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Optimum Conditions for Composites Fiber Coating by 
Chemical Vapor Infiltration 

Stewart  K. Griffiths and Robert H. Nilson 
Sandia National Laboratories 

Livermore, California 94551-0969 

A combined analytical and numerical method is employed to optimize process conditions for composites fiber 
coating by chemical vapor infiltration (CVI). For a first-order deposition reaction, the optimum pressure yielding 
the maximum deposition rate at a preform center is obtained in closed form and is found to depend only on 
the activation energy of the deposition reaction, the characteristic pore size, and properties of the reactant 
and product gases. It does not depend on the preform specific surface area, effective diffusivity or preform 
thickness, nor on the gas-phase yield of the deposition reaction. Further, this optimum pressure is unaltered by 
the additional constraint of a prescribed deposition uniformity. Optimum temperatures are obtained using an 
analytical expression for the optimum value along with numerical solutions to the governing transport equations. 
These solutions account for both diffusive and advective transport, as well as both ordinary and Knudsen 
diffusion. Sample calculations are presented for coating preform fibers with boron nitride. 

Introduction 

Chemical vapor infiltration (CVI) is widely used 
in advanced composites manufacturing to deposit car- 
bon, silicon carbide, boron nitride and other refrac- 
tory materials within porous fiber preforms [1,2,3]. 
These deposition processes, employing a variety of 
chemistries, are usually performed in large batch fur- 
naces at reduced pressures and elevated tempera- 
tures. In-furnace times typically range from a few 
hours to even weeks, resulting in costs ranging from 
$100 to over $1000 per kg for high-temperature high- 
performance composites [4]. Even under ideal con- 
ditions the processing time for these materials repre- 
sents a significant fraction of the finished product cost, 
so optimizing processes conditions is important. In 
addition to the obvious benefit of lower product costs, 
lower prices are important to increasing the commer- 
cial applications for these materials, now largely Iim- 
ited to military uses. 

The most common application of CVI in com- 
posites manufacturing is in densifying the preform. 
In this use, reactant gases are employed to deposit 
solids within a fiber preform with the intent of fill- 

ing all or most of the inter-fiber void. These solids 
bind the fibers together and form the continuous ma- 
trix of the composite. A second common use of CVI 
is in coating the preform fibers prior to densification. 
These coatings serve as high-temperature oxidation 
inhibitors and as debonding agents to permit limited 
motion between the fibers and the composite matrix. 
Such motion is desirable as it improves the mechanical 
properties of a composite. 

Most previous analyses of CVI have focused on 
the densification problem [5,6,7,8]. This is a difficult 
problem because the preform void fraction is altered 
significantly by the deposition process. The evolv- 
ing microstructure strongly affects reactant transport 
through the preform, and so must be addressed in 
any meaningful analysis of densification. Because of 
this difficulty, most analyses of densification have em- 
ployed numerical methods. Here we treat the simpler 
problem of fiber coating. In this case, the microstruc- 
ture may be considered invariant through the deposi- 
tion process, so long as the coating thickness remains 
a very small fraction of the original fiber size. 
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Many factors influence the optimum conditions 
for preform fiber coating. In some cases, high uni- 
formity of the deposited coating may be required to 
obtain desired mechanical properties. In others, a 
specific temperature may be required to obtain a de- 
sired morphology of the deposited material. In still 
other cases, specific process conditions may be re- 
quired either to induce or to inhibit certain gas-phase 
reactions, such as those involved in the production 
of necessary deposition precursors or those leading to 
undesirable gas-phase nucleation of particles. Here, 
however, we will address the issue of maximizing the 
deposition rate at the preform center. This condition 
is of practical interest because it minimizes the time 
required to deposit a coating of minimum acceptable 
thickness throughout a preform. 

In this study we employ a combined analytical 
and numerical method to maximize the centerline de- 
position rate for CVI fiber coating processes involving 
a first-order deposition reaction. Two general expres- 
sions for the optimum pressure and optimum temper- 
ature are first derived using analytical methods. The 
optimum pressure is then obtained in closed form, 
while the optimum temperature is determined with 
the aid of numerical solutions to the governing diffu- 
sion and reaction equations. These numerical solu- 
tions account for advective transport of the reactant 
gases, as well as both ordinary and Knudsen diffu- 
sion. Finally, we consider the influence on the opti- 
mum pressure of a constraint on the deposition unifor- 
mity. In this case, the optimum pressure maximizing 
centerline deposition rates is obtained in closed form 
using the method of Lagrange multipliers. 

The results of this analysis are presented in a di- 
mensionless form readily applicable to a range of pre- 
form thicknesses, fiber diameters, fiber volume frac- 
tions, and deposition chemistries. To illustrate the 
application of these results to a practical problem, 
the optimum process conditions are determined for a 
sample problem in which a boron nitride coating is 
deposited from boron trichloride and ammonia. 

Governing Equations 

To calculate centerline deposition rates, we con- 
sider the region within a preform, as shown in Fig. 1. 
Diffusive and advective transport in the volume be- 
tween fibers and the accompanying reactant depletion 
due to deposition on fiber surfaces are described by 
continuity equations for each gas-phase species, along 
with momentum and energy equations for the gas mix- 
ture. Here we consider one-dimensional transport in 
which species concentrations vary only with the trans- 

Figure 1. Schematic cross-section of a porous fiber 
preform. Reactants diffuse from the preform surfaces 
toward the center, and are depleted by deposition on 
fiber surfaces. 1 

verse position through the preform thickness. Under 
this idealization, conservation of mass for a single re- 
active species may be written as 

where 2 is the distance from the preform center, p is 
the gas molar density, f is the reactive species mole 
fraction, D is the effective coefficient of binary diffu- 
sion for the reactive species, D' is the dimensionless 
effective diffusivity of the porous preform, and u is 
the local molar-average fluid speed. The preform spe- 
cific surface area, su, is the fiber surface area per unit 
volume, and S is the surface deposition rate. 

Again assuming one-dimensional transport, con- 
tinuity for the combined reactive and inert species can 
be expressed as 

* 
where the parameter ?,l~ is the net molar yield of 
gaseous products per mole of reactant; that is, the 
molar ratio of gaseous products less reactants to reac- 
tants. By this definition, values of the parameter are 
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limited to $ 2 -1 since we are considering here only 
one reactive species. The limiting value of $J = -1 
corresponds to a simple single-species deposition re- 
action yielding solids but no gas-phase products. 

If the deposition process is a first-order reac- 
tion having an Arrhenius temperature dependence, 
the surface reaction rate, S,  can be expressed as the 
product of the surface impingement rate and a reac- 
tion probability, 4. In terms of the gas molar density 
and reactant mole fraction this is 

# 

9 

- 
(3) 

V 
S = , ~ f 4  where 4 = be-Ea/RT 

The mean molecular speed, ij, of the reactive species 
is given by 

(4) 

where R is the ideal gas constant, T is the gas temper- 
ature, and rn is the reactive species molecular weight. 
The parameters b and E, are the surface reaction 
pre-exponential constant and the apparent activation 

The coefficient of diffusion in Eq. (1) must ac- 
count for both ordinary and Knudsen diffusion. At 

with gas molecules are much more common than are 
collisions with fiber surfaces. In this limit, the diffu- 
sive flux of the reactive species is governed by ordinary 
diffusion. At sufficiently low pressures or sufficiently 
high temperatures, however, the mean free path of 
the reactive species becomes large relative to the size 
of the inter-fiber pores. In this limit, collisions of the 
reactive species with fiber surfaces are predominant, 
and the diffusive flux is controlled by Knudsen dif- 
fusion. To account for both of these conditions, the 
overall effective coefficient of binary diffusion for the 
reactive species can be approximated by the Bonsan- 
quet interpolation formula [g], 

energy, respectively. 

high gas densities, collisions of the reactive species 

(5) 

where Dm denotes the effective binary coefficient of 
ordinary diffusion for the reactive species in the gas 
mixture, and DKn denotes the coefficient of Knudsen 
diffusion for the reactive species in the inter-fiber vol- 
ume. Based on simple kinetic theory, Eq. (5) may be 
rewritten as [lo] 

a 

where ij is again the mean molecular speed of the re- 
active species, and Kn = X/d is the Knudsen number 
based on properties of the reactive species and the 
inter-fiber pore size. The effective mean free path for 
the reactive species alone is given by 

RT 
$&Na2p 

A =  (7) 

where p is the total pressure, N is the Avogadro num- 
ber, and a is the molecular diameter of the reactive 
species. 

The parameter a in Eq. ( 6 )  is the ratio of the ef- 
fective binary coefficient of ordinary diffusion for the 
reactive species and the mixture of other void gases to 
the coefficient of ordinary self diffusion for the reactive 
species. As shown in the Appendix, this parameter 
depends only on the composition of the gas mixture 
and is independent of both the pressure and temper- 
ature for ideal gases. Thus for fixed gas composition, 
the parameter cy is constant. 

The continuity equations (1) and (2) must be ac- 
companied by momentum and energy equations. In 
this analysis, we supplant the energy equations with 
an assumption that all gas species are at a uniform 
and constant temperature, T.  Likewise, the momen- 
tum equation is replaced with an assumption that the 
pressure is uniform over the preform thickness. 

The governing transport equations are closed us- 
ing an ideal gas equation of state, p = pRT. Because 
both the pressure and temperature are uniform and 
constant, this relation requires that the gas molar den- 
sity within the preform is also uniform and constant. 

To complete the mathematical statement of the 
transport and deposition problem, boundary condi- 
tions must be specified for the reactive species fraction 
and fluid speed. The second-order equation governing 
the reactive species requires two conditions. One is 
imposed by symmetry, requiring that the gradient of 
the reactive species vanish at the origin. For the sec- 
ond we assume that the reactive species mole fraction 
is fixed at the preform surface. 

- = 0  df at x = O  
dx 

f = fa at x = a (8a,b) 

In addition, the first-order equation governing the 
fluid speed requires a single boundary condition. 
Again this is obtained from a symmetry condition at 
the preform center, 

u=O at x=O (9)  

requiring no flow into or out of the plane of symmetry. 
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To normalize the governing equations, we intro- 
duce a dimensionless position, z = x /a ,  and two 
dimensionless dependent variables, f * = f / fa and 
u* = ua/DD'. Note that the normalized velocity u* is 
equivalent to a local Peclet number, indicating the rel- 
ative magnitudes of the advective and diffusive fluxes 
of the reactive species. Applying these definitions to 
the transport equations yields the dimensionless gov- 
erning equations 

d df* d 
- dz (-) dz - ;iF(u*f*) 

dz 

for the reactive species, and 

for total species conservation. The constant ,O on the 
right of these equations is 

and the new parameters appearing here are the nor- 
malized preform thickness, 

bsva2 E =- 
d D' 

and the normalized reaction yield, $* = $ fa. Bound- 
ary conditions for the normalized variables follow from 
Eqs. (8) and (9) in the obvious manner. 

The usual interpretation of the parameter p, re- 
ferred to here as the deposition modulus, is that it 
is the square of the ratio of the characteristic time 
for diffusion to the characteristic time for surface de- 
position. In this view it is equivalent to the square 
of the Thiele modulus commonly appearing in analy- 
ses of porous-bed catalysis. Another useful interpre- 
tation of this parameter is that it is the ratio of two 
rates -the rate of deposition on the preform fiber sur- 
faces, Ssva, to the maximum rate of diffusive trans- 
port, pDD'f,/a. Thus when j3 is small, the actual 
rate of diffusive transport will be less than this maxi- 
mum, and the mean gradient of the reactant fraction 
will be smaller than the maximum value of f,/a. Un- 
der any of these interpretations, small values of p are 
associated with high uniformity of both the reactant 
fraction and coating thickness. 

One additional relation can be obtained from 
Eqs. (1) and (2) by integrating each equation once 
and combining the two results. This yields 

giving the normalized fluid speed in terms of the 
normalized reactant mole fraction and its derivative 
alone. This relation applies everywhere and so is use- 
ful in separating the coupled reactive species and total 
conservation equations. Substituting Eq. (14) into ei- 
ther Eq. (10) or (11) to eliminate u* gives 

"( dz l+$*f* "> dz 

+ 1 +@f* 1 (%rig = ,Of* (15) 

This species equation can now be solved without ex- 
plicit knowledge of the local fluid speed. Fluid speeds 
can be computed after the fact from Eq. (14). 

Equation (15) further provides useful insight into 
the relation between advective and diffusive fluxes of 
the reactive species. In dimensional form the advec- 
tive flux at any position is pu f , while the magnitude 
of the diffusive flux is pDD'df/dx. The local ratio of 
advective to diffusive fluxes is therefore given by 

where the approximate equality on the right is due to 
the fact that f * M 1 when the deposition rate is fairly 
uniform over the preform thickness. Taking into ac- 
count the signs for each flux, we see that the total 
flux of the reactive species differs from the diffusive 
flux by a factor of 1/(1+ vf*). This is also appar- 
ent in Eq. (15), where this term serves as an appar- 
ent diffusivity in what otherwise appears as a simple 
diffusion-reaction equation. When $* is positive, the 
total flux of the reactive species is therefore reduced 
by the flow of gas toward the preform surface. When 
$* is negative, the total flux is increased by flow to- 
ward the preform center. Note that the total flux is 
quite sensitive to the deposition chemistry. For a net 
production of only one mole of gas per mole of re- 
actant, + = 1, the advective transport reduces the 
net flux of reactive species toward the preform cen- 
ter by up to a factor of two. As such, this advective 
inhibition of diffusion in the inter-fiber volume may 
significantly reduce deposition uniformity when the 
reactant fraction is large. 
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The derivative of the diffusivity on the right of 
Eq. (15) is the order of the diffusivity with respect to 
the reactant fraction. From Eq. (6)  it is given by 

(17) 

However, under a rather broad range of conditions its 
value is near zero. For a simple binary mixture of 
the reactant and a single diluent gas, d a / a f *  is ex- 
actly zero because binary diffusivities of low-pressure 
gases do not depend on species concentrations. Fur- 
ther, the effective binary diffusivity of the reactant 
and a gas mixture also shows no dependence on the 
reactant fraction provided that the composition of the 
mixture does not vary with the reactant fraction. This 
of course is the case whenever the reactant fraction is 
small. 

Under the simplifying assumption that the dif- 
fusivity is independent of the reactant fraction, the 
governing conservation Eq. (15) may be written as 

"( dz 1 ++*f* ! r ) = p f *  dz 

In the limit +* + 0, Eq. (18) possesses the well known 
solution [ll] 

No such closed-form solution exists for the more gen- 
eral case +* # 0. The general form of Eq. (18) can be 
solved [12] for small values of the deposition modulus, 
p, though as we will see later, such solutions are not 
applicable to the problem of interest. Fortunately, 
very accurate numerical solutions to the boundary 
value problem posed by Eqs. (8) and (18) are read- 
ily obtained using a numerical shooting technique. 

Normalization of Variables 

To solve generally for the optimum conditions 
and to plot resulting deposition rates, it is useful to 
rewrite the pressure, temperature, density and de- 
position rate in terms of normalized variables. For 
this purpose, the normalized values are defined as 
p* = p / l ) R ,  T* = TITR, and p* = p/pR. Similarly, 
the normalized deposition rate and molecular speed 
are S* = s / s R  and fj* = PIER. The reference tem- 
perature, density and speed for a first-order deposi- 
tion reaction are taken as 

We additionally require that the reference density, 
pressure and temperature satisfy the ideal gas equa- 
tion of state, pR = PRRTR. 

The normalized density and normalized molecu- 
lar speed follow directly from the reference values. 

Now taking SR = b p R ' Z i R f , / 4  as the reference deposi- 
tion rate, the normalized deposition rate may be writ- 
ten as 

A second useful normalization of the deposition rate 
is the simple modification of S* given by S** = t 2S* .  
Note that the normalized centerline deposition rate 
can be obtained from Eqs. (22a,b) simply by taking 
f *  = f,*, where f,* is the normalized reactant frac- 
tion at z = 0. The pressure, temperature and all 
other variables in these expressions are uniform over 
the preform thickness. 

Finally, Eq. (12) may be rewritten to obtain an 
expression for the deposition modulus that depends 
only on the normalized pressure, temperature and 
preform thickness. 

t2 e-IjT' 
3 p* +T* 
4 T* 

p=-- 

Thus, since p and +* are the only parameters in 
Eqs. (10) and (ll), the normalized deposition rate 
at the preform center is uniquely determined by the 
normalized pressure, temperature, preform thickness 
and reaction yield. 

Discussion of Deposition Rates  

The deposition modulus at low temperatures is 
small, and the profile of the reactant concentration 
through the preform thickness is very uniform. In this 
case, the deposition rate at the center is nearly as large 
as that at the preform surface. With increasing tem- 
perature, the deposition modulus increases and the 
reactant concentration at the preform center falls. In 
this case, the centerline deposition rate becomes small 
relative to that at the surface. This behavior is illus- 
trated in Fig. 2. Here we see that the normalized 
centerline reactant fraction falls monotonically with 
increasing values of the deposition modulus. The cen- 
terline reactant fraction does not exhibit any sort of 
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Figure 2. Distribution of normalized reactant frac- 
tion through the preform thickness. Reactant frac- 
tions depend only on the dimensionless reaction yield, 
$J* and the deposition modulus, p. 

maximum, as is well known, and the deposition unifor- 
mity, U = f,*, falls smoothly as the deposition modu- 
lus is increased. 

Although uniformity always falls with increas- 
ing values of the deposition modulus, this observation 
provides no insight into how the magnitude of the cen- 
terline deposition rate varies as the temperature and 
deposition modulus are increased. Low temperatures 
necessarily correspond to small deposition rates. As 
such, the deposition rate on the centerline is compa- 
rable to that at the surface when the temperature is 
low and the deposition modulus is small, but the rates 
everywhere within the preform, including the preform 
center, are small. In contrast, when the temperature 
is high and the deposition modulus is large, the depo- 
sition rate at the preform surface is large, but reactant 
depletion through the preform thickness is severe. In 
this case, the deposition rate at the preform center 
is very small compared to that at the surface, and 
the centerline deposition rate is again small. Between 
these extremes of temperature lies the maximum cen- 
terline deposition rate. 

Fig. 3 shows sample calculations of the normal- 
ized deposition rate through the preform thickness. 
We see that the deposition rate at the preform sur- 
face increases monotonically with increasing values of 

2.5 
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Figure 3. Normalized deposition rate through pre- 
form thickness. Maximum centerline deposition rate 
occurs at a specific value of the deposition modulus, 
0; its value is p M 4.453 for the conditions shown. 

.) 

the deposition modulus. At the preform center, how- 
ever, the deposition rate increases only up to a value 
of p M 4. At still larger values the centerline rate 
begins to fall, gradually approaching zero as p --f 00. 

Thus for the conditions shown, the centerline depo- 
sition rate exhibits a maximum when the deposition 
modulus is about ,8 M 4. 

The conditions giving rise to the maximum cen- 
terline deposition rate do not yield the maximum sur- 
face rate, nor do they yield the maximum mean de- 
position rate. This is shown in Fig. 4, where the cen- 
terline, surface and mean normalized deposition rates 
are shown as a function of the normalized tempera- 
ture. Here we see that both the surface and mean 
rates increase smoothly with increasing temperature 
and that only the centerline rate exhibits a maximum. 
For the conditions shown, this maximum occurs at 
T* x 0.0491, corresponding to p x 4.453 and a depo- 
sition uniformity of U = f,* M 0.239. 

Maximum Centerline Deposition Rate n 

To identify optimum conditions for the CVI fiber 
coating process, we seek to maximize the deposition 
rate at the preform center. This maximum deposition 
rate is defined by the requirement that the variation 

0 
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Figure 4. Surface, mean and centerline deposition 
rates. For a given pressure, the maximum centerline 
deposition rate occurs at a specific temperature and 
corresponding value of the deposition modulus. 

in rate with respect to both the pressure and temper- 
ature is zero. Because the pressure, temperature and 
deposition rate are all normalized only by constants, 
these conditions apply equally to the dimensional and 
normalized derivatives. The conditions for the maxi- 
mum in terms of the normalized variables are 

dS* dS* 
- = 0  and - = 0  dP* dT* 

The derivatives of the deposition modulus with re- 
spect to pressure and temperature can now be ob- 
tained from Eq. (23). They are 

and 

1 -- 1 ab 
Pap*  p* +T* 
-- - 

Combining these results with Eqs. (25) and (26) then 
yields 

I+-=-----. T* b af: 
P* 

for Eq. (24a), and 

for Eq. (24b). This pair of equations, along with a 
solution to the boundary value problem to obtain the 
derivative df,*/ap, can now be solved to obtain the 
optimum pressure and optimum temperature yielding 
the maximum centerline deposition rate. 

We would generally expect that Eqs. (29) 
and (30) must be solved together to obtain the op- 
timum pressure and temperature as a pair. Surpris- 
ingly, this is not the case here. Combining these to 
eliminate the derivative on the right of each yields 

P* T" 1 - - - =  1 1  ( l+g )  (F*-y-) 
T* 2 p +T* 

which can be rearranged to eliminate the normalized 
temperature and give the simple result 

(24a,b) 

where both derivatives of the deposition rate are eval- p* = 2 (32) 
uated at z = 0. Now using Eq. (22b) for the normal- 
ized deposition rate, Eq. (24a) may be written as for the optimum pressure alone. Using the definition 

of the normalized pressure, the dimensional optimum 
pressure is 

(25) Jz CrE, p=2p ,=-  .rrdNa2 (33) 

This is a remarkable result in that the optimum pres- 
sure does not depend on the process temperature, the 
preform specific surface area, or the preform thick- 
ness. It depends only on the activation energy for the 

where again f,* is the normalized reactant fraction 
at the preform center. Similarly, Eq. (24b) may be 
written as 

deposition reaction, the composition of the gas mix- 
ture, species properties of the mixture gases,-and the 
inter-fiber pore size. 
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Using this result for the optimum pressure, the 
optimum temperature can now be obtained from 
Eq. (29) as 

Given d f , ' /dp as a function of T* from numerical so- 
lutions to Eq. (18), this expression can be solved for 
the optimum normalized temperature. 

For the special case of $* -, 0, again correspond- 
ing to no net reaction yield or to a very small reactant 
fraction, Eq. (19) yields 

giving an optimum temperature specified by 

2 + T* = fi t a n h f i  

(35) 

\ s** - 
U 

10-3 4 
lo2 io3 lo4 lo5 lo6 lo7 lo8 lo9 1 0 ' ~  

Normalized Thickness - 5 

Under the further restriction that -+ 00, correspond- 
ing to T* -+ 0, the last term on the left of Eq. (36) 
may be neglected. This special case yields P % 4.2656 
and a corresponding centerline reactant fraction of 
f,* M 0.2495. The optimum temperature can then 
be obtained by using the optimum pressure, p* = 2, 
in Eq. (23). This gives 

Figure 5. Normalized optimum conditions as a func- 
tion of normalized preform thickness. Optimum de- 
position uniformity is insensitive to preform thickness, 
but maximum deposition rates fall as S c( S** / t2+  

This equation can be solved easily by successive sub- 
stitution. Using a guessed value of the temperature in 
the first factor on the left of Eq. (37a), the exponential 
term is inverted to obtain an improved value for the 
guess. When repeated, this procedure converges in 
just a few cycles for all conditions of practical impor- 
tance. For t = lo4,  the temperature obtained from 
Eq. (37b) is T* = 0.04898. The maximum center- 
line deposition rate can be computed from Eqs. (19) 
and (22b) once the pressure and temperature have 
been obtained. 

When T* is not small, Eqs. (36) and (37a) must 
be solved together as an implicitly coupled system. 
Similarly, when $* is not negligible, Eqs. (34) and 
(37a) must be solved together, along with an appro- 
priate solution of Eq. (18) to provide df,*/dP and f,*. 

Optimum Conditions 

Sample calculations of the optimum pressure and 
optimum temperature and the maximum centerline 
deposition rate are shown in Fig. 5 as a function of 

the normalized preform thickness, 5. These results 
are all for the special case of negligible reaction yield, 
$* = 0. As noted above, the optimum pressure is 
independent of E and is given by p* = 2. The most 
surprising feature of this figure is that the deposition 
modulus and deposition uniformity at the optimum 
conditions vary by only about 15% as the normalized 
preform thickness varies by eight orders of magnitude. 
In essence, the optimum conditions yielding maximum 
centerline deposition rate occur when the centerline 
reactant fraction is f,' = U M 0.25, regardless of the 
preform thickness. This result provides a very simple 
practical method of determining the optimum condi- 
tions. In addition, because the optimum deposition 
modulus is nearly constant at P M 4.3, Eq. (12) pro- 
vides a simple means of adjusting the process temper- 
ature to maintain the optimum value as the preform 
thickness is varied. 

Despite these weak variations in the optimum 
process conditions, the maximum normalized depo- 
sition rate varies inversely with the square of the pre- 
form thickness. The reason for this is that the nor- 
malized temperature is small over the range of con- 
ditions shown. In this limit of T* -+ 0, Eqs. (22b) 
and (23) can be combined to express the normalized 
deposition rate in terms of the normalized preform 

4 
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Figure 6. Normalized optimum conditions as a 
function of normalized reaction yield. Larger reaction 
yields require slightly lower temperatures and give sig- 
nificantly reduced maximum deposition rates. 

D 

thickness: S* zz 4@Pf:/3E2. Thus the maximum 
deposition rate differs by less than a factor of three 
from a squared dependence on the preform thickness 
as the thickness varies from lo2 to 1O1O. 

The results presented so far have been for the 
special case of no normalized reaction yield, +* = 0. 
In general this parameter will not be small unless the 
ambient reactant fraction is negligible, fa << 1. To 
examine the effects of non-zero reactant yields, we 
have computed the optimum temperature, deposition 
modulus, deposition rate, and centerline reactant frac- 
tion €or a wide range of +*. Note that the optimum 
pressure does not depend on $I*, and so is still given 
by p* = 2. These results are shown in Fig. 6. By 
the noted additional normalization of the tempera- 
ture and deposition rate, this single figure gives the 
optimum conditions for all practical values of both 
the normalized reaction yield and normalized preforrr, 
thickness. 

We see in Fig. 6 that the optimum deposition 
modulus, uniformity at the optimum, and the maxi- 
mum deposition rate all decrease significantly with in- 
creasing values of the normalized reactant yield. The 
reason for this is that positive values of the reaction 
yield correspond to a net production of gas in the 
deposition reaction and a corresponding flow away 

from the ,center toward the preform surface. This 
outward flow impedes the inward diffusion of the re- 
active species, and so gives rise to greater nonuni- 
formity, lower reactant fractions at the preform cen- 
ter, and correspondingly lower centerline deposition 
rates. This increased resistance to diffusion there- 
fore requires a reduced temperature to maximize the 
centerline deposition rate. Note that although the 
normalized temperature appears nearly constant over 
this range of $*, the very small variation present gives 
rise to a large effect on the optimum deposition mod- 
ulus and the maximum centerline deposition rate. For 
this reason, the value of T* is most accurately deter- 
mined by solving Eq. (37a) using the value of @ read 
from Fig. 6. 

Character of Maximum Deposition Rate 
Although Eqs. (32) and (34) define optimum con- 

ditions giving the maximum deposition rate at the 
preform center, they provide no insight into the char- 
acter of this maximum. To gain this insight, we need 
to examine the variation of the deposition rate in the 
vicinity of the optimum conditions. This is depicted in 
Fig. 7. Here the normalized deposition rate is shown 
as a function of the normalized pressure, for fixed 
values of the normalized preform thickness. At each 
pressure along each curve, the corresponding temper- 
ature and normalized deposition rate are computed 
from Eqs. (30) and (22b). Using this approach, the 
centerline deposition rate is maximized with respect 
to the temperature, even though the pressure is not 
necessarily optimum. 

We see in Fig. 7 that the deposition rate exhibits 
a weak one-sided maximum; at all pressures above 
the optimum value, the deposition rate is nearly con- 
stant. The reason for this lies in the tradeoff be- 
tween the linear pressure dependence of the deposi- 
tion and the nonlinear pressure dependence of the dif- 
fusivity. Combining Eqs. (25) and (26),  and setting 
dS*/aT* = 0, Eq. (25) may be rewritten as 

(38) 
p* as* - 
S* a ~ *  

T*(2 - p*)  
2p*(1 - T*)  + 2T* 

At very low pressures Knudsen diffusion is dominant, 
corresponding to aKn = aX/d = T*/p* >> 1. In 
this limit, Eq. (38) yields a linear relation between 
the pressure and deposition rate. 

(39) 
p* as* -- 4 1  as p * + o  s* ap* 
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Figure 7. Normalized deposition rates near the op- 
timum pressure. Deposition rates exhibit a weak one- 
sided maximum with the deposition rate falling slowly 
at pressures above the optimum. 

Similarly, at high pressures ordinary diffusion is dom- 
inant, corresponding to T*/p* << 1. In this limit, 
the deposition rate gradually falls to a constant 

The constrained maximum deposition rate is de- 
fined by the requirement that the variation in rate 
with respect to ail independent variables is zero along 
the direction of constant uniformity. To obtain this 
maximum we employ the method of Lagrange mul- 
tipliers [13]. This technique introduces one new un- 
known constant for each constraint and yields one ad- 
ditional equation for each independent variable. The 
two new equations are 

* 

* 

dS* dU 
K- = 0 (41a,b) K - = O  and -- ap* ap* dT* dT* 

as* au -- 

and 

as p* + 00 (40) T' 
4 -  

p* as* -~ 
S* dp' 2(1 -T*)  

where K ,  the Lagrange multiplier, is the new unknown 
constant. Together with the original constraint on 
the deposition uniformity, this pair of equations can 
be solved for the optimum pressure and temperature 
yielding the constrained maximum centerline deposi- 
tion rate. 

Rearranging Eqs. (41a) and (41b) to eliminate K 
yields 

d S * d U  dS*dU -- - -- - 
ap*  IT* d ~ *  ap* 

By the definition U = S',/S* = f,*, the derivatives of 
the uniformity with respect to pressure and tempera- 
ture may be written as 

> 

(43) 

as the pressure increases without bound. 

Optimum Pressure At Fixed Uniformity 

The conditions yielding the unconstrained maxi- 
mum centerline deposition rate give a deposition uni- 
formity of only about 25%. While this may well be 
acceptable for some fiber coating processes, there are 
likely applications for which it is not. We now con- 
sider the problem of maximizing the centerline depo- 
sition rate, subject to an additional constraint that 
the deposition uniformity satisfies some minimum re- 
quirement. Assuming that the required uniformity is 
better than that obtained in the unconstrained case, 
the constrained maximum centerline deposition rate 
should occur when the uniformity constraint is just 
marginally satisfied. This permits replacing the in- 
equality constraint of a minimum uniformity by an 
equality constraint that is satisfied exactly. 

Now using these results along with the definitions 
given previously in the left of Eqs. (25) and (26), 
Eq. (42) above can be expressed as 

Finally, using the definitions of Eqs. (27) and (28) for 
the derivatives of the deposition modulus, Eq. (44) 
becomes 

(46) F * - 2 = ( l + p )  1 1  T* (---) 1 P* 
T* p* +T* 

This is exactly the same as Eq. (31) obtained previ- 
ously, and again this can be rearranged to give 

Jz aEa p * = 2  or p=- r d N a 2  
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Thus, we find that the optimum pressure maximizing 
the centerline deposition rate for a specified unifor- 
mity is the same as that obtained in the unconstrained 
problem. The optimum temperature in this case can 
now be obtained directly from the prescribed deposi- 
tion uniformity and a numerical solution to Eq. (18). 

This remarkable result suggests a strategy for op- 
timizing process conditions in coating processes: first, 
the pressure is fixed at the optimum value; the tem- 
perature is then varied until the desired uniformity is 
obtained, keeping in mind that the maximum possible 
centerline deposition rate will occur at a uniformity of 
about 25%. Using this strategy, the time-consuming 
process of empirically varying both the pressure and 
temperature to produce at once both the desired uni- 
formity and maximum deposition rate can be avoided. 

This result also suggests a possible strategy for 
minimizing in-furnace times for the more complex 
densification process. As described earlier, preform 
transport properties vary significantly during densi- 
fication, and this might have a strong influence on 
the optimum time-dependent pressure and tempera- 
ture histories. This influence appears, however, to be 
limited to effects on the temperature. The optimum 
pressure does not depend on transport properties, but 
instead depends only on the preform effective pore 
diameter, and pore diameters fall by at most about 
an order of magnitude during most densification pro- 
cesses. We also know from Fig. 7 that deposition rates 
are relatively insensitive to pressure in the vicinity of 
the optimum value. Thus a good strategy for densi- 
fication might be to fix the pressure somewhat above 
the optimum value based on the initial pore size and 
to hold this constant during the process. The pres- 
sure would then be a bit high early in the process, 
but would be a bit low toward the end. At this fixed 
pressure, the temperature history alone can then be 
varied to obtain the desired final uniformity and fi- 
nal degree of densification. This strategy should yield 
mean deposition rates comparable to those of a full 
optimization of the pressure history, but again avoids 
simultaneous variation of both pressure and temper- 
ature. Decoupling the problem in this way should 
greatly reduce the experimental or computational ef- 
fort needed to obtain an optimum process cycle. 

The recommended optimum pressures for these 
coating and densification strategies are in good agree- 
ment with previous numerical results. Ofori and Sotir- 
chos [14] determined the optimum pressure and tem- 
perature to densify a preform to some specified ex- 
tent in the minimum time, subject to a constraint on 
the deposition uniformity. That analysis considered 
the deposition of silicon carbide from a mixture of 

hydrogen and methyltrichlorosilane (MTS) under iso- 
baric, isothermal conditions. Here we compare their 
results with the optimum pressure given by Eq. (47). 
The required molecular properties of the two gases 
are rnl = 149 g/mol, m2 = 2 g/mol, cl = 5.87 A, 
and 0 2  = 2.83 A, where the subscript 1 refers to MTS 
and 2 refers to hydrogen 1151. By Eq. (A5) of the Ap- 
pendix, these values give a diffusivity ratio of Q = 11.2 
for all species mole fractions. The remaining required 
parameters are N = 6.02 x molecules/mol and 
E, = 120 kJ/mol 1141. These values yield p = 59 kPA 
for d = 50 pm. For d = 5 pm and d = 0.5 pm, 
Eq. (47) gives p = 590 kPa and p = 5.9 MPa. 

The optimum pressures read from Figs. 1, 5, 7 
and 9 of the Ofori and Sotirchos paper range from 
about 40 to 90 kPa for d = 50 pm, from about 400 to 
900 kPa for d = 5 pm, and from about 4 to 9 MPa 
for d = 0.5 pm. Although it is difficult to pick these 
optima very accurately from the figures, these ranges 
of values are in excellent agreement with the values 
obtained from Eq. (47). Aside from this good quan- 
titative agreement, we note that their optimum pres- 
sures consistently exhibit the inverse dependence on 
pore size given by Eq. (47). Their Figs. 1, 5, 7, 8, 
13 and 15 further suggest that the optimum pressure 
for densification, even under a uniformity constraint, 
does not depend on transport properties of the pre- 
form, the pre-exponential deposition rate constant, or 
the specified deposition uniformity. This again is in 
agreement with Eq. (47). 

Sample Calculations 

To illustrate the application of this analysis, we 
consider the sample problem of depositing a thin coat- 
ing of boron nitride on fibers within a preform using 
boron trichloride and ammonia. The preform half- 
thickness is a = 5 mm, fiber diameter is d f  = 10 pm, 
and the porosity is e = 0.6. From simple geom- 
etry, the preform specific surface area is given by 
sv = 4(1-~)/df = 1 . 6 ~ 1 0 ~ ~  m-l. Likewise, theeffec- 
tive pore diameter is given by d = 4e/sV = 15 pm [16]. 
For simplicity we assume that the fibers are arranged 
in a regular hexagonal array. Effective thermal con- 
ductivities, equivalent to the effective diffusivity, have 
been computed for this geometry. The result at a fiber 
porosity of 0.6 is D’ = 0.43 [17]. 

Boron trichloride and ammonia react rapidly in 
the gas phase to form C12BNH2 and HCI [18]. For 
arbitrary flow rates of these two gases, this gas-phase 
reaction can be described by 

BC13+GNH3 + HCI+C12BNH:!+(G-l) NH3 (48) 
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where G is the ratio of the volumetric flow rate of am- 
monia to that of the boron trichloride. The ClzBNHz 
species is then the deposition precursor for the surface 
reaction given by 

C12BNH2 + BN(s) + 2 HCl (49) 

From these two reactions the reactant fraction is given 
by fa = 1/(G + 1) provided that the reactant flow 
rates are sufficiently large that product gases do not 
significantly accumulate inside the furnace. Under 
this restriction, the reactant fraction is fa = 0.33 for 
a relative flow rate of G = 2. From the surface re- 
action we see that two moles of gas-phase product 
are produced for each mole of reactant, giving $ = 1 
and a normalized reactant yield of $* = $fa = 0.33. 
The parameters E - a and b for the surface reaction 
probability are approximately 147 kJ/mol and 446, 
respectively [ 191. 

The diffusivity ratio, a, is computed using kinetic 
theory, 

where the mole fractions of C12BNH2, NH3 and HCI 
are x1 = 5 2  = 23 = 0.33, and the corresponding 
species molecular weights are 98, 17, and 36 g/mol. 
The molecular diameters are 4.7, 2.6 and 3.3 A, re- 
spectively [15]. These values yield Q = 2.3. A 
more accurate estimate of the diffusivity ratio could 
be computed using, for example, the more complete 
Chapman-Enskog theory for the transport properties 
of gases. 

Using these basic parameters, the normalized 
preform thickness can be computed from Eq. (13) as < = 1.66 x lo4. The reference pressure and temper- 
ature given by Eq. (20) are pR = 38 kPa (290 torr) 
and TR = 17680 K, yielding a reference deposition 
rate of SR = 5.39 x lo4 mol/m2s. Now from Fig. 6, or 
from the solution of Eqs. (18), (29) and (30), the opti- 
mum conditions are given by p* = 2 and T* 0.0465, 
corresponding to a dimensional optimum pressure of 
77 kPa (580 torr) and optimum temperature of 549 C. 
The deposition modulus at these conditions is p x 
4.18, the associated uniformity is U M fc/ fa = 0.216, 
and the normalized centerline deposition rate is S** M 

0.253. This corresponds to a dimensional deposition 
rate of S = SRS**/C2 = 1.74 x mol/m2s. At a 
BN solid density of 2.0 g/cm3 and molecular weight 
of 24.8 g/mol, this gives a centerline deposition rate 
of 0.78 pm/hr. 

Note that even the small normalized reaction 
yield of our sample problem significantly affects the 
optimum conditions and maximum deposition rate. 
If we take $* = 0, but leave all other problem param- 
eters unchanged, the resulting optimum temperature 
increases to 551 C and the maximum centerline depo- 
sition rate increases to 0.92 pm/hr. Thus a normal- 
ized reaction yield of only $* = 0.33 has reduced the 
maximum deposition rate by over 15%. 

As illustrated in Fig. 7, the deposition rate is in- 
sensitive to pressure over a wide range of values near 
the optimum. In our sample problem, reducing the 
pressure an order of magnitude to 7.7 kPa (58 torr) 
still gives a maximum centerline deposition rate of 
0.67 pm/hr at an optimum temperature of 642 C. 
Again reducing the pressure to 770 Pa (5.8 torr) yields 
a maximum deposition rate of 0.23 pm/hr at a tem- 
perature of 704 C. Thus a pressure two orders of 
magnitude below the optimum value only reduces the 
maximum deposition rate by about a factor of three 
in this sample problem. However, reducing the pres- 
sure just one more decade, to 77 Pa (580 mtorr), 
yields a maximum centerline deposition rate of just 
0.030 ,um/hr at an optimum temperature of 717 C. 
At this pressure the deposition rate is falling about 
linearly with the pressure and will continue this be- 
havior as the pressure is further reduced. 

Over the pressure range from about 0.8 to 80 kPa 
(6 to 600 torr), the maximum centerline deposition 
rate increases by about a factor three while the op- 
timum temperature decreases from 642 to 549 C. 
This insensitivity to pressure may permit placing ad- 
ditional constraints on the process conditions with- 
out seriously reducing deposition rates. For exam- 
ple, the morphology of deposited BN may depend on 
the process temperature. If higher temperatures yield 
the desired morphology, then lower pressures may be 
preferred. Likewise, the gas-phase reaction of boron 
trichloride and ammonia is known to precipitate solid 
ammonium chloride if pressures are sufficiently high. 
In this case, the total pressure may need to be reduced 
below the optimum value. By reducing the pressure 
and slightly increasing the temperature, precipitation 
can be avoided, again without significantly reducing 
the deposition rate. 

.. 

b 

Summary 

To help optimize CVI process conditions, we have 
derived analytical expressions describing the pressure 
and temperature giving the maximum centerline de- 
position rate for a first-order deposition reaction in- 
volving a single reactive species. These analytical 

* 
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expressions account for both diffusive and advective 
transport and both ordinary and Knudsen diffusion. 
The resulting optimum conditions are a function of 
only two dimensionless parameters: the normalized 
preform thickness; and the normalized reaction yield 
indicating the relative importance of advective trans- 
port away from the preform center due to the evo- 
lution of product gases from the deposition reac- 
tion. Although these results also have use in optimiz- 
ing preform densification, the analysis employed here 
is strictly applicable only to fiber coating processes 
wherein the coating thickness remains small compared 
to the original fiber diameter. 

The optimum pressure is obtained in closed form. 
Its value is proportional to the activation energy of 
the deposition reaction and inversely proportional to 
the characteristic preform pore size. Surprisingly, the 
optimum pressure does not depend on the preform 
thickness, specific surface area or effective diffusivity, 
nor does it depend on the reaction yield. 

Optimum temperatures are obtained from the 
analytical expressions describing the optimum condi- 
tions, along with the derivative of the centerline reac- 
tant fraction with respect to the deposition modulus. 
Using an analytical solution to provide the derivative 
of the centerline reactant fraction, a closed-form im- 
plicit expression for the optimum temperature is ob- 
tained for the special case of no normalized reaction 
yield. For the more general case, this derivative is 
computed from numerical solutions to the equations 
governing transport and deposition. Optimum tem- 
peratures are presented graphically for a very wide 
range of the normalized preform thickness and nor- 
malized reaction yield. 

As we would expect, the optimum tempera- 
ture and maximum centerline deposition rate depend 
strongly on the preform thickness. Surprisingly, how- 
ever, the deposition modulus and deposition unifor- 
mity at the optimum conditions are nearly indepen- 
dent of the thickness for a given normalized reaction 
yield. This provides a simple means of identifying 
optimum conditions for preforms of varying thickness 
once the optimum is known for a single case. The 
optimum temperature for a new thickness is obtained 
when the deposition uniformity is unaltered, as deter- 
mined experimentally or by using a simple algebraic 
relation to give the same deposition modulus for the 
new preform thickness. 

The optimum conditions yield a weak one-sided 
maximum of the centerline deposition rate. The de- 
position rate falls linearly at pressures well below the 
optimum value, but remains nearly constant at all 
values above. The reason for this behavior lies in 

A 
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the tradeoff between the linear pressure dependence 
of the deposition reaction and the nonlinear pressure 
dependence of the diffusivity in the transition between 
the ordinary and Knudsen regimes. At very low pres- 
sures, Knudsen numbers are Iarge, Knudsen diffusion 
is dominant, and the centerline deposition rate at the 
optimum temperature increases linearly with increas- 
ing pressure. At very high pressures, however, Knud- 
sen numbers are small, ordinary diffusion is dominant, 
and the maximum centerline rate falls weakly as the 
pressure becomes infinite. 

Conditions yielding the maximum centerline de- 
position rate give a deposition uniformity of only 
about 25%. That is, the deposition rate at the pre- 
form surface is roughly four times that at its center. 
Since this is probably not acceptable for some coat- 
ing applications, we have also examined the influence 
on the optimum conditions of a constraint on the de- 
position uniformity. Using the method of Lagrange 
multipliers, we find that the optimum pressure in this 
constrained maximization of the centerline deposition 
rate is the same as that obtained in the unconstrained 
case. This surprising result suggests that a good strat- 
egy for optimizing both fiber coating and densification 
processes is to fix the pressure at the optimum value, 
and then vary only the temperature or temperature 
history to obtain the desired final state of the pre- 
form. The recommended optimum pressure, obtained 
here analytically, is in good agreement with the values 
obtained in a previous numerical analysis of the op- 
timum conditions for preform densification when the 
deposition uniformity is constrained. 

Although the discussions presented here focus on 
fibrous preforms, all of these results are equally appli- 
cable to particulate materials. 

Nomenclature 

a preform thickness 
b deposition reaction pre-exponential constant 
d inter-fiber pore size 
D effective binary diffusivity 
D' 
D, effective ordinary binary diffusivity 
DKn reactant Knudsen diffusivity 
E, deposition reaction activation energy 
f reactive species mole fraction 
Kn Knudsen number (Kn = X/d) 
m reactive species molecular weight 
N Avogadro number 
p total gas pressure 
R ideal gas constant 
S surface deposition rate 

effective diffusivity of porous preform 

(DK, = 5d /3 )  
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temperature 
fluid speed 
deposition uniformity 
reactant mean molecular speed 
transverse position 
normalized transverse position 
ratio of diffusivities 
deposition modulus 
reactant mean free path 
normalized preform thickness 
total molar density 
reactive species molecular diameter 
reaction probability 
net molar yield of deposition reaction 

(U = fc/ f a  = f,*) 

( z  = x / a )  

Subscripts and Superscripts 
a at preform surface 
c at preform center 
R reference value for normalization 
* asterisk denotes normalized variable 
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Appendix 

The parameter o is the ratio of the effective bi- 
nary coefficient of ordinary diffusion for the reactive 
species and the mixture of other furnace gases to the 
coefficient of ordinary self diffusion for the reactive 
species. Denoting the coefficient €or the mixture as 

t 

16 



a 

D1, and the coefficient for the reactive species only 
as Dl l ,  this may be written 

- The values of the terms on the right of Eq. (Al) may 
be computed by any number of methods, ranging from 
the very simple to very complete. Here we consider a 
very simple method based on kinetic theory and the 
rigid sphere approximation. 

The effective binary coefficient of ordinary diffu- 
sion for the reactive species in a gas mixture may be 
expressed as [lo]  

n 1 - x1  

j=2 

where xj are the mole fractions of each species, and 
D1j is the binary coefficient of ordinary diffusion for 
the reactive species paired with species j. In this case 
the subscript j = 1 refers to the species of interest, 
while j = 2 and above refer to all other species in 
the mixture. Combining Eqs. (Al)  and (A2) yields 
an expression for a in terms of the binary coefficients 
of diffusion only. 

Now assuming the hard sphere molecular behavior, 
the ratio Dll/Dlj  may be written as 

where oj and mj are the atomic diameter and molec- 
ular weight of the j t h  mixture species. Note that 

neither the pressure nor temperature appear in this 
relation because Dll and Dlj always share the same 
functional dependence on both. Finally, combining 
Eqs. (A3) and (A4) gives the desired expression for a. 

(A51 
We now see that the rigid sphere molecular model 
gives a value for Q that depends only on the mixture 
composition and the molecular diameter and weight 
of all the mixture species. However, a more rigorous 
treatment based on Chapman-Enskog theory would 
yield a slight pressure and temperature dependence 
for the ratio D11/Dlj. The value of Q in that case 
would also show a weak dependence on the process 
conditions for a fixed mixture composition. 

We need also keep in mind that the process con- 
ditions may directly influence the composition of the 
furnace gas mixture, so in this sense the diffusivity 
ratio a will vary with pressure and temperature due 
to variations in x j ,  whether or not the ratios D11/Dlj 

are constant. In this case, the present analysis may 
be combined with a simple zero or one-dimensional 
auxiliary model of reactant injection and transport 
within the furnace. Using the specified injection rate 
and assumed trial values for the optimum pressure 
and temperature, the results presented here can be 
used with such an auxiliary model to compute the 
composition of the furnace gas mixture. From this 
estimate of the composition, a value for Q and new 
candidate values for the optimum pressure and tem- 
perature can then be calculated. This computational 
procedure may then be repeated, each time using the 
final estimates of the optimum conditions as initial 
guesses for the next iteration. This method should 
converge quickly because the value of Q is a fairly 
weak function of the composition. 
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