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Statistical algorithms: 
A break through for multiple alignment 

1 Previously alignment and statistics as unrelated steps. 

These algorithms merge these two steps.  

2. Multiple alignment as an NP-hard many to many comparison. 

Convert to a series of many to one comparisons 

1 Previously alignment and statistics as unrelated steps. 

These algorithms merge these two steps.  

2. Multiple alignment as an NP-hard many to many comparison. 

Convert to a series of many to one comparisons 



Novel Statistically Based Methods 

1. Multiple Sequence Alignment 

Expectation Maximization (EM) 

Gibbs Sampler 

Hidden Markov Models (HMM) 

2. Alignment of Sequence to Structures. 

Thread i ng 

3. Structural Prediction and Alignment 

Stochastic Context Tree Grammars 



Two major conceptual underpinnings 

1. Boltzmann like relationship of residue frequencies 
and energetic constraints 

Statistical Mechanics: A states energy and its occupancy 
(Boltzmann & Gibbs) 

Residue frequency analogy 
(Bryant SH and Lawrence CE, (1991), Proteins, 9:108-119) 

2. Alignments as Missing data 

Expectation Maximization 
(Little RJA and Rubin DB, (1987), Statistical Analysis 
with Missing Data, Wiley, NY NY) 

Data Augmentation 
(Tanner, MA, (1 993) Tools for Statistical Inference, Springer- 
Veriag, NY, NY) 



c 

Boltzmann like model of residue frequencies 

Maximize entropy subject to energy constraints 

st: 

Yields 

Pi 

c ei P i  = E  

n 



Frequencies of ion pairs 

Coulomb's Law 

d 

Screening and distant dependent dielectric constant 

and, 

Pi 
PO 
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A>- Mi in D 

Permuted Data Log Likelihood 

Examples: 

1. Transcriptional Gene Regulation (Slides 1-4) 

2. Coin toss ing  game 



C 

I 

V be the vector of correctly aligned residues in the n* sequence.  n 

V - f(V I O), where 0 are generic parameters. n n 

In multiple sequence alignment the residues are assumed 
to be Independent: 

where, 

I J Z )  = 1 i f z =  bandOothetwise. 

= the probability of base b at position j In the site. h l  

Pb,* = the probability of base b in any non site position. 

i 



UJ be the set of permitted distinguishable permutations, 
which we will index by r. 

@ r be the permutation operator for the r* permutation. 

0 r -' be the inverse permutation operator for the r* permutation. 

R n be a random variable indicating which permutation 
has been applied to the n sequence. 

Y be I if Rn = r, and 0 otherwise. 

X n be of observed n* sequence. 
n,r 

For example, 



Complete data loglikelihood {X,Y} 

The incomplete data loglikelihood is obtalned by summing over r {X} 

L ( X I O , A )  = 

m c  f(@il (X n ) IO) P(R n = r l A >  
nrPnlr 

*. 



Coins Example with Missing Data: f(& 10) 
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Coins Example with Complete Data P(x, Y, 18) 
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Aligned Coin Sequences f(v n le) 

1 1 1 1 1 1 1 1 2 1 2  
1 2 3  4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

S H H  T T T H T T T T T H T T T T H T T T  

E T H  T T T T T H T T T T T H T H T T H T  

H H ' H  T T T T T T T H H T H T T T H T H T  

H H H  T T T T T H H T H T T T T H H T T T -  

K H H  T T H T H T T T T T T H T H T T T ' T  

g1 = . 9 5 f  p3 = . 9 8  



Multiple Sequence Alignment 

Assume positions operate independently 

Th is  means the  energies are addi t ive 



Block alignment 

where &(w) = (if v = b, and 0 otherwise). 
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Complete D a t a  log likelihood {X,Y} 

with f ( . l @ )  multinomial with parameters 

Pj ,b  

The maximum likelihood parameter estimates are: 



R 

EM Algorithm 

E Step: 



24 

1 where 



Coins Example with Missing Data: F(X, I e) 

1 1 1 1 1 1 1 1 1 1 2  
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
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Coins Example with Missing Data: F(X, I e) 

1 1 1 1 1 1 1 1 1 1 2  
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
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M Step: 

Notes: 

replaces 



and t h e  MLEs are 



EM Theory 

Z(X, Y I O ,  A) = Z(XI0, A) + log(P(YlX, 0,  A)) 

Taking expectations over P ( Y ] X ,  et, At) 

Z(Xl0,  A) =’ Q - H 



where 

= cP(YlX, 0 t t  , A  ) log(P(YIX, 0 t t  , A  ) 
r 



I n forma t ion I neq ua I ity 

qxp t+l ) - I(XIOt) 

= {Q(O t+l. I et )-Q(O t 10 3 ) } -{H(O t+l 1 et )-H(OtlOt)}  



Gibbs Sampler 

Bayesian Prospective 

P(X1 O ) P (  0) 
J P ( X p ) P ( @ ) d e  

P ( O [ X )  = 



Conjugate prior, 

P ( X l 0 )  has same form as P ( 0 )  

For example, 

P ( X l 0 )  N multinomial 

P ( 0 )  - Dirchlet 

P ( 0 I X )  N Dirchlet 



a? 

Markov Monte Carlo(MMC) 

An iterative Markov chain sampling scheme whose 
equilibrium distribution is t h e  joint distribution of in- 
terest. 



Gibbs Sampler: MMC u s i n g  complete 

set of conditionals 

Joint 

Complete set of conditionals 

P ( 0  



Predictive inference (Liu, 1994, JASA 

89:958) 



Predictive Update Multiple Align- 

ment 

Under the condition t h a t  P(R#) is a constant (Lawrence 
et.al., 1994, HICSS 27th 5:245-255) 

where is a defined above, p is vector of pseudo count 
priors, N = Ciij,b , and B = &, . 



Mul t ip le  Elements (of arbi t rary size) 

For example,  

M u l t i p l e  

Mu t ip le  

I iga nd bi n d i ng m o t i f s  

s t ruc tu  ra ly conserved regions 



Gibbs: 

Complete set o f  conditionals 



Three element example 

Residue frequency model from R [ k ] ,  and conditioning 

on the alignments of Rk ( b )  ,Rk (4 . 
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Colinearity: Markov Dependence 

1) Dependence only on two nearest neighbors. 

2) How can we capture dependence on both? 



Forward Backward Algorithm 

Forward 

u3 = P(R31.R2, R1) = P(R31.R2)P(R11.) O( n2G1,2v2 



4Q 
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B a c kwa rd 

1) Draw R: from YQ , true marginal distribution of  
the las t  element 

2) Draw R, conditional on locat on of Ry including 

the  effect of  GQ,Q-l 



HMMs for Multiple Sequence Align- 

ment 

(Krogh, et.al. 1994, JMB 235:1501)(Baldi, et.al, 1994, 
PNAS 91:1059) 



EM 

Use Markov dependence 

Forward / Backward a lgorit h m 

Product multinomial model of residue 

frequency 

Missing Alignment D a t a  

Set of 3 state hidden variables 

Match 

Insert 

r3PIPi-P 



Y 



The mi,ssing d a t a  model 

P(RIA) = M a r k o v  Chain M o d e l  of t rans i t i ons  between hid 

Learning of parameters of missing data 

model 

As before, even though w e  observe no of t h e  m iss ing  
variables t h e  a lgo r i t hm can  nevertheless learn parame- 
t e r  es t imates  a b o u t  these models.  In t h i s  way pos i t i on  
specif ic g a p  penal t ies are learned. 



Flexibility Sensitivity Trade-off 

l ( X l 0 ,  A) = Q - H 



. .  

T h read ing 

pairs 



Alignment of sequence to  structurally 

conserved regions 

Markov dependence is gone 

PBD derived empirical potentials pro- 

vide a set of known parameters 

Gibbs Sampling Algorithm 
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APPENDIX 

Foundations of Statistical Algorithms for Multiple Sequence Alignment 
and Structure Prediction 

Chip Lawrence 

Biometrics Lab, Wadsworth Labs, Albany, NY 12201 
Internet: Chip.Lawrence@ wadsworth.org 

Phone (518) 473-3382 FAX (518) 474-8590 

and 

National Center for Biotechnology information 
NLM, NIH, Bethesda, MD 

Internet: lawrence@ncbi.nlm.nih.gov 
Phone: (301) 496-2475 FAX: (301) 480-9241 

Abstract 

Recently, statistical algorithms have proved to be useful for several problems in computational 
molecular biology. These included the following: an EM algorithm for identification and 
characterization of DNA regulatory binding sites (Lawrence and Reilly, 1990); a Gibbs 
sampling algorithm for local multiple alignment of subtle sequence signals in protein sequence 
(Lawrence et al. , 1993); alignment of large families of protein sequence using hidden Markov 
models (HMM) (Baldi et.al, 1994 & Haussler et al. 1994); the threading of sequence through 
structural motifs (Bryant and Lawrence, 1993) and the prediction of cornmom RNA secondary 
structures using context-free grammars (Sakakibara et al., 1994) (Eddy and Durbin 1994). In 
each of these cases, critical alignment and/or structural data are missing. 

In the 1970s it became widely recognized that many statistical problems are most easily 
addressed by pretending that critical missing data are available. In fact, for some problems, 
statistical inference is facilitated by creating a set of latent variables, none of whose values are 
observed. The key observation was that conditional probabilities for the values of the missing 
data could be inferred by application of Bayes theorem to the observed data. Statistical 
inference based on this concept was called the "missing information principle" (Orchard and 
Woodbury, 1972). Its application became widely known through a deterministic maximum 
likelihood algorithm, expectation maximization (EM) algorithm (Dempster et al., 1977). The 
use of sampling methods, known as data augmentation methods, for problems involving missing 
data were developed in the late 1980s (Tanner and Wong, 1987 & Li, 1988). This common 
statistical framework forms the basis of all of the above algorithms. 

http://wadsworth.org
mailto:lawrence@ncbi.nlm.nih.gov


I. Introduction 

These methods derive their power for multiple sequences problems from two key characteristics. 
1) They reduce a many-to-many comparison problem to a many-to-one comparison: each 
sequence to a common evolving statistical model. 2) They effectively capture both the 
characteristics common to the set of sequences and the variability across its members in a pair of 
stochastic models. These methods employ two stochastics models: the first models the residue 
probabilities in observed sequence data given an alignment, while the second models the missing 
alignment data given the residue probabilities. Clearly the problem would be easy if we knew 
the alignment, for then the residue probability parameters could be estimated via a simple 
tabulation. The reverse is also true if we know the residue probabilities for the common 
elements, then the probability of the alterative alignment can readily determined. These 
problems are made challenging by the fact that at the outset neither the alignment nor the residue 
probabilities are known. These methods iteratively cycle between these two models to adaptively 
"learn" both the alignment and the residue probabilities. 

II. Boltzmann like models 

The success of these methods is to a large extent dependent on how well the chosen models 
represent the underlying biology. Mutations in biopolymer sequences may be classified into 
four categories: point mutations, insertions/deletions, transpositions, and duplications. The 
products of point mutations will be accepted if they satisfy the functional and structural 
constraints of the biopolymer. At the molecular level, these constraints often take the form of 
energetic requirements on the interactions of the residues of the biopolymer with one another or 
with their environment. The relationship between energetic constraints and frequencies forms 
the basis of statistical mechanics, pioneered by Gibbs and Boltzmann. There is an analogous 
relationship for residue frequencies subject to random point mutations (Berg and von Hipple 
1987, Bryant and Lawrence 1991), which forms the foundation of the models used here. From 
a statistical modeling prospective this relationship is quite valuable since it allows for the 
translation from the language of physics and chemistry that governs molecular behavior to the 
language of statistics, to yield a stochastic model that represents the underlying science. 

Multinomial models have been used successfully to capture both the variability and the 
limitations shared by common elements in a set of sequences. Because the most important 
interactions of the residues of a biopolymer are frequently with the environment as opposed to 
with one another (Bryant and Lawrence, 1993), multiple sequence alignment models that 
assume independence of the residue positions have enjoyed considerable success. 

III. Permuted data likelihood 

The other three classes of mutations, insertions/deletions, transpositions, and duplications, result 
in changes in the length of the sequence or in reordering of the sequence. These events result in 

2 



a permutation of the indices of the data, and since the effects of these events are not directly 
observable in biopolymer sequences, these data are missing. It thus falls in the class of 
statistical problems concerned with the analysis of data with unobserved index permutations 
(Lawrence and Reilly, 1996). The fundamental feature of all of these statistical methods is use 
of stochastic models to "impute" this missing data given the data that is observed, the sequences. 
Let us consider in more detail the effect of deletions with specific attention on the conserved 
segments. A deletion mutation will remove a segment of a protein sequence, and the resulting 
two adjacent fragments of the protein will be shifted to form a continuous chain. If the deletion 
is "upstream" of the conserved segment, then this segment will be shifted to the left, and thus 
misaligned with respect to its predecessor. Insertions operate in an analogous manner but add 
sequence segments. Transpositions move a segment to a new location in the sequence. 
Duplications replicate segments and then insert them in new locations. To account for these 
unobserved events, Bayes theorem is employed to find the conditional distribution of the 
alignment variables given the sequences and a residue frequency model of the form described in 
the previous paragraph. 

To help fix the ideas, consider the following coin tossing analogy. The game is played with L 
coins, say 50. (L-J) of these coins, say 40 (plain coins), all have the same probability of heads 
not necessarily a half. The remaining J =10 special coins have probabilities of heads different 
from the plain coins and different from one another. On each of K independent trials, 
corresponding to K observed sequences in alignment problems, the coins are shaken in a tumbler 
and laid out in a row. Consequently, not only have the coins been flipped but also their order 
has been pemutted. The player is challenged to estimate the probabilities of the 11 types of 
coins, the parameters of the residue frequency model, and to specify the locations, the 
alignment, of the special coins in each trial. Various restrictions of the permitted permutations 
tend to simplify the problem. If the special coins are required to remain in order, sequences are 
said to be collinear. If further, the 10 special coins are positioned in a contiguous block, then 
only a single motif must be aligned. 

Iv & v. EM and Gibbs sampler algorithms 

We used this last and simplest case to explain the concepts behind the two major algorithm 
classes of algorithms that have been employed to find solutions to these alignment problems: 
expectation maximization (EM) algorithms and Gibbs sampling algorithms. When the 
permutation constraints of this simplest case are relaxed, we must deal with the joint distribution 
of the multiple alignment variables for each sequence. Because the maximization step of EM 
algorithm required direct access to the joint distribution, it is not (straightforward) to extend 
these algorithms to more complex alignment problems. On the other hand, Gibbs sampler 
provides a means to access this complex distribution through the conditional distribution of one 
alignment variable given the others; thus, extension to arbitrarily complex joint distributions is 
conceptually straightforward and practical for many real alignment problems. However, if the 
number of free alignment variables becomes 1arge;the convergence of the Gibbs sampling 
algorithm becomes problematic. 
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VI. Multiple elements 

If attention is restricted to collinear alignments, then the recursive relationship which forms the 
basis of the well known dynamic programming algorithms for the alignment of pairs of 
sequences can be brought to bare. When this recursive relationship is used with Gibbs sampling, 
a "propagation" algorithm which samples from the conditional distribution of all alignment 
variables in one sequence, given the current alignment in the remaining sequences, makes it 
practical to analyze arbitrarily complex collinear multiple alignment data sets. Hidden Markov 
models WMM) combine the use of this recursive relationship with the EM algorithm to provide 
another means to analyze collinear multiple sequence data sets which have large joint alignment 
spaces for each sequence. Because HMM and dynamic programming algorithms for the 
alignment of pairs of sequences both characterize the missing alignment data through the use of 
a trichotomy (insert, delete or match) for each residue, the recursive relationship is almost 
identical. In contrast, since propagation treats the missing alignment data as permutations of the 
indices of the data, as do the other methods described above, the recursive relationship used by 
propagation departs from the others. 

VII. FIexibiIity/Sensitivity tradeoff 

HMMs and propagation allow for full flexibility in collinear alignments, in that gaps may be 
placed between any pair of residues, and position-specific gap distributions may be employed. 
However, this flexibility comes at a price in sensitivity. Quantitation of this 
flexibility/sensitivity tradeoff can be accessible from a fundamental relationship of EM theory. 

VIII & M. 

When the assumption that residue positions act independently is relaxed to account for non- 
local interactions of residues, higher order biopolymer structure must be considered. Threading 
methods take structural motifs as given, and employ higher order models implied by these 
structures to align sequences to structural motifs. Methods for the structural prediction of 
multiple RNA sequences treat structural variables, as well as alignment variables, as missing 
data and consequently employ a thii component model to impute the missing structural data. 
Residue interactions are described by the higher order interaction implied by these imputed 
structures. 

Threading and stochastic context free grammars 

This tutorial reviews the common statistical framework behind all of these algorithms, illustrates 
its application to each of them, and describes the biological underpinnings of the models they 
use. 
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Annotated bibliography 

The bibliography is not intended to be exhaustive. Rather, it is intended to give the reader entry 
into this literature. 

Blotmann like models 

Bryant SN, and Lawrence CE, 1991, The frequencies of ion pair substructures in proteins is 
quantitatively related to electrostatic potentials: a statistical model for non bonded interactions, 
Proteins 9: 92-1 12. (Statistical model for and empirical evidence of Boltvnann like model of 
residues in proteins) 

Berg OG, and von Hipple PH, 1987, Selection of DNA binding sites by regulatory proteins: 
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750. (Statistical mechanical theory and empirical evidence in DNA for Bailsmann like model) 

General Missing dah references: 

Dempster, A.P., N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incomplete data 
via the EM algorithm. J. Roy. Stat. SOC. B 39: 1-38. (Gave EM its name and a major boost) 

Li, K.H. 1988. Imputation using Markov chains. J. Stat. Comp. 30: 57-79. (Early data 
augmentation reference) 

. .  Little, RJA and Rubin, DB, 1987, Statistical analysis w ith missin? dau  , J. Wiley and Son, New, 
York. (Reference for EM methods) 

Orchard, T. and M.A. Woodbury. 1972. A missing information principle: theory and 
applications. hoc .  of the 6th Berkeley Symposium on Math. Stat. and Rob. (First missing data 
reference) 

. .  Tanner, MA, 1990, Tools €or -tal e: Observed d a  and -, 
Springer Verlag, Berlin. (Reference for most missing data statistical methods) 

Tanner, M.A. and W.A. Wong. 1987. The calculation of posterior distributions by data 
augmentation. J. Am. Stat. Assoc. 82: 528-540. (Early data augmentation reference) 

Permuted data statistical methods 

Lawrence, CE and Reilly, AA, 1996, Likelihood inference for permuted data with application to 
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gene regulation, J Amer Stat Assoc, to appear. (Provides statistical background for permute data 
analysis and gives a gene regulation application) 

EM alignment 

Cardon LR, and Stormo GD, 1992, Expectation maximization algorithms for identifying protein 
binding sites with variable lengths from unaligned DNA fragments, J. Mol. Biol. 223: 159-170 
(Extends Lawrence & Reilly to permit one gap in the binding site) 

Lawrence, C.E. and A.A. Reilly. 1990. An expectation maximization (EM) algorithm for the 
identification and characterization of common sites in unaligned biopolymer sequences, Proteins 
Struc. Func. Genet. 7: 41-51. (First use of missing data concepts for multiple sequence 
alignment) 

Gibbs sampler for multiple alignment 

Lawrence, C.E., S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald, and J.C. Wootton. 1993. 
Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science 
262:208-214. (First Gibbs sampling for multiple sequence alignment reference) 

Liu JS, Neuwald AF, and Lawrence CE, 1995, Bayesian models for multiple local sequence 
alignment and Gibbs sampling strategies, J Amer Statis Assoc, to appear 12/95. (Gives rigorous 
statistical basis for Gibbs sampling for multiple sequence alignment) 

Neuwald AF, Liu JS, and Lawrence CE, 1995, Gibbs motif sampling: detection of bacterial 
outer membrane protein repeats, Protein Science, to appear fall 95. (Gives latest Gibbs methods 
for multiple sequence alignment and applications) 

HMM 

Baldi, P. Chauvin, Y. Hunkapiller T. McClure, M.A. 1993. Hidden Markov models of biological 
primary sequence information, Proc Natl Acad Sci 91:1059-1063. (One of two f i s t  HMM for 
multiple alignment reference) 

Krogh A, Brown M, Mian IS, and Sjolander K, Haussler DA, 1994, Hidden Markov Models in 
computational biology: applications to protein modeling, J. Mol. Biol. 235:15O1-1531. (one of 
two first HMM for multiple alignment reference) 
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Threading 

Bryant SH and Lawrence CE, 1993. An empirical energy function for threading protein 
sequence through the folding motif, Proteins 16:92-112. (Threading reference that is most easily 
seen from the missing data prospective) 

Rost B, and Sander C, 1994, Structural prediction of proteins - where are we now? Curr Opin 
Biotechnol5:372-380 ( review) 

Wodak SJ, and Rooman MJ, 1993, Generating and testing protein folds, Curr Opin Struct Biol 
3:247-259 (review) 

Stochastic context free grammars 

Eddy S R  Durbin R, 1994, RNA sequence analysis using covariance models, Nucleic Acids Res 
22: 2079-88(one of two first references on stochastic context free grammars for RNA alignment 
and structural prediction) 

Sakakibara Y; Brown M; Hughey R; Mian IS; Sjolander K; Underwood RC; Haussler D, 1994, 
Stochastic context-free grammars for tRNA modeling, Nucleic Acids Res 22: 51 12-20 
(one of two first references on stochastic context free grammars for RNA alignment and 
structural prediction) 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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