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ABSTRACT 

Self-assessment of survival for a system, subsystem or 
component is implemented by assessing conditional 
performance reliability in real-time, which includes 
modeling and analysis of physical performance data. 
This paper proposes a time series analysis approach to 
system self-assessment (prediction) of survival. In the 
approach, physical performance data are modeled in a 
time series. The performance forecast is based on the 
model developed and is converted to the reliability of 
system survival. In contrast to a standard regression 
model, a time series model, using on-line data, is 
suitable for the real-time performance prediction. This 
paper illustrates an example of time series modeling and 
survival assessment, regarding an excessive tool edge 
wear failure mode for a twist drill operation. 
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INTRODUCTION 

System reliability is traditionally estimated by analyzing 
life test data. In reliability engineering, it is commonly 
accepted that the reliability characteristic of a system 
can be quantitatively modeled as a reliability function. 
This approach considers only two possible states of an 
operating system: a state of functioning and a state of 
failure. In this way, the system under consideration is 
accepted as a ‘black box’ which performs the required 
function until it fails. However, customers as well as 
designers and engineers are interested in sustained 
system performance over time, and prefer to proact 
before system failure happens. They desire to maximize 
product performance as well as minimize costs, all in 
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real-time. This desire leads to a need for real-time 
conditional reliability estimates, so that the information 
of the system performance and failure can be factored 
into operating and maintenance related decisions. Here, 
real-time physical data is mined for degradation clues, 
which are in turn transformed to conditional 
probabilities of survival or reliability. 

A quantitative model, driven by on-line data, is 
necessary to capture the essence of the conditional 
reliability related to system performance. In general, 
given performance measure y ( t  1 and its critical limit 
value ycL for a defined failure mode, the model 
predicts the conditional performance reliability, or 
R(? + Atit) , at current time t , based upon the 
observations of y( t ) . Performance measure modeling 
and conditional reliability prediction have been studied 
by Kim (1991), Kim and Kolarik (1992). and Chinnam 
e? al. (196) using regression models and neural 
network models. The purpose of this paper is to report 
on a similar study based on time series modeling. 
Usually a future value of a time series is relative to its 
past values and driven by a white noise process. The 
task in survival assessment in time series modeling is to 
model system performance measures in a time series and 
convert the model forecast into a conditional 
performance reliability. 

In this paper, on-line drill thrust force data, collected 
from a steel twist drill operation, are used to 
demonstrate performance prediction regarding a drill 
failure mode of excessive wear. Section 2 briefly 
discusses the concept of survival assessment based on 
physical performance monitoring. Section 3 discusses 
the time series approach to modeling performance data 
and extracting conditional reliability predictions. The 
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application to tool performance survival assessment in 
the drilling operation is presented in Section 4. 

ASSESSMENT OF SURVIVAL 

System survival assessment is implemented by modeling 
and predicting system performance variable y ( f )  across 
time, t = 0, 1, 2, .. . (a performance variable such as 
force, torque, vibration, or temperature), and converting 
the predicted physical values at a future time to a 
conditional performance reliability, according to the 
given critical performance value ycL for the measure 
y(f). Kolarik (1988,1995) developed the concept and 
mathematics for performance conditional reliability 
based on a continuous scale of the physical performance 
of a system, subsystem, or component, which serves as 
the basis for the probabilistic output for any given 
failure mode. On this basis, given the definition of 
failure in terms of performance characteristics, the 
performance reliability is defined as the conditional 
probability that the performance measure y ( t  f dt)  
is less (or greater) than a performance critical limit ycL 
(which represents an appropriate definition of failure in 
terms of physical performance, y ( t )  , t = 0. 1.2.. .), 
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given environmental conditions of operation, for a 
specified time period or usage At . Defining T as a 
continuous random variable for the system operation 
failure time; let F(r)  denote the cumulative probability 
function of system failure for the performance y( t). 
The system performance reliability, R( t )  , can also be 
given by R(r)  = 1 - F(r)  . Then the conditional 
performance reliability can be evaluated as , 

R((t  + Ar)lt) = P{T  > ( t  + b ) l T  > t }  
= [ l -  F ( t  +Ar)]/[l-F(f)] (1) 
= R(t  +At) / R ( f )  (2) 

The conditional performance reliability 
R((t + &)It) represents the probability that the system 
will survive up to time or usage t + At , given the 
condition that the system performance has not failed up 
to time t . This concept and definition apply to all the 
three basic possibilities existing in applications: lower 
is better, a performance measure with an upper critical 
limit; higher is better, a performance measure with a 
lower critical limit; and nominal is best, a performance 
measure with a two sided critical limit. Figure 1 depicts 
the concept of performance reliability and a 
performance measure with its critical limit. 
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Figure 1. Performance measure and performance reliability. 
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The shaded area of the individual performance 
distribution at time t in Figure 1 (c) represents the 
probability of failure at time or usage T 5 t . 

" M E  SERIES MODELING OF PERFORMANCE 
MEASURES 

The physical performance y( t 1 is sampled across time. 
It can be modeled as a time series, a realization or 
sample function from the performance stochastic 
process Y(w, r )  , where oblongs  to a sample space 
and t belongs to an index set. In time series analysis, 
y ( t  1 is related to its past values and driven by a white 
noise process. A full model, the general 
AutoRegressive Integrated Moving Average model, 
ARIMA( p , d , 4 ), is typically used to model a 
general discrete series in time, 

(3) 

i 

# ( ~ j ( l -  B ) ~  Y t  = e(B)at 

# ( B )  = (1 - # 1 B - . . . - 4 p B P )  

q B )  = (1 - e,B- ...- eqB 4 ) 

where 

B is the back-shift operator 
p , q 2  Oand d > o  
a, is a zero mean white noise process with 

2 variance ou . 
In this model p represents the order of the AR part, 
while 4 represents the order of the MA part. If either 
p or 4 is zero, then the result is a subset, ARI 
(AutoRegressive Integrated) model or IMA (Integrated 
Moving Average) model, respectively. The integrated 
part in the model actually performs a differencing 
operation on the original series and the differenced 
series is stationary. Usually, in time series modeling the 
final model is chosen through the processes of model 
identification, model estimation and model validation. 

For model structure fit, to the data set, the model order 
is determined from the Akaike information criterion 
(AIC): 

AIC(N ) =  NIn(02)+2N 
P U P 

(4) 

where N is the number of data points 
oa is the residual variance 
N ,, is the number of parameters in the model 
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Here, N p  is p + 4 for the ARMA model. The optimal 

order of the model is chosen by the value of N , which 

is a function of pand 4, so that A I C ( N p )  is a 

minimum (Wei, 1990). 
For model validation, the model residuals are checked to 
see if the residuals of the model follow a white noise 
process. The forecasts based on a selected model can be 
obtained by setting t = n + in the general expression 
of the model, 
Yt  = 91Yt - l+ . . .+9p+dYt -p -d  + a t  - ~ ~ a ~ - ~ - . . . - e  4 a t -  

( 5 )  
for an 
(5 )  can be obtained from equation (3). In forecasting, 
for t I n , y, will be a known observation and the 
error term a, is replaced by its estimate, the residual 
6, ; for E > n , y, is replaced by its forecast 
counterpart at time n and the unknown a, is set to zero 
(Newbold & Bos, 1994). The underlying variations in 
performance around the forecast values are calculated 
and converted to the reliability prediction. Here, a, is 
assumed to follow a normal distribution. 

- step ahead value, Yn+, , at time n . Equation 

DATA, MODELING AND RESULTS 

In general, the time series approach is applicable to all 
engineering systems for real-time assessment of system 
survival, provided performance variables and their 
critical limit values are properly defined. In this paper, 
a drilling operation is illustrated as an example for 
survival assessment of drill bit performance. The thrust 
force of a drill bit in operation is chosen as a physical 
performance measure for the performance failure of the 
drill with respect to an excessive wear failure mode 
(Thangaraj and Wright, 1988). In the experiment, the 
thrust cutting force (in pounds) was sensed with a 
Kistler 9271A force and torque dynamometer. The 
average thrust force collected and extended from a drill 
bit in its 45-hole drilling operation is displayed in Figure 
2. The average thrust force is defined as the average 
value of the thrust cutting force on the drill in each hole 
drilling operation from full-cut start to the full-cut end. 
The average thrust cutting force values in the 45 holes 
represent a time series y ( t )  . It is clear that the thrust 
cutting force trend increases with the hole numbers (as 
we would expect due to tool edge wear). Detailed 
information about the experimental data set is available, 
see Kim 1991. 
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lbs 

Model 
ARMA(1,l) 
ARMA(2,l) 
ARMA((2),1) 
ARMA(2,2) 

285.56 

225.56 
205.56 
185.56 

r ( D - U ) r ( D  l - l - N W G % G % G %  
Hde number 

AIC Wntestp Rvar 
107.884 0.9792 10.1304 
108.410 0.9271 9.7944 
107.1 10 0.9853 9.9537 
1 10.425 0.9904 9.7980 

Figure 2. Thrust force data from a drill bit operation. 

In order to model the performance measure and assess 
reliability, a first difference of series is made and then 
the differencing residuals are fit to an ARMA model. 
The model structure and model order is determined by 
the AIC value and white noise test for model residuals. 
Table 1 shows the results in model identification, where 
Wntest p represents the pvalue of Bartlett's white noise 
test and Rvar is the residual variance of the model 
(Newton, 1988). 

Table 1. Model selection for the data set. 

I ARMA(3,2) I 115.643 10.9397 I 10.5436 1 

According to the AIC value and the white noise test for 
model residuals, model ARMA((2). 1) with two 
parameters is chosen as a parsimonious model for the 
data set. Including the first difference for the data set, 
the full model can be estimated as ARIMA((2),1,1), 

(1 + 0.368B2)(1 - B ) y ,  = (1 + 0.308B)a, 
where B is the back-shift operator, a, is a zero mean 
white noise process with the variance of 9.9537. The 
parameters are estimated from the estimate macro in 
TIMESLAB (Newton, 1988). 

Once the final model is determined, the forecasts are 
made based on this model. In general, there are 
different types of possible forecasts. For the purpose of 
reliability assessment, a 1 step ahead forecast is used. 
Here data values available up to time t are used to 
forecast the value at time t + 1 based on the model. In 
this experiment, 42 data points are used for modeling 
and I is set to 1. In total another 18 point forecasts are 

calculated up to index 60. The forecasts are obtained 
from theforecart macro in TIMESLAB. Figure 3 shows 
the original data and the model forecasts. 

305.5 
285.5 ,- -- 

265.5 - -  

, 
,, 

- Model 

r w r  r ? i 5 8 z % G % G 3 6 %  
Hole number 

Figure 3. Model and prediction for the data set. 

In the forecasting of this application, the ARIMA model 
is used to establish the performance trend, as shown in 
Figure 3. This trend dictates the location for the 
predicted probability distribution. Let S denote the 
probability of success of the operation at hole t (where 
the forecast vdue of performance j ( t )  is less than or 
equal to the critical limit value ycL).  Assuming the 
predicted performance distribution is normally 
distributed and has variance 02,  then S can be 
evaluated as 

S = P( success for hole t ) 
t 

m 

= 1- I d Y t ) d Y f  (6 )  
CL 

Y 

where g ( y t )  - N ( 9 ( t ) , O 2 )  

y ( t )  is model forecast value at hole t 
ycL is the given critical limit value 
1 is a hole index number; t = 42,43, . . . 

Table 2 (in column 3) shows the estimates of individual 
hole success probabilities in forecasting, from the 42"6 
hole, based on the model. The conditional performance 
reliability for a series of holes, given survival to the 42"d 
hole, is calculated and shown in the fourth column of 
Table 2. 
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Table 2. Performance predictions and conditional 
reliability estimates. 

Individual Conditional 
number hole reliability I 

I I 1  I wedictions I S U M V a l t O  
s, 42& hole 

0 42 1 .Ooo 1 .Ooo 
1 43 0.998 0.998 
2 44 0.996 0.994 
3 45 0.995 0.989 
4 46 0.990 0.979 
5 47 0.983 0.962 
6 48 0.980 0.943 

16 158 Io.001 
17 I 59 I o.Oo0 I o.oO0 

I 18 l a m  Irr.m 

The individual performance reliability shown in Table 2 
is equivalent to a mission reliability where, in this 
example, the mission constitutes the probability of 
successfully drilling one more hole, given that the drill 
has survived through the previous holes. Mission 
definition depends on applications and affects the 
I value of forecasting in time series modeling. The 
conditional performance reliability curve, given the 
survival to the 42& hole, is calculated from the 
individual performance reliability values from each 
observation. For example, the performance reliability 
that a particular drill bit would survive n holes is 
simply the product of the individual performance 
reliability values of surviving each of these n holes 
(basically the product of n individual performance 
reliability values). 

42+n 
It ) = n si 

R ( t 4 2 + n  42 i =42 (7) 

In this application, y ( t )  is thrust force in pounds and 
y ,  is the critical limit value set to 275 lbs, regarding a 
drill failure mode of excessive wear. Figure 4 shows the 
predicted conditional reliability curve, given the survival 

to the 42"6 hole. For example, the conditional reliability 
of the 45' hole operation is estimated as 0.989. 

0.4 
0.2 

3 $ $ $ 8 S L Y % % * "  m c r ,  
Hole number 

Figure 4. Conditional performance reliability 
curves, given the survival to 42" hole (ycL=275 Ibs). 

The curve reveals the estimates of conditional reliability 
for each drilling operation after it survived the 42"d hole. 
For example, the conditional reliability for the 45" hole 
is estimated as 0.989, and 0.792 for the 50m operation. 
This information is useful in system operations (e.g., in 
predictive maintenance). 

CONCLUSIONS 

Ideally, self-assessment of survival for a system, 
subsystem or component is implemented by assessing 
conditional performance reliability in real-time, which 
includes modeling and analysis of physical performance 
data. This paper describes a time series analysis 
approach to system self-assessment (prediction) of 
survival. In this time series approach, performance data 
are modeled in a time series. The performance forecasts 
developed are based on the model and are converted to 
system survival probabilities (reliability). The results 
presented in this paper constitute an example of time 
series modeling and survival assessment, regarding an 
excessive tool edge wear failure mode for a twist drill 
operation. In contrast to a standard regression model, a 
time series model, using single channel data is a suitable 
alternative for real-time performance prediction. 

This paper features a single channel (drill thrust) input, 
with a single cutting edge wear failure mode related 
reliability output. The time series modeling approach is 
compatible with, and can be extended to multivariate 
performance. 
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