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ELLIPTIC INTEGRALS: SYMMETRY AND SYMBOLIC 
INTEGRATION 

B. C. Carlson* 

Abstract. Computation of elliptic integrals, whether numerical or symbolic, has been 
aided by the contributions of Italian mathematicians. Tricomi had a strong interest in 
iterative algorithms for computing elliptic integrals and other special functions, and his 
writings on elliptic functions and elliptic integrals have taught these subjects to  many 
modern readers (including the author). The theory of elliptic integrals began with Fag- 
nano’s duplication theorem, a generalization of which is now used iteratively for numerical 
computation in major software libraries. One of Lauricella’s multivariate hypergeometric 
functions has been found to contain all elliptic integrals as special cases and has led to 
the introduction of symmetric canonical forms. These forms provide major economies 
in new integral tables and offer a significant advantage also for symbolic integration of 
elliptic integrals. Although partly expository the present paper includes some new proofs 
and proposes a new procedure for symbolic integration. 
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1 Introduction 
Regrettably I never had an opportunity to meet Professor Tricomi, but his chapter on 
elliptic functions and integrals in the Bateman Series [12, Chap. XI111 was my intro- 
duction to the subject. That chapter is a condensed version of his book [23], of which I 
read the German edition in 1962-63. Before vacationing in Italy during the Christmas 
holidays of 1971, I tried to arrange a meeting in Turin, but he was on vacation near 
Genoa, and his cordial reply (still in my possession) reached me too late. On several 
occasions he sent me reprints because of our common interest in iterative algorithms and 
particularly in generalizing. the Schwab-Borchardt algorithm for computing an inverse 
circular or inverse hyperbolic function [24] [25, pp. 23-36][26], an algorithm generalized 
also by Gatteschi [14][15] and Allasia [1][2]. One generalization, stimulated when John 
Todd told me about Tricomi’s work, is now used for computing elliptic integrals of the 
first kind and consists in iterating the duplication theorem of a symmetric integral [6, 
5 51. The Schwab-Borchardt algorithm iterates an unsymmetric special case of this the- 
orem, and another special case was the starting point of the theory of elliptic integrals. 
Two Italian mathematicians, Fubini and Fagnano, are respectively associated with these 
two cases; we shall take up Fagnano’s theorem first. Later in the paper, after explaining 
how a multivariate hypergeometric function defined by Lauricella is connected with sym- 
metric elliptic integrals, we shall show their advantages for integral tables and symbolic 
integration. 

- 

2 Duplication theorem and iterative algorithms 
3 .  

Let s2 be a polynomial of degree three or four in t with simple zeros. If R(t,s) is a 
rational function o f t  and s containing at least one odd power of s, then 

J R(t, 4)) dt  . ,  (2.1) 

is called an elliptic integral. In the early history of the calculus many familiar plane 
curves like the ellipse, the hyperbola, and the lemniscate were found to have arclengths 
represented by elliptic integrals. . .  . 

Bernoulli’s lemniscate, described in plane polar coordinates by . 

r2 = cos 29, (2.2) 
has the shape of a figure 8 lying on its side (co). The arc of this curve from the origin to 
a point in the f is t  quadrant with radial coordinate r has length 

Let this arclength be double the arclength from the origin to a point in the first quadrant 
with radial coordinate p : 
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In 1718. Giulio Carlo di Fagnano (1682-1766) found T~ as a rational function of p2, 

Discussions of this result and speculations about how Fagnano might have discovered it 
are given in [22, pp. 1-71 and [27]. Fagnano’s duplication theorem was the first major 
discovery in the theory of elliptic integrals and was destined, by a stroke of good fortune 
33 years later, to be extremely influential: it stimulated Euler to find the addition theorem 
for lemniscatic arcs, which generalizes Fagnano’s theorem, and subsequently the addition 
theorem for general elliptic integrals. 

To generalize Fagnano’s theorem without invoking the addition theorem, we map the 
interval ( 0 , ~ )  onto the positive real line by substituting t = 1 / d p ,  obtaining 

co du 

J(u 4- T-2 - l)(u t .-2)(u t T-2 + 1) 

We shall prove a duplication theorem for a more general integral, 

An earlier proof [6, 5 51 used the properties of Jacobian elliptic functions, and an earlier 
version [8] of the proof given here used a change of integration variable based on prior 
knowledge of the desired result. We begin with an elementary lemma that is symmetric, 
like (2.7), in the subscripts 1,2,3. 

L E M M A  2.1 Define 

i = 1,2,3, 

where z; is a constant and A; # 0. T h e n  f; - zi is independent of i, and 

i = 1,2,3. 

PROOF. We see that 

(2.10) 

(2.11) 

The last member is symmetric in i, j ,  L, and hence the first member is independent of i. 
Because dA;/du = 1/2A-, differentiation of (2.9) gives 
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THEOREM 2.2 (DUPLICATION THEOREM) Le t  21, 2 2 ,  23 lie in the complex 
plane cut along the  negative real axis, at m o s t  one of t h e m  being 0, and take all square 
roots in the right half-plane. Define 

T h e n  
(2.13) 

PROOF. 
v = f. - zi. By (2.11) we have 

Because Lemma 2.1 states that f.  - z; is independent of i, we can define 

d v  df.. -= -  v(0) = A )  d u  d u '  

Then (2.10) implies 
dv 1 3JG 
z=5QiTT t=l 

and integration gives 

(2.15) 

(2.16) 

(2.17) 

which becomes (2.13) on putting v = t + A. Since 2; + A = (6 + &)(A + 6)) 
where both factors lie in the open right half-plane, 2; + A lies in the plane cut along the 
nonpositive real axis .  Thus both integrals in (2.13) are well defined. 0 

Because of (2.6) this duplication theorem reduces to Fagnano's theorem if we put 

(21 ) 2 2 ,  23) = ( T - ~  - 1, r-2, T - ~  + I), (2.18) 
(2.19) (21 + A ,  2 2  + A ,  23 + A) = (p-2 - 1, pe2, p-2 + 1). 

The equation 
2 2  + A = (&+fi)(&+ &) (2.20) 
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becomes 

or 
(2.21) 

This inverse of Fagnano’s relation (2.5) can be checked by noting that (2.5) implies 

1 f 2p2 - p4 
1 + p 4  

d m =  (2.22) 

If two of 21, 2 2 ,  23 are equal, the elliptic integral (2.7) loses its symmetry and degen- 
erates to an inverse circular or inverse hyperbolic function, 

d u  - 2 a r c c o s h E ,  0 < 22  < 21. (2.24) 

(Substitute u + z2 = (z2 - zl)/(l - t2) to prove either equation.) Since z1 - 2 2  = 
(21 + A) - (z2 + A), Theorem 2.2 becomes the duplication formula for the arccos and 
arccosh functions, 

Lm J i G z ( u + z 2 )  - l/Fz 

I 

(2.25) 

and the same equation with arccos replaced by arccosh. 
The duplication theorem (2.13) can be rewritten as an invariance, 

(2.26) 4 ’  

if t is replaced by 4t on the right side of (2.13). In this form it is useful for iterative 
computation because 

2; + A w .  - - m d t  m d t  
1 -  b J J & , J b  = b  JJ;=lJFF7iG’ 

(2.27) 

Each iteration of the invariance reduces the separation of the variables by a factor 4, and 
they converge to a common limit L. Although the rate of convergence is linear, it can be 
accelerated to give a simple and stable method of numerical computation with an error 
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of order 4-6" after n iterations [lo]. This method is now used in major software libraries. 
Since the proof of convergence is tedious in the complex case, we shall assume here that 
the variables are nonnegative. 

COROLLARY 2.3 Let x, y,z be real and nonnegative, at most one of them being 0. 
Letxo = x ,  yo = y, zo = z ,  and 

, n = 0 , 1 , 2 ,  ... , (2.28) zn + An 

4 j zn+1 = 
xn + An yn + An 

4 > Yn+l = 4 Xn+1 = 

Then xn , y,, z, have a common limit L = L(x ,  y, z )  as n + 00, and 

at 2 

(2.29) 

(2.30) 

PROOF. Let T! be the smallest interval containing x, , y,, z, (assumed to be not all 
equal). It is easy to see that X,/3 is an interior point of T, , and so are x,+~ = 4 x, + 
;i; (A,/3), ynfl, and z , + ~ .  Hence T'+, lies in the interior of Tn and is shorter by a factor 
4 because of relations like x,+~ - yn+l = (xn - yn)/4. This implies that the sequence 
{T,) of nested intervals converges to a point L. If the integral in (2.30) is denoted by 

the continuity of I(x, y, z )  that 

1 

3 

I(x,~,z), then (2.26) shows that I(xn, y n ,  Z n )  = I(xn+l, ?/,+I, Zn+l). It follows from 

If y = z Corollary 2.3 becomes the Schwab-Borchardt algorithm for iterative compu- 
tation of inverse circular or inverse hyperbolic functions. For convenience of notation we 
return to (2.26) and put z1 = x2 and 22 = 23 = y2, whence X = 2xy  + y2, to obtain 

where x and y lie in the open right half-plane, except that x may be 0. For an easy proof 
of convergence we assume these variables are real and nonnegative. 

COROLLARY 2.4 (SCHWAB-BORCHARDT ALGORITHM) Let xo = x 20, 
yo = y > 0,  and 

Then x, and yn approach a common limit 4 = $(x, y) as n + 00, and 

2 - _  dt  
(2.34) 
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PROOF. It is easy to verify that the sequences { x n }  and ( y n }  are monotonic and that 
xit1 - y i t l  = ( x i  - y i ) / 4 ;  therefore the two sequences have a common limit, say $, as 
n 3 00. If the integral in (2.34) is denoted by I (%,  y), then (2.32) shows that I(%,, yn) = 
I(zn+l, yn+l) .  It follows from the continuity of I ( x , y )  that 

(2.35) 

The early history of this algorithm involves Gauss, Pfaff, Schwab (whose geometrical 
version [21, pp. 103-1071 was the first to be published), and Borchardt [3]. See [7]and 
[20, Chap. 121 for more details and for an elementary proof using the duplication formula 
of the cos and cosh functions. The circular and hyperbolic cases are usually stated 
separately but are unified here by using the integral. In 1897 Guido Fubini (1879-1943), 
who was apparently unaware of [3], discussed this algorithm carefully while still a student 
in his first published paper [13]. He emphasized that $ ( x , y )  could be used to represent, 
and the algorithm to compute numerically, not only the inverse circular functions but 
also the inverse hyperbolic functions and the logarithm. I learned of Fubini’s paper from 
Luigi Gatteschi, who kindly sent me a copy. 

The Schwab-Borchardt algorithm has a lemniscatic twin [7, 841, but the similarity 
between the recurrence relations is deceptive. The purpose of the proof given here is 
to show that the algorithm can be deduced from Theorem 2.2. The easier proof given 
in [7] uses an integral representation of a Gauss hypergeometric function, obtained by 
substituting t = r(1+ in (2.3). 

C O R O L L A R Y  2.5 ( L E M N I S C A T E  A L G O R I T H M )  
d m ,  and 

L e t  xo = r-2 2 1, yo = 

n=0 ,1 ,2 , . : .  . 

Then x ,  and yn approach a common limit G = G(r) as n 3 co, and 

(2.36) 

(2.37) 

PROOF. In contrast with the Schwab-Borchardt case, xn - yn  alternates in sign as n 
increases, and two iterations are needed for invariance of an integral. Because x , + ~  and 

;~(yi - x:), 2, and yn  have a common limit G as n + o. For n = 0,1,2,. . . , let 
yn+l lie in the open interval with endpoints 2, and yn, and because - yn+, 2 -  - 
1 

These three quantities also have the common limit G as n + 03. From 

(2.38) 

(2.39) 
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Because 

we find 

Thus we get 

which is the same as 

Combining this with (2.40)’ we have also 

It follows from the invariance (2.26) that the integral 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

satisfies Jn = 
finally from (2.6) that 

Because X o  = T - ~ ,  y0 = T - ~  + 1, 2 0  = T - ~  - 1 by (2.38)’ we see 

3 Symmetric reduction from‘ quartic to cubic 
An elementary lemma similar to Lemma 2.1 will be used to replace a quartic polynomial 
by a cubic polynomial in an important integrand without losing symmetry in the zeros 
of the quartic. 
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L E M M A  3.1 Define 

j = 2,3 ,4 .  

PROOF. We see that 

(3.3) 

The last member is symmetric in j, k , t  and hence the f is t  member is independent of j. 
Because dAi /du  = 1 / 2 A , ,  differentiation of (3.2) gives 

T H E O R E M  3.2 (REDUCTION THEOREM) Le t  z1 2 2  2 3 ,  24 lie in the complex plane 
cut along the negative real axis, at m o s t  one of t h e m  being 0, and take all square roots in 
the right half-plane. Define 

and assume w2,  w3, w4 all lie in the  open right half-plane, except that  at most one of 
them m a y  be 0. (A su f i c i en t  but n o t  necessary condition is that  all z; lie in the open 
right half-plane.) T h e n  

(3-5)  
2 2 wj - wk = (21 - z f ) ( z j  - zk) 

and 
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PROOF. Writing w j  = zlzj + zkzl + 2J- and subtracting the same equation 
with j and IC interchanged proves (3.5). We define w ( u )  = fj(u) - f j ( O ) ,  which is in- 
dependent of j by Lemma 3.1. Since f j ( 0 )  = w; we have f j  = w + w; .  Then (3.3) 
implies 

-- dw - rI&I/- 
(3.7) d u  l-g,JGZ * 

Since w(0) = 0 and w(00) = 00, integration gives (3.6). 
The cubic polynomial in the right side of (3.6) is symmetric in 21,. . . , 2 4 .  We shall 

apply this theorem to an integral with any interval of integration, provided of course that 
the open interval does not contain a branch point of the integrand. We first map the 
interval of integration onto the positive real line. 

0 

LEMMA 3.3 Let x and y be real, and for 1 5 i 5 4 assume the line segment with 
endpoints ai + b;x and ai + b;y lies in the complex plane cut along the nonpositive real 
ax is .  Define 

(3-8) 
a; + b;y 

2; = s ( t )  = i=l 6 &zG, a; + b;x ' 
and take all square roots in the right half-plane. Then 

PROOF. Since the assumptions imply that Iph(z;)l < T, both integrals are well defined. 
Substitute t = ( x u  + y ) / ( u  + l ) ,  whence 

. o  t - y  d t  X - y  (a; + b;x)(u + 2;) 
x - t '  d u  ( ~ + 1 ) ~ '  u + l  

al + bit = -- u=-  - (3.10) 

The following theorem is important for integral tables and symbolic integration be- 
cause it reduces a general elliptic integral of the first kind to the same form no matter 
where the interval of integration is located. 

T H E O R E M  3.4 For 1 5 i 5 4 let a; and b; be real numbers, define 4j = a;bj - ajb;, 
and assume d;j # 0 i f  i # j .  Let x and y be real numbers with x > y ,  define 

and assume that all the Xi and Y;. are real and nonnegative. Define 

(3.12) 
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and 

(3.13) 

(3.14) 

PROOF. Because (3.13) ensures that at most one of the U1j is 0, we may assume that all 
the X; and Y;. are strictly positive, for otherwise (3.14) remains valid by continuity of the 
integrals. Let 

Then 

and (3.5) becomes 

Since Ulj = w j / g ,  (3.13) is proved. By Lemma 3.3 and Theorem 3.2 we see that 

00 du 

dv 

- d t  
- gJ,  JJ;=:=,diGz 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

which becomes (3.14) on substituting v = g2t. 
If exactly one of x and y is infinite, the theorem holds by continuity if the right side of 

(3.12) is replaced by its limit. The assumptions of the theorem can be relaxed by using 
the analyticity of the integrals and the permanence of functional relations. It suffices 
that, for all i and j ,  the open line segment connecting a; -I- b;x and a; + b;y lies in the 
complex plane cut along the nonpositive real a x i s  and that Ulj lies in the plane cut along 
the negative real axis. 

By choosing a4 = 1, b4 = 0, and .t = 4, whence X f  = Y, = 1, we include the case in 
which the left side of (3.14) contains the square root of a cubic polynomial. 

0 
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4 Symmetric canonical forms 
In 1893 Giuseppe Lauricella (1867-1913) defined four hypergeometric functions of m 
variables [18], including a function called FD with integral representation 

m 
ua-l( 1 - u)c-a-l 

i=l 
FD(a; bl , .  . . , b,; c; 21,. . . ,zm) = 

. .  ( 4 4  
where Re c > Re a > 0 and B is the beta function. We shall see that the obvious symmetry 
of FD in the subscripts 1,. . :, m is part of a hidden symmetry in m + 1 subscripts [5]. 

If m = 1, FD is the Gauss hypergeometric function. If all three exponents in this case 
are half-odd integers, the right side contains the square root of a cubic polynomial and, as 
Gauss observed, is a complete elliptic integral. If m = 2, FD is the double hypergeometric 
function F1 that Appell had previously defined in 1880. During the nineteenth century 
attention had shifted from elliptic integrals to elliptic functions, and until 1961 no one 
(not even Appell, as his later coauthor Kampk de FQiet told me) noticed that Fl could 
represent an incomplete elliptic integral. 

An illuminating example is the integral (2.7) that has been the main subject of Sec- 
tions 2 and 3. We find 

where we have substituted 

This shows not only that Fl can represent an incomplete elliptic integral but also that 
the F1 notation hides the symmetry in the subscripts 1,2,3 that is obvious on the left 
side. Permutations of the subscripts induce transformations of F1 that Appell discovered 
by another method. 

To extend these conclusions to Fo , which is needed for incomplete elliptic integrals of 
the third kind, we apply the substitution (4.3) in reverse (u in terms o f t  with 3 replaced 
by n) to find 

Jrn tc--a-l fi(t + dt 1 - - 
B(a ,c -a )  0 i=l 

= R  -,( b l ,  ..., bn;  ~1 ,... , ~ n ) ,  (4.4) 

where the parameter c in FD has been replaced in R-, by b, = c - bi , whence 

c = C b ; .  
i=l 

(4.5) 
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The function defined by the second equality in (4.4) is called the hypergeometric R- 
function and is symmetric in the subscripts 1,. . . , n, as we see from the integral. Whenever 
n is exchanged with a different subscript, a transformation of FD is induced because of 
its hidden symmetry. The first member of (4.4) shows that R-, is homogeneous of degree 
--a in z l , .  . . , z, and that R-, = 1 if z1 = . . . = zn = 1. 

If the b's are all equal, R-, is symmetric in the z's, as in 

The case with n = 3 will be .denoted for brevity by 

an elliptic integral of the first kind. Theorem 2.2 is its duplication theorem, and it can 
be computed numerically by Corollary 2.3. If 23 = z2 it degenerates to an elementary 
integral denoted by 

03 dt  
z2) = f J ,  d G ( t  + 2 2 )  

and computable by Corollary 2.3 or 2.4. Any inverse circular function or inverse hyper- 
bolic function or logarithm can be written in terms of Rc(z2, y2), which is the reciprocal 
of the function that Fubini 1131 denoted by $(z,y). 

The case of (4.6) with n' = 4 reduces to RF by Theorem 3.2. 
The case with n = 5 is a hyperelliptic integral, but it degenerates if 25 = 24 to an 

elliptic integral of the third kind, 

Further degeneration with 2 4  = 23 gives an elliptic integral of the second kind that is 
symmetric only in zl and 2 2 ,  

(4.10) 

The duplication theorem for RJ is similar to that for RF but contains also a term in 
Rc that reduces to an algebraic term when RJ reduces to RD. Iterative computational 
algorithms are given in [lo]. 

Any elliptic integral can be expressed in terms of Legendre's three canonical forms, 

where A = dl - k2 sin2 e .  Each has five transformations induced by permuting three 
unseen variables. Substituting sin2 0 = ( z  - z ) / ( t  4- z), we find 

(4.12) 
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which is symmetric in x, y t  z. Interchange of 
modulus transformation, 

and y, for example, induces the reciprocal- 

(4.13) F(4,  I C )  = F($, l / k )  , sin$ = I C & $ .  

Interchange of real x and z leads to imaginary 4 and E. We can dispense with these 
transformations by using RF. Legendre’s E and II have corresponding transformations 
that involve an extra term in F.  

Conversion from Legendre’s integrals to symmetric integrals is accomplished by the 
relations 

1 

U 
F((b,IC)--II(4)IC,U)= -&(c- l ,  C A 2 )  c, C + Y ) .  3 

(4.16) 

The integrals are called complete if = 7r/2; then c = 1 and one variable of each 
R-function is 0. 

In integral tables or symbolic integration one cannot use (4.14) to express the right 
side of (3.14) in terms of F ( 4 , k )  (with 4 and k in the customary ranges 0 5 4 5 7r/2 and 
0 5 k 5 1) without first specifying enough information to determine the relative sizes 
of V12, U13, U14. With a similar situation for the other integrals, this accounts in part 
(along with ignorance of (3.14)) for the burdensome number of cases listed in integral 
tables and creates a serious drawback to the use of Legendre’s integrals in symbolic 
integration. 

5 Symbolic integration: the first stage 
In 1976 Ng and Polanjar [19] discussed the difficulties in four approaches to symbolic 
integration of elliptic integrals; one approach used R-functions but had troubles with 
multiparameter recurrence relations. Labahn and Mutrie [17], in a paper not yet pub- 
lished, improve the classical method of reduction but retain Legendre’s canonical forms. 

We consider elliptic integrals of the form 

where h = 3 or 4, x and y are real with z > y (at most one of them may be infinite), 
the a’s and b’s are real or complex, the b’s are nonzero, and m = (ml , . . . , m,) is an 
n-tuple of integers. We assume that the integral is well defined (in particular that the 
open interval of integration contains no finite branch point of the integrand) and that 
no two linear factors are proportional (that is, dij = aibi - ujb; # 0 if i # j ) .  We do 
not assume any other information about z, y, the a’s, or the b’s, not even qualitative 
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information in the form of inequalities. In contrast, conventional integral tables such as 
[4] and [16] require inequalities relating to the branch points of the integrand and the 
interval of integration in order to express the integral in terms of Legendre’s integrals 
with 0 < q5 5 7r/2 and 0 5 k 5 1. 

However, we do assume that the integers m j  are known. For nearly all integrals listed 
in tables, the m j  are obvious, including those with 1 5 j 5 h, but in general one needs to 
find out whether any two polynomials in an integrand have one or more zeros in common, 
and numerical information may be needed to determine this. Except for finding the mj, 

symbolic factorization of polynomials suffices. 
The rational part of the integrand of (5.1) can be decomposed explicitly [ll] into 

partial fractions : 

n M 
n ( a j  + bjt)”” = B bFM 
j=1  q=o 

C~--q( i )  ( ~ i  + b i t ) ’  

(5.2) 
. j=1  q=l 

where the polynomial part is independent of the choice of i, and each sum over q is empty 
if the upper limit is less than the lower limit. Various quantities are defined by 

j=1 j = 1  

f 3  

Pfs(j) = -1 2 m k  (e) , 
k# j  

s = l , 2 , 3  ,..., 
k=l 

(5-4) 

where upper (lower) signs go together and the last sum extends over all nonnegative 
integers a1,. . . ,a, such that a1 + 2a2 + . . . + sa, = s. In particular we have 

1 
C d j )  = P*l(j), 

C d j )  = s P%) + ~ d j )  P&) + 4 j ) .  

Cf2(j) = 5 P m  + Pf2(j) > 

(5.6) 
1 

Substitution of (5.2) in (5.1) reduces I (m)  to a set of simpler integrals in which at most 
one component of m is nonzero. Defining n-tuples 

eo = (O,O, . . . , 0), 
el = (I,O,. . . ,O), (5-7) 
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we see that 
n -mj M 

I ( m )  = B brM C M - ~ ( ~ )  I(qe;) + Dj b y - M  Cmj+,(j) I(--Qej). 
q=o j=1 q=l 

The first term on the right side is independent of the choice of i, and each sum over q is 
empty if the upper limit is less than the lower limit. 

Recurrence relations make it possible to express the integrals I ( f q e j ) ,  1 5 j 5 n, in 
terms of a set of basic integrals. If h = 3 in (5.1) these are I ( -e j ) ,  j = 0,1,. . . ,n, but 
if h = 4 the basic integrals include also I(+ej),  j = 1,. . . ) 4. The recurrence relations 
involve algebraic terms representing the difference between the values at t = z and t = y 
of an integrand like that in (5.1) : 

(5.10) 

The principal recurrence relations, proved in [ll], have one less term if 1 5 j 5 h than if 
h + l <  j In. 

THEOREM 5.1 For 1 5 j 5 n let Es(j) be the elementary symmetric  func t ion  of 
degree s in 

and define 

o o ( j )  = oo = bl - - - bh ) 

If 15 i 5 h t h e n  

If h + 1 5 a 5 n t hen  

(5.11) 

(5.12) 

(5.13) 

If we choose i 5 h in the first term on the right side of (5.8), then I(qea) is never needed 
for q > 2, but (5.13) with q = -2 involves I(e,) if h = 3 and both I(e,) and 1(2ea) if 
h = 4. These two integrals can be reduced by specializing (5.8) to get 

(5.14) 
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The following table shows how 136 integrals from [16] with h = 4 are represented in 
terms of basic integrals by five formulas. 

TABLE 5.2 Each entry starts with a list of those integrals in [16] that have the form 
I (m)  = I ( ~ ~ = l m i e j )  displayed in the entry and defined in (5.1). Also displayed is the 
expression for I (m)  in terms of the basic integrals I ( eo ) ,  I ( -e5) ,  and I(*e;), i = 1,. . . ,4. 
Because {i, j, k , l }  = (1,2,3,4}, no two of i,j, k , t  can be equal. 

[§ 3.147,l-81: 

[§ 3.148,l-81: 

[§ 3.149,1-8; 3 3.151,l-81: 

[$3.167,1-321: 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

[8 3.168,1.-72]: 

(5.19) 

If the basic integrals are to be expressed in terms of Legendre’s canonical forms, each 
of 136 formulas has to be accompanied by inequalities relating the branch points of the 
integrand and the interval of integration. In the next Section we shall use R-functions to 
avoid most of this complexity. 

1 I (ek  - ei)  = - [dk; I ( -e ; )  + bk I (eo)]  . 
bi 

6 Symbolic integration: the second stage 
In the quartic case ( h  = 4) the simplest of the basic integrals is 

where the second equality is (3.14). In terms of the function RF defined by (4.7), we have 

(6-2) I ( e o )  = 2 ~ F ( U &  I u;23 J ua I 

where the U’s are defined by (3.12). 
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It is convenient to replace 1 by i and rewrite (3.12) and (3.13) as 

u .  - u f k  = d a d j k  , dij  = a;bj - ajb; . (6.4) 
Because Uij = Uj; = UM = Vu, there are only three distinct U's, and we can avoid the 
subscript 4 (with an eye to the case h = 3 )  by writing (6.2) as 

I (e0)  = 2 RF(u?2 , u?3 2 u,",) J (6.5) 

The other basic integrals are integrals of the second and third kinds. Their reduction 
to Ro and RJ depends on an analogue of Theorem 3.2 that reduces 

to a sum of two integrals expressible in terms of RJ and Rc respectively. The proof 
[9], too long to give here, splits the integral into two parts that are recombined by the 
addition theorem for RJ , which contains a term in Rc . A similar proof can be given 
for Theorem 3.2, but Lemma 3.1 does not seem to be directly applicable to the more 
complicated integral. 

integrals are 
With {i; j ,  k , t }  = 

dj; I ( - e ; )  = 

diu I(  -e,) = 

bi I ( e ; )  = 

where 5 5 a! 5 n and 

{ 1 , 2 , 3 , 4 }  and a! 2 h + 1 = 5, the results for the other basic 

sia = (xzT'xjxkx~Y~ + ~ - l ~ Y k f i x ~ ) / ( ~  - y) , (6.11) 

The corresponding formulas for U;o, Si0 , Q;o are obtained from (6.10) and (6.11) by 
putting a, = 1 and b, = 0, whence X, = Y, = 1 and di, = -bi. 

If Uij = 0 the first two terms on the right side of (6.7) are infinite, but (6.4) ensures 
that at most one of the three U's can be 0. Given i we can choose j so that Uij # 0. 

If U:, is real and negative in (6.8), then RJ is a Cauchy principal value. This happens 
for at most two of the four choices for i and so can be avoided. The corresponding 
problem in (6.9) can be avoided by using the identity 

bj I (  e;) = b; I (  e j )  + dij I(  eo) . (6.12) 
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The preceding equations remain valid in the cubic case if we put (i , j , k) = (1, 2, 3) 
and m4 = 0, retaining 5 5 cx 5 n. Also, we put C = 4, a4 = 1, and b4 = 0, whence 
Xl= = 1 and da = -bi . We recall that I (e;)  is not needed in the cubic case. 

' The basic integrals have now been expressed in terms of R-functions, showing that 
symbolic integration of (5.1) is feasible without imposing inequalities on the parameters 
in the integrand. The number of R-functions in the result is independent of whether a 
branch point of the integrand is an endpoint of the interval of integration. If numerical 
computation is to be performed, there are efficient algorithms [lo] for the &-functions 
even if their variables are complex, and Cauchy principal values of RJ can be avoided. 
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