slpa) — (8.2.36)
& 0 1-w &
| 0 0 0 1
respectively, where
_ wac
&—1+a (8.2.37)
and
_ wey
&—1+a. (8.2.38)

If the black unknowns are updated first followed by the red ones, we have

[ & (1-wa (-wé b ]

S'g'b.p,q) = ‘S“"Sr,p,q)g‘("b,p,q) = 62 l1—-w 0 {3 (8.2.39)
63 0 l—-w 62
| &6 (1-w)ls (1 wia & |
Otherwise, we have
l-w & & 0
§lroa) = §bra) §rpa) — (I-wa & && (1-w)s (8.2.40)
0 63 52 l1-w
| (1-w)s L& & (1-w)ie |
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where
LL=1-w+E 46 (8.2.41)

From (8.2.2), (8.2.39) and (8.2.40), one obtains the w-transform ma-
trix of the two-level MCGMG algorithm using SOR smoothing with red/black
or black/red ordering

] Br 12 73 B ]
TIS:;IbZPﬂ) — é}sﬂf)gg’hpﬂ) — ﬂ2 71 74 ﬂ3 (8.2.42)
Bz 14 n B :
| Bs 13 72 B
and
i 71 B2 Ba Ya ]
T = GEDgGran - | 72 P Pa (8.2.43)
3 Bs B T2
| Y24 B3 B2
where

(

B = mé+ 0262+ 33

B2 = mé+nbs +n3éaés

Bz = més+ n22bs + 136

Bs = mébés+mba+nb (8.2.44)
7 = (1—w)(m +n2é2 + 13&s)

Y2 = (1-w)(mé+n)

13 = (1-w)(més+ns)

74 = (1 —w)(n26s+n3é2)

\

and 71, 72, and 73 are defined in (8.2.23). Therefore we have the following

lernma.




Table 8.3: Convergence Factor of MCGMG-SOR vs. w (o = 1)

w P
0.50 0.4795
0.70 0.2828
0.90 0.0900
0.92 0.0712
0.94 0.0795
1.00 0.1240
1.20 0.2788
1.50 0.5288

Lemma 8.1 The matrices T,E;f,’p’q) (8.2.48) and TowP? (8.2.43) have the same

eigenvalue set.

Proof: It is easy to see that there is a permutation relation between the
matrices T,S:f,’p ) and T,S?,:p ) This means that the matrix T,S,’i'p ) is similar to

the matrix f‘,fb;’p 9),

We notice that the nonzero eigenvalues of the matrix T,s:z’p 9 when

w = 1, can be written as
A= p % B (8.2.45)

In the case of N = 64, we use a numeric_a.l procedure to compute the convergence
factor defined by

— 7(br,p.q)
P = ymax_ o pTh"")e (8.2.46)

Table 8.3 lists the convergence factors of the MCGMG with the SOR
smoothing iteration with red/black ordering for different values of w. The con-
vergence factor is about 0.0712, when w is 0.92. Table 8.4 lists the convergence
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Table 8.4: Convergence Factor of MCGMG-SOR vs. o (w, = 0.92)

a p
0.001 0.9942
0.010 0.9644
0.100 0.7492
1.000 0.0712
10.00 0.7492
100.0 0.9644
1000. 0.9942

factors in anisotropic cases. Here again, the performance of the algorithm

deteriorates in the cases where a # 1.

8.2.3 Nwumerical Results

We used the multilevel 2D MCGMG algorithm corresponding to the
two-level algorithm defined in Figure 8.2 to solve the extended system of the
test problem (5.5.51). In the algorithm we used linear interpolation of correc-
tions, full weighting restriction of residuals and the damped Jacobi smoothing

iterations.

Table 8.5 shows the convergence factors of the MCGMG algorithm
for the case with the grid size N = 64. We use a six-level scheme which
is the maximum number of levels allowed (26 = 64) in this case; (26 = 64)
in this case. 4 are the extrapolation factors of the damped Jacobi method,
m, and m, are the number of pre-smoothing and post-smoothing iterations
respectively. The convergence factors are the average values of 5 multigrid

cycles. Comparing to the theoretical results in Table 8.1, one sees that the

numerical convergence factors are below the theoretical upper bounds. From
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Table 8.5: Numerical Convergence Factors of 6-level 2D MCGMG-J

Y (m1, m2)

(0,1) (1,1) (1,2)
0.5 244 141 114
0.6 .190 125 102
0.7 154 .116 .093
0.8 .146 .108 .085
0.9 .188 129 .094
1.0 .241 .206 .186

Table 5.3, one also sees that the MCGMG methods converges much faster than -
the correponding standard multigrid methods.

8.3 FDMG Methods in 2D
8.3.1 The Two-Level FDMG Algorithm in 2D

As in the 1D cases, the procedure of the 2D FDMG algorithm is
the same as that of the 2D MCGMG algorithm defined in Figure 8.2. In the
FDMG algorithm, different restriction and interplolation operators are used
on different coarse grids. The restriction operators, corresponding to the four

coarse grids 244, fo,.), QS_E_’? and Q.(f,_) respectively, are defined by

ran(z,y) = (R{m)(z,y)
Hra(z — b,y + h) + 2rp(z,y + B) + ra(z + b,y + )
2ra(z — h,y) + 4ru(z,y) + 2ra(z + R, y) (8.3.47)
ra(xz — h,y — k) + 2rp(z,y — B) + ra(z + h,y — b))
(z,y) € Qys.

]

+ +
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ran(z,y) = (B Pra)(z,9)
= Y—ri(z —h,y +h)+2ri(z,y + k) —ra(z + h,y + h)

— 2rp(z — h,y) +4ra(z,y) — 2ra(c + R, y) (8.3.48)
— ri(z — h,y — h) +2ri(z,y — B) —ri(z + b,y — h))
(a"7 y) € Q—<l~'

ran(z,y) = (B{ra)(z,y)
= %(——rh(:c —h,y+h)=2ru(z,y+ k) —ra(z + b,y + h)

+ 2ra(z — hyy) + 4ri(z,y) + 2ra(z + b, y) (8.3.49)
— ra(z—h,y— k) = 2ru(z,y — k) —ra(z + A,y — b))
(z,y) € Dy

ran(z,y) = (RS ma)(=,9)
= %(rh(:c —h,y+h)—2ri(z,y+h)+ra(z+ R,y +h)

— 2rp(z — h,y) +4ru(z,y) — 2rn(z + A, y) (8.3.50)
+ ra(z—h,y—h)=2ry(z,y — h) + ra(z + h,y — b))
(z,y) € Q.

The four corresponding interpolation operators are defined by

8u(z,y) = (P60 (2, y)

4

ban(z,y) : (z,y) € Oyt

1

'2‘(52h($ — h,y) + ban(z + R, 3)) (z,y) € Q4

2 (8:3.51)
= 4 5(52h(x,y — k) + ban(z,y + 1)) (z,y) € Q-

1
7(8n(z — B,y — B) + &an(z — b,y + B)

+62h($ +h,y— h) + 52};(1? +h,y+ h)) (m’ y) €N__.
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8n(z,y) = (PP 6)(2,y)

4

621(z, y) (z,y) € Q-4
-1
— —h ) h, ,y) € Q
12 (62n(z — hyy) + ban(z + R, y)) (z,y) € Q44 (8.3.52)
= Lu(z.y— )+ e,y + ) (@,9) € -
(e = by = )+ bar(z = b,y +B)
k +6n(z + hyy—R)+ ban(z + R,y + k) (z,y) € Qe
8n(z,y) = (P{T ) 6m) (2, )
b2n(z,y) (z,y) € Q-
1
—(é. — h,y) + 62n(z + A, z,y) € Q__
?_(1 20(2 — B, y) + 62n( ‘y)) (z,9) (8.3.53)
=\ 5 6an(z,y—h)+bu(z,y + 1)) (2,9) € Qs
-1
T(tszh(x —h,y— h) + 52':("3 —h,y+ h)
{ +62h(37 + h,y - h) + 52h($ + hay + h)) (.’12, y) € Q—+'
8n(z,9) = (B 78m)(z,y)
52h($’y) (xay) €0
-1
—(ban(z — h,y) + bap(z + A, z,y) € Q4
—21( 2 ( y) + 62n( y)) (z,9) + (8.3.54)
= 9 -5—(5%(1"?/ - h) + 62’1(1"’?/ + h)) (a:,y) € Q—+
; _
2(62h($ " h’y - h) + 62’1(37 - hay + h)
i +6an(x + by — B) + ban(z + b,y + b)) (z,y) € Dyq.

If the operators are written in matrix form, it can be shown that

P’Es) _ (Rg:s))T s=4+,—+,+—,——. (8355)
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The operators of the coarse grid systems are constructed by

AQ) = ROAPY 5= 44—t == (8.3.56)

This completes the description of the 2D FDMG algorithm.

If more than two levels are involved, each 2k coarse grid can be can-
sidered a fine grid for the 4k level and thus has four 4h coarse grids related to
it. The 2h restriction operators can then be defined similarly with % replaced

by 2h.

8.3.2 Two-Level Convergence Analysis

For simplicity, we use the index numbers 1,2,3, and 4 to represent
++,—+, +—, and —— respectively. The w-transform matrices of the restriction
operators R},‘), P,E’) and Ag‘? can be written in the forms of (8.2.19), (8.2.21),
and (5.4.35) respectively. Thus for the restriction operator we have

[ #e0] [ aien T
poa _ | BV B
2T | T e
LB LR
(1 6 o o)
|7 1 %4 A (8.3.57)
¢~ 1 g
| &€ —¢ =6 1

where ¢, = cos prh and ¢; = cos grh. The w-transform matrix of the interpo-

lation operator is given by

P}Eﬁ;@) = [ P}E,I.Lp'q) 13}5,2:,4) péi;p,q) 13;5:},?’” ] = ( R}(‘:g)):r

(8.3.58)
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The w-transform matrix of the coarse grid operator is given by

a1
AR = o (8.3.59)
ass
i d44
where
I
= Z(l+a+(1l-a)d+(a=1)]
—(1 4 a)cic
an = A~ HELO AL B0
= Z(1l+a+(1+3a)d+(a—1)
+(Ba = 1)ge, (8.3.60)
sy = Agi”:f) R(3,z>,q) A(p.q) P(3.p,q)
= Z(l+a+(1-a)Z+(8+a)q
+(3a — 1)cic?
G4 = A(4,p.q) R(4,z>,q) A(p.q) P(4,M)

= Z(14+a+(1+3a)d+(3+a)d
+3(1 + a)cied).

The w-transform matrix of the coarse grid correction operator is then given by
C',Ep'q) = P(M)( A(p,q) -1 Rgp,q) Aff'”. (8.3.61)

We can make a similarity transformation by multiplying Is,ff’,f) to the right side
of the c",ﬁf'j) and (P,ff:f))'l to the left side, and we have

C(m) ( P(p,q))—lcr(p,q) P(P:Q) I—( A(m)) -1 R(p,q) A(p,q) P(M) (8.3.62)
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If we let

A(p,q) R(p,q) A(p.q) p(p,q)

(8.3.63)

then from (8.3.59), the matrix Ag’,’;ﬂ is the main diagonal part of the matrix

ﬁ;f: ,’Z). Therefore we have the following lemma.

Lemma 8.2 The coarse grid correction of the FDMG algorithm is equivalent
to a block Jacobi iteration applied to the matriz A = RyALP,.

Proof: From (8.3.62), we know that C'(p 9) js similar to applying a Jacobi
iteration to Ag"’ ;3). Since all subspaces E(P"I) are the invariant subspace w.r.t.
Ch, the conclusion follows.

If matrix A}:j;j’ is a diagonal matrix, the coarse grid correction is

(r.9)

exact. In order to obtain the spectral number of C’hw , we rewrite (8.3.61) in

the form
C(p,q) = I — Diag( Agp,q))—l ﬁ}:”q)
a 0 0 0 |[ 0 —dp —d —u
_ 0 d; 0 0 —an 0 —dz; —aze (8.3.64)
0 0 a3} 0 || —Ga —dm 0 —da ‘
| 0 0 0 &y || -Gn -G —ds O
- o o -
0 _a21a111 —a31a111 0
_ | —Gnaz 0 0 —a3185;
N 0 —dpazl
|0 —dmag; —dgdg) 0 |
where &;; = R(J'p ’Q)A(p ’q)P(k’p ) for J,k =1,2,3,4. The spectral radius of the

matrix C, (',’f) is given by

p( C(m))

|b+ VIE— 4ot
3

(8.3.65)




| h p
: 0.329036
' L 0.332694
-315 0.333326
L 0.333247
s 0.333313
where
1 1
b=&§1(~ L >+&§1(- — + — )>0 (8.3.66)
Q11422 022044 2110433 a33dq4
and
=2 __ ~2\2
o= Bn =) (8.3.67)
G11G22033044

The convergence factor of the coarse grid correction of the FDMG is bounded
by

5 <Pe<

p(Ch) < max _p(CFD). (8.3.68)
1 Fy
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