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PARTI
EXECUTIVE SUMMARY

Fluvial facies architecture dimensions were investigated through a literature
search. Dimensionsal relationships were considered for meandering channel, crevasse
splay and fluvial-dominated delta channels. Although this effort provided insight into the
appropriate scale for such facies elements, the usefulness for estimating modeling
parameters was very limited.

A three-dimensional process-based stratigraphy simulation model is specified and
used to predict the channel sandstone distribution and facies architecture within E and F
reservoir units of Middle Frio Formation, Stratton field. The process based fluvial facies
architecture simulation model is modified from the model developed by others.
Geological processes and features can be simulated in this model include floodplain and
channel belt configuration, tectonism, aggradation, compaction and avulsion. Based on
the specific geological characteristics in the Middle Frio Formation, modifications are
made to incorporate the growth faulting and rollover mechanism, avulsion hierarchy and
local subsidence rate variation.

The program is written in C4++ language. Each geological process is coded into
individual functions and the lower order processes are nested into higher order processes.
35 input parameters are needed to define the geological processes. Simulation output
include calculation information, 2D and 3D graphic view of the simulated facies
distribution and facies architecture statistic parameters. Multiple realizations are
generated to simulate the dispersed and concentrated architecture and the stacking pattern
variation within each type of architecture. The major facies architecture features can be
successfully simulated. :

Geophysics efforts focused on seismic amplitude and velocity are two important
attributes for reservoir characterization. The study of seismic amplitude involves the
complete field of geophysics due to several contributing factors. Here, we studied the
seismic amplitude contribution with and without consideration totransmission losses and
with and without incorporating multiples.Also, the contribution to seismic amplitude for
marine and land environmentare analyzed.

Markov random field and boolean models have been directed at generating
realizations of facies distributions constrained to observations (well or outcrop) and
geological interpretation with specific emphasis on fluvial systems. The work has
emphasized the development of two very different types of statistical models, Markov
Random Field (MRF) models and Boolean models.

MRF models allow us to define a joint probability function for the distribution of
facies by specifying local characteristics, or more mathematically, conditional
probabilities based on local neighborhood systems. This is an extremely convenient
feature as it is usually intuitively obvious how to specify the conditional probabilities to




incorporate desired geologic features, continuity, anisotropy (or more generally
orientation), and ordering and to some extent overall structure. Once the statistical
parameters in the joint probability function have been determined realizations of the
facies distribution are generated by a Markov chain Monte Carlo (MCMC) sampling
procedure. A penalty term can be incorporated in the probability function to ensure that
the fraction of facies in each realization is within some specified range. Conditioning to
facies observed at wells is a trivial task. The main model we developed is extremely
simple in that it is based on a second order neighborhood system and controls geologic
features using only two-pixel cliques. Because of this, we are able to simply use a free
boundary condition and avoid the unsolved problem of determining an appropriate
definition of potential functions (statistical parameters) on cliques adjacent to the actual
three-dimensional reservoir. This simplicity also makes it much easier to define
conditional probabilities to simulate desired geologic features. Despite this simplicity,
this MRF model can be applied to generate a rich variety of facies configurations.
However, use of the model and code developed requires some understanding and
intuitive insight on the way conditional probabilities affect geologic features, but much of
this insight can be developed simply by reading this report. It would of course be
preferable to develop an automatic procedure to generate the statistical parameters which
define the probability function for the MRF model directly from geologic interpretation.
For this purpose, we have investigated a number of algorithms, e.g., maximum likelihood
estimation, coding and histogramming. Many of these methods have been successfully
applied in the image analysis literature. Thus, we tried to apply various modifications of
these procedures to our problem. Unfortunately, none of them proved generally reliable.
The maximum likelihood estimation procedure is reliable only when a good initial guess
is available for the statistical parameters, and even then, it is computationally expensive.

Although we do believe that the MRF model developed will prove to be a useful tool
for the generation of many facies distributions of interest to geologists, it is not easily
applied to generate facies as geometrical objects having a desired structure, e.g., channels
and splays in a fluvial system. Thus, we have investigated the application of Boolean
methods. With Boolean methods, or more generally, Marked Point Process techniques,
distinct objects are inserted into the reservoir. With this approach, well-organized
structures are easily obtained. By working closely with geologists, detailed information
on the statistics of the parameters in the model can be obtained. For example in our study
of the Middle Frio Stratton Field, we have accumulated data on channel thickness,
channel width to thickness ratios, the angles that the channel makes with respect to some
reference point and the natural clustering of channels. With these and other pieces of
data we can make relatively realistic simulations of channel belts. Even more realistic
simulations are possible if additional data are incorporated into the model.

The inclusion of specific well and outcrop information can be used to generate
statistics to help understand the nature of the field and can also be used to constrain the
stochastic realizations that are generated. At this time we have only used the data from
the study areas to generate statistics which are used to generate simulations. We have
not, at this time, used this type of information to constrain the simulations.




Bayesian maximum entropy (BME) method investigates the use of the this method
to generate geological facies as part of the reservoir description. The advantages of the
proposed method over the conventional approaches are first, the method can account for
non-stationarity in geological properties and second, it is general enough so that various
constraints can be accommodated as part of the description.

During the first year of the project, we developed a generalized procedure, which
accounts for the presence of seismic data as part of the geological description. These
functions include variogram, covariances, and cross-covariances among the neighboring
values. The method can also account for local probability distribution of facies, which
can be obtained from the seismic information. The results indicate that the use of seismic
data can improve the facies estimation compared to using simple kriging.

In the second year, we examined the feasibility of extending the method for
multipoint connectivity function. Our studies in the second year comprised three main
investigations. First we modeled higher order moments. We showed that the higher order
moments bear similar characteristics to that of the second order moments. Second, based
on a nonlinear regression scheme, we developed an independent means of incorporating
multi-point connection into reservoir architecture modeling. This proves to be a robust
procedure and improves our ability to estimate the reservoir architecture. It also provides
the basis for checking the results obtained by the BME method. In the final phase of the
study, we applied the BME method to the four-point connectivity case and showed the
improvements of reservoir architecture modeling and thus the potential of the BME
method.

Xiil




PART: II
PROJECT OBJECTIVES AND ACCOMPLISHMENTS
. Facies Architecture

An early task/objective for the facies architecture component of the RAM Project
was to develop and present tutorials. Tutorial sessions covered the subjects of:
stratigraphic and facies architecture principles and concepts; meandering fluvial process
and facies; process based simulation model of fluvial facies architecture; and application
of process based fluvial facies architecture simulation. The tutorials helped to familiarize
the various project members with the fluvial deposition process, facies architecture
produced and preserved, geological process based simulation technique and its
application. More importantly, these sessions served as a catalyst for developing
modeling efforts.

From literature search and compilation, fluvial facies architecture dimensions
were assessed. Accomplishments of this investigation include: literature data subsurface
data compilation; compilation of other quantitative facies architecture information; and
development of synthetic data volume. Relevant information and data are provided to
other team members working on different modeling techniques.

Subsurface case study of the fluvial facies architecture on the middle Frio
Formation, Stratton field was completed. This study is mainly based on digital log data of
350 wells from Stratton field. A facies architecture model is established according to
variations of discrete genetic interval stacking styles. Stacking style is related to other
geological processes including aggradation rate change and structure activities.

The fluvial facies architecture of the middle Frio formation was successfully
simulated using process-based modeling technique. Achievements include: modified
previous simulation models to incorporate the specific geological processes in Stratton
area; implemented the simulation model into a C++ program; and applied this simulation
model to the middle Frio formation and successfully captured the major facies
architecture features. '

Some issues that require additional inquiry or improvements are briefly discussed.
We were unable to adequately quantify aspects of the facies architecture. Conventional
techniques are not very useful in providing the estimation of the modeling parameters.
Work needs to address this point in order to obtain realistic modeling output. None of the
efforts achieved an approach conditioned on the subsurface data; this point, although
stated as a project goal, was considered long-range objective in the project proposal. We
were not able to achieve realistic models through a wide range of spatial scales. For
example, object-based methods were used to lay down channels or channel belts, but
these objects were not filled with any realistic material. One approach discussed (but not
fully considered, due to the limited project schedule) is to use hybrid modeling: object-based,

controlled in part by processed-based routines, are laided down and then the objects are filled
using Markov random field process.




Seismic Modeling and Interpretation

Reservoir characterization involves interdisciplinary study of complex geologic
features such as boundaries, faults, or facies bodies. The accuracy of imaging these
features is a challenging geophysical problem. Also, the accuracy in seismic amplitudes
and velocity field will give valuable insight into the observability of pertinent geological
and reservoir properties. So, the main objective of the geophysical component of this
research is to model and interpret seismic data in the light of the depositional model and
utilize this interpretation for conditioning data for the predictive methods that can utilize
nonstationary models.

The followmg tasks were defined:

a) Literature survey on factors that contribute to seismic amplitude.
b) Development of software for synthetic seismogram.

c) Synthetic data for geologic models.

d) Processing and interpreting seismic data.

In this period of research, we have taken a few more key approaches to better
understand a reservoir along with the ones outlined above.

The achievements are as follows:

a) Delivered 3 tutonals to the group to familiarize the geophysical concepts in reservoir
modeli

b) Performed literature survey on seismic amplitude and velocity analysis.

c) Developed algorithm and software for synthetic seismogram; developed the
fundamental concept of generating particle velocity synthetic seismogram (for land
seismics) and pressure synthetic seismogram (for offshore seismics).

d) Developed a ray tracing software for computing the travel times over geological
models of various degrees of complexities and obtained the uncertainty estimates for
velocity calculations.

We have obtained a 3-D seismic data from the Stratton Field, South Texas, loaded on
Landmark Interpretation System, and interpreted the E41 and F11 horizons

We have learned that seismic amplitude and velocities are important attributes for
reservoir characterization. We have performed a systematic study on the contributing
factors and uncertainties. Also, 3-D seismic data provides an extremely good
interpretable subsurface image if constrained with the VSP, well log information.
However, the main disadvantage of the seismic techniques (if used alone) are the
resolution (both vertical and horizontal), and uncertain depth estimation. We have
addressed this problem with the field data.

We have not noted any failures in this research, but given more time we would
have constrained the geologic model obtained for the Stratton Field data which was
mainly produced from the well log correlation.




Markov Random Field and Boolean Models for Geologic Modeling of Facies
Distributions '

‘Our over-riding objective was to develop stochastic models for generating facies
distributions conditioned to well data with a particular emphasis on nonstationary models.
In relation to this primary objective, the main sub-objectives were to (a) to quantify
geologic information in order to generate estimates of the statistical parameters which
determine the probability function for the distribution of facies, (b) to distribute
petrophysical properties within facies.

Regarding the primary objective, we have developed both Markov Random Field
(MRF) models and models based on marked point processes (specifically Boolean
models) to generate facies distributions. With the Markov random field models
developed, we can generate a rich variety of facies distributions. Specifically, based on
geologic interpretation and information, one can select the statistical parameters defining
the Gibbs probability function for the MRF to generate realizations of the facies
distribution that display the desired geologic features, orientation, anisotropy, continuity,
ordering, facies proportion and to some extent structure. Moreover, the MRF models can
be easily conditioned to facies observed at wells. However, if one wishes to generate
facies as large-scale objects, e.g., channels and splays in a fluvial environment, the
Boolean model we have developed is preferable. With this model, one can generate
channels and splays within a background facies. Conceptually, both models can be
applied to nonstationary problems, by defining the statistical parameters as functions of
position. However, at this point, this can not be easily done with the code we have
developed. Instead to implement nonstationarity, one must use zonation, i.e., divide the
volume of interest into specific regions and apply the stochastic algorithm to individual
regions. This approach is particularly useful for fields such as the Oligocene Frio
Sandstone of South Texas where in the top part of the geologic interval, channels tend to
cluster, whereas, the lower portion, channels are randomly distributed with no apparent
clustering.

A significant amount of work was devoted to the investigation of procedures to
estimate statistical parameters directly from observations, e.g., outcrop data or geologic
interpretation. For MRF field models, we modified and experimented with several
procedures that have been used successfully in image analysis research. However, we
were unable to develop any reliable method. On the other hand, for Boolean models, we
were able to generate a stochastic model from well data and geologic interpretation for
_ the Oligocene Frio Sandstone of South Texas using a combination parametric and
nonparametric density estimation. Then, by applying a Markov chain Monte Carlo
simulation procedure, we are able to generate realizations of channel distributions.

The fruitless time invested in attempting to estimate statistical parameters from
geologic information and interpretation precluded an investigation of procedures for
distributing petrophysical properties within facies. However, there exist many procedures
for doing so, ranging from simple procedures such as assigning the same value at each




gridblock occupied by the same facies to more complex procedures such as Gaussian
cosimulation and indicator methods.

In summary, we delineate our successes, failures and lessons learned.

Successes: We have developed Markov Random Field models which can be applied to
model a rich variety of facies distributions and capture pertinent geologic features, e.g.,
orientation, continuity, anisotropy, ordering and facies proportions. With this model, it is
easy to condition realizations to facies observed at wells. Boolean models have been
developed for generating channel distributions in a fluvial environment. Statistical
methods have been developed for estimating the statistical parameters defining the
Boolean model from geologic observations and interpretations and applied to a specific
field example.

Failures: Procedures to distribute petrophysical properties within facies have not been
investigated. We were unable to develop a generally reliable model to estimate the
statistical parameters defining the Gibbs probability mass function directly from geologic
interpretation.

Lessons Learned: Contrary to previous thought, a rich variety of pertinent geologic
features can be captured using MRF models using only two-pixel cliques. High order
neighborhood systems are not required. Boolean models for the distribution of channels
and crevasse splays within a background facies can be generated using a very simple
polygonal parameterization in which all objects lie within intersecting planes. This

characterization should prove extremely useful for distributing petrophysical properties
within the facies and in conditioning Eoolean models to production data. In fact

we have already begun work on conditioning Boolean models to well-test pressure data
under the auspices of the Tulsa University Petroleum Reservoir Exploitation Projects.

Final Comments: The ultimate goal of reservoir characterization should be to evaluate
the uncertainty in predicted reservoir performance under proposed operating conditions.
By doing so, one can make more informed reservoir management decisions which will
lead to reduced operational and developmental costs. To reduce uncertainty in simulated
reservoir descriptions, one clearly should condition models to production data. We fully
expect that many of the results obtained in this research will prove useful in our work on
generating reservoir realizations conditioned to production data and geologic data and
interpretation.




Estimation of Geological Architecture Using Bayesian/Maximum Entropy
Approach

The overall project objective was to develop a more flexible technique to describe
geological properties. Ideally, the technique should have the ability to capture non-
stationarity, typically observed in geological descriptions. Further, the technique should
also have the ability to capture geological constraints, which may not be captured using
conventional two-point connectivity functions such as variogram and co-variance.

We chose the technique of Bayesian Maximum Entropy to apply it for geological
description process. Based on the publications available, the technique had the ability to
capture the non-stationarity in description. The technique is also flexible enough to
accommodate various geological constraints.

We started implementing Bayesian Maximum Entropy (BME) method by first
developing the necessary analytical solutions for two point connectivity functions. These
functions include variogram and co-variance. The development of solutions is provided
in the Appendix. The method has the flexibility to also incorporate cross-covariance
among geological facies. We used the procedure to develop geological facies description
in the presence of seismic data, and showed that the method works well in incorporating
soft information.

Unfortunately, when we tried to extend the technique to multi-point connectivity
functions, we realized that we were not able to obtain analytical solutions. We tried
using discrete variables instead of continuous variables, but still were not able to resolve
the problem of obtaining analytical solutions. To overcome the problem, we decided to
develop a numerical procedure, the details of which are provided in the Appendix. The
procedure proved to be very robust, and was able to converge to a solution independent
of the starting values. However, since it involved numerical integration, it proved to be
time consuming. As the size of multi-point connectivity function increased, the integral
size increased proportionately. Computationally, it became more demanding. Although
we were able to solve the problems of four-point connectivity function, its practical
implications are unclear. The program can be optimized to improve the integration;
however, it still seems impractical with current computational resources. Further, as the
number of neighboring values increase, the numerical solution becomes more
cumbersome.

To briefly summarize the BME method, the method is extremely flexible and
robust. It has the ability to accommodate various constraints. We have shown that it can
be used in cases where traditional interpolation techniques may not be used. In practical
terms, however, the method cannot be easily used because of the requirement of
numerical solution. The solution, although robust, is computationally intensive, and
cannot be applied in practice at present time.

As an alternative to BME method, we investigated a method that can provide us
with flexibility similar to BME method, but, at the same time, provide us with an
analytical solution. In the report, we present this new regression technique. The




technique can account for four-point connectivity function — a substantial improvement
over conventional kriging technique. The procedure provides an analytical solution,
which results in estimation of weights assigned to the neighboring values. The weights
are estimated using an iterative scheme; however, the iterative procedure is extremely
efficient, and converges very quickly. By comparing the proposed method with
conventional kriging technique, we have shown that the proposed method always
produces better or as good results as kriging technique. We believe that this technique
has the requisite flexibility to incorporate higher point connectivity functions; at the same
time, has the computational efficiency to apply it in practice.




‘PART III
FACIES ARCHITECTURE
By: Dennis R. Kerr, Kexian Yang and Amy Richardson

SUMMARY.

Fluvial facies architecture dimensions were investigated through a literature search.
Dimensionsal relationships were considered for meandering channel, crevasse splay and
fluvial-dominated delta channels. Although this effort provided insight into the
appropriate scale for such facies elements, the usefulness for estimating modeling
parameters was very limited.

The Oligocene Middle Frio Formation is one of the major reservoir interval in the
Gulf Coast Basin. The succession is characterized by a sediment-supply dominated
fluvial system with rapid deposition and high subsidence. In the study area, the Middle
Frio is the major subunit of Frio Formation which is composed of interbedded mudstone
and lenticular channel and splay sandstones. Previous geological studies reveals that
channel sandbodies are arranged into different stack patterns as response to the varying
aggradation rate of the coastal plain. A structural and facies analysis in this study
suggests that the growth fault zone normal to the depositional axis and associated
rollover structure play an very important role on the distribution of reservoir sandbodies.
A quantitative geological characterization is carried out to provide information of input
parameters, and also served as a comparison model for the simulation resuits.

A three-dimensional process-based stratigraphy simulation model is specified and
used to predict the channel sandstone distribution and facies architecture within E and F
reservoir units of Middle Frio Formation, Stratton field. The process based fluvial facies
architecture simulation model is modified from the model developed by Bridge and
Leeder (1978), and Mackey and Bridge (1992; 1995). Geological processes and features
can be simulated in this model include floodplain and channel belt configuration,
tectonism, aggradation, compaction and avulsion. Based on the specific geological
characteristics in the Middle Frio Formation, modifications are made to incorporate the
growth faulting and rollover mechanism, avulsion hierarchy and local subsidence rate
variation.

The program is written in C++ language. Each geological process is coded into
individual functions and the lower order processes are nested into higher order processes.
35 input parameters are needed to define the geological processes. All the input
parameters are taken according to the quantitative geological characterization, earlier
studies of the middle Frio Formation and general geological knowledge. Simulation
output include calculation information, 2D and 3D graphic view of the simulated facies
distribution and facies architecture statistic parameters.

Multiple realizations are generated to simulate the dispersed and concentrated
architecture and the stacking pattern variation within each type of architecture. Major




considerations in the simulation include aggradation rate variation, tectonic subsidence
rate variation and probability of different type of avulsions. The major facies architecture
features can be successfully simulated.

Process based facies architecture simulation has good potential to produce
geologically reasonable realizations i predicting spatial fluvial facies distribution.
However, geological study of the simulated area is necessary to understand the geological
processes involved and to define the input parameters.

Based on the model used in this study, simulation effects show that the periodic
variation of regional aggradation rate caused repeated change of channel fill facies
architecture from concentrated to dispersed. This simulation effect is in agreement with
the explanation by Kerr and Jirik (1990).

The channel belt avulsion hierarchy, especially the effect of nodal avulsion in
response to growth faulting has significant impact on facies stacking pattern variation in
the field scale. Channel belt avulsion and deviation from the location of growth fault can
results in: 1) increase of channel belt sandbody number and 2) change of channel belt facies -
stacking pattern from vertical to more lateral.

Depression along deposition direction can produce the effect of channel belt
shifting towards the depression axis. As a result, channel belt facies density along the axis
is higher than adjacent areas.

INTRODUCTION.

The facies architecture component of the RAM Project pursued the following
efforts in the course the project: 1) Developed tutorials for establishing a foundation from
which modeling efforts could proceed. 2) Investigated the literature for data and
empirical relations of facies architecture element geometry. 3) Developed a synthetic
meandering fluvial system volume. 4) Developed and applied a process-based model for
meandering fluvial architecture. Items 2 and 4 are presented in this report.

The decision to develop a process-based model came from: 1) The literature
investigation of fluvial facies architecture dimensions pointed to a gap in the
incorporation of geological processes in controling fluvial sand-body geometry. This
point is particularly important when considering elements of differing scale and potential
for sand-body connnectedness. 2) This endeavor bore more fruit when working with the
other object-based modeling efforts of the RAM Project. However, the limited time of
this project did not permit the full integration of these different lines of modeling. 3) The Stratton data
set was available and familiar to the investigators.

Details of the processed based modeling can be found in a Masters of Science thesis
by K. Yang. The thesis is available through the McFarlin Library at The University of
Tulsa. Also Appendix provides instructions for using the program included on disk with




this report. Subsurface maps prepared by D. Kerr (unpublished 1989-1990) were used for
parts of this study. Kerr's subsurface maps are archived at The University of Texas
Bureau of Economic Geology in Austin, Texas.

FLUVIAL FACIES ARCHITECTURE DIMENSIONS.

An early project objective was to collect fluvial facies architecture geometry
information from the literature. This objective was deemed vital to any attempts at
realistic simulation of fluvial architecture. This section summarizes the results of this
effort.

The most widely available stratal dimension available from subsurface data is
thickness. The thickness of a stratal unit is readily measured from wireline logs. The
width of a stratal unit is generally unknown, except perhaps in the case of high-resolution
3D seismic image. Thus, stratal width is estimated from some relationship tied to
thickness. Following is a summary of relationships between thickness and width of sand
bodies found in the literature. Given the depositional systems emphasis stated in the
original proposal, meandering channel, crevasse splay, and fluvial-dominated delta
dimensions were the focus of the literature search.

Meandering Channel Dimensions

Several empirical equations have been suggested for the dimensional relationships
of meandering channel strata.

Geomorphology Approach

Schumm (1963; 1972) developed an equation that relates width and depth of fluvial
channels:

F=225 M1
where:
F = width:depth ratio
M = weighted mean percent silt and clay

Schumm doesn’t give an error for his formula, but Cotter (1971) uses a standard error of
0.20. Schumm (1972) related meander wavelength to F with the equation:

=18 (-FO.53 w0.69)
or
log = 1.27809 + 0.52822 log F + 0.68774log w.

where:

I= meander wavelength




w = bankfull width

The standard error is 0.21 log units.
One of the more commonly used formulas is from Leeder (1973):

w = 6.8h!>
where:
w = bankfull width

h = bankfull depth

This relationship is based on 57 modern meandering rivers with sinuosity (channel length
to valley length ratio) greater than 1.7. The correlation between w and h is strong (r =
0.91). This equation is widely used (Bridge and Mackey, 1993; Lorenz et al., 1985;
Stancliffe and Adams, 1986; Collinson, 1978; and Williams, 1988).

Williams (1986) offers two equations for width and depth relation:
w=155d" (for 30 sites with sinuosity > 1.7)

w=21.343" (for 67 sites irregardless of sinuosity)

where:
w = bankfull width

d = bankfull depth

Sand-Body Geometry Approach

Collinson (1978) compiled sand-body shapes for fluvial deposits regarded as being

of a meandering channel origin. Thus, this approach uses the depositional geometry, and
results in the relationship:

Wm = 64.6 '
A=74.1¢"%
where:
Wm =‘channel belt width
t = sand body thickness

A = meander wavelength

However, there is a lot of variation in the data compiled, and Collinson (1978) offers no
measure of the strength of the correlation.




Fielding and Crane (1987) considered Collinson's (1978) equation, but developed a
best-fit equation from their own data compilation:

Wm = 12.1 ¢
where:
‘Wm = channel belt width

t = sand body thickness

Again, Fielding and Crane's (1987) data are highly variable and include the deposits from
fluvial systems other than meandering. They suggest that meandering fluvial channel
belts likely reside between:

Wm = 0.95 2% upper bounding line
Wm=64.6 " fully developed meanders (Collinson, 1978)
where:
Wm = channel belt width

t = sand body thickness

Fielding and Crane (1987) continue to consider a simple descriptive model for relating
thickness of channel-belt sand bodies to assumed widths (i.e. best-fit line equation) in a
given well. Next they compute a cross sectional area of all sandstones that is intersected
by a well, excluding any that are less than 2 meters thick:

cross sectional area = i tWi
where: .
t = thickness
W = channel-belt width
i = sand-body index, from 1 to n (=total number of beds)

The procedure is extended to consider the success rate of an offset well located a distance
W (or shorter) from the first well:

Zti minimum (w:, W)

i-1
i W
i=1

success rate =

where:

t = thickness

W = channel-belt width
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i = sand-body index, from 1 to n (=total number of beds)

For secondary or tertiary development the success rate equation was rewritten as

D (wi 2 W) W

Z": 1174
i=1

i

success rate =

Selected Literature Compilation

~ Using 20 data points compiled from Williams (1986), Puigdefabregas (1973),
Schumm (1972) a graph was made plotting thickness vs. width meandering channel
deposits (figure 3.1).

Meandering Streams width vs. depth

y = 19.735x3572
R = 0.7999

Figure 3.1. Cross plot of meandering channel deposits selected from the literature.

A best-fit line is:
Wm = 19.735 37
where:
‘Wm = channel-belt width

t = thickness

This result is reasonably comparable to the other width to thickness relationships
discussed above; the equation is very similar to Leeder’s relationship. However, each
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width to thickness (or depth) relationship given above offers markedly different results as
the thickness increases. This draws into question which to choose, or perhaps is this a
useful approach at all.

Crevasse Splay Dimensions

Crevasse splays are overbank deposits that occur when a river flooded breaches its
levee. A crevasse channel forms, and fan- or lobate-shaped splay of sand and mud is
deposited on the floodplain. Deposits can range from a few inches (cm) in thickness to
10's feet (m). Smith et al. (1989) article related stages of crevasse splays to geometry.
Stage I is an immature splay that is small and produces lense or wedge shaped deposits.
Stage II forms less tabular deposits that are disconnected by channelization. The cross
sections are irregular. Stage III produces linear and more isolated sand bodies as
channelization is even more common. With each stage the size of the splay increases.

Few empirical formulas were offered in the literature that related the thickness and
width of crevasse splay deposits. Mjos et al. (1993) indicated maximum length:thickness
ratio is 2000. More typically the ratio ranges between 150-1500, and thicknesses range
0.3 t0 4.5 m. Crevasse channel sandstones have width/thickness ratios of 5-60, and
thickness are usually less than 4m, but can range up to 7m.

With data given in Rhee and Chough (1993), O’Brien and Wells (1986), Flores
(1984), and Chrzastowski et al. (1994), a graph relating width to thickness came up with
a slope of 426.87(figure 3.2 ). This fits in with Mjos et al. assumptions, but is not
conclusive because of the few data points. Larger splays gave ratios that were closer to
the published norms.

Crevasse Splay Width vs. Thickness

y = 462.87x - 1448.1
R =0.8159

thickness ft.

Figure 3.2. Crevasse splay deposit width vs thickness.

Fluvial Delta Dimensions
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Despite the voluminous literature on delta systems, the literature seems to contain
little factual information on the geometry of entire deltas and channel-fill deposits. There
is some research on deltaic channels and bar deposits.

Lowry and Jacobson (1993) give an empirical formula for channel width to
thickness ratio for isolated channels that incise mouth-bars:

w=12.7t2
where:
w = channel width

t = channel-fill thickness

They also found distributary channel width to thickness ratios range from 10 to 20.

Tyler et al. (1991) found that in the Ferron Sandstone basal channels have fairly
consistent width to thickness ratios. The average is 9.5 . These are small features at the
base of the distributary complex. Falkner and Fielding ( 1993) found in their study area
that proximal mouth bars have width to thickness ratios of 5 to 25.

From study of the Atchafalaya River delta, Wells et al. (1984) mapped five deltas in
different stages of development. Each were measured to find length perpendicular to the
main river channel, width parallel to the main river channel, and the channel width of the
main distributary channel to the delta. The length (1) to width (w) ratio for all deltas is
charted in figure 3.3. There seems to be two main groups in this data. The deltas where
the I/w ratio is greater than 1 and the group where it is less than 1. The cause of this
difference seems to be delata size -- smaller deltas have ratios greater than 1, and the
larger deltas have I/w ratios smaller than 1. Compiled data offer a best-fit line:

¢=-0.0302 V¥w +0.1995 (deltas < 10 km in length; figure 3.4)

c=0.3663 I/'w + 0.3458 (deltas >10 km in length; figure 3.5)
where:

¢ = main distributary channel width

1 = length measured perpendicular to main channel

w = width measured paralle] to main channel

The correlation coefficient is so low that it is difficult to say whether any real relationship
exists among the variables considered. However, the outlier with >1 km channel width is
likely distorting the correlation coefficient.




Deltas l/w vs. channel width
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Figure 3.3 Atchafalaya delta dimensions.
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Figure 3.4 Atchafalaya delta dimensions for I/w less than 1.

Deltas I/'w vs. Channel Width /w >1

o
o |
o B

0.15

channel width km

(=]
o ©
(=] 8 -

o) 05 1 15

Uw Y =-0.0302x +0.1995
R=00123

Figure 3.5 Atchafalaya delta dimensions for I/w > than 1.
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General Assessment.

The literature is rich with attempts to relate dimensions of fluvial facies
architectural elements. Unfortunately, the usefulness for modeling efforts is questionable.

Meandering channel dimensions seem to present reasonable correlations in their
dimensional character. The geomorphology based approach provides highly variabie
results. The problem appears to be that channel width is defined differently, or not clearly
defined at all. Channel sand-body relationships are also reasonably correlated. However,
other geological processes come in to play in the deposition and preservation of rock
volumes. This include, but are not limited to, accommodation space and alluvial plain
aggradation.

The data for crevasse splay deposits is interesting. But one needs to keep in mind
that crevasse splay sand-bodies are approximated by low-profile cone segments.

The fluival deltaic data is difficult to decipher. It was not used in our work.

The dimensional data and relationships are interesting, but their usefulness to
modeling architectural elements is limited. The greatest limitation comes from the fact
that individual data sets are small and not well documented in terms of how and exactly
what was collected. This is an area the sedimentology community needs to address. For
the RAM Project, these relationships were not helpful in estimating parameters for the
other modeling efforts.

PROCESSED-BASED 3D FLUVIAL ARCHITECTURE SIMULATION: MIDDLE
FRIO FORMATION SOUTH TEXAS.

Motivation and Objectives

Geological process-based 2D and 3D quantitative models of fluvial stratigrahpy
have been developed to simulate the distribution, proportion and connectedness of coarse
grained channel-belt deposits within alluvial strata (Bridge and Leeder, 1972; 1992,
Mackey and Bridge, 1995). Geological processes considered in current models usually
include: floodplain aggradation; compaction; tectonism; and channel avulsion. Process-
based simulation approach has a good potential to predict facies distribution in fluvial
successions. Though some preliminary efforts have been made to apply these models to
modern natural cases (Mackey and Bridge, 1995), application to ancient subsurface cases
in the published literature was not found. Difficulties of the application mainly come
from: 1) the models are too generalized or simplified to simulated natural cases with
more specific and complicated geological processes; 2) the input parameters needed by
the models are difficult to define in real-world cases, especially subsurface cases since
data density are not sufficient, and some of the geological processes are not obviously
recorded in the rock volume.




Efforts are needed to apply this approach to real-world cases, especially
subsurface cases, to understand for specific geological setting, how these processes can
influence facies architecture. Motivated by this idea, an object-oriented model will be
built based on a real subsurface case -- the middle Frio Formation of south Texas.

Overview of Frio Formation and Stratton Field Study Area

The case chosen to simulate is the middle Frio Sandstone in south Texas
(according to the stratigraphic subdivision by Kerr and Grigsby, 1991), which is one of
the major reservoir intervals in the Gulf Coast Basin (Galloway et al., 1982; Galloway et
al., 1983; Kosters et al., 1989). The study area includes Stratton Field and adjacent area
as shown in Fig. 3.6. Earlier geological studies suggest a fluvial-deltaic depositional
system (Galloway, 1982). Growth faults and associated structures that cross depositional
trends impact sandstone accumulation. The effects of varying aggradation rate with time
are thought to be recorded by changing of channel sandbody stacking patterns (Kerr and
Jirik, 1990).

Stratton field is located within the onshore Gulf Coast basin of south Texas along
the Vicksburg fault zone (Fig. 3.6), near the northern end of FR-4 gas play (Kosters et al.,
1989). Geographically, it is in area overlapping Nueces, Kleberg and Jim Wells
Counties.

The area of detailed analysis comprises about 31 mi* (80 km?) which covers the
major part of Stratton field. The detailed study is mainly based on logs from about 400
wells, mostly in digital format. A rich source of previously published and unpublished
studies in this area are available and can serve as good references and foundation to this
study. These works include both regional and detailed deposition, structure, reservoir and
hydrocarbon resources investigation (Galloway, 1977; Galloway et al., 1982, Galloway et
al., 1983; Kosters et al., 1989; Jackson and Galloway, 1984; Ewing, 1986; Kerr, 1989-
1990 unplished maps; Kerr and Jirik, 1990; Kerr, 1990; Kerr and Grigsby, 1991; Levey et
al., 1993).

The Oligocene Frio Formation is a major progradational offlapping stratigraphic
unit in the Northwest Gulf of Mexico Basin. The succession is characterized by a
sediment-supply dominated fluvial system with rapid deposition and high subsidence rate
(Galloway and others, 1982; Morton and Galloway, 1991).
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Fig. 3.6. Location map of the study area (from Hardge et al.1994 and Levey et al. 1993).




The Frio Formation is informally subdivided into three subunits in the region along
Vicksburg fault zone refered to as the lower, middle and upper. The total thickness of
Frio Formation varies from less than 2,000 ft (610 m) to great than 9,000 ft (2740 m).
The middle Frio is 2000 to 2500 ft (610 to 760 m) thick and composed of interbedded
floodplain mudstone and fluvial channel-fill sandstones and splay sandstones (Kerr and
Jirik, 1990; Kerr and Grigsby, 1991). In Stratton Field, the middle Frio Formation is
subdivided into F to B reservoirs (Fig. 3.7). The interval of detailed analysis in this study
includes E41 to F11 with a total thickness of about 300 ft (91 m).

Stratton field lies within the Rio Grande Embayment structural province (Levey et
al., 1993). The structural style in this region is characterized by discontinuous belts of
growth faults parallel to the striking direction. A series of normal faults are developed in
the Vicksburg and lower Frio Formation and sole out into the Vicksburg detachment zone
within the Jackson Shale. The structure framework of the middle and upper Frio
Formation is much simpler than the underlying formations and the strata are relatively
undeformed and flat-lying. At the study interval from E41 - F11, The structure attitude is
mostly affected by the master growth fault while all the antithetic and faults are
diminished at this level.

Middle Frio reservoir in Stratton field are part of the Gueydan fluvial system with
the general depositional direction from north west to south east which is perpendicular to
the growth faults. Middle Frio strata consist of fluvial depositional systems that contain
channel-fill and splay reservoir facies (Galloway, 1977; Kerr and Jirik, 1990).

Kerr and Grigsby (1991) show that the volcanic glass present in Frio sandstones
at Stratton is absent in sandstones at Seeligson field. This variation is explained by
differences in source terrain. That is, different fluvial systems with separate catchment
basins may have coexisted and delivered sediments to these two different area.

The established depositional model (Galloway, 1977; Kerr, 1990) suggests a
meandering river system composed of floodplain, levee, splay and channel fill/point bar
facies (Fig. 3.8).

Criteria for identifying channel-fill and splay facies from cores and well logs were
described by Kerr and Jirik (1990), Kerr et al. (1991). Channel fill facies maybe
vertically stacked with the upper part of the underlying channel fill being eroded by the
overlying channel fill (Fig. 3.9). .

Geological Characterization

Field scale structure and facies architecture study is based on well data within the
study area. Fig. 3.10 shows the well locations and stratigraphic cross section grid. Two
major markers named E41m and F11m are used for stratigraphic correlation. Each
corresponds to the top of a extensive and continuous shale (paleosoil ?7) above E41 and
F11 sand respectively (Fig. 3.11).
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The structure maps of the two markers show that the master Vicksburg growth fault
is the dominant feature of the structure framework (Fig. 3.12 and 3.13). Parallel to the
master fault, a rollover anticline is developed about 1.5 mi (2.4 km) to the east in the
hanging wall block. The fault throw and folding amplitude decrease upward at different
statigraphic level. The structure of F11m shows the fault throw from 150 - 350 ft (45 -
107 m) and roll over amplitude from 100 - 250 ft (30 - 76 m). Up to the level of E41m,
the fault throw decreases to 80 - 230 ft (25 - 70 m) and the rollover amplitude decreases
to 50 - 100 ft (15 - 30 m).

Since the growth fault was active during deposition, it has significant control over
gross thickness variation at different locations with respect to the growth fault. The
interval thickness between E41m and F11m illustrates the variation pattern (Fig 3.14). In
the footwall block, the interval thickness is about 150 ft (46 m). As more accommeodation
space created by growth faulting in the hanging wall block, the thickness increases to
about 200 ft (61 m). A wedge shaped space is create by the rollover effect. As a result,
the interval thickens towards the growth fault and the total thickness can increase up to
250 ft (76 m).

The interval thickness variation indicates that structural subsidence resulted in
increase of aggradation, which may suggest a rich sediment supply during the deposition
of middle Frio Formation and the capability of the fluvial system to compensate the
accommodation space created by the structure activities.

Previous reservoir studies on the middle Frio Formation have been carried out at
different hierarchical levels. Based on regional stratigraphic analysis, middle Frio
consists of deposits of Gueydan fluvial system (Galloway et al., 1982). Discrete genetic
interval (DGI) is define and used in reservoir compartmentalization study by Kerr and
Jirik (1990). Each DGI is composed of facies including channel fill, levee splay and
floodplain. The interest of this study is to model the facies distribution at the level of
channel belt, which is approximately the same level of DGI and equivalent to Group 8
according to the facies hierarchical scheme of Miall (1991).

Based on the established facies identification criteria (Kerr and Jirik, 1990; Kerr,
et al., 1991), a field scale facies correlation is completed to analyze facies architecture
and its variation. The interval of detailed study comprises reservoir units from E41 to
F11. The two marker beds E41m and Fllm are the essential control for stratigraphic
correlation. Correlation of markers was accomplished using logs from 350 wells. Seven
cross-sections through 89 wells were used to establish facies architecture. Efforts have
been made to quantify facies architecture variation based on observation of the seven
stratigraphic cross-sections generated across Stratton field.

The cross-section network was set up to evaluate architecture and its variation
relative to the growth fault coursing through the study area. Three sections are parallel to
regional depositional dip and perpendicular to the growth fault . Four sections are in the
perpendicular to the growth fault . Major features of facies architecture observed include:
1) Channel-fill facies show a higher lateral
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continuity in the direction of depositional dip compared to perpendicular to depositional
dip. This observation is not surprising for meandering fluvial systems. 2) Channel-fill
facies repeat vertically from concentrated architecture to dispersed architecture (Figure
3.15). This variation was noted earlier by Kerr and Jirik(1990) and named as lateral
stacking and vertical stacking respectively. 3) Channel-fill facies in the major reservoir
units such as E41 and F11 (concentrated architecture) transition from laterally to
vertically stacked toward the growth fault. In the vertically stacked pattern, channel belts
are gathered into clusters with relative small lateral extent and more layers overlapped
vertically. While in the laterally stacked pattern, channel belts become more laterally
spread out and evenly distributed. 4) The number of channel fill facies is increased on the
hanging wall block side across the growth fault. This observation is more obvious in the
units of dispersed architecture.

The explanation for the variation from concentrated to dispersed channel-fill
facies stacking is a change of aggradation rate. As the floodplain aggradation rate
increases, more fine grained material will be deposited onto the floodplain and channel-
fill facies will become more dispersed (Figure 3.16 and 3.17). The increase of channel
facies number across the growth fault and stacking pattern variation within the
concentrated architecture unit may be caused by growth faulting activity. The events of
faulting are likely to increase the probability of river avulsion. As a result, nodal avulsion
may occur at the fault location and river start to deviate from the avulsion point. The
effect of channel deviation may have caused more even distribution of channel facies
laterally.

Preliminary quantitative characterization of facies architecture is made based on
three cross-sections (D-D’, E-E’ and F-F’) parallel to the growth fault. The objective of
this study is to characterize facies architecture variation both vertically and laterally. The
study interval can be vertically classified into units with architecture of concentrated
channel-fill (as E41 and F11) and units with architecture of dispersed channel-fill (as
from EA9 — F7). Since the three cross sections have different length and cut through
different portion of the field, standardization was made in calculating architecture
parameters to get comparable results. Cross section E-E’ has the most extensive coverage
and is chosen as the standard cross section. Cross sections D-D’ and F-F’ are artificially
extended to have the same projected length and coverage. Architecture parameter values
calculated based on the actual cross sections need to be adjusted after the artificial
extension. This adjustment is made for each extended cross section accordingly in
considering extended length of the cross section and facies distribution across the field.
Statistics show difference between these two types of architecture.

Concentrated architecture has a channel belt to gross thickness ratio ranging from
0.54 to 0.60. Dispersed stacking architecture has a ratio ranging from 0.14 to 0.18 (Table
1 and Fig. 3.16, numbers used are after standardization). The increase in number of
channel-fill facies across the growth fault can be estimated on the cross sections. In the
unit of concentrated architecture, the standardized number of channel fill layers based on
interpretation is 17 in section D-D’, 26 in section E-E’ and 25 in F-F’. While in the unit
of dispersed architecture, the standardized number of channel fill layer is 14 in section D-
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D’, and 22 in section E-E’ and F-F’ (Fig. 3.16).In concentrated architecture, channel belts
are gathered in to clusters with small lateral extent at the upstream location close to the
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Fig. 3.15. Facies architecture and controlling factors of middle Frio Formation (modified from

Kerr and Jirik, 1990).
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growth fanlt and become spread out at more downstream locations (Table 1 and Plate 4,
5, 6 and 7). Channel facies connectedness is high and has a increasing trend in down
stream direction. Channel belts are usually low to unconnected in the dispersed
architecture. However, relatively high connectedness is observed in cross section E-E’.
This is probably because that it is closer to the growth fault where nodal avulsion occurs.
Channel belts are more likely to be connected.

Based on measurements from the unpublished facies mapping by Kerr (1989-
1990), the width of single story channel fill sandbody is usually 2000 to 3600 ft (600 -
1100 m), averaging 2700 ft (820 m) (Fig. 3.22). The single story thickness measurement
from the cross sections is usually 10 to 20 ft (3 to 6 m), averaging 16 ft (4.9 m).
However, within the concentrated stacking architecture, channel belt sands may be
stacked up to miles wide and over 50 ft (15 m) thick.

Simulation Model and Program

Various simulation models of general alluvial stratigraphy have been developed to
understand and predict the spatial distribution of channel-belt sandstone bodies in alluvial
succession. Of these approaches, process-based models, which are based on the
simulation of geological processes, have the best potential to predict realistically the
architecture of alluvial stratigraphy (e.g., Leeder 1978; Allen 1978, 1979; Bridge and
Leeder 1979; Bridge and Mackey, 1993; Mackey and Bridge, 1992; 1995).

A comprehensive two-dimensional alluvial stratigraphic model was developed by

Bridge and Leeder (1979). Geological effects considered in this model include channel-
belt dimension, floodplain width, variable floodplain aggradation across channel valley,
channel avulsion and tectonism. Bridge and Mackey modified this two-dimensional
model to simulate alluvial process more accurately and to predict more aspects of alluvial
architecture (Bridge and Mackey, 1993).

A process-based three-dimensional model of alluvial stratigraphy was published
by Mackey and Bridge (1995). The three-dimensional model made it possible to simulate
down-valley variation in alluvial architecture in response to tilting of the floodplain due
to faulting and realistically simulate channel avulsion.

To simulate the specific features of the geological processes involved in the case
of the middle Frio Formation, the model is modified from the early models and is
described below. '




Table 1. Facies architecture characterization based on cross sections.

Cross section D-D’ E-E F-F
number of wells 14 21 17
actual length(km) 8.2 13 114
projected length(km) 7.2 113 10.1
location to fault(km) 0.3-1.1 0.5-1.3 2.9-3.5
architecture concentr dispers. concentr | dispers. | concentr. dispers.
gross thickness(m) 11.5 289 17.7 45.1 12.5 40
actual c/g ratio (%) 60 11 54 18 58 16
std ¢/g ratio(%) 60 14 54 18 58 16
actual no. of chnls 11 8 26 22 22 20
std no. of chnls 17 14 26 22 25 22
stacking pattern vertical scattered vertical | scattered lateral scattered
connectedness high unconnected high low high very low
chnl cluster width(km) 1.1-1.9, 24-3.2, 3.7-5.6,
ave. 1.5 ave.2.6 ave4.7
cluster distance(km) 1.8-2.2, 3.24, 5.6
ave.l.9 ave. 3.5
no. of chnl in cluster 244, 6-7, <3 8-14, <2
ave. 3 ave. 6 ave. 11
no. of lyr stacked 2-3, 1 3-6, <2 1-3, 1
ave. 2.5 ave. 4.2 ave. 2

¢/g ratio: channel belt to gross thickness ratio.

Std: values after adjustment of standardization.
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Description of the Simulation Model

Floodplain. In the model, the floodplain (Fig. 3.19) is defined as having finite
width, confined by obstacles to river migration such as terrace or fault scarps, and
traversed by a single river which is free to migrate laterally within the channel-belt
(Bridge and Leeder, 1979). Floodplain width in natural rivers is often of the order of ten
times channel belt width (Fisk, 1947; Russell, 1954; Bernard et al., 1970). Within the
channel belt, deposits are considered to be mainly sand whereas adjacent overbank
deposits are considered to be predominantly silt and clay. Crevasse splay is included in
the overbank deposits in this model.

In this study, the simulation area is a segment of a floodplain that covers Stratton
field.

Initial floodplain surface. In nature, a floodplain usually has varying width and
down-valley slope which is represented by an exponential or linear function in the model
developed by Mackey and Bridge (1995). Since only a segment of the floodplain is to be
simulated in this model, the initial floodplain surface is considered to have a rectangular
shape and a constant downvalley slope (Fig. 3.20). Initial floodplain elevation is
calculated by:

y: =S{L-2) ¢))
yz: floodplain surface elevation at down valley location z.
S;: initial floodplain slope.

L: floodplain (simulated area) length.

Local relief can be added as user defined by center, width and amplitude.
Trigonometric function is used to model the local relief surface. For example, the cross
section of a down valley striking local relief can be defined as:

Rel, = {1 + cos[2n(x-C)/W]}Relmax . 2)
Rel,: local relief magnitute at cross valley location x.
C: local relief center in X coordinate.
W: width of relief.

Relmax: maximum magnitude of local relief.

Channel-belt dimension. A single channel belt is first incised into the floodplain surface
with a certain width and initial bankful depth, and then start to aggrade (see
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. Fig. 3.20. Floodplain initialization with a constant slope. X: axis parallel to depositional
strike; Z: axis parallel to depositional dip; Y: axis parallel to aggradation direction.
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floodplain aggradation for more detailed discussion). The channel-belt is generated using
a fixed user defined width or can have variable width sampled from a user provided
distribution. Channel depth is obtained by a user given width-depth ratio. Channel-belt
width and depth are constant within the simulated area at each single increment (Mackey
and Bridge, 1992).

Tectonism

Tectonism (faulting, tilting and folding) can cause changes in the rate and
direction of floodplain subsidence and result in floodplain topographic variation. These
changes and variation in turn have significant impact on channel-belt location and
distribution fluvial sediments. For example, avulsion may be the direct response to an
individual tectonic event (Fisk 1944). Channel geometry may be forced to change by a
change in gradient and result in incision and reduced probability of avulsion, or result in
aggradation and increased probability of avulsion (Mackey and Bridge, 1995).

The major tectonic activities involved in the study area include 1) growth faulting,
2) rollover structure associated with the growth fault and 3) local variation of subsidence
rate. Growth fault is the predominant tectonic event and controls the structural
framework. The nature of these tectonic activities may be different and complicated.
However, for convenience and simplicity of computation in the model, these activities are
treated as gradual and continuous events.

The simulated interval in this study is approximately from the reservoir unit E41
to F11 in middle Frio, which is near the upper end of the growth fault. Since we are only
modeling the topmost of the growth fault where it becomes fairly steep, the growth fault
is approximately treated as a vertical plane striking in the cross-valley direction. The axis
of the rollover structure is parallel to the growth fault at a user provided distance on the
hanging wall block (see Fig. 3.21).

In the simulation model, the total tectonic subsidence rate of the simulated
floodplain surface is be subdivided into four elements: regional subsidence rate Rreg,
faulting subsidence rate Rfault, rollover subsidence rate Rroll, and local subsidence rate
Rloc. In the footwall block, the floodplain surface subsides at the basic regional rate
Rreg. At the downstream side of the rollover axis in the hanging wall block, subsidence
of the floodplain surface is the combined effect of both Rreg and Rfauit. In the area
between growth fault and rollover axis, in addition to Rreg and Rfault, the rollover
subsidence rate Rroll should also be taken into consideration.

The effect of rollover is simulated by a parabolic function where the subsidence
rate varies with the position relative to the rollover axis (Fig. 3.22). It can be expressed
as:

' Rroll, = (Rrollmax/D?)d 3)

Rroll,: rollover subsidence rate at down valley location z.

Rrollmax: the maximum rollover subsidence rate near the fault.




D: the distance between the growth fault and rollover axis.

Growth fault Rollover anticline axis

o Channel belt

/

Fig. 3. 21. Tectonic sketch of the simulated area.
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d: the distance from the current point to the rollover axis.

Grewth fault Rellever axis
D ——

Fig. 3.22. Diagram showing tectonic subsidence elements calculated in the model.

Local structure activities can also be simulated in the model. These local
variations of subsidence rate may be in different pattern and magnitude. The most
important local tectonism observed in the study area that can remarkably influence the
fluvial architecture is the down valley oriented depression. Trigonometric function is
used to model the effect of this type (Fig. 3.23) :

Rloc, = -{1+cos [2n(x-Axis)/Width] }Rlocmax/2 “4)
Rloc,: local depression rate at cross valley location x
Axis: cross valley location of local depression axis
Width: local depression width
Rlocmax: maximum subsidence rate (along the axis of depression center)

Aggradation

Floodplain aggrades in the form of channel belt and overbank deposition as
accommodation space created by various geological processes. Responding to
subsidence rate changes, the aggradation rate varies both with time and relative position
in the floodplain. The major consideration of this variation in the study area include: 1)
periodic variation of aggradation rate responding to regional tectonism and baselevel
fluctuation, 2) aggradation rate changes with location responding to local tectonism and
3) decrease of aggradation rate on the floodplain with increasing distance from the edge
of channel belt.

Periodic variation of aggradation rate is modeled by varying the basic channel belt
aggradation rate for different simulated interval. The magnitude of this variation is in the
range of a few times. Based on the assumption that rich sediment supply of the fluvial
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X (Cross valley axis)

Fig.3.23. Diagram showing subsidence rate variation across a local structure depression.
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Fig. 3.24. Channel belt aggradation increase as fault fall compensation.
A: Increase of channel belt aggradation caused by fault fall.

B: Fault fall compensation aggradation decreases exponentially with
distance in down valley direction. Explanation for F see equation 5.




system was capable to compensate the accommodation space created by growth fault and
rollover structure, channel belt aggradation rate will be increased by the same amount as
the subsidence rate caused by these local tectonism. However, at distal locations from the
channel belt where less sediments are deposited and overbank aggradation rate is low, the
subsidence created by growth faulting and rollover may not be fully compensated. As a
result, a topographic fall will be developed across the fault. While a river coursing across
the fault at such locations, the probable responses will be deeper incision on the footwall
block and increased aggradation on the hanging wall block. In the model, this
compensation rate is calculated by a exponential function:

Astaticompz = F[ 1+ (2 - Zgaat/ (L - Zgaud)]” S)
Afallcompz = Afallcompz/ Tava (6)

Afancompz: channel belt aggradation increment responding to fautt fall
compensation at location z

Agicompz: Channel belt aggradation rate increment responding to fault fall
compensation at location z

F: topographic fall at the fault location
Xfaue: down valley location of the growth fault
L: length of floodplain
Tvt: avulsion period
Total channel belt aggradation raté can be expressed as:
2; = Apagic + Afauit + Aroltz + Aallcompe )
a, channel belt éggradaﬁon rate at down valley location z
apasic: basic channel belt aggradation rate, varying with time

agun: Channel belt aggradation rate increment corresponding to growth
faulting, equal to Rfault

a2 Channel belt aggradation rate increment corresponding to rollover
structure at location z, equal to Rroll,

Agncompz: Channel belt aggradation rate increment corresponding to fault fall
compensation at location z

n: fault fall compensation exponential

Overbank deposition on floodplain occurs just about every year during floods.
Generally, the amount and grainsize of sediments carried by and deposited from the flood
water decrease with increasing distance from the edge of channel belt (Fig. 3.25). In the
model, overbank aggradation rate is calculated by:

Ix=2,(1+ diw)® (modified from Mackey and Bridge, 1995) (8)
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I« Overbank aggradation rate at down valley location z and cross valley
locatio x

d: distance from edge of the channel belt
w: floodplain width

b: overbank aggradation exponent, a parameter describes the rapidity with
which deposition rate decreased with increasing distance

Realistic value of b is estimated 0.5 - 1.8 for multiple flood events from
Brandywine Creek, Pennsylvania (Pizzuto, 1987) and 5 - 10 for a single flood from the
Mississippi River (Kesel et al., 1974).

Compaction

Compaction of all sediments starts immediately after burial. Compaction of
sediments will cause reduction of porosity and consequently, reduction of gross
thickness. For a given layer of recently deposited sediments of thickness T, the solid
thickness is

T,=[3 1- P()idy ©

T: layer thickness
P(y): porosity at the depth y

Assuming that no mineral marerial is added and removed or otherwise
transformed in density. the solid thickness T remains constant irrespective of depth of
burial, which can be expressed as

T, = [JA1- PO)My (10

where P(y) is the porosity function with burial depth y. y; and y, are the burial depth of
the bottom and top of the sediment layer respectively (Perrier and Quiblier, 1974).
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\
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Fig. 3.25. Diagram showing floodplain aggradation (modified from Mackey and Bridge, 1995).
See text and equation 7 and 8 for explanation of a- and rx.
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For mud sediments, the porosity can be calculated regarding burial depth according to the
empirical function

P(y) = 0.50 + 0.0222 In(y+1) - 0.0092 [In(y+1)}? (11)

Solid thickness can be obtained by:

T, = 0.54y -(y+1) In(y+1) * [0.0406 - 0.0092 In(y+1) ]I ;2
(Mackey and Bridge, 1992). (12)

The porosity-depth relationship for sandstone can be represented as:
P(y)=0.49¢¥*" (Baldwin and Butler, 1985)
(13)
The solid thickness for a given sand layer can be expressed as

T.= y+1813e'yf37°°|§f. (14)

Ts: solid thickness

Thus, with known T; and the depth of one layer boundary, the depth of the other
boundary can be obtained.

Avulsion

Avulsion is defined as the process where a channel-belt suddenly changes its
course. This process is recorded in geological history by abandoned channel-belt
preserved in floodplain. In nature, the mean period of avulsion is usually of the order of
10" - 10° years, often about 10 years (Bridge and Leeder, 1979; Mackey and Bridge,
1995). In the models developed by Bridge and Leeder (1979), and Mackey and
Bridge(1992), it is considered that the probability of occurrence of avulsion as a function
of at least 1) relative elevation of alluvial ridge and floodplain, and 2) a measure of the
severity and persistence of the seasonal flood. However, in Stratton area during the
deposition of middle Frio, growth faulting perpendicular in cross valley direction may
significantly increase the probability of river avulsion and diversion at the faulting
location.

All of these factors are time dependent, avulsion would become more likely as
time progressed (Bridge and Leeder, 1979). As quantitative description of this process in
this models, avulsion recurrence times are obtained by Monte Carlo sampling from a
presumed distribution. Considering its time dependent nature, a Weiball distribution is
used to model this process (Bridge and Leeder, 1979).

Three types of avulsion are incorporated in the simulation model: regional
avulsion, upperstream avulsion and nodal avulsion. The regional avulsion occurs at very
upstream location and causes regional shift of channel belt from one part of the
floodplain to another. It is observed in the nature that each of this regional avulsion may
followed by a series of more downstream avulsion (Fig. 3.26). This process is described
by Mackey



geometny vievier

Fig. 3.26. Avulsion hierarchy in the model. Three types of avulsion are

incorporated in a hierarchical order. See text for explanation of avulsion styles.
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and Bridge (1995 as avulsion sequence). The term upperstream avulsion refers to the
more localized avulsions following a regional avulsion and occurs at a upperstream
location from the simulated area. The avulsions occurred at more downstream location
are not simulated in the model. Nodal avulsions are considered to be caused by the
activity of growth faulting.

In the case of regional avulsion, it is assumed that avulsion occurs far enough

- upstream to allow free migration of the channel to enter the first upstream section at
position of the lowest elevation of floodplain surface. Each regional avulsion is followed
by one or more nodal avulsions and the number is calculated by Monte Carlo sampling
from a presumed distribution. The location at which the river enters the first upstream
transection of the simulated floodplain segment after a upperstream avulsion is deviated
from the course of preceding regional avulsion and somewhat restricted by the regional
avulsion. In the simulation model, this offset at the first upstream transection is calculated
by uniformly sampling from a given range, usually about one third to one half of the
floodplain width. Nodal avulsion is considered to be caused by growth faulting and
occurs at the faulting location. The number of nodal avuision following each upperstream
avulsion a upstream avulsion is also sampled from a presumed distribution.

The initial phase of avulsion in terms of spatial and temporal changes is
complicated and poorly understood. However, for convenience of calculation, it is
generally assumed that immediately after the avulsion, the river will erode its course
down to the initial depth and fill by ccarse material up to the banks, and the new course
will follow the direction of maximum slope.

Program Design and Implementation

The simulation program is written to have high readability, portability and can be
easily modified. Each major geological process is coded into individual functions and the
lower order processes are nested into higher order processes. User input parameters can
be imported from a data file or interactively typed in. The computer program is written in
C++ Language and runs on SUN workstations (Appendix). Two computer graphic
programs are also written to visualize the simulation results. One is used to render the 3D
realization volume and the other is to create cross section images at chosen locations
(Appendix). The underlying graphic interface for both the visualization programs is
OpenGL and the driving language is C.

The simulation is started with initialization of the floodplain. After the initial
floodplain is initialized, a loop is used to control the maximum number of increments to
be generated in the particular realization. Avulsion period is the basic calculation time
step and a genetic stratigraphic increment is generated during each avulsion period.
Within each of the basic time step, a cycle is executed in the following order: 1)
calculation of the current avulsion period, type and location, 2) calculation of channel
belt dimension , 3) placement of the channel belt onto the current floodplain surface, 4)
calculation of tectonism and adjusting floodplain surface, 5) aggradation of channe] belt
and overbank and 6) compaction of all the sediments previously deposited. This cycle is
repeated until the desired number of increments is reached. After the realization is
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generated, the results will be exported into output files for computer graphic imaging.
Architecture parameters are then calculated based on the realization (Appendix).

Algorithm, input and output

The function InitialFPS is used to initialize floodplain surface (Appendix). Input
parameters needed to define the size, slope and local relief of the floodplain include
floodplain length (LFP), floodplain width (WFP), initial slope (Slopelni), local
depression center (Lcenter), width (Lwidth) and depth (Ldepth). A subfunction
LocalRelief is called within the initialization function to calculate local topographic
relief. The floodplain is subdivided into equal sized gridblocks. Gridblock size is defined
by the interval length in both X (IntervX) and Z(IntervZ) direction. A three dimensional
array FPS[x][z][increment] is used to store the elevation of every increment top surface at
every grid point. After initialization, elevation of floodplain surface is calculated at each
grid point and stored as FPS[x][z][0].

Each avulsion period is calculated by sampling from a predefined Weilball
distribution. Expected avulsion period (ExpeAvul) and the exponential factor (AvulExpo)
are required to define this distribution. The number of upperstream avulsions following a
regional avulsion, number of nodal avulsions following a upperstream avulsion and the
offset of the current upperstream avulsion from preceding regional avulsion at the
location of first entering the simulated area are calculated by sampling from predefined
distributions (normal distribution or uniform distribution). In case of normal distribution,
a mean value, maximum value, minimum value and standard deviation are provided to
define it. While in case of uniform distribution, a range is needed. Before each regional
avulsion, the subroutine LowFPS is called to calculate the location of the lowest elevation
point on the floodplain along the first upstream transection. The river will then enter the
simulated area at this point (Appendix).

For each avulsion, the function ChannelDimension will be called to calculate the
channel belt width by sampling a given normal distribution. This distribution is defined
by user input mean (WcMean), maximum (WcMax), mininum (WcMin) and standard
deviation (WcStdv) values. Channel belt depth (Dc) is obtained by a width/depth ratio
(WDRatio). An array is used Wc[increment] is used to record the channel belt width of
each increment.

After the channel dimension is calculated, the function PlaceChannel will place
the channel belt onto the floodplain. The new channel belt follow its old course down to
its new avulsion point if the avulsion point is within the simulated area, and then start to
deviate. At each cross valley transection location, the function ChanErosion will enable
the channel belt to erode the floodplain down to its initial depth (Dc) and the function
PointSlope will calculate the floodplain slope at different directions and chose the
maximum slope as channel belt flow direction. The left boundary and right boundary of
the channel belt at each transection in each increment will be assigned respectively into
two two dimensional arrays named ChanLeft[increment][transection] and
ChanRight[increment][transection] to record its location.
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A three dimensional array Lith[x][z][increment] is used to record the lithology for
each increment at each grid point location. Its values are assigned by functions Lithology
and ChannelErosion. The value O represents overbank facies, 1 represents channel fill
facies, 2 represents partially eroded channel fill facies and 3 represent totally eroded
overbank or channel fill facies (Appendix).

The function Tectonism will calculate different tectonism subsidence rates at each
grid point location on the floodplain and adjust the elevation at each location. Input
parameters needed to define tectonism include growth fault location in terms of distance
from the first upstream transection (FaultDist), faulting rate (Rfacult), rollover axis
location (AxisDist), maximum rollover rate (Rrm), local depression center (Dcenter),
depression width (Dwidth) and maximum depression rate at the center (Drate). Rollover
folding subsidence rate is calculated by a parabolic function and local depression is
defined by a trigonometric function. The total tectonism subsidence during each
increment is the product of total subsidence rate and avulsion time period. The elevation
of the current floodplain surface and all previous increment surfaces are adjusted by
reassigning the array FPS[x][z][increment] according to total subsidence (Appendix).

The process of floodplain aggradation is modeled by the function Aggradation.
The channel belt aggradation rate is calculated prier to overbank aggradation rate. The
channel belt is first filled up to the current floodplain surface and start to aggrade upward.
The total channel belt aggradation rate is the sum of the user given basic aggradation rate
(Rbasic) and aggradation rates increments responding tectonic activities. These
increments include faulting compensation, rollover compensation and fault fall
compensation. The increment of aggradation rate corresponding to faulting compensation
and rollover compensation equal the tectonic subsidence rate respectively. The fault fall
compensation rate is calculated by function FaultFallComp which first determines the
elevation difference between footwall block and hangingwall block at the fault location
along channel belt course, and then calculate the compensation rate using a exponential
function (6). After the channel belt aggradation rate is determined at each location along
its course, overbank aggradation rate can be obtained by using function (8).

Total aggradation is the product of total aggradation rate and the avulsion period.
Again, elevation of the current floodplain surface will be adjusted by reassign
FPS([x]{z][increment] array according to total aggradation (Appendix).

_ The compaction procedure used in this program is basically modified from
Mackey and Bridge (1992) and translated from FORTRAN into C++. The purpose of the
function Compaction is to compact the whole sediment volume and respectively adjust
each increment surfaces by reassign array FPS[x][y][increment] according to the
compaction result. '

Right after each new incremernt is deposited, its solid thickness is calculated at
every grid point location and recorded in the array SolidT[x]{z][increment] by functions
SandSolid and ShaleSolid. This solid thickness will remain constant unless it is eroded by
a later channel belt. During the burial history, if we the solid thickness, lithology and
burial depth of a given layer, we can restore its real thickness by adding back the porosity
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calculated according to the given porosity - depth relationship. This work is done by
functions SandComp and ShaleComp and Newton-Raphson method is used to solve
equation (12) and (14). Parameters needed to define porosity - depth relationship are hard
coded (Appendix).

The numerical results of realization are exported into two external files named
“results” and “cross” by function Output. These two files are later used as input to
graphic program to generate 3D visualization of facies architecture and 2D cross-sections
respectively.

Simulated architecture parameters including number of channel belts, channel belt
to gross thickness ratio, channel belt connectedness ratio and other parameters are
calculated by function ArchParaCal at each chosen cross section and output by function
Display.

Since channel belt start to deviate at the avulsion point, a new channel belt is
generated in the area down stream to the avulsion point after each avulsion. At the area
upstream to the avulsion point, the river will remain in the same course and no new
channel belt is formed. As a result, the number of channel belt may vary from one cross
section location to another. Channel belt connectedness ratio is calculated by using a
connectedness indicator correspondent to each channel belt. When a new channel belt
erodes into an preexisting channel belt at a given cross section location, the indicator for
the new channel belt will be assigned a 1. Otherwise it will be assigned a 0. The final
connectedness ratio is defined as the sum of indicator values divided by the total number
of channel belts in the specific cross section (Fig. 3.27 and Appendix).

Simulation and Realizations
Considerations in Defining Input Parameters

The input parameters for simulation of middle Frio Formation facies architecture
are defined according to subsurface geological study and characterization, modern
sedimentation study and general knowledge of fluvial deposition. Some of the parameters
are adjusted during the simulation process and finalized after a number of realizations.

Two sets of realizations are generated. One is for the concentrated stacking and
. the other is for dispersed stacking. The input parameters for each set of realizations are
_ listed in Table 2.

The total number of increments to be generated in each set of realization is
approximately equal to the number of channel belts observed in the stratigraphic cross
sections perpendicular to depositional direction (Table 1). The simulation area covering
Stratton field is a segment of floodplain and is defined to have a square shape. The exact
width of floodplain for the river system that was delivering sediments to Stratton area
during the deposition of middle Frio is difficult to define. For practical purpose, the width
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of the simulation area is chosen as 12000 m which is about the size of Stratton field in the
cross valley direction. The length of the simulation area is
also 12000 m covering both sides of the major growth fault.

Channel belt width distribution is obtained from early detailed facies mapping in
the scale of individual DGI by Kerr (1989-1990 unpublished maps) which shows a
normal distribution with a mean value of 820 m and standard deviation of 180 m (see
Chapter II for more information). The initial channel depth is calculated by a given
channel] belt width and depth ratio. A single storey channel fill thickness is the result of
channel erosion and fill, aggradation and later compaction. Given a certain river system,

0
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Fig. 3.27. Diagram showing channel belt connectedness definition.




Table 2. Input Parameters for the Example Realizations

Input Set -2

Process/features Parameter Input Set - 1
General Max. increment number 26 22
Floodplain Length (L: m) 12000 12000
Width (W: m) 12000 12000
Initial slope 0.0012 0.0005
Grid size in W direction (i) 120 120
Grid size in L direction (m) 240 240
Local relief center ( m) 3000 3000
Local relief width (m) 3000 6000
Local relief amplitude (m) 0 0.1
Channel-belt ‘Width mean (m) 820 820
Width maximum (m) 1050 1050
Width minimum (m) 600 600
Width standard deviation (m) 180 180
Width — depth ratio 180 350
Avulsion Expected period (year) 1000 500
Exponential 0.2 0.2
Nodal avulsion no. mean 1.5 1.7
Nodal avulsion no. max. 2 2
Nodal avulsion no. min. 1 1
Nodal avulsion no. Stdev 0.5 0.5
Upstream avulsion no. mean 3.5 2
Upstream avulsion no. max. 4 3
Upstream avulsion no. min. 3 1
Upstream avulsion no. Stdev 0.5 0.5
Max. offset (m) 1000 | 3000
Tectonism Growth fault location (m) 1200 1200
Faulting rate (m/year) 0.00008 0.0013
Rollover axis location (m) 3600 3600
Max. rollover rate (m/year) 0.00025 0.0007
Structure folding axis (m) 4000 4000
Structure folding width (m) 25000 16500
Structure folding rate (m/year) 0.0001 0.0009
|_Aggradation Basic rate (m/year) 0.0011 0.0042
Qverbank exponential b 5.5 1.0
Compaction Hard coded
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the initial channel erosiondepth and aggradation rate usually have a reversed relationship
according to baselevel fluctuation. A low baselevel may result in deeper channel erosion
and slow aggradation and a high baselevel can cause shallow channel erosion and high
aggradation rate. These parameters are estimated from channel fill facies thickness and
adjusted during simulation process.

Channel belt avulsion period is estimated according to modern deposition study
and its value usually falls into the order of 10 - 10° years. Since avulsion frequency is
also affected by the baselevel fluctuation, a shorter average avulsion period of 500 years
is used during high baselevel and a longer average avulsion period of 1000 years is used
during low baselevel. The distribution of upperstream avulsion number following each
regional avulsion and nodal avulsion following each upperstream avulsion is estimated
according to channel facies distribution and stacking pattern variation observed from
subsurface cross section of Stratton field (Table 1). These parameters are also adjusted
during simulation. The value usually falls into the range of 1 to 4.

The growth fault is treated as a straight line in cross valley direction, located 1200
m down stream from the upperstream boundary of the simulated area. According to
subsurface structure study on markers F11m and E41m, the rollover axis is about 2400 m
downstream from the major growth fault (3600 ft from the upstream boundary of the
simulation area). Growth faulting rate and maximum rollover rate are estimated from
interval thickness variation observed from subsurface geological characterization. These
tectonic activities also seems related to baselevel changes. The growth fault appears less
active during low baselevel period and more active during high baselevel period. The
possible explanation for this variation is that when the baselevel drops, the thick delta-
front deposition moves farther away from the growth fault location and less material is
deposited on the floodplain, the effects of differential loading, differential compaction
and differential gravity gliding that cause growth faulting (Jackson and Galloway, 1984)
are reduced. Other type of local structural subsidence variation is also observed from
isopach map and cross sections and the relatively high subsidence rate in the south part of
Stratton field seems to cause high density of channel belt facies.

Since the facies architecture characterization of the middle Frio Formation is
mainly based on observation of stratigraphic cross sections, cross section view of the
simulation results is also made at three locations roughly correspondent to cross section
D-D’, E-E’ and F-F’ for comparison.

Simulation of the Concentrated Architecture

The concentrated stacking pattern is considered to be resulted from low
aggradation rate (Kerr and Jirik, 1990). This deposition period may have a relatively low
baselevel. Consequently, rivers will cut deeper down to the floodplain during the initial
period. Avulsion probability is decreased and avulsion frequency is relatively low. As
results, less overbank deposition events occur and floodplain aggradation is slow. These
geological characteristics is reflected in the input parameters by a low channel belt
width/depth ratio (180), long avulsion period (1000 years), low aggradation rate (0.0012
m/yr) and higher overbank exponent value (5.5) (Table 2).
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Totally 26 increments are generated in the simulation of concentrated stacking
which is about the same number of channel belts observed in the cross-sections (Table 3).
Realization produced using the above input parameters shows a high sand/gross ratio of
54 - 67%, close to the ratio of 54 - 64% estimated from real subsurface cross-sections.
The gross thickness of the realization also shows a good match with the subsurface cross
sections at the correspondent locations (Table 4 ).

The stacking pattern variation observed from the subsurface cross sections are
also captured in the simulation (Fig. 3.28 and Fig. 3.29). The effect of facies architecture
variation from vertical stacking near the growth fault to lateral stacking at more distal
location is produced by avulsion hierarchy including regional avulsion, avulsion
sequence and nodal avulsion. '

Simulation of the Dispersed Architecture

The dispersed architecture is considered to be developed during a period of high
aggradation rate which may correspondent to a high baselevel phase. The river cut
shallower down to the floodplain. Since more accommmodation space is created and
sufficient sediments supply is available, floodplain aggrades relatively faster during this
phase. The frequency of overbank events as well as river avulsion are likely to increase.
A relative thickening of this interval in the midsouth of Stratton field generally parallel to
deposition direction can be observed both from isopach map and cross section. This may
reflect a relatively high local subsidence rate. This down valley structural feature is
simulated as a local depression.

Totally 22 increments are generated in this realization (Table 5). Resulted from
growth fault and rollover structure subsidence, significant gross thickness variation is
produced at different location relative to the growth fault. The gross thickness of the
simulation result matches the subsurface data at correspondent cross section locations
(Table 6). Simulation effects also show that the increased aggradation rate resulted in the
low sand/gross ratio of 18 - 19%, close to the subsurface calculation of 14 - 18%.
Channel belt facies become more dispersed (Fig. 3.30 and Fig. 3.31).

As a result of nodal avulsion which is caused by the growth fault activity, a higher
number of channel belt are encountered in cross sections on the down stream side of the
fault than on the upstream side. Immediately across the growth fault where rivers start to
deviate from its old course after nodal avulsion, channel belt facies are more connected
than at other locations (Table 6). The simulation local depression generally along
deposition direction in the midsouth of Stratton field caused the effect that channel belts
tend to shifting towards the depression axis and the channel belt density close to the
depression center is relatively high. These variations fit the observation of subsurface
cross sections.
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Fig. 3.29. Cross section view of the sample realization for concentrated architecture. The number of channels is
increased from d-d’ to e-e’ and f-f> and become more laterally stacked at f-f>. Upstream to the avulsion point,
deposition in the channel belt is considered to be continuous during consecutive avulsion period and form one
channel belt.
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Table 3. Summary of avulsion increment information for concentrated architecture

avulsion  avulsion down valley cross valley avulsion  channel belt initial

increment ___type location(m) location(m) period(yrs) width (m) depth (m)
0 832 721

0 1099 793
960 813 677.8
240 1015 877.6
11640 1263 845.2
11640 662 830.8
10680 813 812.8
11520 1020 694
11640 1245 1012.6
5520 1216 688.6
5520 398 641.8
5280 552 937
5640 1073 715.6
6360 1357 821.8
5880 1245 627.4
5160 398 649
2520 705 874 .
2400 1009 906.4
2280 862 863.2
2280 1067 1048.6
8520 850 1032.4
8520 764 836.2
7920 1113 692.2 -
7080 723 683.2
0 838 667
360 714 791.2
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Table 4. Simulation results for the concentrated architecture

realization subsurface
Ccross section d-d’ e-e’ f-f D-D’ E-FE F-F
gross thickness (m) 10.9 17.1 13.0 11.5 17.7 12.5
c/g thickness ratio(%) 61 54 67 63 54 58
no. of channel belts 18 26 26 17 26 25
stacking pattern vertical vertical lateral vertical vertical lateral
connectedness ratio - 0.66 0.62 0.65 high high high
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Table 5. Summary of avulsion increment information for dispersed architecture

avulsion  avulsion  down valley cross valley avulsion  channel belt initial

increment _type location(m) locatior(m) period(vrs) width (m) depth (m)

0 3000 416 1036 3.0

[y

R
% R 0 12000 510 928 2.7
3 N 1200 11520 347 730 2.1
4 R 0 840 304 838 2.4
5 N 1200 840 386 604 17
6 U 0 3240 347 1018 29
7 N 1200 3480 403 730 2.1
8 R 0 9000 311 784 22
9 N 1200 9000 361 946 2.7
10 U 0 7200 318 946 2.7
11 N 1200 6600 530 748 2.1
12 R 0 1440 437 892 2.5
13 N 1200 2640 403 622 1.8
14 U 0 3960 556 1018 29
15 R 0 12000 502 874 25
16 N 1200 11520 453 874 2.5
17 U 0 9480 464 766 2.2
18 N 1200 8880 459 748 2.1
19 R 0 2400 304 1018 29
20 U 0 3000 199 784 22
21 R 0 2400 590 1018 29
22 U 0 2400 470 622 1.8




Fig. 3.30. Sample realization of dispersed

A. 3D visualization of dispersed architecture realization with cross section index.
B. Sliced view of the dispersed realization (sliced at location S-S” and viewed from left).
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Fig. 3.31. Cross section view of the sample realization for dispersed architecture. The number of channel belts is increased
from d-d’ to e-e’ and f-f* and channel belts are more concentrated towards the depression center. Upstream to the avulsion
point, channel belt deposition is considered to be continuous during consecutive avulsion period and form one channel belt.




Table 6. Simulation results for the dispersed architecture

realization subsurface
Cross section d-d’ e-¢’ f-f D-D’ E-F’ F-F
gross thickness (m) 30.7 45.6 40.7 28.9 45.1 40
c/g thickness ratio(%) 19 18.7 18 14 18 16
no. of channel belts - 14 22 22 14 22 22
connectedness ratio 14 36 27 uncnct. low very low

Note:  c/g: channel belt to gross
uncnct.: unconnected
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Suggestions for Further Improvements

Even though three dimensional process based model can produce realistic results
and capture some of the major architecture features, it is still very difficult to match
different quantitative statistic parameters and to honor local data. Further development is
needed in the following areas:

1) Better understanding of physical mechanisms of the interaction between
growth faulting and river behavior. Aspects of study include growth faulting fashion,
fluid flow, channel incision, sedimentation and avulsion. Studies in similar modemn
environment is especially important.

2) Geological parameterization. Some of the input parameters are difficult to
define from direct geological characterization. Techniques need to be developed to help
define these parameters based on characterization of real geological data.

3) Incorporate conditional modeling techniques in this forward modeling
procedure in order to honor local data and statistic parameters.
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APPENDIX 1I: Computer Programs
Description

The directory “appendix’’ contains both the source code and executable of the
computer programs generated and used in the study of 3D Fluvial Facies
Architecture Simulation of the Middle Frio Formation, Stratton Field, South Texas
(see readme file under appendix). The program file names are listed and descripted

as following:

1. facsim.cpp: source code of facies simulation program written in C++;

2. facsim: executable of the facies simulation program “facsim.cpp”, compiled at a UNIX Sun
workstation of Tulsa University euler system;

3. strav.c: source code of 3D visualization program written in OpenGL and using C as driven language;

4. strav: executable of “strav.c”, compiled at a UNIX HP workstation of Tulsa University hpserv system;

5. crossv: source code of cross section visualization program written in OpenGL and using C as driven

language;

6. crossv: executable of “crossv”, compiled at a UNIX HP workstation of Tulsa University hpserv
system;

Instructions

The procedure to use this program package is listed as following:

1. Prepare the input file to “facsim”
A input file named “param.data” must prepared before facsim can be used. Values of all the 34
parameters needed for the facies architecture simulation should be defined in this file. All the
parameter values are delimited by a space or end of line. The order of the parameters is:

IncreMax

LFP WFP Slopelni IntervX IntervY

Lcenter Lwidth Ldepth

WcMean WcMax WceMin WeStdv WDRatio
ExpeAvul AvulExpo

NudMean NudMax NudMin NudStdv
SeqMean seqMax seqMin seqStd offMax
FaultDist Rfault AxisDist Rrm

Dcenter Dwidth Drate

Rbas b

See report text for explanation of the parameters.

2. Run the facsim program by simply type in facsim and press enter key. Some statistical results will
appear on the screen as the program running and two output files named “resuits” and “cross” will be
produced. The file “results” contains the data for 3D visualization and “cross™ contains data for cross
section visualization.

3. Run the strav and crossv program by simply typing in their names and pressing enter key respectively.
Note that the input files “results” and “cross” must be under the same directory as the program strav
and crossv.

Note: a different computer system environment may cause some unexpected problems in
using these programs.
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PART IV
SEISMIC MODELING AND INTERPRETATION

By: Durydhan Epili, Chong Chung, Bassel M. Al-moughraby and Inta Arpandi

SUMMARY.

Seismic amplitude and velocity are two important attributes for reservoir
characterization. The study of seismic amplitude involves the complete field of
geophysics due to several contributing factors. Here, we studied the seismic amplitude
contribution with and without consideration totransmission losses and with and without
incorporating multiples.Also, the contribution to seismic amplitude for marine and land
environmentare analyzed.

SYNTHETIC SEISMOGRAM (1-D, ZERO OFFSET, NO MULTIPLES)

The basic concepts of the reflection seismograph method are relatively simple and
straightforward. A pulse from a seismic source travels outwards gets reflected when it
encounters an impedance (product of velocity and density) change, travels upwards
towards the surface and gets recorded by seismometer. The energy with which the
reflected wave travels is dependent on the acoustic impedance contrast at the boundary
separating 2 media.

Although the process is simple, a number of complicating factors enter into the
process. In order to understand and interpret the data on seismograms it is necessary to
look all the processes closely. A complete analysis of these factors would encompass the
. entire field of reflection seismology. We will limit our analysis on multi-layered rocks
where accurate velocity information from well information is available.

Several approaches to generate a synthetic seismogram have been reported in
geophysical literature; they range in some simple convolution models to more
complicated viscoelastic finite difference models. Here for understanding the concepts,
we present a simple one-dimensional convolutional model.

We have generated a one-dimensional synthetic seismogram for a simple geologic
model (Figure 4.1). It is simply a zero phase Ricker wavelet shown in Figure 4.2
convolved with a reflectivity sequence assuming zero offset and horizontal layering.
Reflectivity is the response of a seismic wavelet to an acoustic impedance change within
the earth. In equation form,

s(t) = w(t) *r(t) + n(t)
where

s(t) = the seismic trace

w(t) = a seismic wavelet,




r(t) = earth reflectivity

P2v2 - P1Vh

r(t):.ooooooooo (4.1)

p2va + p1vy

Where p,;, p; are the densities, and v; v, are the velocities of media one and two
respectively.
n(t) = additive noise,
* implies convolution
In this seismogram, we assumed that noise is zero.
Procedure to generate synthetic seismogram (vertical ray path)
The steps for generating the seismogram are as follows: (Sheriff and Gildart, 1995;
Gadallah, 1994; Dobrin and Savit, 1988)
(a) Digitize the sonic and density log at uniform depth.

(b) Convert the depth values of the velocity and density to time values.

(c) Combine transit time and density samples to produce acoustic impedance. The
acoustic impedance is derived as a function of one way time by multiplying velocity
and density values.

(d) Compute the reflectivity series as a function of time.

(e) Convolute the reflectivity series with a wavelet of the same bandwidth of theseismic
section with which the synthetics will be compared.

The reflectivity sequence and the synthetic seismogram (after convolution with the
wavelet) are shown in Figures 4.3 and 4.4.

Fluvial Channels and Their Seismic Response

Fluvial refers to process related to rivers. Channel patterns are related to
controlling factors that include suspension of the load, sinuosity, and discharge (Schumm,
1981). In Figure 4.5, we are looking at a 3-D model of a fluvial system. The channel is
meandering but we are looking at a straight part of the channel. The model has no
velocity variations in the X, Y direction. The seismic response generated for this model is
very similar to the response generated for a 1-D synthetic seismogram. The acoustic
impedance was derived; the reflectivity series was computed as a function of time (Figure
4.6). At last the reflectivity series was convolved with a zero phase Ricker wavelet




(Figure 4.7). In this model, the facies changes do not occur in a horizontal lines, but
rather in a synclines. The seismic response also takes a similar shape and we can clearly
see the boundaries between the facies.

In seismic processing, we deal with digital data that is sampled at a constant time
interval. If we consider the reflectivity to consist of a reflection coefficient at each time
sample (some of which could be zero), and the wavelet to be a smooth function in time,
convolution can be thought of as replacing each reflection coefficient with a scaled
version of the wavelet and summing the results.One of the important aspects of this
convolution to notice is that the wavelet smears the reflection coefficients. The outcome
is the loss of resolution, which is the ability to resolve closely spaced reflectors.

Vertical Resolution
One of the fundamental equations governing the wave propagation is
A=L
f
Where
A = wave length,
V = velocity

f= frequency of the wavelet

The vertical resolution limit, A/4 is the thin bed that can be seen in the data from distinct
top and bottom reflections. This assumes that top/base of the reflections from the bed are
the same polarity. If the top/base reflections are of opposite polarity, then A/4 bed
thickness causes high amplitude interference effect called tuning. For beds thinner than
A4, the beds become unresolvable; the wavelet alignment is lost and the amplitude falls
off rapidly.

Horizontal Resolution

Another fundamental concept in seismology is that a reflection does not arise
from a single point on a reflector. It arises from an area called Fresnel zone. The Fresnel
zone is considered as the horizontal resolution. The Fresnel diameter (F) is defined as

Fev 2
f

t = two way travel time,

where
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V = wave velocity,

f= dominant frequency.

AMPLITUDE

We see a lot of amplitude variations in seismic data, most of which do not give
any information about the subsurface. The information we are interested in are the
primary waves reflected from the reflectors. We usually think of reflection as dependent
on density and velocity. The factors contribute to the reflection coefficients are lithology,
porosity and fluid content. If we want to attribute lithologic or hydrocarbon accumulation
to amplitude variations, we must reduce the distracting factors as much as possible. Some
factors are multiple reflection, array attenuation, coherent and random noise, spherical
spreading, reflector curvature, spherical wavefronts, transmission coefficients,
instrumentation/processing, inelastic attenuation, and diffraction (Castagna, 1993;
Ostrander, 1984).

In a simplified form, the seismic amplitude is given approximately by:

_ S.Ds.De.R

A 4.2)

I5; T; e 0

= received amplitude

= source amplitude

= source and receiver directivities (radiation patterns)
= geometrical spreading function

= reflection and transmission coefficients (angular)

= Product symbol

= attenuation factor

= raypath length

= counter for each layer transverse by the ray.




This formula ignores several factors including, source/receiver coupling (land
data), instrument performances, interference from multiple reflections, interference from
ground roll, refractions and other source-generated noise, random noise, data processing,
and reflector curvature. A few manipulations are performed on seismic wiggles to correct
the amplitude losses. :

It is not easy to estimate or compensate for each contribution to amplitude.
Spherical divergence correction, attenuation, and loss due to reflection and transmission
is usually compensated and rest are all put in some sort of normalization. Thus,
conventionally a relative amplitude is preserved for interpretation.

On the following section, we study the reflection and transmission charactristic; of
seismic response.

D Simulation (Amplitude with transmission loss and multiples).

A seismic wave is an acoustic wave in a solid rock. It represents the motion of
particles and the effect of the inter-particle or elastic forces. It has been questioned what
should be measured in a seismic wave. Therefore the knowledge of the environment that
we conduct the seismic survey needs to be understood.

There is a significant confusion in literature on seismic amplitude. Main part of
the confusion is whether our measurements is particle velocity response or particle
pressure. Unless this is clear, the physics behind the problem can be inaccurate.

Amplitude signifies the magnitude of the acoustic pressure for marine survey and
magnitude of the particle velocity for land survey. When we work on land with
geophones at the free surfaces, it is essential that we use geophones sensitive to motion in
the form of particle velocity not to pressure. When we work at sea, the free surface is too
noisy, in order to avoid this noise we place the detectors deep in the water, which allow
us to use hydrophones that are sensitive to pressure not to motion.

When source initiates a seismic wavefield, that wavefield interacts with the earth.
The wave is partially transmitted and reflected. Only receivers at the earth’s surface
measure the reflected wave. The measured field at the surface is known as the seismic
response of the earth at that particular location.

Reflection coefficient at normal incidence

By making displacement and stress continuous across an interface, a simple
relationship for the ratio of the amplitude of the reflected wave compared to the
amplitude of the incident wave, (called as reflection coefficient (Ry)) can be calculated as
(Sheriff, 1975)

Ry = Reflected amplitude / Incidence amplitude “4.3)
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Two ways of calculating the reflection coefficient depend on the seismic
acquisition: a land geophone measures particle velocity; a marine streamer hydrophone
measures acoustic pressure.

Pressure amplitude

If a plane wave of pressure amplitude, p;, propagating in a material of acoustic
impedance I}, is incident on the interface into a material of acoustic impedance I, then a
wave of pressure amplitude p,, is reflected from the interface, where:

I=Vp 44)

R,=2r_2=h @.5)
pi D+l

R, is the reflection coefficient, V is the acoustic velocity, p is the density of the material
and land 2 are the upper and lower layer.

Particle velocity amplitude

A wave of particle velocity amplitude v;, is propagating through the similar
material of acoustic impedance as in pressure amplitude then v, is reflected from the
interface, where:

Rv.—_yL=_I_.1._-__Il (4.6)
Vi Il+12

There are two limiting values implicit in the reflection coefficient formula; when

I, is zero for a free surface and when 1, is infinite for a fixed surface. The first limitation

- is approximated by the interface between earth or sea and the air. Substantially the

reflection coefficient is equal to —1, which implies that an upcoming seismic wave is
transmitted back down to the earth by the free surface. '

Transmission coefficient at normal incidence

The proportion of the signal reflected is defined by the reflection coefficient R,
and the proportion transmitted is defined by the transmission coefficient 7.




Pressure amplitude

The transmission coefficient T, for pressure amplitude is represented as follows:

T, =P 2 @4.7)
pi Iath

Where p; is the incident pressure and p; is the transmitted pressure.

Particle velocity amplitude
The transmission coefﬁcient, T,, for particle velocity amplitude is written as:

2L

= 4.8
v; Il+12 ( )

v

The transmission coefficient, for both of the pressure and particle velocity

amplitude can be written as:
T,=1+R, 4.9)
T,=1+R, 4.10)

If the reflection coefficient is positive then transmitted signal is larger than the
incident signals, which seems incorrect. However, it is mathematically correct and
physically reasonable. If there is no reflected signal, all the incident energy gets
transmitted into the lower layer. The pressure amplitude in the lower layer increases to a
large value, which correspond to reduction of particle velocity (see Figure 4.8).

Figure 4.8 shows the wave propagation through a horizontal layer. The sketch at
the left is for the pressure measurement and that at the right is for the particle velocity
measurement. Note that from the right sketch the reflection recorded by a velocity-
sensitive geophone appears to be negative, not because the reflection coefficient is
negative but due to the wave has changed direction.
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LATTICE FORMULATION

The fundamental problem addressed in seismic modeling or simulation is
calculation of the seismic response (i.e. traveltime and amplitude) for a given earth
model. The seismic simulation can lead to generate the synthetic seismograms that are
essential to identify events for seismic interpretation and analysis.

The stratified earth model is based on the fact that wave motion in each layer is
traveling up-going as reflected wave and down-going as transmitted wave for the upper
layer. By applying the lattice formulation, we can obtain a complete time and amplitude
profile of the up-going and down-going wave in multi-layered media.

In this analysis, it is assumed fo have the same one-way traveltime for a pulse
propagating from one interface to the other within several layers. This one-way
traveltime corresponds to one-half unit time. Figure 4.9 shows the details of assigning the
up-going and down-going waves for each traveltime.

In Figure 4.9 we set the down-going and up-going waves at the top of layer k
respectively as di(t) and u(t). At the bottom of layer k, set di’(z) and u;’(z) as the down-
going and up-going waves respectively. As the waves propagate through the medium
there is no absorption in the layer. The down-going and up-going waves are formulated
as:

dr(0)=dr (- 1) (4.11)

w (1)=u, t+ 1) 4.12)

At the interface k, the waves correspond to the up-going, u.,(z), and down-going,
di+1(1), in the next layer.

The wave u;’(t) consists of a contribution due to the reflection of di’(z) and
contribution due to the transmission of ux. (), then u;’(2) yields:

uy (1) = Redy, (1) + (1 - Ry Jug 11 () (4.13)

Where R, is reflection coefficient for the k* layer.

We can also arrange the equation for di.,(#) which consists of a contribution due
to the reflection of u,,(z) and a contribution due to the transmission of d;’(z);

dis1(0) = =Reu () + L+ R g (1) (4.14)




Eqgs. (4.13) and (4.14) are valid for pressure amplitude and particle velocity amplitude
conditions.

4.4.4. Traveltime formulation

Traveltime is the time spent traveling from source to receiver, (Figure 4.10). For
zero offset, traveltime can be calculated from layer thickness and velocity. For many
layers the traveltime is calculated as

Ly =t +—2‘—f-k— (4.15)

k

Where t is traveltime, h is layer thickness, and V is layer velocity. Figure 4. 10
also shows the layer interface numbering scheme.

Simulation examples

This study shows two 1-D seismic simulation examples. The first example is
taken from Robinson’s analysis and the second example is obtained by setting the
arbitrary earth’s geological model. Both of the examples present the synthetic
seismogram resulted by applying the lattice formulation.

Robinson’s model (1983)

Robinson generated the synthetic seismogram at the surface and in the subsurface
by inputting the reflection coefficients for four interfaces. Those reflection coefficients
are assigned as c¢;, ¢z, ¢3, and ¢y with values 0.1, -0.2, 0.3, and —0.4 respectively.
Assuming the reflection coefficient at the surface, cy, is —1 (i.e., for the interface between
the earth and sea), he calculated each upgoing and down-going particle velocity
amplitude at equal time, (Figure 4.11). The computer code is presented in Appendix A.

Earth’s geological model

The purpose of this study is to verify Robinson’s method and apply the method
for the pressure amplitude conditions. Earth’s model is set-up by giving different
velocity and thickness for each layer (see Table 4.1).
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Following the lattice formulation two synthetic seismograms are obtained for up-
going and downgoing waves for pressure amplitude conditions. The detail of each up-
going and down-going wave calculation is presented in Appendix B and the diagrams of
both the results are shown in Figure 4.12. The spikes of the synthetic seismogram are
convolved with Ricker wavelet as illustrated before.

Use of amplitude for seismic interpretation

The energy recorded is a function of the spatial attenuation factors, the partition of
energy at the reflection boundaries, and the geometrical spreading. If a proper correction
can be made, the amplitude is useful for subsurface interpretation.

Currently, large 3-D seismic surveys are routinely used to assist in the
development of the hydrocarbon reservoirs. Seismic attributes, especially
amplitude, are now easily mapped. It allows visualizing subtle tectonic and
structural elements, which are not obviously seen on time-structure maps.

Stratigraphic, structural, tectonic, and fluid distribution information may be
obtained by displaying the amplitude variation A = A (x, y, t) (Enachescu, 1991)
associated with a particular reflective surface. Horizon amplitude map is the most
powerful tool available to the amplitude interpreter. Dependence of the amplitude
response on the shape of the reflector provides important geometrical constraints on the
interpretation.

Amplitude interpretation can reveal useful information concerning reservoir
properties such as porous intervals, gas-filled reservoir, fluid contacts, distribution and
continuity of reservoirs, reservoir heterogenites and abnormal reservoir pressure. The
nature of the reservoir boundaries (unconformity, faults and stratigraphic barriers) can
also be inferred from the amplitude analysis.

SEISMIC VELOCITY
Introduction

The measurement or estimation of velocity is a major task in the processing and
interpretation of seismic data. The velocity can be estimated from the reflection
traveltime data because the velocity is implicitly contained within the acquired reflection
traveltime data. However the estimated velocity is not exactly the same as the true
velocity of seismic propagation in the subsurface medium. In the interpretation stage,
velocity itself contains information about lithology and stratigraphy. Marsden (1993)
emphasized velocity as a common element for the following processes: depth map,
pressure prediction, lithology prediction, and depth migration.

Velocity analysis based on normal moveout (NMO) equation has serious limitations
when using the parameter in the processing and interpretation. The main reason is that
the velocity analysis using the hyperbolic moveout formula has conditions, which are too




restrictive to yield useful information. The main factors affecting velocity determinations
are:

1) Acquisition error (due to irregular survey geometries and uncontrolled acquisition
parameters).

2) Processing error (all processings, which influence the resolution, related to velocity
analysis).

3) Noise (coherent and random noises).
4) Errors related to wavelet form (not to exceed 0.5-1.0 %).

5) Errors related to wave propagation (refracted path, anisotropy, multiples, dipping
interfaces, diffractions, etc.).

6) Velocity and structure variations in the ground (statics, velocity heterogeneity within
a layer, dipping layer).

7) Subjective error (interpreter’s experience in identifying seismic events).

There is no general mathematical expression for representing errors in estimating
velocity. However, accuracy studies of velocity estimation have been done by several
researchers with their own specifications. Landa et al. (1991) mentioned that the error in
velocity estimation is weakly dependent upon the form of the interfaces. For example,
when the dip changed from 10 to 40 degrees, the value of velocity error increased by 20
percent. Also Sorin (1995) studied the accuracy of velocity estimation in 3D layered
structures formed by plane and curved interfaces. When he used the coherency inversion
for 3-D velocity estimation, he found that the layer velocity resolution is affected by the
refractor shape. Blackburn (1980) used various geological model to show errors in
stacking velocity due to geological complexities including dip and velocity structure. In
this report, we analyze the errors related to velocity and structure variations which are
main factors, affecting the velocity estimations.

Seismic velocity and its errors

Before discussing the error in velocity estimation, the terminology of velocity will
be reviewed briefly because of the confusion in terminology and concepts, even in the
geophysics world. Seismic velocity is an intrinsic physical property of material in which
seismic waves propagate. Different wave types propagate through the same medium with
different velocities (Marsden, 1993). Various wave types are air waves (P-waves),
surface waves (Rayleigh, hydrodynamic, Love), interface waves (Stoneley), body waves
(P- and S-waves), and channel waves (quasi-Rayleigh, quasi-Love). In our exploration
seismic, we have conventionally confined ourselves to using the P-waves. Seismic
velocities are affected by other physical properties such as lithology, pore size, fluid,
depth of burial, and different pressure. The seismic velocities are obtained from
laboratory measurements, sonic logs, and analysis of seismic reflection data. A statistical
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representation for velocity is needed due to the different scale of measurement, even
though there are mathematical complexities of our treatment of velocity. For example,
interval velocities are measured within a given interval from core samples in the
laboratory and/or by sonic logging in the well with a measurement scale of less than 2 ft,
which is much less than the wavelet scale of seismic exploration (= 50 feet).

Seismic velocities described here are interval velocity (Vi), average velocity (Va),
normal moveout velocity (Vn), stacking velocity (Vs), and rms velocity (Vr). Detailed
mathematical definitions and relationships between these velocities can be found in Al-
Chalabi (1994), Amery (1993), and Byun (1990).

Interval velocity (Vi) is the interval-time-weighted average of the velocities of all the
lamina that compose the unit. Internal velocity can be obtained from a sonic log usually
with 2 ft spacing, although the Vi is obtained by averaging the sonic log velocity.

Average velocity (Va) is the average of all the interval velocities from the surface to the
depth of a particular horizon. It can be measured during a velocity survey, which is
performed by measuring traveltime shot from the surface to the geophone in the borehole
in the vertical direction. Therefore Va, a true vertical velocity, is used for depth
conversion rather than NMO calculation.

NMO velocity (Vn) is defined by the reciprocal of the square root of the slope of the t>-x*
curve at zero offset (where t is 2-way traveltime and x is offset distance). Vn is a
function of subsurface geologic parameters in a certain form (Shah, 1973). The
parameters are the emergence angle and wavefront curvature of the normal incidence ray
at the zero-offset point.

Stacking velocity (Vs) is an apparent velocity chosen to fit the data using the NMO
equation, so no corresponding mathematical expression can be given. Vs is often used
synonymously with NMO velocity. Vs is some average moveout velocity which gives
' optimum stack. With short width of gathering, Vs may serve as a good approximation to
NMO velocity (Shah, 1973). Vs increases with increased spread length or with increased
dip of the reflector. Vs is greater than Va because raypaths follow a minimum time path
(Fermat’s principle) rather than a minimum distance path for the multilayer model.

RMS velocity (Vr) is a mathematical quantity with no physical meaning. It is not a
measurable parameter. It is the truncated product of expansion of the squared traveltime
in the infinite series of squared offset distance.

Errors in estimating the RMS velocity from seismic data can be attributed to
statistical and nonstatistical sources (Schneider, 1971).

Statistical errors: The more accurate RMS velocity is obtained when a data set has

1) higher S/N ratio (improvement by square root of number of folding traces)
2) wider frequency bandwidth
3) longer spread length (depends on the square of the spread length)

Minimum statistical error in estimating RMS velocity from seismic data occurs
when offset approximately equals depth (called X/D concept).

Nonstatistical errors: The sources of the nonstatistical error may be the limiting factor.
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1) Dip effect (correction factor fails when inflecting dip occurs)

2) Geometric errors (feather, not straight survey-line; can be reduced in processing
stage)

3) Complex horizon sequénce (due to thin layers)
4) Multiple reflection (interference with primaries)

5) Near-surface velocity (smoothing the estimated RMS velocity)
Procedure

In this report, we use the NMO equation to estimate velocity, which is a stacking
velocity (or NMO velocity), based on the definition discussed earlier. The procedure for
estimating errors in stacking velocity are followed:

1) Set up the model.
2) Forward modeling using a ray tracing method.
3) Apply the Least-Square method to estimate velocity.

4) Estimate errors correspond to different degrees of heterogeneity and non-flatness.

The method of Langan et al. (1985) is used for the ray-tracing because of its
efficiency, flexibility, and compatibility. The Langan method used here can be replaced
by any other ray-tracing methods for the purpose of the forward modeling. Rays are
traced through a velocity field discretized into cells. Each cell has a velocity gradient
calculated from given velocities. Velocity gradients are used algebraically to produce
traveltimes, orientation vectors, and position vectors. To find the ray path between two
fixed points, a shooting method is employed. Topographic geometries for shots and
receivers are expressed by smoothed line segments, and arbitrary locations of shots and
receivers are allowed. Reflecting interfaces are defined by a cubic spline within each cell
because the reflecting interfaces should be smooth and continuous across cell boundaries.
For the continuity of the reflecting interfaces, the polynomial extrapolation and
interpolation are applied where reflecting points do not exist during the forward
modeling.

The NMO equation is applied to synthetic traveltime data obtained through the ray
tracing:

t%(x) = t2(0) + x>V, (4.16)

Where x is distance (offset) between the source and receiver positions, v is the
velocity of the medium above the reflecting interface, t(0) is twice the zero-offset
traveltime. The Least-Square method is used to estimate the velocity.
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An error factor is adopted from Blackburn (1980). According to his definition,
the error factor to ascertain the variations in stacking velocity is the ratio of the difference
in stacking velocity as derived from ray modeling and the average velocity at the location
to the stacking velocity. The error factor is expressed as a percentage. Variations in error
factors and their magnitudes will represent the area having velocity problems.

The Fortran code is described in Appendix C
Synthetic examples

Simplified models are set up to isolate the problems associated with geological
complexities in estimating stacking velocities. In this project, six models are designed
based on the factors affecting velocity determinations discussed before. All models have
100 x 40 cells and a cell has 10 x 10 m in dimension except depth model (10 x 20 m).
Distances of far- and near-offset are 300 and 20 m, respectively. Each cmp has 100 m
interval and a cmp has fifteen traces. The raypaths and velocities for our six models are
shown in the Figures 4.13- 4.18 (a). The models and their configurations are followed:

. Depth model: 7 different flat beds (55, 155, 255, 355, 455, 555, 655 m); constant
velocity (1000 m/s); 1 cmp per each depth model; Figure 4.13-(a).

. Dip model: a dipping bed (1 1%); constant velocity (1000 m/s); 7 cmps; Figure
4.14-(a).

. Lateral velocity-variation model: a flat bed (355 m); lateral gradient X' ©,1,2,3,
4); 1 cmp; Figure 4.15 -(a).

. Vertical velocity-variation model: a flat bed (355 m); vertical gradient k (0, 1, 2,
3, 4); 1 cmp; Figure 4.16 -(a).

. Trap model: a flat bed (355 m); pinching-out velocity anomaly; 7 cmps; Figure
4.17 (a).

. Near-surface anomaly model: a ﬂ;at bed (355 m); near-surface velocity anomaly;
6 cmps; Figure 4.18 -(a).

: velocity(x) = initial velocity(x=0) + k*x

Two observation methods are: considered for our specific purpose of estimating
errors in determining velocities: t-tnino and error factor. The t-tnmo is a RMS value of
residuals which is discrepant values between traveltimes from a ray tracing and
traveltimes obtained from stacking velocity through NMO equation. High value of t-
tnmo represents that the NMO equation does not work well for a given model. However
it does not mean that a small t-tnmo always implies well estimated velocity. For example,
dip model and velocity-variation models (lateral and vertical both) have relatively small
range of t-tnmo values. Estimated stacking velocities are not well matched with true and
average velocities as shown Table 4.2. 3-D diagrams showing t-tnmo against offset,
depth, k, and cmp # can be found in Figures 4.13-4.18 (b) for each models. And t-x
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curves showing hyperbolic fitting are in Figures 4.13-4.18 (c). The most reliable method
for examining the errors is an error factor defined earlier. Large fluctuations of the error
factor always indicate the areas having problem to estimate velocities as shown in
Figures 4.13-4.18 (d).

Our models can be grouped into three based on their characteristics: (1) interface
change (depth model and dip model), (2) gradient velocity change (lateral and vertical
velocity-variation model), and (3) abrupt velocity change (trap and near-surface anomaly
model). I summarized the results with following table 4.3 showing averaged numbers of
t-tnmo and error factor.

The group of interface is very reliable to estimate stacking velocity even with a
dipping layer. In the group of gradient velocity change, lateral velocity changes are more
serious in deterring stacking velocities than the vertical change. The worst case occurs in
the group of abrupt velocity change. Considering that lateral velocity change with large
gradient number is the special case of the group of abrupt velocity change, abrupt
velocity change is the most significant factor affecting velocity determinations.

SEISMIC INTERPRETATION
Introduction

Horizon interpretation of the seismic data combined with the well information and
the geological information of the area can help in developing a unified model of the
reservoir system in the study area. The seismic data provide considerable amount of extra
information in the interwell areas and can give a more accurate information on the
location of the boundaries of the thin-bed compartment.

The 3-D seismic data under study comes from Stratton field, South Texas. It is
confined to 2 square miles. It has 3 seconds of data with a sampling rate of 2 ms. It
comprises 100 inlines (oriented east-west) and 200 crosslines (oriented north-south) with
a trace spacing of 55 ft. A larger seismic 3-D data has been acquired in this area but is not
available to us yet. The seismic sections show a smooth, non-faulted area almost
throughout the whole seiscube above 1700 ms. Below that area and on some of the
sections we can detect a few faults. The VSP calibration is very important to identify the
faulted horizons. We see from (Hardage et al, 1994) that the undeformed area is the upper
Frio and a large part of the middle Frio formation. Few faults extend from lower Frio to
middle Frio formation. The quality of the data set is good in general and the target
horizons appear to be clear on the seismic sections. The interpretation has been
performed using Landmark interactive interpretation system.

Interpretation procedure
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The main challenge that we are facing in this area is the thickness of the target
horizons. The Frio reservoirs that we are interested in are very thin (less than 15 feet).
Also the separation between them is very small (10 to 15 feet). These conditions require
extra attention to get the precise calibration of the stratigraphic depth with seismic
reflection time. For the two main target reservoir which are E41 and F11 the events on
the seismic sections appears to be clear throughout most of the 3-D seismic set. As for the
E 49 reservoir it appears to be discontinuous over the area and that makes it untrackable.
The fact that E49 can not be tracked in 3D dose not mean that it is useless in the seismic
sense. Actually the information that 31D provide on this reservoir can prove to be useful in
the context of the comprehensive model, taking into consideration the resolution of the
seismic data.

The procedure that we followed to get the product maps for E41 and F11 reservoir is
as fellows:

Identify the target horizons on the seismic section using the VSP data from well #9.
The location of this well is defined on the base map of the seismic data as the
intersection of line 80 (E-W) and trace 89 (N-S). Figure 4.19 shows the location of
the well on the base map.

. Track the target horizons in 2D sections using autodip-tracking mode, which
following the actual dip of the horizon. This procedure aims basically to define seed
points for the target horizons over the whole area to improve the 3D tracking.

Perform 3D auto tracking for the target horizons.

d. Produce time structure maps and amplitude maps for both horizons.
Interpretation

The seismic section that shows the target horizons is in Figure 4.20. This seismic
section is for line #1 on the base map and shows clearly the time interval that separates
the base of reservoir F11 from the base of reservoir E41. We can see these horizons in
prospective view in Figure 4.21 which represent a 500 ms section from the 3D seismic
cube between 1400 and 1900 ms. In Figure 4.20 we can see a tuning effect which is a
signature mark for thin beds.

The tuning effect can be sumrnarized as follows: if the bed is thick enough to be
resolved by seismic, we can see distinct positive and negative reflections proportional to
the reflection coefficient. If the thickness of this bed decreases, the amplitude of the
reflection from the top of the bed will interfere with the reflection from the bottom of the
bed causing the tuning effect. The amplitude of the result of the interference reaches a
maximum for a thickness of % of the wavelength, which is called the tuning thickness.
For beds thinner than the tuning thickness the shape of the wavelet is the same but with
less amplitude content. The tuning thickness depends solely on the wavelet frequency.




The black rectangular in Figure 4.22 highlights an example of the tuning effect on the
sections.

Even though we can not map these spots that we believe that it is the E41
reservoir, we can see these patches allover the 3D cube (Figure 4.22).

The bright spot indicated by the arrow in Figure 4.22 is emphasized in the two
time slices in Figure 4.23. We can see clearly how this compartment stands out in the
time slice where we can determine the spatial diameters for this compartment.

These results can prove to be very helpful if we put into our consideration the
following considerations and restrictions:

(a) The seismic data covers only a small section of the field, and we might need to
interpret a larger data set to generalize our conclusions.

(b) Most of the time the compartments thickness is thinner than the seismic resolution.
That means any visible compartments are only the ones that are thicker than the
seismic resolution and the result achieved can not be extended to the smaller
compartments through the conventional seismic interpretation.

(c) A better mapping of the channels can be achieved using the procedure proposed by
Hardage et al. (1994) to get the original depositional surface. The seismic flattening
technique is not available to us.

(d) Reservoirs E41 and F11 appear to be continuous over most of the area from the time
structure map (Figures 4.24 and 4.25).

The high values are in dark blue. A possible local dome closure is indicated in Figure
4.24.

The empty patches on the time structure maps are due to the tracking technique of the
software we are using; the empty points did not meet the tracking parameters defined by
the interpreter. Figure 4.25 shows a time structure map for the E41 reservoir. We need to
keep in mind that these are time structure maps and not depth maps. Without an
independent source of velocities that can enable us to perform a time-depth conversion,
these horizon maps can be misleading.

The amplitude maps give a good idea about the amplitude content of the horizons,
lithology and possible hydrocarbon accumulations. Figure 4.26 shows the amplitude map
of F11 reservoir. The high amplitude values are in red and the low values are in blue.

The lateral changes in amplitude can mean a potential area of prospect that needs to
be studied closely with the integration of other available data.

The amplitude map for the E41 horizon is shown Figure 4.27. This map shows less
variation than the F11 horizon, but it has some promising areas, especially the ones that
has the bright spots possibly associated with hydrocarbon accumulations.

CONCLUSIONS

Estimation of seismic amplitude and velocity are very important to characterize a
reservoir and these are the main topics considered here. Seismic amplitudes is a result of
several factors some of those are coupled with data acquisition and processing. They can
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not be estimated correctly. Thus, traditionally 1-D synthetic seismogram is generated in
X, y space and compared to the seismic processed real data. Although it is important to
study the seismic amplitude and its uncertainties, we limited our analysis to study the
amplitude due to transmission and multiples only.

A significant confusion arises in the literature as to the seismic measurements,
seismic particle velocity or pressure response. The physics behind these two is different,
thus, a different response is expected for both measurements. For land data, the geophons
respond to particle velocity and for marine data the sensors respond to the change in
pressure. In order to avoid this confusion, a simple modeling study was carried out, and
total response of the simple earth model is obtained.

Seismic velocity estimation is another area studied extensively. Again, the
terminology is vast and confusing. If there is no well control, the seismic velocity
obtained measurements is the stacking velocity and is far from accurate. Also, the
accuracy changes from simple to complex subsurface geometry and for lateral velocity
variation. Using simple subsurface models with varying degree of complexity, we
obtained the stacking velocities and the error inherent to the estimation. The error in
stacking velocity computation could be as much as 25% for complex models. The only
way to reduce this uncertainty is with log correlation and migration velocity analysis.

Finally an attempt was made to interpret a 3-D seismic data from the Stratton
field, south Texas, taking resolution into consideration. The dominant frequency of this
set is 60 Hz. For the formation under study here t, the vertical resolution is about 10m,
and the horizontal resolution is about 20 meters after 3-D migration. With this kind of
resolution the smaller reservoir compartments are not well resolved.

The interpretation that has been performed on the seismic data is only a basic
qualitative interpretation. The seismic data at hand provided us with some valuable
information about the subsurface structure especially in the areas where we do not have
any well information or geological data. The results are promising, and can be enhanced
with well log correlation and depth inversion.
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Table 4.1. Earth model.

No.of layers h(ft) V(ft/s)

1 800 10000
2 4000 11000
3 2000 17000
4 3000 10000

Table 4.2 Estimated stacking velocities (Vstk) compared to average velocities (Vave).

(1) Depth model

depth (m} Vstk (m/s) Vave (m/s)
55 995 1000
155 999 1000
255 999 1000
355 1000 1000
455 1000 1000
555 998 1000
655 1001 1000

(2) Dip model
cmp# | Vstk(m/s) Vave (m/s)

20 1018 1000
30 1016 1000
40 1019 1000
50 1018 1000
60 1018 1000
70 1018 1000
80 1016 1000

(3) Lateral velocity-variation model
Horiz. k| Vstk (m/s) Vave (m/s)

0 500 500
1 971 1030
2 1414 1581
3 1859 - 2137
4 2304 2692

(4) Vertical velocity-variation model
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Vstk (m/s)

Vave (m/s)

500

500

669

662

831

804

988

936

1138

model

Vstk (m/s)

Vave (m/s)

974

815

960

914

999

920

1030|

922

999

930

1018

939

1027

950

(6) Near-surface anomaly model

cmp #

Vstak (m/s)

Vave (m/s)

20

1000

1000

30

1000

1000

40

1000

1000

50

787

992

60

862

958

80

862

958

Table 4.3. Summary of error observations
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Figure 4.1. Hypothetical subsurface model with two well log information.

RICKER WAVELET

Figure 4.2. Zero phase Ricker wavelet with 30 Hz frequency.
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Figure 4.3. Reflectivity series of Figure 4.1.
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Figure 4.4. Synthetic Seismogram, after convolution of reflectivity (Figure 4.3) with
Ricker wavelet (Figure 4.2).
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Figure 4.5. Subsurface fluvial channel.
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Figure 4.6. Reflectivity series for a single cross section shown in Figure 4.5.

———————————

Figure 4.7. Synthetic Seismogram for a fluvial channel, obtained after convolving Ricker

wavelet with reflectivity shown in Figure 6.
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Figure 4.8: Waves propagation for marine survey (left sketch) and land survey (right
sketch).
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Figure 4.9: Lattice configuration for reflected and transmitted waves in layer k and at
interface k. '
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Figure 4.10: Numbering scheme for traveltime formulation.
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Figure 4.11: Schematic diagram of downgoing and upgoing waves at equal time for

Robinson’s model (Robinson, 1983).
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Figure 4.12 Schematic diagram of downgoing and upgoing waves at equal time for

earth’s model conditions.




a) Depth model
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(¢) t-x curve (depth model, depth = 655 m)
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Figure 4.13. Depth model. '(a) seven different depths used (55 - 655 m), (b) t-tnmo for
different depths, (c) t-x curve between true traveltimes and traveltimes obtained NMO
equation (depth = 655 m), and (d) error factors for different depths.




(2) Dip model
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(c) t-x curve (dip model, cmp # = 30)
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_Figure 4.14. Dip model (11 degree dip). Larger number of cmp represents shallower
depth. (a) seven cmp data sets used, (b) t-tnmo for different cmp, (c) t-x curve between
true traveltimes and traveltimes obtained the NMO equation, and (d) error factors for

different cmp numbers.




(a) Lateral velocity-variation model (k=0 - 4)

Lateral velocity gradient model
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(c) t-x curve (lateral velocity-variation model, k=4)
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Figure 4.15. Lateral velocity-variation model. Five different lateral gradients (k) are used
(k=0,1,2,3,4). (a)lateral velocity-variation model and curved raypaths for k=4, (b) t-
tnmo for different k, (¢) t-x curve between true traveltimes and traveltimes obtained the

NMO equation, and (d) error factors for lateral-velocity variations along different ks.
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(a) Vertical velocity-variation model (k= 0-4)
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(c) t=x curve (vertical velocity-variation model, k=4)

t-x curve (vertical change; k=4)
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Figure 4.16. Vertical velocity-variation model. Five different vertical gradients (k) are
used (k=0, 1, 2, 3, 4). (a) vertical velocity-variation model and curved raypaths for k=4,
(b) t-tnmo for different ks, () t-x curve between true traveltimes and traveltimes obtained
the NMO equation, and (d) error factors for vertical-velocity variations along different ks.
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(¢) t=x curve (trap model, cmp# = 30)
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Figure 4.17. Trap model. Seven cmp data sets are used. (a) geological trap and curved
raypaths, (b) t-tnmo for different cmp numbers, (c) t-x curve between true traveltimes and
traveltimes obtained the NMO equation, and (d) error factors for different cmp numbers.




(a) Near-surface anomaly model
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{c) t-x curve (near-surface anomaly model, cmp# = 60)

Neur-gsurface anomaly model
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Figure 4.18. Near-surface anomaly model. Six cmp data sets are used. Background and
anomaly velocities are 1000 and 500 m/s, respectively. (a) low-velocity anomaly and
curved raypaths, (b) t-tnmo for different cmp numbers, (c) t-x curve between true
traveltimes and traveltimes obtained the NMO equation, and (d) error factors for different
cmp numbers.
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Figure 4.20: Line 1 showing the F11 horizon at approximately 1600 ms and E41 at 1555 ms
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Figure 4.23: (a) Time slice at 1592ms showing the spot indicated by the arrow in Figure 4.23.
Below (b) the same spot became clearer and large at 1594 ms. time slice.
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Appendix A
Program Marine:

Synthetic seismogram from reflection coefficients.
Program is written in Fortran.77 and reside in a separate disk.

Subroutines:

read-data
twotime
time
amplitude
ricker
fold

Zero
convolve

Variable Discribtion:

I.d = number of layers.

V = velocity.

H= thickness.

T = two way travel time.
D = down going response.
RO = reflection coefficient




4 R;
R,
| I I I I I I O P ;
50705 10 1.5 2.0 25 3.0 35 40 P time
Source
R0

AVAVAY,
I7] \7 =
VAV, )
R,

Figure B1: Numbering scheme diagram for downgoing and upgoing waves at equal time.

Pressure amplitude
Calculate the reflection coefficient

R:&-;___Iz—ll

pi Ir+h
Assumed the densities are constant, then reflection coefficients for each layer are
calculated as:
= Vo =V _ 11000 - 10000 ~0.0476

Vo, +V; 11000+ 10000
R, = V3 -V, _ 17000 -11000 072143

V3+V, 17000 +11000
Ra = V4 —V3  10000-17000 — —0.2593

37V, +V; 10000+17000
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_ V5=V, _0-10000
* T Vs+V, 0+10000

=_1.0000

Calculate the donwgoing and upgoing waves

d1(t) = ~Rpup 41 (0)+ (1+ Ry Y (1)

uy (£)= Redi (1) + (1= R g 11 ()

. d,% =1.000

. dy' =1.000(1.000+0.0476) + (0x(-0.0476)) = 1.0476

. ds"’ =1.0476(1.000+0.2143) + (0x(-0.2143)) = 1.2721

. d¢ =1.2721(1.000-0.2593) + (0x0.2593) = 0.9422

. u®® =0(1.000-0.0476) + (1.000x0.0476) = 0.0476

. u' =0(1.000-0.2143) + (1.0476x0.2143) = 0.2245

. u3™ = 0(1.000+0.2593) + (1.2721x(-0.2593)) = -0.3299
8. us =0(1.000+1.000) + (0.9422x(-1.000)) = -0.9422
9. ;" =0.2245(1.000-0.0476) + (0.0476x0.0476) = 0.2161
10. di*° = 0(1.000+0.0476) + (0.0476x-(-1.000)) = 0.0476
11.d* =0.0476 (1.000 + 0.0476) + (0.2245 x (-0.0476)) = 0.03918

12. u* =-0.3299 (1.000 - 0.2143) + (0.03918 x 0.2143) = -0.2508

13. 45> = 0.03918 (1.000 + 0.2143) + (-0.3299 x (-0.2143)) = 0.11827

14. uz>> = -0.9422 (1.000 + 0.2593) + (0.11827 x (-0.2593)) = -1.2172
15. d;*° = 0(1.000+0.0476) + (0.2161x -(-1.000)) = 0.2161
16.d° =0.2161 (1.000 + 0.0476) + (-0.2508 x (-0.0476)) = 0.2383

17. u; 2> = -0.2508 (1.000 - 0.0476) + (0.2161 x 0.0476) = -0.2286




18. ;> =-1.2172 (1.000 - 0.2143) + (0.2383 x 0.2143) = -0.9053
19. d>® =0 (1.000 + 0.0476) + (-0.2286 x -(-1.000)) = -0.2286

20. u;>° =-0.9053 (1.000 - 0.0476) + (-0.2286 x 0.0476) = -0.8731
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Appendix C.

This velocity-analysis software package consists of 3 main parts:

e Model setup: to make cell velocity distributions and geometries (reflectors, shot and
receivers).

e Ray tracing: to calculate traveltimes with a velocity model given by user.
Velocity estimation: to estimate velocity from given traveltimes.

The programs are in Fortran 77 and reside in a separate disk.
Model setup

1) vmod.for --- to make a cell velocity model for a true model or a starting model.
Option: horizontal and/or vertical velocity gradient or constant velocity.

2) ref.for --- to create reflection interface.
Option: line segment with different dipping and/or sine function.

3) ele.for --- to make a shot-receiver elevation file (used linear interpolation with known
heights for every station numbers, st #). It creates boundary coordinates of each pixel
and coefficients of straight line for an elevation function.

input: random elevation data from elevation survey
ex) st# elevation
0 79.8
11 100.2
output: output3—coordinates transformed (inline offset, shooting depth employed)
ex) st #, shx, shy, recx, recy
output 4-- boundary x, y and a, b for y=ax+b
ex) boundx, boundy, a, b

*note: start ix(i)=first st # and finish ix(i)=last st # for linear interpolation
(that is, extrapolation not allowed)

4) shst.for --- to generate the file for shot and receiver station number.
Option: different spreads geometry (end spread, split spread, and CMP sorted).

Ray tracing

5) ray.for — to trace curved rays for 2-D seismic data using cells based on a shooting
method. All algorithms for the code can be found in Langan’s paper (1985,
Geophysics, 50, 1456-1465). The program can be used for borehole, VSP (Vertical
Seismic Profile), RVSP (Reverse Vertical Seismic Profile), refraction (Turing wave),
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and reflection. It uses cubic spline reflection interface. Stations for shot and receiver
can be located anywhere for reflection geometries.

»

input source x,y and ray definition data nput infoin(2): example

101 istraflag (0 = curv), ismooth (0=no), ireflect (O=no reflect)

1 10. 45 2020 iautoang (1 = auto), angmin, angmax, nangle, niter

1 _ itflag (O=last iter. ray; 1 = 0 & tomo.out; 2 = every itrr. ray)
0 idata (0 = for borehole/vsp ; 1 = for reflection/refraction)

-~

shot and station information depend on idata
filename (shstin)

»~

if, idata=0 idata=1

2 (nshots) 2 100. 1. (nshots, shotx1, shspace)
1 100 0. 24 (nstations = channels)

2 110 0. 1-6. 0. (ist, ichx, ichy)

1 (nstations) 2 e

1 150.0. 24 8. 0.

-~

line 1 sKkkk

-~

istrflag: flag for straight or refracting rays
0 = normal mode, use snell's law at each boundary

= straight ray mode, ignore snell's law

-~

ismooth: flag for smoothing velocity.

0 = no smoothing
1 = smoothing
ireflect: # of reflecting interface
0 = no reflecting interface (ex: borehole)
1 - 7 = how many interfaces

line 2%4¥*
iautoang: angle given automatically

0 = not auto

1 = auto (ignore angmin,angmax)
angmin: minimum takeoff ang for 1st iteration (deg)
angmax: maximum takeoff ang for 1st iteration (deg)
nangs : number of ray angs tried for each iteration
niter : number of iteration steps

line 3****




itflag: flag for operating mode
0 = write out only rays from last iteration
don't create the tomo.out file for the tomography program
1 = write out only rays from last iteration, but
create the tomo.out file
2 = write out all rays to check # of iterations
don't create the tomo.out file

»

line 4¥****
data: flag for data type
0 = for borehole/vsp

1 = for reflection/refraction

Velocity estimation

6) lsqv.for --- to solve X = G’’b where denotes the generalized inverse matrix. This
routine takes the equation Ax =b and solves the associated least-squares problem
A'Ax = A'b where prime denotes transpose. In the code, matrix A(n,m) nis# of
columns, m is # of rows, and b(m) and x(n) have one column. g and bb are work
spaces.for the intermediate arrays and vectors but g ends up holding the generalized
inverse matrix G" at the end.
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PART V

MARKOYV RANDOM FIELD AND BOOLEAN MODELS FOR GEOLOGIC
MODELING OF FACIES DISTRIBUTIONS

By: Z.X.Bi, R. A. Redner, D. S. Oliver, Y. Abacioglu and A. C. Reynolds
Summary

The objective of this work has been to generate realizations of facies distributions
constrained to observations (well or outcrop) and geological interpretation with specific
emphasis on fluvial systems. The work has emphasized the development of two very
different types of statistical models, Markov Random Field (MRF) models and Boolean
models.

MRF models allow us to define a joint probability function for the distribution of
facies by specifying local characteristics, or more mathematically, conditional
probabilities based on local neighborhood systems. This is an extremely convenient
feature as it is usually intuitively obvious how to specify the conditional probabilities to
incorporate desired geologic features, continuity, anisotropy (or more generally
orientation), and ordering and to some extent overall structure. Once the statistical
parameters in the joint probability function have been determined realizations of the
facies distribution are generated by a Markov chain Monte Carlo (MCMC) sampling
procedure. A penalty term can be incorporated in the probability function to ensure that
the fraction of facies in each realization is within some specified range. Conditioning to
facies observed at wells is a trivial task. The main model we developed is extremely
simple in that it is based on a second order neighborhood system and controls geologic
features using only two-pixel cliques. Because of this, we are able to simply use a free
boundary condition and avoid the unsolved problem of determining an appropriate
definition of potential functions (statistical parameters) on cliques adjacent to the actual
three-dimensional reservoir. This simplicity also makes it much easier to define
conditional probabilities to simulate desired geologic features. Despite this simplicity,
this MRF model can be applied to generate a rich variety of facies configurations.
However, use of the model and code developed requires some understanding and
intuitive insight on the way conditional probabilities affect geologic features, but much of
this insight can be developed simply by reading this report. It would of course be
preferable to develop an automatic procedure to generate the statistical parameters which
define the probability function for the MRF model directly from geologic interpretation.
For this purpose, we have investigated a number of algorithms, e.g., maximum likelihood
estimation, coding and histogramming. Many of these methods have been successfully
applied in the image analysis literature. Thus, we tried to apply various modifications of
these procedures to our problem. Unfortunately, none of them proved generally reliable.
The maximum likelihood estimation procedure is reliable only when a good initial guess
is available for the statistical parameters, and even then, it is computationally expensive.
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Although we do believe that the MRF model developed will prove to be a useful tool
for the generation of many facies distributions of interest to geologists, it is not easily
applied to generate facies as geometrical objects having a desired structure, e.g., channels
and splays in a fluvial system. Thus, we have investigated the application of Boolean
methods. With Boolean methods, or more generally, Marked Point Process techniques,
distinct objects are inserted into the reservoir. With this approach, well-organized
structures are easily obtained. By working closely with geologists, detailed information
on the statistics of the parameters in the model can be obtained. For example in our study
of the Middle Frio Stratton Field, we have accumulated data on channel thickness,
channel width to thickness ratios, the angles that the channel makes with respect to some
reference point and the natural clustering of channels. With these and other pieces of
data we can make relatively realistic simulations of channel belts. Even more realistic
simulations are possible if additional data are incorporated into the model.

The inclusion of specific well and outcrop information can be used to generate
statistics to help understand the nature of the field and can also be used to constrain the
stochastic realizations that are generated. At this time we have only used the data from
the study areas to generate statistics which are used to generate simulations. We have
not, at this time, used this type of information to constrain the simulations.

Introduction

The distribution of geological facies in petroleum reservoirs is a key element for

reservoir characterization and flow simulation because it controls the heterogeneity of
physical properties of the reservoir over multiple scales. In practice, some general
information about this distribution is usually available from outcrop studies or geological
interpretation. Although various stochastic models have been proposed to generate facies
distributions, this section of the report focuses on Markov Random Field (MRF) models
and Boolean models for generating facies distributions.

MRFs provide a powerful tool for modeling spatial interactions and have been used
extensively to define prior distributions in Bayesian image analysis and statistical
physics. It has also been suggested that one could apply a MRF to generate geological
facies distributions, but many of the special issues related to this problem have not been
previously explored. The MRF models developed in this work can be applied to generate
realizations of facies distributions that display desirable characteristics determined from
_ geologic interpretation, for example, continuity, orientation and ordering. Boolean
methods are more applicable for generating facies as large, geometric, geologic objects
having a specified shape, e.g., channels and splays in a fluvial environment. Norwegian
researchers have been responsible for developing many of the stochastic algorithms for
generating facies distributions. They have proved especially adept at developing and
applying stochastic simulation techniques based on Boolean models, or more generally
marked-point processes.




In Boolean methods, facies are distributed in space as geometrical objects according to
probability laws developed from well data, geological data and interpretation. The
process of distributing objects in space by applying a probability law, which governs the
distribution of the centers of the objects, is normally referred to a “point process™ since
the distribution of objects is determined explicitly by the distribution of the points
describing the centers. In a marked point process, the point process defining the center of
objects is “marked” (associated) with other probability distributions which may be used
to describe properties of the object, e.g., size, shape and type.

Generally, there are three basic problems involved in the application of any
probabilistic model: (a) application of geological knowledge to propose an underlying
stochastic model; (b) use of information, observations and geologic interpretation to
estimate the parameters needed to define the probability function; (c) simulation or
sampling of the probability function to generate realizations. This last part includes
conditioning realizations to actual observations. In this research, we investigate these
problems systematically. Unfortunately, the parameter estimation problem is one that we
have been able to solve only in special cases.

Literature Review

When Markov random fields are used in stochastic modeling, one must first divide the
region (surface or volume) into an array of “grid-blocks” or pixels, which are labeled 1 to
n. Following the notation of Ref. [54], we let S ={1,2,...,n} and let X= (X, X;, ..., X;;) be
a random vector with X; representing a random variable defined on pixel j. For example,
as in Ref. [54], X; could represent the facies located at grid-block j if we wish to generate
realizations of the facies distributions on the grid-blocks. Alternately, X could represent
shale thickness in a grid-block, or the shale thickness at a pixel located on a correlation
surface [31, 32]. Ref. [54] gives a formal definition of what it means for X to be a
Markov random field. The main characteristic of a Markov random field is that the
conditional probability of X; given values of all X; for i # j depends only on the values of
those X; located in some neighborhood of X, i.e., in a “local neighborhood”. This
property results in significant computational speedup when one samples X by starting
with an initial distribution, proposes a new distribution by some algorithm and accepts
the new distribution with a specified probability (e.g. Gibbs sampler or Metropolis
algorithm). As in a Markov chain Monte Carlo procedure, iteration is continued until the
distribution of X converges. This type of procedure was used very successfully in the
classical paper of Geman and Geman [21] on image reconstruction. However, when
Tjelmeland and Holden [54] used the procedure to generate facies distributions with little
or no well conditioning data, they found that the realization obtained either looks like
independent noise or is completely dominated by one facies. In certain simple cases,
justification of why a realization may be dominated by one facies is provided by the
theoretical results of Kinderman and Snell [35]. Tjelmeland and Holden recommended
using a semi-Markov random field to overcome the apparent inability of Markov random
fields to capture large-scale features. In this procedure, one can ensure that realizations
contain at least a prescribed number of “bodies” where the same facies is assigned at each
gridblock within a particular body. Although we have experimented extensively with this
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type of approach, it appears to be highly computationally inefficient due to the extensive
computation required to keep track of the number of bodies.

The trend setting work of Haldorsen and Lake [29] represents one of the earliest
attempts to use a stochastic algorithm to generate facies distributions. They presented a
procedure to distribute shales within a vertical cross section of a reservoir. Their work
may be viewed as distributing shale units within a background facies (sandstone). They
considered both “deterministic” and stochastic shales, where deterministic shales are
continuous between observation points. Stochastic shales are randomly located within
the sand body. In a two dimensional cross-section, shales are represented by rectangles.
(In three dimensions, shales are assumed to be rectangular parallelpipeds.) They assume
that the thickness and length of rectangular shale bodies are independent and that the
locations of shale bodies are independent so that shales may overlap. The probability
distribution of shale thicknesses is formulated based on observations at wells. The
probability distribution for the length is built from outcrop studies or by general
correlation on lateral continuity based on depositional environment, see Fig. 5 of Ref.
[29] which was reproduced from Ref. [57].

The papers [31,32] by Hoiberg, Omre and Tjelmeland are more complex, but ones
which make more thorough use of geological information. In particular, the geological
setting for these papers is the North Sea, and the model is a permeable sandstone
background with good flow properties with nearly impermeable shale barriers lying
within this sandstone matrix. These shale barriers are assumed to be of two types. The
first shale type is that of large lateral shale bodies that may intersect multiple wells. The

second shale type is smaller shale-units which are not correlated between wells. The
procedure assumes that shale within core data can be delineated from sandstone and also
assumes that shale corresponding to large lateral shale barriers and shale of small units
can be distinguished from the analysis of core samples. We note, as do the authors of this
paper, that the strength of this approach is that all realizations reproduce specified data
about the reservoir. In particular, the occurrence and thickness of shales observed in
wells will be reproduced and the probabilities that wells are connected by shale sheets are
satisfied. Furthermore, the percentage of shale versus sand will be as specified and the
thickness distribution of shale thicknesses in each simulation will match the shale
thickness distribution which was specified.

The geological model used by Syversveen and Omre [49,50] is much simpler than the
model of [31]. In this paper, the authors consider a reservoir which has a sandstone
background. But within the background matrix, only a single type of shale barrier can
exist and the paper is written for only two dimensions (although it could easily be
extended to a third dimension). Within the sandstone background, they consider the
problem of introducing impermeable shale barriers using a marked point process.

In contrast to [31] and [49], the geological setting for the paper by Egeland, Georgsen
and Knarud [19] is a fluvial reservoir and hence the background is assumed to be a nearly
impermeable floodplain matrix that contains permeable sand-filled channels. Sheetsplay
sand and barriers are added to the model to produce a more realistic and complex
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geology. This paper provides only a broad overview of the stochastic models but
underlying theoretical details can be found in Georgsen and Omre[22]. In Ref. [19], sand
channels are modeled by marked point process. Each channel is initially identified with a
straight line that provides the main direction for the channel. A joint probability
distribution for these lines is used to provide correlation between channels. The second
part of the model gives additional information on the size and shape of these individual
channels. A finite number of points are selected along each line, and at each of these
points, random values for the location (as a perturbation from the original line), thickness
and width of the channels is generated. Gaussian random functions are used to general
these random values. Additionally, sheetsplays are deposited along the edges of the
channel. Finally elliptic-shape barriers are placed randomly along the line defining the
channel. These are perturbed using the location information that was used to perturb the
channel from the initial reference line.

Papers of interest that deal with the general problem of facies distribution include Ref.
[53, 55] presented by Tjelmeland. This approach is based on defining probabilities for
special configurations that exist within cliques arising from higher order neighborhoods.
The procedure is sufficiently general to incorporate a known ordering of facies. Our
implementation of this basic idea, as well as the study of the related issues, is the main
subject of this section of the report. The basic method used in Ref. [55] is actually an
extension of an image segmentation model, which was introduced and called a Multi-
Level Logistic (MLL) model by Derin and Ellioitt [14]. In the MLL model, clique
potentials can take on only two values, one when all the pixels in the clique are identical
(for our problem, this means all occupied by the same facies) and one when they are not.
Tjelmeland noted that some realizations that have been generated by this model are not
truly representative of the underlying MRF model, but instead represent results generated
during the transient part of a Markov chain. Our experiments confirm this conclusion.
Thus, Tjelmeland proposed a MRF with higher order interactions, i.e., larger
neighborhood systems, with clique potentials dependent on the specific configuration in
the clique.

Regarding the problem of parameter estimation, Beseg [2] proposed a procedure
called the coding method. This procedure may be viewed as a maximum likelihood
estimation method that yields parameter estimates that maximize the product of the
conditional probabilities of a subset of the random variables in a field, conditioned to the
rest of the field. The codings depend on the specified neighborhood. The advantage of
this method is that the maximization is computationally efficient because the normalizing
constant can be calculated exactly. However there exist different possible codings for a
specified neighborhood system and the estimates of parameters obtained depend on the
specific coding used. It has also been shown [53] that the estimates obtained by coding
may be highly inaccurate for some probabilistic models.

In view of the difficulties involved in the coding method, Derin and Elliott [14]
introduced a histogram approach. This method is also relatively easy to implement and is
efficient, but unlike the maximum likelihood estimate, it does not have a clear
probabilistic interpretation. For some of the problems, the method is not applicable
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because the number of equations that can be obtained from the observation is less than
the number of parameters to be estimated.

Because of the unknown normalizing constant in the MRF model, some statisticians
have presented procedures to estimate this normalizing constant. Geyer and Thompson
[23, 24, 25] proposed a procedurz called Markov chain Monte Carlo Maximum
Likelihood Estimation in which the normalizing constant is estimated by samples from a
Markov chain Monte Carlo run based on an initial guess of the parameters. It turns out
that when the initial guess is close enough to the truth, this method works very well, but
for problems where the MRF probability function involves a large number of statistical
parameters, the computational cost is very high.

The preceding papers were reviewed in detail because they contain basic ideas that
motivated our interest in the general problem of generating facies distributions. Important
background on statistical theory related to these subjects is given in Cressie [9], Ripley
[45], Stoyan et al.[47], Besag [2] and Besag and Green [3]. References [9], [45] and
[47] are especially important as they provide information on the Hammersley-Clifford
Theorem which gives conditions such that conditional probability distributions used in
Markov random field models yield a consistent statistical model. We discuss the
generation of facies as three-dimensional geometical objects within a background facies
using Boolean models (or more generally, marked point processes) in another part of the
report. We note that marked point processes have been used in other related applications,
e.g., to model the distribution of faults [38]. We also note that various forms of marked
point processes have actually been applied to model geological architecture field cases,
see, for example, Refs.[12] and [56]. Both of these papers use a two step procedure. In
the first stage, a marked-point process is used to distribute facies and in the second stage,
a continuous Gaussian model is used to distribute petrophysical properties within each
facies. Finally, we note that there exist numerous papers on non-Boolean types
procedures for generating facies distributions, e.g., truncated Gaussian fields and
indicator methods, which are not discussed here. Good overviews of stochastic models
and the reasons for applying stochastic models are provided in Refs. [13], [28] and [39];
Ref. [58] presents a geologist's viewpoint.

Markov Random Fields

Basic Notation

When Markov random fields are applied for modeling geological facies distributions,
one must first divide the region of interest (2D surface or cross-section or 3D volume)
into an array of regular gridblocks, pixels or sites. We use S as the set of subscripts or
indices of pixels or sites. For example, for a two-dimensional MxN lattice, S = {(i, j), 1= i
< M, 1< j< N}, and for a three-dimensional system with N,xNyxN, gridblocks, S = {(i, j,
k), 121 < Ny, I j< Ny, 1<k < N, }. Here, each pair (i, j) or triple (i, j, k) is called a pixel
or a site or a grid-block. In theoretical developments, the notation is significantly simpler
if we use a single index for the random variables, i.e., S = {i, 1<i < n}. Here, n is the




number of pixels in the region of interest, e.g., n = MxN or n = NyxNyxN,. Although §
could be infinite, our discussion will be restricted to the cases where S is finite.

Throughout, capital letters such as X and Y, are used for random variables or random
fields and the corresponding lower case letters are used for realizations of these random
variables. Capital letters used without any subscripts are used to denote the random fields
from which the random variables are taken. For example, X ={Xj;, (i, j)S} represents a
two-dimensional random field; it is a collection of random variables, one defined at each
pixel (i, j). We use X to represent a subset of the entire random field X where C is a
subset of S. The notation P (x) refers to a probability mass function. Our objective is to
generate facies distribution on the system of pixels and consequently the random variable
can take only discrete values representing facies so P (x) is a probability mass function,
not a probability density function. Note we use P (x), instead of P (X = x), to denote the
probability that the random field X takes on a value x.

In our application, the random variable defined on pixel i (1S), X|, represents the
facies value located at pixel i since we wish to generate realizations of the facies
distribution on the system of pixels. For convenience, we use alphabetic letters, A, B, C,
... to represent different facies, but we use numbers, 1, 2, 3, ... as the facies values in the
corresponding computer program. The set of facies that each X can take on is denoted by
Foie, F={A,B,C,...}orF=1{12, ...... , K}, where K is the number of facies or
. values to be considered. A few basic definitions are in order.

Neighborhood System and Cliques

Definition 1: A collection of sets of subscripts 0={0; |1 € S} of S is called a neighborhood
system if |

(a) foreachies, ;S

(b) for eachieSs, ie0;

(c) foreachieS and jeS, j € &; implies i 3 G;-

This definition indicates that neighborhoods must lie within S, a pixel i is not its own
neighbor and if i is a neighbor of j, then j is a neighbor of i. Consider for example the
traditional first order neighborhood system in two dimensions. In this case, the neighbors
of a pixel i are the pixels immediately above, below, to the left and right of pixel i; see
Fig. 5.1.1a. Of course, this must be suitably modified in the obvious way when i is on the
edge of the pixel system, depending on what type of boundary treatment is applied. For
example, if pixel i is on the right edge of a two-dimensional lattice and a free boundary is
adopted, then the neighbors of i are only the pixels above, below and-to the left of pixel i;
see Fig. 5.1.1b. Thus, pixel i has fewer neighbors than the interior pixels. (From the
experiments that we have done, it appears that this free boundary procedure is the best
way to avoid visual boundary effects.) Similar adjustments should also be made around
the entire border.
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(a) (b)

Fig. 5.1.1(a) first order neighborhood of pixel i consists of the dotted 4 pixels;
(b) pixel i, has only three pixels as neighbors.

Fig. 5.1.2 — A hierarchical sequence of neighborhoods of pixel i in a
two-dimensional lattice.

Actually, there is a hierarchical sequence of neighborhood systems in a two-
dimensional lattice; see Fig. 5.1.2. The second-order neighborhood consists of the first-
order neighborhood plus the 4 nearest neighbors in the diagonal directions and the j™
order (j=1,2,...,5) neighborhood contains all pixels that are labeled with a number less
than or equal to j. Of course, neighborhood systems are not limited to the ones in the
above sequence, any set of pixels satisfying the definition qualifies as a neighborhood
system. Obviously the highest order neighborhood consists of the entire lattice. Notice
also that &;’s does not have to be the same for each pixel i. However, in our applications,
0; is chosen to be the same for every i in the lattice (homogeneity) except near the edges
where we use a free boundary.

Given a neighborhood system, a clique is defined as follows.

Definition 2: A clique c is a subset of S such that
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(a) c contains only a single pixel, or in the case that ¢ contains two or more pixels then

(b)ifi € cand j € c then i and j are neighbors of each other.

By this definition, individual pixels are cliques. The set of all cliques in a
neighborhood system is denoted by C. sometimes we use C; to denote the set of single
pixel cliques, C, the set of two pixel cliques and so on. Clique types for the first-, second-
and third-order neighborhood systems are depicted in Fig. 5.1.3.

(@)

——3 Above three plus

|

(d)

Above ten plus
>

©
Fig. 5.1.3 — Clique types for (a) first-, (b) second-, (c) third-order
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neighborhood systems in two dimensions.

Markov Random Fields

Definition 3: A random field X defined on S with probability function P(x), is said to be a
Markov random field with respect to a neighborhood system & if the following two
conditions are satisfied

(a) (Positivity) P(X =x) >0 for all xe Q .1.D)

(b) (Markovianity) P(x; Ixj , j#i) = P(x; Ixj ,j€0;) i,jeS (5.1.2)

where Q is called the sample space or state space. In our application, the size of Q
depends on the number of pixels as well as the number of values that each random
variable can assume, i.e., the number of elements in the set F. For example, if F contains
K elements and the lattice contains n pixels, then IQI=K". The positivity condition
requires that every x in € has a nonzero probability of occurrence. The second property,
called Markovianity, states that the conditional probability of X; taking on a value x;,
given values of all other Xj, depends only on the values of those X; located in the
neighborhood of i. This condition provides a way to compute conditional probabilities
easily and efficiently if the neighborhood is not very large. But, defining a MRF by
specifying a local property or conditional probability can make it difficult to determine a
joint probability function which is consistent with the conditional probabilities unless
care is taken. Ensuring a consistent probabilistic model is the objective of the
Hammersly-Clifford Theorem.

Gibbs Random Fields (GRF)

Definition 4: A random field X defined on S has a Gibbs distribution, or equivalently is a
Gibbs random field with respect to a neighborhood system ¢ on S, if and only if its joint
probability mass function P (x) is of the form

P(X=x)= %exp{--U(x)/T}, (5.1.3)

where

U(x)= ¥ V.(x.) is referred to as energy function and V,.(x,) is called the potential

ceC

function associated with clique c; the sum is over the set of all cliques C.

Z= 73 exp{— U(x)/ T}is simply a normalizing constant, also known as partition function,
xed

which ensures that the sum of the probabilities over all possible realizations x is unity.

This is necessary in order for P (x) to be a probability function. T is a constant (often

called temperature) which will be assumed to be unity unless otherwise stated




To calculate the Gibbs distribution, it is necessary to evaluate the partition function.
Since the size of the state space Q of X is K", even for a problems where K is small (two
for the case where there are only two possible facies) and the number of elements in § is
only a few hundred, the evaluation of the partition function is computationally intensive.
This problem adds to the complexity of deriving procedures for sampling and/or
estimating the statistical parameters defining the probability function.

Note also that V.(x.) is dependent only on the pixel values within a clique ¢, i.e., x.. For
our application, a clique potential V.(x.) can be specified by parameters which quantify
the influence of different configurations of x. on the characteristics of the entire random
field. This aspect will be discussed later in detail.

A GREF is said to be homogenous if V.(x.) is independent of the relative position
(location) of clique ¢ in S. It is said to be isotropic if V.(x.) is independent of the
orientation of c. In this work, homogeneity is always assumed unless we explicitly state
otherwise. Anisotropy will be applied to describe the direction-dependent characteristics
of the facies distribution.

The temperature T controls the sharpness of the distribution. When the temperature is
very high, all of the possible facies distributions have essentially the same probability and
consequently there is no pattern or structure in a realization generated, i.e., the

‘realizations looks much like random noise. If the temperature is near zero, realizations
the will concentrate around the global minima of U (x). This phenomenon will be
discussed later.

The origins of Gibbs distributions lie in the physics and statistical mechanics
literature. Much of the research results pertain to the Ising model (see Refs. [16, 35])
which is a special case of the Gibbs distribution. Unfortunately, the analysis of even this
very simple Gibbs distribution is difficult. In the application of modeling facies
distributions, the analysis is basically prohibitive because of the huge state space or the
intractable normalizing constant. The advantage of the Gibbs distribution is that it
provides an effective probability model by specifying a joint (or global) probability mass
function. The celebrated Hammersley-Clifford theorem indicates that a unique GRF
exists for every MRF and conversely as long as the Gibbs random field is defined based
on the cliques in a neighborhood system.

The Hammersley-Clifford Theorem

Theorem 1. (The Hammersley-Clifford Theorem) Assume that  P(x;,x5,...,X,)is a

probability function which satisfies the positivity condition and let {&; | ieS} be a
neighborhood system. If for each i, markovianity of Eq. 5.1.2 holds, then
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P(x1,X9,0.Xp) = %exp{—[z x;G; () + T x;x;Gy (x5, % 5)
i i<j (5.1.4)
+ inxjkal:]'k (xi,xj,xk )+-~+x1 '"anl,---,n (xl ,xz,---,x,,)]}
i<j<k
where each of the G functions is zero if the indices for that G function do not form a
clique. Subject to this restriction, the G functions may be chosen arbitrarily.

The last statement of the theorem should of course be interpreted as saying that the G
functions can be chosen arbitrarily subject to the restriction that they are zero if the
indices do not form a clique and then Z is chosen as a normalizing constant so that the
total probability is one.

Now clearly the formula for P can be written more compactly as the Gibbs distribution

1
P(xl,xz,---,x,,)=gexp(— >V.), (5.1.5)

ceC

where the sum is taken over all cliques. So the question which we now address is “what

restrictions must be placed on the functions V, in order to get a well defined probability

function.” In the discrete case, we require that the sum over all states of X be a finite

number, ie., Z= Y exp{— 2 V.(x,)} <. As long as the function can be properly
xeQ ceC

normalized, then it defines a probability function.

So the next question is whether or not joint probability function of Eq. 5.1.5 has the
type of conditional probability structure we desire. It turns out that it does and we might
attempt to solve this problem by expressing the relationship between the “V.” functions
and the G's. But, this is not the easiest way to proceed. Instead, we will prove directly
that the V, functions can be chosen arbitrarily.

Theorem 2. Given that the sum over all states of exp(— YV, ) is a finite positive number

ceC
(2), then
1
P(x1,x9,++,%,) =—exp(— XV,) (5.1.6)
Z ceC
is a probability function and
P(xi le,xz, ...... 3 Xj—] 5 Kjg] eeeeee ,xn)=P(x,- li,Jeal) (517)

Proof: We begin by reemphasizing that there are no restrictions on the values of the
probability function except that each probability must be non-negative and that the sum
of all probabilities must be exactly one. Since the exponential function is non-negative,
then P is a probability function.
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To continue, we recall that

P(xy,xp,0, %)

P(xile,---,x,-_l,x,-+1,~-,xn)= (5.18)
P(x1, 5 Xj1> Xit1 "5 X
Since P(xq,..., X;—],Xj4+15---»Xp) 18 the marginal probability, it follows that
P(xy, 0, X1 Xig15 005 X ) = 2 P(Xy, X9, , Xp)
X
(5.1.9)

=3 (Lexp(- £V,)}

X; ceC

where Y is the sum over all possible values of x. Using the above equations,
X;

—l— exp(- 2 V,) exp(—-Z V.)

Z ceC — i
-YV.)
s {% - ZVC)} Zexp(-IVe)

X; ceC

P(x; 1xy, oo X 15 X102 %) = (5.1.10)

where > in the exponent refers to the sum over all cliques containing x;.. The last
i

equality holds since all of the other terms factor out and cancel since the cliques for these
terms are independent of the summation over x;. That this expression is the same as
P(x; 1xj, j €0;) is intuitively reasonable but will be proven below, as it is not obvious.

In order to establish this final fact, we will need additional notation. Let 3 denote
the sum over all of the possible values of x; for all j such that j is not i and is not a

neighbor of i. As above, let 3. denote the sum over all cliques which depend on i and let
5 :

> - denote the sum over all cliques which do not depend on i. It follows that
—i
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Z exp(—' Z Vc )

P(x;,x;,j€8;) _5
P(x,-lxj,jeé’i)= i ].J 2 z ceC
P(x;,j€0;) I X expl- 2V,)
x; —&; ceC

% exp(-LV.)exp-LVe)

"I T exp-E V) expl-EVe)

eXp(-ZV,) X exp(-ZV.)
" Zexp(-TV,) T exp(-3V,)
x; i =g — (5.1.11)
exp(—-Z_) Ve)
" Texp(-3V,)
x; {

Note that the positivity condition is automatically satisfied since the exponential function
is positive. Note that we have also shown that are no restrictions on the choice of the
potential functions (the V.'s) except that they must depend only on values in cliques and
that they sum to a finite value. Also note that Eq. 5.1.6 expresses the joint probability
function as a Gibbs distribution.

The equivalence between a MRF and a GRF was also proved by Beseg[2] using a
factorization theorem. Through his proof of the Hammersley-Clifford theorem, Beseg
gives the most general form for the conditional probability such that it is consistent with
the joint probability given by Eq. 5.1.4 in Theorem 1.

The preceding theorem indicates that the global characterization of a GRF by its joint
probability function (Eq. 5.1.6) encapsulates the local characteristics of a MRF; see Eq.
5.1.7. This allows us to capture the global characteristics in modeling facies distributions
while using the local characteristics to sample the distribution. Theorem 2 also shows
that to define a MRF on S, it suffices to define the neighborhood system 8, specify the
associated cliques and then define the clique potential functions. How to choose the
forms and parameters of the potential function is the focus of much of the remainder of
this work. It should be pointed out that for neighborhood system, there are different
types of cliques, but we do not need to define explicitly potential functions for all of them
to capture structural features. We can specify nonzero values on some of them to capture
structural properties and simply define the potential to be zero on the other cliques.

Markov chain Monte Carlo sampling

Here, we assume that we have partitioned the domain of interest into n pixels. To each
pixel s, there is an associated random variable X. We define the random field X by

X = (X1, X2,.Xn) (5.1.12)
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where the random variable X; ,which can take on any one of the K values from the facies
set F, represents the facies in pixel s. As in our previous discussion, S denotes the entire
set of pixels (grid-blocks). We also assume that X is a Markov random field (MRF) with
respect to some neighborhood system 0 defined on S and that its probability mass
function is a Gibbs distribution. Thus, we can define conditional probability distributions
consistent with the joint probability function for X using the results of the Hammersley-
Clifford theorem as presented in Theorem 2. In this section, we use s and r to index
pixels, and 1 and j to represent states of a Markov chain for convenience.

The objective is to apply a Markov chain Monte Carlo (MCMC) method to sample X,
which we also refer to as sampling the probability distribution for X. This probability
distribution is again denoted by P (x). For our application, a Markov chain may be

thought of as a sequence of random vectors, X', £=0, 1, 2, ... Here each X* has the form,

X = (X4, X X, (5.1.13)

and the random variable X’ represents the facies at pixel s in state £. Each X* will have
its own probability function, P, (x), with the specific form of this probability determined
by how the stochastic variables (the X¢) in the Markov chain are defined. The theory of
Markov chains is summarized below. Additive details can be found in Refs. [26] and [51]
Applications to petroleum engineering problems can be found in Refs. {5] and [6]. Our
objective is to generate realizations of X by constructing a sequence x’ where x‘ is a
sample of X‘. If the Markov chain is constructed properly, eventually, the sequence of
samples we construct will represent samples of X. We refer to any specific sample x'
generated in the Markov chain as state i. For the problem of interest here, the state space
Q refers to all possible realizations of the random vector X. For the problem of interest
to us, at each of the s pixels, we can have one of K facies so the dimension of the state

space Q is K”. A Markov chain with a finite state space is referred to as a finite Markov
chain.

The objective is to construct the Markov chain such that
P,(x)=P (x), (5.1.149)

for all £ > L regardless of how Py(x) (the probability function for X% is defined. More
formally, if a Markov chain satisfies
lim P, (x) = P(x), (5.1.15)

{0

for any Po(x) defined on X°, we say that the Markov chain converges to the correct
probability function. If Eq. 5.1.14 holds and x* is a sample of X’ (or P,(x)) then the set of
realizations x’, /=L, L+1, ... represents an approximate sampling of X.
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. J
], ——|, (5.1.16)

which is often referred to as the Hastings-Metropolis condition. If g;; = g;;, then Eq.
5.1.16 reduces to

@ = minl:l, I; (("f))} (5.1.17)
X

which is the well known Metropolis [37] condition. The product of the q;; and a;; gives
the transition probabilities,

Zij =4i,j%i,j» (5.1.18)
and the IQIxIQ} matrix
z=[z;;l, (5.1.19)

is referred to as the transition probability matrix.

To construct a sequence of states in the Markov chain, we generate a sample x' of X°
by sampling Py (x). Subsequent states are generated by the following procedure. If x‘ = %
is a realization of X* (¢™ state generated in the Markov chain), we obtain a realization of
X! as follows: propose a new state .¢ (realization of X) with probability gi,;» and accept
this new state with probability a;;. If the new state is accepted, set x**' = x, otherwise,
set x**! = x'. The transition probability 7;j gives the probability that we will obtain state P
at step ¢+1 (i.c., obtain x' as a realization of X**') given that X! = ¥’ . If, as in our

application, the transition probabilities are independent of £, the Markov chain is said to
be homogeneous.

We let 7, = [ﬂi(jm)] denote the m™ power of the transition probability matrix, i.e.,

= 7. If for any i and j, there exists a finite m such that ﬂ'l-(jm)> 0, then the Markov

chain is said to be irreducible. If a chain is irreducible, then there is a nonzero probability
of obtaining any state in the state space in a finite number of steps. If there exists at least
one i such that 7tj; >0, the state space is said to be aperiodic.

The following theorem is well known (Refs. [21], [26]).

Theorem 3: A finite, homogeneous, irreducible, aperiodic Markov chain with acceptance
probabilities defined by Eq. 5.1.16 is convergent, i.e.,

lita Py (x) = P(x), (5.1.20)

]
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for any Py(x) defined on X°.

Next, a Markov chain Monte Carlo (MCMC) method for generating facies
distributions is considered. Assume that there are K facies in the set F={1,2,...,K}, and
the “prior” probability of drawing facies k is given by Ty, k=l, 2,...K , where we
require that

K
YT, =1. (5.1.21)
k=1

Let x= (x;,x2,...,xn) denote any state of X (see Eq. 5.1.13) and let n(x) be the number of
pixels that are occupied by facies k in the realization x. Then to honor this prior
probability distribution, it is desirable that

%™ . (5.1.22)
n

Since we wish to use the results of the Hammersley-Clifford Theorem to define
conditional probabilities, we define the probability function on X by

P(x)=P(X =x) =%exp{- zcvc (x)}. (5.1.23)
ce

'As previously, the MRF hypothesis implies that the conditional probability of the
random variable X is given by
PX;=x,1X,=x, 1<r<n,r#s)=
1 5.1.24
P(X, =%,1X, =x,,r e ;) =——expl= TV, (x)) (5-1.29)

s c.seC

where Z; is a normalizing constant and the last sum in Eq. 5.1.24 is over all cliques that
contain the pixel s, i.e., over all cliques contained in the neighborhood of s. As before, it
is simpler to rewrite Eq. 5.1.24 as

P(xg I x,,r#5)= —Zl—exp{— 2V (x)}. (5.1.25)

s c:seC

Now suppose x and x® are two realizations of X which differ only at pixel s, i.e.,
2 = (1, %2, Hoo1, XD, Xat, wens Xn) (5.1.26)
and
2D = (01, X2, Xs-1, %62, Xoaty coes Xo)- (5.1.27)
Now we have, _
P () =PV 1 3, 1 <1< 1, 1#8) P(x1, oo ¥sr1, Xosls -oes Xn) (5.1.28)

where the last probability function in Eq. 5.1.28 is the marginal probability for the
remaining n-1 random variables. Similarly,
PED)=Px@1x,1 <1< n,1#8) P31, oo Xs1, Xeals oo %) (5.1.29)
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Dividing Eq. 5.1.29 by Eq. 5.1.28 and using Eq. 5.1.25, it follows that

P(X(Z) ) - eXp {_ZCZSEC V(; (xc 2) )}
PGD)  expl-TegecVe e ™))

(5.1.30)

MCMC Algorithm

Here, we present the Metropolis-Hastings algorithm for generating facies distributions
on a system of pixels S. To generate the first state (realization of X% in the Markov chain,
one simply cycles through the pixels s= 1,2,...,n and at pixel s, one assigns facies k with
probability 7y. This gives the initial facies distribution generated from the prior
probability distributions {7, k=1,2,...,K}. Given that we have generated state x' as a
sample of X* at step ¢, the next state (sample of X*"') is generated by the following
procedure.

(i) Randomly choose a pixel s in S. Choose facies k” with probability Ty from the set of
facies and propose replacing the current facies located at pixel s by facies k’. If we
choose the same facies that already occupies pixel s, there is no point in continuing so we
actually exclude this probability and modify the Ty’s appropriately. The state (overall
facies distribution) that would be obtained by making this change at pixel s represents the
proposed state x'. Note that the probability of proposing a transition from state i to state j
is then given by
qij= Tx/n, (5.1.31)

where 1/ n is the probability of choosing pixel s, and Ty is the probability of selecting
facies k’ from the prior probability function. (If all facies are equally probable, then Ty =
1/K.) Also note that if pixel s is occupied by facies k in state X', then the probability of
proposing the reverse transition from ¥’ to x' is given by

gji= Ix/n. (5.1.32)

(ii) We have left to define the probability, a;;. From Eq. 5.1.30, we have

P(x7) _ exXp{—2 vec Ve (xc 7))
P(xi ) exp{—Zc:seC Vc (xci )}

Once the potential functions have been defined, using Eqgs. 5.1.33, 5.1.31 and 5.1.32 in
the Hastings-Metropolis condition (Eq. 5.1.16) defines o,

(5.1.33)

(iii) Accept the new state x' with probability o 4. This is done by generating a random
number with a random number generator (RAN2) first. If ay; is greater than or equal to
the random number generated, then replace the old state x' with the proposed new state x'.
Otherwise, keep the old state x' as the new state.




To assure that x° is the right sample from the probability distribution P(x), steps (i)
through (iii) may have to be repeated many times, say for L iterations, where here, one
iteration actually represents n attempted replacements, one for each pixel on average.
According to Theorem 3, once L is sufficiently large (formally as L goes to infinity), the
set of samples from that point on will represent a correct sampling of P(x).

Note that the only difference between x' and ¥’ is in the selected pixel s. Since the
limiting distribution P(x) appears only in the ratio P(x') / P(x') and the Markov hypothesis
applies, so only those cliques containing pixel s have to be included when evaluating
Eq. 5.1.16; see Eq. 5.1.33. This is the computational advantage of using MRF models.
Also note that Eq. 5.1.33 does not require knowledge of the normalizing constant (Z).

This basic MCMC procedure is done in the subroutine SIMULATION in the
FORTRAN program. (see Appendix 5A)

MODELING GEOLOGICAL FACIES DISTRIBUTIONS BY MRFS

As discussed in the introduction, our goal is to generate geological facies distributions
in a particular depositional system by using a MRF model that encompasses knowledge
obtained from geological information or interpretation. We seek a MRF model that can
generate realizations of facies distributions that exhibit the expected geologic features.
The first assumption in stochastic modeling is that a realization of the facies distribution
can be generated as a sample from a probability distribution, in our case, a Gibbs
distribution. We have seen that the Markov random field model defines a Gibbs joint
probability distribution on a set of random variables representing facies values. Of
course, we want the MRF model to impose statistical dependence in a spatially
meaningful way. This requires an appropriate definition of the conditional probabilities or
the Gibbs clique potential functions. Our general knowledge about facies distribution
includes the proportion, continuity, orientation and ordering of the facies. Therefore, we
must consider how to impose this “real-world knowledge” on the definition of clique
potential functions. It should be noted that MRF models have been extensively and
successfully used in image analysis for at least two decades. Models that are relevant to
our problem include the so-called multi-level logistic model of Derin and Elliott [14] and
the models of Strauss [47], and Beseg [4]. Although the body of literature concerning
MRF models in image analysis is vast, application of MRFs to the modeling of
geological facies distribution has only been considered recently; see Refs. [52], [53] and
[55]. Thus, problems such as the selection of the order of the neighborhood system, the
choice of cliques, the definition of potential functions, phase transitions, boundary
effects, and estimation of the model parameters, need to be studied systematically.
Below, we concentrate on appropriate definitions of the clique potential functions and
associated issues.
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MLL Model

As described previously, the joint probability mass function of a Gibbs distribution
with 7=1 is

P(x) = -;— exp{-U(x)} (5.2.1)

i

and the most general form of energy U(x), as shown in the Hammersley-Clifford
Theorem, is
Ux)= ZxG;(x)+ 2 xx G,J(x,,x )
1<ign I<i<j<n 5.2.2)
Foeneeee + X1 x2 - anl,2 ....... N (xl,x2, ety Xp )

Since we consider only homogeneous MRFs, i.e., assume that the clique potential
functions are independent of the locations of the cliques, we can rewrite the most general
form of U (x) as the sum of potential functions over all types of cliques, i.e.,

Ux)= Y Ve(xp)+ X VC(A,,x + X Vc(x,,x],xk)-!- ------ (5.2.3)
ieCy (i,7)eC, (i,j.k)eCy

where C;, C; and C; simply represent the sets of one-, two-, and three-pixel cliques
respectively. We will see that there are different types of cliques in each set. For example,
in a two-dimensional first order neighborhood system, there are two types of two-pixel
clique in set C;, e.g., horizontal cliques and vertical cliques.

The widely used Multi-Level Logistic (MLL) model for image processing applications
defines clique potential functions in terms of whether all pixel values in a clique are the
same or not. A clique potential function does not depend on exactly how pixel values
vary within the clique. Tjelmeland and Holden [54] tried this model. They defined all V.
=0 except on two-pixel cliques in a 2D, second-order neighborhood system. Thus, the
energy function is

Ux)= X Vc(x;,x5). (5.2.4)
(i, NeCy

On cliques containing exactly two pixels, say pixels i and j, define
Velx) = V=B (5.2.52)
if Xi =X and
Vi) =V =P ' (5.2.5b)

for some B > 0 if xx;. Note with this definition, the most probable realizations of X are
those that have the same facies at all pixels. In fact, unless B is very small, Tjelmeland
and Holden found that after a sufficiently large number of iterations, the states generated
in the Markov chain are all equal to a realization x, where one facies occupies all pixels.

On the other hand if B is sufficiently small, the realizations obtained look like random
noise.




Fig. 5.2.1(a) through 5.2.1(e) illustrate the case where one facies totally dominates after
a large number of iterations have been executed. In this case, we applied the Markov
chain Monte Carlo algorithm presented in the last chapter to a five facies example with Ty
=0.2 for k=1,2,...,5, and with § = 0.6 . Fig. 5.2.1(a) shows the initial distribution of facies
on a 60 x 60 grid, i.e., there are n = 3,600 pixels. Again, in our terminology, one iteration
consists of randomly selecting 3600 pixels in the MCMC simulation procedure. Each
time a pixel s is selected, we consider changing the facies at that pixel, i.e., consider
changing the value of x; using the perturbation mechanism described in the MCMC
sampling procedure. Fig. 5.2.1(b) through 5.2.1(d), respectively, show the facies
distributions obtained after 10, 5,000 and 20,000 iterations. Note that at iteration 5,000
only 3 facies remain and by iteration 20,000, except at a few “stray pixels”, only one
facies exists.

Hjelmeland and Holden [54] noted that some scenes (“realizations™) that have been
shown in the image processing literature, e.g., the one generated after 10 iterations in the
example of Fig. 5.2.1, are not truly representative of the underlying MRF model, but
instead represent results generated during the transient part of a Markov chain, i.e.,
represent scenes generated before the Markov chain has converged to its stationary
distribution. The problem of obtaining either a realization that is random noise or one that
contains only one facies occurs because of the “phase transition” problem; see Refs.
[16], [35] and [40].

Since, one would like most, if not all, realizations to contain all five facies and would
also like the prior probability distribution to hold approximately, it is clear the results
obtained in this example are inappropriate. To obtain an appropriate procedure, it is
necessary to modify the neighborhood system and the associated potential functions.
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{c) Facies distribution after 5000 iterations.

Fig. 5.2.1 — Realizations from MLL model
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Configuration model

- Tjelmeland [52] also noted that semi-MRF's have been proposed (see, for example
Ref. [54]) to generate more realistic structures, but the resulting models suffer from slow
convergence and may still be unable to control large-scale structures. Thus, following the
methodology of Beseg[4], Strauss [48], Tjelmeland and Besag [52], he proposed a MRF
with higher order interactions, i.e., larger neighborhood systems. In this model, the
conditional probabilities or the clique potential function is defined based on specific
facies configurations that exist within cliques. A configuration is defined in terms of the
facies that exist at each pixel within a clique including the structure of the overall facies
~ distribution within a clique. We refer to this model as a clique configuration model to

. avoid confusion with the general term configuration that is used in other fields to simply
represent a possible x in Q. This model is-sufficiently general to incorporate continuity,
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orientation and ordering. If the parameters are appropriate, the proportions of each facies
theoretically could also be controlled.

As before, we denote x as the facies configuration on a particular type of clique C,
(p=1,2,...,n) in a neighborhood systern, i.e., x. gives the set of facies occupying the pixels
of clique type C,. G, is a subset of C. Generally, we use only one or two types of cliques
in a neighborhood system, e.g., C, or C;. So we define V.(x;) = O for other types of
cliques. For example, if we wish to control the features of the realization by using only
single- and two-pixel cliques in a second-order neighborhood system, we simply consider
the potentials for all other cliques (3- and 4-pixel cliques) to be zero. Therefore V(x,) is
defined by

8, ifcest and x, € Dy, £=12,.....,N,_
Ve (xc)—{ 0 ifce Cp . (5.2.6)

where D,, £=1, 2, ... , N, are the specified configuration sets for cliques C,, and N is the
number of configurations which depends on C, and the number of facies K. The §’s
represent values which define the potential functions. In general we refer to the §,’s as the
model or statistical parameters. Apparently, the bigger the &, the less likely the
corresponding clique configuration since there is a negative sign in front of the
summation of potential functions; see Eq. 5.2.1. Conceptually, the values of the §,’s
control both the structure of any realization obtained as well as the expected value of the
relative number of pixels occupied by each facies. However, how to choose the §,’s to
control the structure of realizations or the number of expected number of pixels occupied

by each facies is not an easy problem. If the values of 6,’s are not appropriate, then the
sequence of states generated in the Markov chain may converge to a realization which
contains only one facies. This is the well known “phase transition” phenomena which
will be discussed in more detail latter.

Possible clique configurations for two-dimensional lattice are shown below. We define
a second-order neighborhood system on this lattice as shown in Fig. 5.1.3 and assume
potential functions are zero except on two pixel cliques. Also suppose that there are only
two possible facies, facies A and B. All possible two-pixel clique configurations as well
as the notation used for the corresponding potentials are shown in Fig. 5.2.2.
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Fig. 5.2.2 — Two-dimensional, 2-pixel clique configurations for 2 facies A and B.

The first configuration with potential &;; affects the continuity of facies A in the
horizontal direction. Larger negative values of #;; tend to promote continuity of facies A
in the horizontal direction. If we want to promote continuity of facies A in the horizontal
direction, we can assign a smaller value to &; than to other potential functions,
otherwise, we increase the value of ;. Similarly, a low value (or larger negative value)
of the potential 43 tends to promote a transition from facies B to A in the northwest to
southeast direction, or, more specifically to increase the probability that facies A will
occur to the right and below facies B. Intuitively, the clique configurations are very
simple, but all parameters have an effect on the realizations generated so choosing
appropriate values for a specific geologic model is not always easy. However, we can
generate a lot of relatively complicated facies structures by appropriate modification of
the potential values. This is a major advantage of the MRF model, i.e., it is possible to
determine the global structure, or more mathematically, the joint probability function by
using conditional probabilities with local characteristics. It should be pointed out that in
general, the above configurations are not considered rotation-free, e.g. 81%61%651%64;.
Thus, in general, the Markov random field is not isotropic. '

More complicated clique configurations can be obtained by cliques with more pixels
as shown in Fig. 5.2.3 in which S5-pixel cliques in a two-dimensional, third-order
neighborhood system are used, and 3 facies A, B, C are considered. We could interpret .
the first configuration (a) as a 2D corner for facies A and the second configuration (b) as
straight edge for facies B with facies C located above. However, we prefer not to use
cliques containing several pixels because this increases the computational cost, the
boundary effect problem tends to become more severe, and the complexity of the
implementation increases and intuitive understanding decreases.
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Fig. 5.2.3 — Examples of 5-pixel clique configurations for a 2D,
third-order neighborhood system.

Applying the Hammersley-Clifford theorem with the definition of Eq. 5.2.6 gives

P(3) =L exp(-U®} =Lexpt- TV, (x,))
Z Z ceC »
- (5.2.7)

=L exp (- ¥0,m, ()}

Z =1

where n,(x), =1, 2, ..., N, is the number of cliques in x with configuration D,.

To impose an ordering between facies, Tjelmeland [55] modified the above definition
and added additional parameters in the definition of potential functions. For example, he
used

V.(x.)=8F +BI(E.EN+ Y (E,E") (5:2.8)

for imposing vertical ordering in three dimensions. Here E is the facies value of the
current pixel, E’ denotes the facies value located below the current pixel of a clique and
E’’ denotes the facies located above the center pixel (in vertical direction). &°,’s and f*,’s
are used to impose an ordering on the facies, e.g., facies E” below facies E and facies E”’
above facies E. If no ordering is required, those parameters are just set to be zero. This
modification appears to introduce additional difficulty in the parameter estimation
procedure. Moreover, our experimernts showed that this modification is not necessary
because we can honor the ordering directly by appropriately defining the 8,’s. Using only
2-pixel cliques, we will see this clearly from the results presented later. Therefore, we
will define potential functions using Eq. 5.2.6.

Phase transition and penalty term
A MREF exhibits a phase transition problem (see Dubes and Jain [17], Pickard [40],

Derin [15]), that is, as parameters vary over critical values, abrupt change in statistics
occur and the realizations generated may contain only one facies as shown in Fig. 5.2.1.
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Pickard [40] interpret the phase transition problem as a specification of parameters such
that a short—term correlation between neighboring pixels develops into long-term
correlation. From another point of view, the Gibbs probability mass function for the MRF
in phase transition has several sharp peaks. Of course, models exhibiting phase transition
are not physically reasonable. To avoid the phase transition problem and assure the
validity of the models, we propose a modified configuration model based on a global
neighborhood system.

For a global neighborhood system and a given pixel i on S, all pixels j with j:i are
neighbors of i, i.e., je 4, for j #i. Moreover, all subsets of the complete set of n pixels are
cliques. However, we define V. = 0 on cliques unless the clique is contained in C,, (e.g.
except on two-pixel cliques) or the clique is the one containing all pixels. On the clique
containing all pixels, V. is defined as
K lﬁk (X)—Tk an

Vo(x)=3 (5.2.9)
k=1 O |

where 7 (x) represents the number of pixels in the realization x that correspond to facies
k. Since this clique contains all pixels of S, we drop the subscript ¢ on x. The ox
parameter is a scale factor and essentially specifies a term like the standard deviation for
the variable m(x). This V. function is referred to as a penalty term which penalizes
realizations which do not contain a reasonable (in a probabilistic sense) percentage of
each facies as prescribed by the prior probability function 7.

The definition of clique potential function V.(x.) for cliques in C, is similar to Eq. 5.2.6.

Therefore the probability of obtaining realization x is given by

P(x =%exp{ Y V.(x)- z'”"(x) "XTkl}

ceC, O

(5.2.10)

=lexp{— > np (00 ~ lnk Y, l}
z =1 .1l Ok |

Note that n,(x) and 7 (x) are different. The former represents the number of cliques in

x with clique configuration D,, and the later is the number of pixels occupied by facies k
in realization x.

MCMC for realizations of facies distribution

To generate a facies distribution, we generate a Markov chain. To do this, we begin by
generating an initial distribution of the facies by cycling through all pixels and assigning
a facies in each pixel by sampling from the prior distribution, i.e, the probability of
selecting facies k in pixel k is Ti, k=1,2,...,K, where K is the number of possible facies.
At each subsequent step, we randomly select one of the n pixels, say pixel s, which i 1s
currently occupied by facies k. We let x' denote the facies distribution obtained as the i™
state in the Markov chain and here, also refer to x* as the current configuration. We
propose a new facies k’ for this pixel by sampling from remaining K-1 facies and let b
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denote the new distribution of facies obtained by replacing facies k in pixel s by the new
facies k” we have selected. In the lan; mage of Markov chains, X' is the current state or i™
state and X' is the proposed state or j* state where as noted previously, X' represents the
facies distribution determined at the i™ step of the Markov chain. The probability of
proposing the transition from state i to state j is given by

T
g =7k (5.2.11a)

and the probability of proposing the reverse transition is given by

Ty
qji = Pl

(5.2.11b)

Note since we exclude choosing the same facies as the one currently occupied the Ty’s
actually must be modified to reflect the probability of drawing a potential facies from the
remaining K-1 facies. Thus, the Hastings-Metropolis acceptance criterion is simply

J
a;j =rmn[ 9ii =) | (5.2.12)

4 P(x)

Since x* and ' differ only at pixel s and the MRF hypothesis applies, we have
K |7 (x7)—nxT,
o oexpl- X V<\xc) > k() k'
P(x7) c:seC, k=1 Ok l

nk(xi)—nka ']

Oy l

(5.2.13)

c: seC

P(xh)
exp( > V(x) Z
k=1

where the first sum in each exponential term of the exponents is over cliques that contain
pixel s and are in C,. The ny’s in the second sums are evaluated on all the pixels of §.
However, in the implementation of MCMC sampling, we compute all the nc’s when
generating the initial distribution and then we simply keep track of how these numbers
change from iteration to iteration of the MCMC procedure. This significantly enhances
computational efficiency.

MODEL EXPERIMENTS FOR TWO-DIMENSIONAL PROBLEMS

Here, we present examples of the application of Markov Random Field models to the
modeling of geological facies distribution. Particular relevant issues, e.g., boundary
effects, clique types, order of the neighborhood system, and conditioning to observed
data are also addressed in this section.




Boundary effects and treatment

As discussed previously, the application of MRFs in practice inevitably deals with a
finite region, i.e., S, contains a finite number of pixels. This means that a border or region
boundary must be present. Depending on the order of the neighborhood system, the
pixels adjacent to the boundary or pixels at some distance away from the boundary have
missing neighbors. Fig. 5.3.1 illustrates the boundary effect where a two-dimensional,
second-order neighborhood system is used and only 4-pixel cliques are considered. Fig.
5.3.1a shows a complete second-order neighborhood for an interior black pixel and the
four 4-pixel cliques that contain this black pixel. Fig. 5.3.1b shows a boundary pixel
(black) located in the lower left corner of the two-dimensional region of interest, its
incomplete second-order neighborhood and the missing pixels (with dashed line edges)
for 4-pixel cliques that contain this pixel.

The boundary problem may be summarized as follows. Consider an isolated system of
pixels, S, over which the MRF random variable X, is distributed. The finite region §
consists of the set of interior pixels, S;, which contains those without missing neighbors
and the set of boundary pixels denoted by S, i.e., S=51USp and S;"Sg=0. The values of
random variables outside of § are not defined or available. If a pixel i is an interior pixel,
that is, ieSj, then the conditional probability P(xilx;, je&;) is completely defined in terms
of the potentials of the cliques contained in 6;. However, if i is a boundary pixel, that is,
1€Sp, then it is not clear how one should define P (xlx;, jed;) because, some of the pixels
that should be contained in &; are not within the region of interest. We can not expect that
P (xilx;, je;) to be equal to P (xil, jed’;) where 0’i=0; NS’ and §’=S \ i. Unfortunately,
how conditional probabilities are defined at boundary pixels will affect the joint

probability distribution.

(a) The second-order neighborhood of interior black pixel and its 4-pixel cliques.

(b) Boundary pixel (black), its second-order neighborhood and
4-pixel cliques, pixels with dashed-line edges are missing.
Fig. 5.3.1 — INlustration of boundary effect
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Griffith [27] provides both an extensive overview of this problem and a survey of
methods for dealing with it. Basically, there are three commonly used approaches in the
image analysis literature. In the free boundary treatment, missing pixels are simply
ignored. This treatment appears to be most applicable if cliques with less than three
pixels are used. If the cliques contain more than two pixels, then only some of the pixels
in a clique are missing and it appears that one must still define a conditional probability
on the reduced clique. As shown in Fig. 5.3.1 (b), there is only one complete 4-pixel
clique and one clique with all the neighboring pixels missing. For the other two 4-pixel
cliques, there are two pixels missing. If the free boundary is used, then either we must
ignore the clique potential for the later two cliques or define it in some way.

Using a periodic boundary is another alternative that has been proposed for treating
boundary pixels. This is illustrated in. Fig. 5.3.2 (a). In this procedure, we treat the row of
pixels along the top boundary as if they occur immediately below the bottom row of
pixels with a similar treatment at other boundaries. The main drawback to this treatment
is the introduction of an unexpected and undesirable correlation between boundaries, ¢.g.,
between the bottom row of pixels and the top row of pixels.

The final procedure for dealing with boundary pixels is to introduce an artificial guard
region or extra border. This is a very easy procedure to implement and guarantees that
every pixel in region S has a complete neighborhood and a complete set of cliques. But,
this introduces the problem of dealing with pixel values in the guard region, especially at
the boundaries of the guard region. If the guard region is large, computational costs are
increased significantly. How large a guard region should be used appears to be an
unsolved problem.

All three of these methods for dealing with boundary pixels attempt to provide a
medium for removing the bias introduced into spatial statistical analysis, especially
statistical inference, by the presence of boundaries. Tjelmeland [55] actually proposed a
procedure to define potentials on reduced cliques that occur near the boundary and we
have tried his and various other methods for defining potentials on reduced cliques, but
ultimately, we adopted the free boundary treatment. Since, we use only two pixel cliques,
this free boundary treatment is very convenient since reduced cliques never occur.

¥
(a). Torus boundary treatment. (b). Construction of guard region.

Fig. 5.3.2 — Periodic boundary and guard region for boundary pixels.
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Experimental results on second-order models

As discussed before, geological facies distributions, e.g., in a fluvial depositional
environment, may exhibit continuity, orientation and variation in facies body size,
anisotropy and large-scale facies structures. We first present results for experiments that
we have done for 2D problems using a second-order neighborhood. We illustrate how
model parameters control the pertinent characteristics of realizations of the facies
distribution. Three-dimensional problems are considered latter.

We consider a three facies case, so that we can impose special ordering on the
realizations. The 2D, second-order neighborhood system and the type of cliques are
depicted in Fig. 5.1.2 (a). If three facies labeled A, B and C are considered and only 2-
pixel cliques are used, then the only possible clique configurations are those shown in
Fig. 5.3.3. In our discussion, the first subscript on the parameters represents the clique
type and the second subscript indicates configuration type. We will refer to horizontal 2-
pixel cliques in two dimensions as clique type 1, vertical 2-pixel cliques as type 2, 2-pixel
cliques in southwest-northeast direction as clique type 3 and cliques in northwest-
southeast direction as type 4.

From Fig. 5.3.3, we note that there are a total of 36 configurations, or parameters, for
this three facies problem.

All the realizations assume a 64x64 grid, i.e., 64 gridblocks in each of the two
directions. Thus, our domain contains 4,096 pixels. The number of iterations for the
MCMC algorithm is 1000 and the free boundary treatment is applied.
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Fig. 5.3.3 — Clique configurations and the corresponding potentials

for three facies A, B and C.
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We can see from Fig. 5.3.3 that there are a total of 36 configurations or statistical
parameters for this three facies case, nine for each type of clique. Each parameter has its
own physical interpretation. For example, 03; represents the continuity of facies A in the
southwest to northeast direction in the sense that a large negative value of 03;; promotes
continuity of facies A in this direction that should be exhibitedly in realizations of the
facies distribution obtained by sampling the resulting Gibbs probability function.
Similarly, the value of 043 has a strong influence on the transition (or ordering) between
facies C and A in the northwest to southeast direction. If 643 is a relatively large negative
number, we expect to see transitions from C to A in this direction and there will be a
tendency for facies C to appear ““above’’ facies A in this diagonal direction. If, for
example, more continuity in the horizontal direction is desired in the realization, this can
be accomplished by using larger negative values of 6;, 6;5 and 0,9, Although, these
simple intuitive arguments are valid and can normally be used to select parameter values
so that realizations have the desired features, all parameters influence the joint probability
function and the effect that the interaction of all 36 parameters will have on realizations is
not always obvious.

All realizations shown in Fig. 5.3.4 again pertain to a 64x64 grid system. However,
each realization was generated with a different set of parameter values that were selected
to promote a particular type of structure in the realizations. Each realization represents
the one obtained after 500 iterations of the MCMC algorithm, and in all cases, the free
boundary condition was applied. Facies A is blue, facies B is green and facies C is red.
All the potential values for each realization are listed in Table 5.3.1. The purpose of this
example is to show that a variety of facies structures (orientation, continuity, ordering
and shape of the facies body) can be captured by appropriate selection of the values of
potentials, i.e., the 0 values.

Note that in Fig. 5.3.4a, each of the facies A, B and C is highly continuous in the
horizontal direction because the most negative values were assigned to 611, 6;5 and 69;
all were set equal to —1.5; see Fig. 5.3.3 and Table 5.3.1. Also note that in Fig. 3.4(a),
facies B (green) tends to be found above facies C (red) and below facies A (blue). These
features were promoted by the following strategy. We assigned a relatively large negative
number to 0,6 which gives a high probability to the occurrence of the green facies above
the red facies while assigning 0,3 = 0.5 which gives a much lower probability to the
occurrence of the green facies below the red facies. Note we also set 6,4 = 0.5 to
discourage the appearance of the green facies above the blue facies. By using this same
type of strategy to assign values for the other 0’s, it was easy to promote the ordering
shown in Fig. 5.3.4a. Also note that relatively high values (0.5) were assigned to all 6’s
pertaining to diagonal cliques as we did not wish to promote either continuity or
transitions in the diagonal directions. Note that we set 0;; =05 =0,5 = -0.5 as we do
wish to have some continuity in the vertical direction.
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To obtain the results shown in Fig. 5.3.4 (b)-(d), we assigned relatively large negative
values to the potentials that control continuity in particular diagonal directions. It is
instructive to compare Fig. 5.3.4b and c. In both cases, we assigned 04,=045=049=-1.5 to
promote continuity in the southeast to northwest direction. However, in (b), except for
047, we used smaller theta values than in (c) for the configurations that promote
transitions in the southeast to northwest direction. Thus, in (b), we see more transitions
between facies in this direction. In both cases, in the southwest to northeast direction, we
see that transitions occur from red (facies C) to blue (facies A) (this transition is
controlled by 037;=-0.5 and 633=0.5), from blue to green (facies B) (this transition is
controlled by 03, and 034 and from green (B) to red (C); this last transition is controlled
by 03¢ (negative in both cases) and 0.3 =0.5. Case b was generated using a penalty term
(see Eq. 5.2.9 and the discussion in the next subsection) to ensure that the proportion of
each facies in any realization is close to the prescribed value noted in the figure caption.

The results of Fig. 5.3.4d are similar to those of Fig5. 3.4c except that to generate the
realization shown in Fig. 5.3.4d, we specified 6 values to promote continuity in the
southwest to northeast direction. The most interesting feature of Figs 5.3.4e and 5.3.4f is
that there is never a transition from red (facies C) to the green (facies B). This was
accomplished by setting the values of 6 that control transitions between these two facies
to unity to discourage any such transitions.

Conceptually, the values assigned to the statistical parameters should determine the
relative proportion of each facies appearing in any realization, however, we have been
able to tightly control these proportions only by using a penalty term. The penalty term
also causes the model to be stable. In many cases, if the 6’s are not chosen carefully, then
after a large number of iterations of the MCMC procedure, the states generated all
contain only one facies. As discussed in more detail in the next subsection, the penalty
term prevents this.

Stability of the model and the penalty term

As noted previously, MRF models suffer from the phase transition problem. In this
report, the “phase transition” refers to a selection of model parameters that tend to cause
realization to contain only single facies. In other words, the MCMC sampling procedure
always generates a realization that cortains only one facies if a large number of iterations
are done. More specifically, there exists a range of values of the 8’s such that the MCMC
sampling procedure will generate realizations which have similar features. But if all
parameters are divided by a sufficiently small constant, then the MCMC will generate
realizations from some point on such that all states contain only one facies. On the other
hand, if the 6 values are all divided by a sufficiently large constant, then realizations will
always have the appearance of random noise. If the MRF model parameters are such that
we generate reasonable realizations, then the model is said to be or refered to a stable or a
equilibrium model. If the values of 6’s specified result in a stable model, then from the
point in the Markov chain where we begin sampling the probability function correctly,
the relative proportion of each facies will oscillate within some reasonable range as the
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iterations proceed. Fig. 5.3.5 shows 4 realizations from the same model used to generate
the results of Fig. 5.3.4 (a).

Table 5.3.1 — Potential values for realizations (a) through (f) in Fig. 3.4

Para- (2) (b) (©) (d (®) ®
meter .

0, | -15 | 03 |03 03 06 |03
6, | 05 | -02 |02 |-02 1.0 1.0
8 | 05 0.5 0.5 05 1.0 1.0
8. | 05 | 05 05 05 1.0 1.0
0 | -15 | 03 |03 | -03 06 | -03
8 | 05 | 03 |02 | -02 1.0 1.0
8, | 05 | 05 |02 |-02 10 1.0
B | 05 05 0.5 0.5 1.0 1.0
8o | -15 | 03 | 03 0.3 06 | -03
6, | 05 | -03 | -03 03 05 | 05
8, | 04 | 05 202 05 10 1.0
6 | 05 | -03 0.5 02 07 | -07
6, | 05 | -03 0.5 0.2 07 | -07
8,5 | 05 | -03 | -03 | -03 05 | -05
6.5 | 04 | 03 | 02 0.5 1.0 1.0
0,, | 04 | 05 0.2 0.5 10 1.0
85 | 05 | 03 0.5 02 1.0 10
8,0 | 05 | -03 | -03 0.3 05 | -05
8, | 05 | 05 |05 |-15 03 | -06
8, | 05 | 02 | 05 05 05 05
853 | 0.5 0.5 0.5 0.5 05 05
s | 0.5 05 0.5 0.5 05 05
s | 05 |05 |05 |-15 03 | -06
8 | 05 | 03 | -05 0.5 10 | 10
8, | 05 | -05 | -05 0.5 0.5 05
8z | 05 05 0.5 0.5 1.0 10
8 | 05 | 05 | 05 15 03 | 06
By | 05 | -15 | -15 0.5 04 | 04
8, | 05 0.2 0.5 202 05 05
65 | 05 | -03 | 05 0.5 05 0.8
0. | 05 | 03 0.5 0.5 05 05
05 | 05 [-15 |-15 | -05 04 | 04
0 | 05 0.3 0.5 0.3 1.0 1.0
0.7 | 05 0.5 0.5 0.5 05 05
0 | 05 | 03 0.5 0.5 1.0 1.0
0 | 05 | -15 |-15 05 04 | 04
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(a) Uniform prior distribution for facies, () A=30%, B=60% and C=10%,
without penalty term. with penalty term and ¢,=1.0, k=1,2,3.

(c) Uniform >prior distribution for facies, (d) Uniform prior distribution for facies,
without penalty term. with penalty term and ;=1.0, k=1, 2, 3.

(€) A=50%, B=20% and C=30%, () A=50%, B=20% and C=30%,
with penalty term and 6,=1.0, k=1,2.3. with penalty term and 6,=1.0, k=1,2,3.

Fig. 5.3.4 — Realizations of 2D, second-order, clique configuration models.




(b) Realization after 600 iterations.

(c) Realization after 700 iterations. (d) Realization after 800 iterations.
Fig. 5.3.5 — Realizations from the model (2) of Table 3.1 show similarity in features.

These realizations are from a long run of the MCMC procedure. Realization (b) occurs
100 iterations after realization (a) and so on. We can see very clearly that the structures in
all four realizations are similar; all exhibit continuity in the horizontal direction and the
same ordering between facies in the vertical direction. But, the relative proportion of the
facies varies from realization to realization as shown in Fig. 5.3.6. The percentage of each
facies contained in realizations of Fig. 5.3.5 is as follows: in the realization of Fig. 5.3.5
(a), A (blue) = 30.4%, B (green) = 33.7%, C (red) = 35.9%; in (b), A = 29.2%, B =35.5%,
C =35.2%;in (c), A =33.1%, B = 34.6%, C = 32.3% and in (d), A=33.9%, B = 32.4%,
C=33.7%. «
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Fig. 5.3.6 — The change of proportions of the facies with the number of iterations.

Although we obviously wish to choose values of the statistical parameters (values of
the 0°s) to obtain a stable MRF model, for complicated models with a large number of
statistical parameters, it is difficult to estimate 0 values that will ensure stability. It is also
difficult to estimate which will yield realizations that contain relative proportions of
facies within some specified range. Both of these problems can be overcome by using a
penalty term. After a number of experiments, we ultimately choose the penalty term
given by Eq. 5.2.9 which is repeated here as

K \m -
V0= 3 PO Tk (53.1)
k=1 O

In general, if we use Eq. 5.3.1 with =1, then the states generated in the MCMC
procedure converge to a realization which does not change at subsequent iterations. The
results of Fig. 5.3.7 exhibit this phenomenon. The model used to generate the results of
Figs.5.3.7 and 5.3.8 are the same as the model with the set of potentials listed in Table
5.3.1 column d. As can be inferred from the four realizations shown in Fig. 5.3.7, all .
states generated between iteration 500 and iteration 800 are for all practical purposes
identical. Since we wish to generate a set of independent or at least uncorrelated
. Tealizations, this is not a desirable feature. However, the problem can be avoided by



simply starting with a different initial random field and constructing another Markov
chain. ' '

(a) Realo after 500 iterations.  (b) Realization after 600 iterations.

(c) Realization after 700 iterations. (d) Realization after 800 iterations.

Fig. 5.3.7 — Realizations of the model listed in Table 3.1(d), with penalty term and
a=1.0, fork=1, 2, 3.

Fig. 5.3.8 presents the fraction of each facies occuring with a realization versus the
number of iterations of the MCMC algorithm. The set of results shown by a solid line
pertains to the results of Fig. 5.3.7. Note that after a relatively small number of iterations
all realizations contain 33.33% of each facies. The other curves in Fig.-5.3.8 show results
obtained when a penalty term is not applied. In this case, the number of pixels occupied
by Facies C tends to continually increase. Although not shown, after 3000 iterations, all
realizations generated contained only facies C
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Fig. 5.3.8 — Fractions of facies versus the number of iteration, from the model with
penalty term ( straight line) and without penalty term.

By relaxing the penalty term, i.e., increasing ox, we obtain a model such that the
fraction of pixels occupied by each facies is not fixed, but varies within some reasonable
range. This relaxation factor is chosen to attempt to specify a reasonable variation in the
desired relative proportions of each facies. For example, if we wish to have a 6%
variation in the fraction of each facies, then we set (for k=1, 2, 3)

oy =0.06xT} xn:z0.0éx%x(MxM):H. (53.2)

where 7 is the prior probability of facies k and # is the number of pixels in the region S.
Essentially, o represents a term somewhat similar to the standard deviation for the
variable n where the mean of each x is n 7 and the set of vanables m, k=12,.. K,
have a multivariate Gaussian distribution.

The results of Fig. 5.3.9 pertain to the same model considered in Figs. 5.3.7 and 5.3 8.
Note in Fig. 5.3.9, we compare the variation in facies from state to state in the Markov
chain generated. Note when the relaxed penalty term is used, the fraction of each facies
obtained in the realizations varies within a narrow range. For example, from iteration 300
on, the fraction of facies B obtained varies from 0.27 to 0.39 approximately as we
expected from the chosen 6,=72. While with o,=1, the fraction of facies B was 0.33 and
basically no variation.
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Fig. 5.3.9 — Variation of facies fractions with the number of iterations for the
model with strong penalty, relaxed penalty and without penalty.

Conditioning of the model to observations

In generating realizations of the facies distribution with a MRF model, we would like
to condition the realizations to well observations. This conditioning is easy to implement.
We simply fix the facies (at gridblocks penetrated by wells) to their observed values and
do not perturb them during the MCMC sampling procedure. It might also be expected
that conditioning realizations to observed data will tend to make the model more stable
and reduce the phase transition problem. If all facies are observed at well locations, then
all facies but one can not disappear since the observed values are fixed throughout the
MCMC simulation. The two examples presented in this subsection indicate that
conditioning data reduces the phase transition problem.

In the first example, we apply the model with potential values listed in column d of Table
5.3.1 except that we interchange the potential values in the two diagonal directions to
obtain continuity in the southeast to northwest direction. Without a- penalty term, this
model is unstable; see Fig. 5.3.8. Fig.5. 3.10 shows realizations obtained at iteration 400,
600, 800 and 1000 of the MCMC procedure. As we can see from the realizations, the

proportion of facies C found in a realization tends to increase fairly rapidly as the
iterations proceed even though at iteration 1000 the basic structure promoted by our
choice of the statistical parameters is still maintained. The results of Fig. 5.3.10 were
generated without using conditioning data and no penalty term was used. To clearly
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illustrate the effect of conditioning data, we did the same run as in Fig. 5.3.10 up to 400
iteration, but from iteration 400 on we fixed the values in the 32™ column of gridblocks
to the values obtained at iteration 400. Thus after 400 iterations, facies values on this
column serves as conditioning data. '

(a) Realization after 400 iterations. (b) Realization after 600 iterations.

(c) Realization after 800 iterations.  (d) Realization after 1000 iterations.

Fig. 5.3.10 — Realizations from a degenerated model.

Fig. 5.3.11 shows a plot of facies fractions in realizations obtained by the MCMC
method versus the number of iterations. Results are shown both for the case where
conditioning data were used and for the case where conditioning data were not used. It is
apparent that if no conditioning data is used, realizations will eventually contain only
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facies C. However, when conditioning data is used the fraction of pixels occupied by
facies C tends to stabilize, or at least its rate of increase is retarded.

Fraction of Facies

0.1 -1

0 100 200 300 400 500 600 700 800 900 1000
Tterations

Fig. 5.3.11 — Facies fractions before and after model conditioning.

The results of Fig. 5.3.12 are similar to those shown in Fig.5. 3.11 except in the
results of Fig. 5.3.12, we applied the conditioning data beginning with the very first
iteration of the MCMC algorithm. Again, although the fraction of pixels occupied by
facies C tends to increase, the conditioning data tends to modulate the rate of increase.
One would of course expect that adding additional conditioning data with slow the rate of
increase even more.
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Fig. 5.3.12 — Comparison of facies fractions as the number of iterations.

EXPERIMENTS FOR THREE-DIMENSIONAL PROBLEMS

In this section, we present results for the case where we wish to generate facies
distributions in a three-dimensional volume partitioned into pixels with N, pixels in the x-
direction, N, in the y-direction and ¥, in the z-direction. We first consider the 3D model
used by Tjelmeland [S5]. We use the same three dimensional third order neighborhood
system that he used. This neighborhood system, which contain 25 pixels, is shown in Fig.
5.4.1 in terms of layers (vertical or z-direction pixels). The pixels in the neighborhood
system are labeled with three indices where the first index as the x-direction index, the
second as the y-direction index and the third as the z-direction index. Thus, the center
pixel of the neighborhood is (i, j, k) and, for example, pixel (i, j, k+2) presents a pixel
two pixels directly above the center pixel in the z-direction. The neighborhood shown in
Fig. 5.4.1 contains seven cliques containing exactly seven pixels. These cliques are
shown in Fig. 5.4.2.




i, j, k+2
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i, j-1, k-1

i,j, k2

Fig. 5.4.1 - The cut layers of the three dimensional 3rd-order neighborhood
system, 24 neighbors, on five layers.
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Fig. 5.4.2 - The 7- pixel cliques in the neighborhood system




Tjelmeland defines the potential functions (the Vs in the Hammersley-Clifford
Theorem) based on the configuration that exists in a particular clique. Potential functions
are defined to be equal to zero on all cliques except the 7-pixel cliques shown in Fig.
5.4.2. Fig. 5.4.3 shows all the configurations specified for the case where we wish to
distribute only two facies, facies A and facies B and the center pixel in the clique is
occupied by facies A. Configuration 1 refers to the case where all pixels are occupied by
facies A. Configuration 2 represents the case where any one non-central pixel in the
clique is occupied by facies B and all other pixels are occupied by facies A.
Configurations are assumed to be rotationally invariant so the location of the white pixel
is immaterial as long as it does not occupy the center pixel.

Fig. 5.4.4 shows all possible equivalent alternatives for configuration 2 through 6.
Again, we emphasize that Fig. 5.4.3 shows the 7 possible configurations where the center
pixel is occupied by facies A. There also exist seven configurations with facies B
occupying the center pixel. These can be obtained from Fig.5.4.3 simply by interchanging
facies A and facies B, i.e., replacing all white pixels by shaded pixels and all shaded
pixels by white pixels. Thus, there are actually 14 specified possible configurations.

Returning to the general case and following Tjelmeland, we let x. denote the facies
configuration on clique c, i.e., x; gives the set of facies occupying the pixels of clique c.
We define V.(x;) = O unless c is one of the seven pixel cliques shown in Fig. 5.4.2. On
each of these seven pixel cliques, V() is defined given by

V_(x,) = 0; if x,eD;1=12,...N, . (5.4.1)
0 otherwise

where D,, £ = 1,2,....N,, are the predefined configuration sets (see Fig. 5.4.3 and Fig.5. 4.4
for the two facies case), and N. denotes the number of configurations and the 4,'s
represent values which define the potential functions. In Eq. 5.4.1, x. represents the set
of facies that occupy the pixels of clique c.
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B BlAJA B
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Fig. 5.4.3 - The 7 configurations specified with facies A in the center pixel.
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The values specified for the §,°s control both the structure of any realization obtained
as wells as the expected value of the relative number of pixels occupied by each facies.
However, how to choose the 4,°s to control the structure of any realization or the
expected number of pixels occupied by each facies is not an easy problem. As discussed
later, it appears that the best approach is to try to specify the desirable number of each
configuration that we wish to appear in any realization.

(a) Configuration 2 and its alternatives.

Features: 1. There are 5 pixels with the same value as the central one.
2. One pair of the opposite pixels is different and other two are similar.

(b) Configuration 6 and its alternatives.

Features: One of the pixels is similar to the central pixel and all the others are not.
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(c) Configuration 3 and its alternatives.
Features: 1. Four pixels are similar to the central one.
2. One pair of opposite pixels are the same as central pixel and

other two pairs are not.

(d) Configuration 4 and its alternatives.

Features: 1. All the opposite pixels are different.
2. Three pixels are similar to the middle one.




A
BB Al| B BB Al B Bi{iA|lA|B|[|B
B
B
BilA Bi{lB Al]lB B||B AlJlAJA]|B||B
Al|lB Bi||B AJ]|lB|AJA]|]lB BijBiIAlA]|]A
B
B A
Bil]lAJ]A]B]|]A Bj||B B|| A BI|B BI]A
B

(e) Configuration 4 and its alternatives.

- Features: One pair of the opposite pixels is different from the central one.
Other two pairs are both different but one pixel in each pair is similar
to the middle pixel.

Fig. 5.4.4 - Clique configurations and alternatives.

Boundary treatment

A pixel adjacent to the boundary or one pixel away from the boundary has missing
neighbors as discussed before. In stead of using a free boundary treatment, we work with
an extended lattice, {-1:Nx+2, -1: Ny+2, -1:N,+2}, rather than the real lattice of interest,
{1:Ny, 1:N,, 1:N,}, where Nx, N, and N, are the numbers of pixels in x, y and z directions
respectively. The guard region is {-1:0, -1:0, -1:0} and {N+1:Nx+2, Ny+1:N+2,
N +1:N+2}. The extended lattice is initialized by uniformly sampling from the X facies.
But when doing a simulation, we only perturb the pixels in the real lattice of interest and
all the facies values in the extra cells remain unchanged. This approach makes the
development of the source code very easy. The disadvantage of this method is the extra
storage required due to the increase in the lattice dimensions. More .importantly, adding
two rows of pixels is not sufficient to eliminate edge effects.

Two facies examples

Here, the procedure is applied to generate three-dimensional realizations of facies
distributions in the case where only two facies (facies A and facies B), are present (K =
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2). For this case, the fourteen configurations and all the equivalent alternatives are shown
in Fig. 5.4.3 and Fig. 5.4.4. The values of the 6, ‘s are specified as

(gla 327 935 04,657 g6’ 97)={08,99’ el()a 0115912’6137614)
=(-2.0,-2.0,-1.2,-1.2, 1.0, 1.5, 5.0).

Note that decreasing the values of some 6, with all other 8’s kept fixed will increase the
probability of configuration ¢ ({ = 1,2,....,N,). Thus, in this case, the most probable
configurations are configurations 1 and 2, 8 and 9. Also note that since the clique
potential with facies A in the center pixel are identical to those with facies B in the
center, i.e., &= 6,7, i=1,2, ...,7, thus the expected value of the fraction of pixels occupied
by each facies is 1/2. As before, in all simulation results, one iteration refers to proposing
n perturbations where »n is the number of pixels. For this example, we work with a
40x40x40 lattice, i.e., n = 64000. Fig. 5.4.5 shows a realization of the facies distribution
after 1,000 iterations. Qualitatively, similar realizations were obtained for all L > 200,
where L denotes the number of iterations. This provides an indication that after 200
iterations, we begin sampling the probability function for the facies distribution correctly,
i.e., it requires roughly 200 iterations to pass through the transient period of the Markov
chain. Figs. 5.4.5 and 5.4.6 show realizations obtained after the 500 and 1000 iterations.
Note that Figs. 5.4.5 and 5.4.6 display qualitatively similar structures but the specific
pixels occupied by facies A are quite different in the two cases. In Figs. 5.4.5 and 5.4.6,
resolutions in the coordinate directions refer to the size of the pixels, i.e., all pixels have
dimensions Ax, Ay, Az, where Ax = 2Ay = 4Az. For the realization of Fig. 54.5, 51.02%
of the pixels are occupied by facies A whereas in the realization of Fig. 5.4.6, 50.29% of
the pixels are occupied by facies A.

The penalty term was not applied for the above example and the three facies example
in the next section.




Fig. 5.4.5- A realization of 3D, two facies model, 40x40x40 lattice,
500 iterations, sections cut at x=y=10, z=3, the resolutions
inx, vand zdirections are 1, 2, 4.

Fig. 5.4.6 - A realization of 3D, two facies model, 40x40x40 lattice,
1000 iterations, sections cut at x=y=10, z=5, the resolutions
in x, y and z directions are 1, 2, 4.




Three facies case

In the three facies case, we label the facies as A, B and C. In this case, we split
configurations 3 and 4 in Fig. 5.4.3 into two configurations, one for cases where only two
facies are present in the configuration and another for the cases where three facies are
present. We denote the separated configurations by configuration 3 and 8 (these replace
configuration 3 in Fig. 5.4.3), and configurations 4 and 9. Therefore, we have 27 basic
configurations, nine of them have facies A in the center pixel, nine have facies B
occupying the center pixel, finally, nine with facies C occupying the center pixel. In these
configurations, there can be only two facies present in configurations 1-7, 10-16, 19-25.
These two facies could be A and B, A and C, or B and C, depending on the facies in the
center pixel. The other six configurations, 8 and 9, 17 and 18, and 26 and 27 have three
facies present. Fig. 5.4.7 (which appear after Fig. 5.4.8) shows the nine configurations
pertaining to the case where facies A occupies the central pixel. Only one possible case is
shown in configuration 8 and 9, but there are several possible combinations for cases
where three facies are present. For example, suppose facies A is in the center pixel of
configuration 8, then both configurations shown in Fig. 54.8 are considered to be
equivalent configurations and are give rise to the same value of 0s.

A A

Al |A|AJA]| | C Al |Al1AJA]| | B

B C

Fig. 5.4.8 - Configuration 8 with three facies present and facies A in the center pixel

We label the @ 's for these configurations as 8*, 4° and € j = 1,2,...,9, where the
superscripts refer to the facies occupying the center pixel. As in Fig. 5.4.3, these
configurations are assumed to be independent of rotation. Thus, there exist equivalent
alternatives as in Fig. 5.4.4.

If x. represents the facies distribution on a 7-pixel clique with facies D (D = A, B or
C) in the center pixel, and x, is the configuration corresponding to 6 j» then the potential
function is defined as

V.(x.) =67 + g5(D,D"+ g4 (D,D", - (54.2)

where D’ denotes the facies located below the center pixel (in the z-direction) and D”
denotes the facies located above the center pixel (in the z-direction). The 8%’s and B8%’s
are used to impose an ordering on the facies, e.g., facies B is above facies C and facies A
is below facies C. If no such ordering is desired we need to set

B5(D,D") = p%(D,D") =0. (5.43)
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Fig. 5.4.7 - The specified 9 configurations with facies A in the center pixel

Note the B%’s and B"j’s control ordering in the z-direction, but we could use similar
terms to control the ordering in the x and y directions. Unlike Tjelmeland [55], we

require that the. §’s and B%’s, depend on the overall configuration, not just on the facies
in the center pixel and the ones above and below it.
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Three facies examples

In this example, the 8’s and s are defined below.

If facies A is in the center pixel, then the values of the 0’s on the nine configurations

are given by

0%=(64,6",.., 6" =(-2.0,-1.98,-1.6,-1.2,1.0,1.5,5.0, -1.8, -1.6).  (5.4.4)
Similarly

0°=(6°.6",.... 6% = 6%, (5.4.5)

and also

8°=(65,6°5,.... ) =(-19,-1.98,-1.8,-1.6,1.0,1.5,50,-1.8,-1.6)  (5.4.6)
where the @'s without subscripts are vectors.

The vectors 4(D,D") and £,(D,D") are defined by

B1(D,D") = (B} (D,D"),B5 (D, D",......5(D, D")
B (D, D")= (B} (D,D"), 5 (D, D"),...... 34 (D, D")).

In this example, we specify

B (A, A)= B%(A.B)=00, 5(B,A)= B'(B.B)=00, 5(C,C)=00, j=12,
pla.c)=plB,Cc)=pl(C.4=p}(C.B)=00,
B5(A4,C)=1.0, B(B,C)=-0.1, B4(C,A)=-0.1, BL(C,B)=10, j=23,....9.
Similarly
B%(A,A) = B4(A,B)=0., B%(B,A) = B4(B,B)=0., f4(C,C)=0., j =12,

BL(A,C) = B{(B.C)= B(C,A) = B{'(C,B)=0.0,
Bi(A,C)=-0.1B7(B,C) =1, B5(C,A) =1, B5(C,B) =-0.1, j = 2.3,

These £ values were chosen to make it highly probable that facies C will occur below
facies B and above facies A.

In the example under consideration, we again use 40x40x40 pixels, i.e., 64,000
pixels. The x and y dimensions of the pixels are four times the z dimension. This
increases the continuity in the x and y directions. The number of each facies contained in
a state in the Markov chain stabilizes at about 2000 iterations, an indication (but not a
guarantee) that the Markov chain has converged to the stationary distribution. Table 5.4.1
shows the percentage of each facies contained in the initial distribution obtained from the
prior model with T1=T>,=T3=1/3 and the realizations obtained after 100, 300, 500, 1000,
2000, 3000 and 4000 iterations. Note that from iteration 300 onward, realizations contain
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about 41% of facies A, 41.5% of facies B and 17.5 % of facies C. To perform 4000
iterations requires about 7 cpu-hours on a Pentium-133.

Table 5.4.1. Proportions of facies (percentage)

The number of interations
0 100 300 500 1000 2000 3000 4000

Facies A 3325 40.59 41.62 4249 4261 40.73 3928 40.27
FaciesB 3324 40.68 41.05 4064 40.82 4199 43.19 4151
FaciesC 3331 1873 1733 16.87 1657 1728 17.53 18.23

Fig. 5.4.9 shows four x-z cross-sections of realizations obtained after 3,000 iterations.
Fig. 5.4.10 shows cross-sections cut at the same locations as in Fig. 5.4.9 corresponding
to the realization obtained after 4,000 iterations. Although the general structures in the
scenes after 3,000 and 4,000 iterations are similar, the two realizations are quite different.

As we can see from the last two examples, different types of structures, particularly
very complicated local structures, can be obtained by the model that Tjelmeland used.
Since the clique configurations are considered rotation free, the number of parameters is
even less than the number of parameters in 2D model with the same number of facies
type. But there are a few problems in this model. First of all, the use of rotation-invariant
clique configurations is not allowed in our applications due to the orientation requirement
of facies distribution. For example, the following two 5-pixel clique configurations
shown in Fig. 5.4.11 promote totally different orientations for facies A and facies B.
configuration a encourages interface between A and B along northwest-southeast
direction, while configuration b proposes interface between A and B along the southwest-
northeast direction. However, in the model used by Tjelmeland, these two configurations
are considered to be equivalent. Secondly, we suspect that imposing ordering via the
introduction of extra parameters, i.c., f’s, causes the parameter estimation to be more
difficult but we have not verified this. Moreover, in 3D, third-order neighborhood system
and 7-pixel cliques, the free boundary treatment does not appear to be feasible. Therefore,
we pursue a simpler 3D model here by using second—order neighborhood and only 2-
pixel cliques.
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Fig. 5.4.9 — A realization of 3D three facies model, 3000 iterations, x-z cross-
sections at 5, 10, 15, 20 (from top to bottom), (facies A: dark,
facies B: grey, facies C: white).

Fig. 5.4.10 — A realization of 3D three facies model, 4000 iterations, X-z cross-
sections at 5, 10, 15, 20 (from top to bottom), parameters are the same
as in Fig. 5.4.9, (facies A: dark, facies B: grey, facies C: white).




(@ (b)
Fig. 5.4.11 — Examples of 5-pixel clique configurations

3D, second-order models

The 3D, second-order neighborhood system is shown in Fig. 5.4.12. There are nine
types of 2-pixel cliques as shown in Fig. 5.4.13. In this example, we consider three facies
labeled A, B and C. Just as in 2D, second-order model, we have 9 configurations for each
type of 2-pixel clique, each with its own potential function. Thus, there are totally
9x9=81 model parameters.

i, j+1, k-1

1kl | i kel i+1,j, k-1

i,j-1, k-1

i-1,j+1,k L,j+1, k i+1,j+1, k

i-1, 3. k ij. k i+1,j, k
i-1,j-1,k i,j-1,k i+1,)-1, k
Lj+1, k+1

-1, j, k+1 1, j, k+1 i+1, jk+1

i,j-1, k+1

Fig. 5.4.12 - The cut layers of the three-dimensional 2nd-order neighborhood.
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Fig. 5.4.13 — The 2-pixel cliques in the neighborhood system.

As an illustration, configurations for vertical 2-pixel cliques are shown in Fig. 5.4.14.

We use purple to represent facies A, green for facies B and red for facies C.

051 Bs2 B3 Os4 Bss

Bs6 Os7 Os3 Os9

Fig. 5.4.14 — Vertical clique configurations, A-Purple, B-Green, C-Red.

In the examples, we work with 64x64x64, ie., 262;144 pixels. Following the
conventions used in the previous section, we use the notations below for the parameters
or the potentials of each type of 2-pixel clique.
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01=(011, 012, -.., 619), potential vector for 2-pixel cliques along x direction in x-y plane;
0,=(021, 022, ..., 029), potential vector for 2-pixel cliques along y direction in x-y plane;
03=(031, O3z, ..., B39), potential vector for cliques having 45° directionality in x-y plane;
04=(041, 042, -.., Bag), potential vector for; cliques having 135°directionality in X-y plane;
05=(0s1, 052, -.., Os0), potential vector for cliques in z-direction;
06=(061, Os2, ---, O6v), potential vector for cliques having 45° directionality in x-z plane;
07=(071, 072, -.., 6+9), potential vector for cliques having 135°directiona1ity in x-z plane;
0s=(0s:1, O3, ..., Os9), potential vector for cliques having 45° directionality in y-z plane;
09=(091, B2, ..., Og), potential vector for cliques having 135°directionality in y-z plane.
In the first application of this model, the preceding parameter vectors are defined as
follows.
0,=0,=03=0,=04=0,=05=0,= (-0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, -0.5)
0s=(-0.5,-0.5,0.5, 0.5,-0.5, -0.5, -0.5, 0.5,-0.5).

This choice promotes continuity of each facies in all directions of the 3D space, i.e.,
the potentials for all the cliques occupied by the same facies have similar negative values
(-0.5) and most of the potentials controlling the transition between facies are all equal to
0.5 in order to discourage such transitions. However, we encourage transitions from A
(purple) to B (green), from B (green) to C (red) and from C to A in the downward vertical
direction (z direction). The results of Fig. 5.4.14 shows a realization of the model
obtained at iteration 400 of the MCMC sampling procedure.
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We can see from Fig. 5.4.14a that the overall vertical transition from facies A
(purple) to facies B (green), from facies B (green) to facies C (red) and from facies C
(red) to facies A (purple) is apparent, but there exist other types of transitions. The
continuity of each facies in all directions is also very clear from the cut view of Fig.
5.4.14b although the scale of continuity varies somewhat from location to location. It
should be pointed out that the strict penalty term was utilized in this case, i.e., in Eq.
5.2.9, all oy’s were set to 1.0 and all Ti’s were set equal to 1/3. Thus, in the realization of
Fig. 5.4.14, each facies occupies almost exactly 1/3 of the pixels. Also note that visually,
there are no boundary effects, i.e., no stray pixels appear along the boundaries.

In order to check whether we can impose other features, we conducted another
experiment and tried to impose very strong ordering and orientation. We defined the
potential vector for each type of cliques as follows.

8, = 03=0,=(-0.3, -0.5, 0.5, 0.5, -0.3, 0.5, 0.5, 0.5,-0.3)
0s=(-0.3,-0.1, 0.5,0.5, -0.3, -0.1, -0.1, 0.5,-0.3)

5= (-0.6, 0.5, 0.5, 0.5, -0.6, 0.5, 0.5, 0.5,-0.6)
0,=05=05= (-0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, -0.5)
8,=(-02,-0.5, 0.5, 0.5, -0.2, -0.5, 0.5, 0.5,-0.2).

With these values, we would expect.to obtain continuity in the x-z plane with 45°
directionality and y direction (potential=-0.6). We also expect to obtain more transitions
from A to B, B to C, and C to A in four specific directions, both diagonal directions in the
x-y plane, x-z plane with 135° directionality as well as the x direction of the x-y plane.

Fig. 5.4.15 shows a realization from this model. This realization was obtained by 500
iterations of MCMC sampling algorithm. Actually, a relatively long run was made (2000
iterations), but the basic structures of all the realizations obtained subsequent to the 400
iteration are similar. By inspection, we can see the realization displays the features we
promoted by our choice of the statistical parameters. It is interesting to note that if we

“view this realization from another position as shown in Fig. 5.4.15b, it is pretty much
like a layered reservoir model.
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Fig. 5.4.15 (a) — A realization of the 3D model, 500 iterations.

Fig. 5.4.15 (b) — View of Fig. 5.4.15a from another position, resolutions
in X, y, z directions are 1, 1 and 2 respectively.
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Model conditioning

In the preceding two examples, the strong penalty term was used to avoid phase
transition problems although in fact, the penalty term for the second example has little
influence on the realization obtained; the model is stable even if the penalty term is not
used.

We now consider a model which does encounter a phase transition problem. We
condition the model to the facies observed at 4 completely penetrating vertical wells.
However, we actually do this by starting with no conditioning data and then adding
conditioning data based on the facies we obtain at the pixels penetrated by wells after
dozen iterations of the MCMC procedure. This is the same procedure used in some of the
2D model examples. By comparing the performance of the model before and after
conditioning, we can understand how the conditioning affects the model. We still work
with 64x64x64 lattice. The areal locations of the chosen four wells are (10,10), (20,20),
(32,32), (40,40). The MRF model is defined by the following parameter vectors:

01=0,=06=(-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,-0.5)
0s=(-0.5,-0.5,0.5, 0.5, -0.5, -0.5, -0.5, 0.5,-0.5)

63 = (-0.6, 0.5, 0.5, 0.5, -0.6, 0.5, 0.5, 0.5,-0.6)

0:=0,=00=06; = (-0.5, -0.2, -0.2, -0.5, -0.5, -0.3, -0.3, -0.3, -0.5).

Fig. 5.4.16 represents the fraction of facies versus the number of iterations of MCMC
algorithm with and without using well conditioning data. The solid curves pertain to the
results obtained without conditioning data. Without conditioning data, it appears that
after a large number of iterations of the MCMC method, all subsequent realizations
generated will contain only facies B. Note that facies C disappear after 400 iterations. It
can be seen that although the conditioning truly improves the model performance and
stabilizes the fractions of facies A and B appearing in the realizations, facies C still
disappears after 400 iterations. However, we believe this occurred because we selected
the well conditioning data from the 100™ iteration of the unconditioned run and by this
iteration, only 10% of the pixels were occupied by facies C. Thus, the conditioning data
may not have contained enough pixels occupied by facies C to stabilize the model.
Nevertheless, this example demonstrates the effectiveness of conditioning on a 3D
model. For example, the fractions of facies A and B at iteration 1000 are 0.273 and 0.727
respectively if no conditioning data are used, but with well conditioning data, the
fractions of facies A and facies B are 0.521 and 0.479. Since the selection of model
parameters imposes no preference on facies A and facies B, and the uniform prior
probability distribution is used, the fractions of these two facies should be roughly the
same in any legitimate realizations.
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Fig. 5.4.16 — Fractions of facies versus the number of iterations,
models with and without conditioning data.
ESTIMATION OF MODEL PARAMETERS

We can write the probability mass function of Eq. 5.2.7 as

P(x.0)= -2%9_)]1@’ 6)= 2(19) expi{t(x),6)), (5.5.1)

where P(x,6) is the probability mass function for the MRF model;

h (x, 6) is an exponential function referred to as the unnormalized probability function;
x=(x1, X2, ...... , Xn) denotes a realization of the random field X , with each element x;
representing the value of a random variable (facies value) corresponding to the ith pixel
of the lattice S;

0 is the vector of statistical parameters, ie, 6=( 6, &, ...... , Ov)", N. here is the

number of clique 'conﬁgurations specified;
t (x) is called a canonical statistics vector, in our case, t(x) =( n7;(x), n2(x),... ... , nndx) )F
and »;(x) is the number of cliques in x with configurationj (j=1,2, ...... , No);

< (x), 6> denotes the inner product of the vectors 7 and 6,
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Z(6) is the normalizing constant which is related to the parameter vector 6.

Given a realization (or an observation) of a MRF (e.g., a geological interpretation) and
a basic MRF model, we would like to be able to estimate the values of the statistical
parameters from the observation. Generally, there is only one realization available.

The standard way to obtain an estimate of model parameters, called statistical
inference, is to apply Maximum Likelihood Estimation. The likelihood function in our
case is simply the probability mass function corresponding to observation, which is
denoted by y, defined as a function of the parameter vector 4, i.e.,

1
L) = 70 exp{—<1(y),0>} . (5.5.2)

L(6) gives the likelihood of & given the observed data y. Maximum likelihood estimation
represents the process of determining the # which maximizes L(#). This problem is
difficult because the normalizing constant, which is a function of theta, is unknown so the
traditional statistical estimation methods are not applicable. Other methods for estimating
MREF model parameters proposed in the literature, include the Stochastic Approximation
(SA) procedure proposed by Younes [60], Monte Carlo Maximum Likelihood Estimation
(MCMLE) by Geyer&Thompson [23,24,25], the Maximum Pseudo-Likelihood (MPL) by
Beseg [1] and other ad-hoc approaches such as coding by Beseg [2], histogramming
method by Derin and Elliott [14]. Because of the limitations of SA and MPL, MCMLE
method has been extensively used and investigated in recent years. We consider the
application of this approach to our problem. Because the basic computational tools for
such problems involve optimization and solution of simultaneous nonlinear equations, we
need to choose an appropriate optimization algorithm. Since maximum likelihood
estimation is difficult unless a good initial estimate of the parameters is available, we
have considered application of the coding and histogramming procedures to obtain an
initial approximation of the parameter vector that maximizes the likelihood. However, for
our problem neither of these methods is generally applicable or reliable. For other
interesting papers about parameter estimation of MRF, we refer the reader to Refs. [7],
[81, [20], [33], [41] and [42].

To consider a concrete example, we consider a two-dimensional problem where we
define a third order neighborhood system as shown in Fig. 5.5.1a. Note the center pixel of
this neighborhood is shaded and all pixels colored white represent the set of neighbors of
the center pixel. Figure 5.5.1b shows all five pixel cliques that are contained within the
neighborhood shown in Fig. 5.5.1a.
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Fig. 5.5.1(a) — Third order neighborhood in 2D.

Fig. 5.5.1(b) — Five-pixel cliques for third order neighborhood.

In this example, we assume there are only two possible facies referred to as facies A
and facies B. For any five-pixel cligue, we consider 12 possible configurations for the
“arrangement of facies within the clique. Figure 5.5.2 shows the six possible
configurations for the case where the center pixel of a five-pixel clique is occupied by
facies A. If a pixel contains facies A, it is shaded or colored dark gray, whereas, if the
pixel is occupied by facies B, it is shown as white.

Any other configuration of five-pixel
clique with facies A in the center

Cé6

Fig. 5.5.2 — All configurations for a five-pixel clique with facies A in the
center pixel of the clique.



One should note that there are actually four possible alternative configurations for
the configurations labeled C2, C3, and C4. Fig. 5.5.3 shows the four possible
configurations where the center pixel contains facies A and exactly one other pixel is
occupied by facies A. These configurations are labeled Al, A2, A3 and A4 in Fig. 5.5.3.
Note that if we define a clique potential such that configurations Al and A3 are more
probable than A2 and A4, then this will tend to promote continuity of facies A in the
horizontal direction. In this example, we assume that configurations are rotationally
invariant. This means that Al, A2, A3 and A4 are considered as equivalent
configurations and the associated potential does not depend on which of these
configurations actually exist. More generally, rotational invariance means that the four
alternative configurations of C2 are considered equivalent, the four alternative
configurations for C3 are considered equivalent and the four alternative configurations of
C4 are considered equivalent. Similar to Fig. 5.5.2, there are 6 possible configurations for
the case where the center pixel is occupied by facies B.

Fig. 5.5.3 — Alternative configurations for five pixel cliques, two pixels
occupied by facies A with A in the center.

Now let D,, ¢=1,2,....N., denote all possible configurations defined on five pixel
cliques and let x be any realization of X, i.e., x defines the facies located in all pixels
contained in S. Let x. denote the facies distribution within any clique c, then the potential
functions defined on any clique c are given by

ifxc EDl,l=1,2,...,NC

o : : (5.5.3)
if cisnot a five pixel clique.

( ) - !
V.(x.)=

c c 0
The resulting probability function for the Markov random field can then be written as

NC
Py(x) = —I-exp[— 2V (x, )] = —1—- exp{— 2ny(x)6; } 5.54)
z ceC z =1

where n, is the number of five-pixel cliques with configuration D, and
6=(61,8,-.0y )" . (5.5.5)

Several comments are in order. In Eq. 5.5.4, the probability function is denoted by
Py(x) to emphasize that the probability function depends on how the 6,’s are defined in
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Eq. 5.5.3. In essence, Eq. 5.5.4 gives a family of probability functions, one for each
specification of the vector of statistical parameters, &. It is appropriate to consider this
family because our objective is to estimate the appropriate values of the components of &
directly from observations. Also note the normalizing constant, Z=Z(6) depends on the
definition of € Eq. 5.5.3 indicates that V(x.) is either equal to some g, or is zero.
Moreover, V. is zero unless ¢ is a five pixel clique. Thus given x, if the set of all five
pixel cliques includes exactly n,(x) cliques which contain configuration D,, then the sum
of all corresponding function Vs is n,(x)6, . Thus, the general expression (middle term
of Eq. 5.5.4) can be represented by the final expression given in Eq. 5.5.4. If the vector of
configuration numbers is defined by

n(x) = (n (1), 1 (1), sy DT | (5.5.6)
where < n(x), € > denotes the inner product of n(x) and 8, then Eq. 5.5.4 can also be
written as

l .
Py (x)= expl— < n(x),8 >|. 5.5.7

9 (@) =2 pl- < n(x),0 >] (5.5.7)

Given 6, Eq. 5.5.7, or equivalently Eq. 5.5.4, defines a probability function. However, if
x=y is an observation of the facies distribution (say from outcrop studies or geological
interpretation), then Eq. 5.5.7 gives the likelihood function for § given the observation
(data) y, and so we write Eq. 5.5.4 and 5.5.7 as

N,
L@) = exp[— lzln 1 (NG :l = exp[— <n(y),8 >] . (5.5.8)

Z(0)

Given the data y, our objective is to find € which maximizes the probability of
obtaining the observation (sample) y. To do so, we maximize L(6), or following Geyer
and Thompson [23, 24], we minimize the negative log likelihood given by

NC
4(8) = —In(L(6)) =lzln,(y)¢9, +1n(Z(9)). (5.5.9)

Note there is no guarantee that £(6) has a unique minimum. In fact, if @ is translated by a
fixed constant vector, i.e., if 8 is replaced by & - 6 then Eq. 5.5.8 becomes

NC
L&) = expli— 21 ()0; :I , ’ (5.5.10)
' I=1

bZ(6)

where
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N, _
b=exp[— an(y)e} , (5.5.11)
I=1
and Eq. 5.5.9 becomes

NC
£6)= X n; ()6 +1n(Z(8)) +1In(d) . (5.5.12)
=1

If & minimizes Eq. 5.5.9, then §+8, minimizes Eq. 5.5.12. So it is clear that at best, &
can be estimated only up to an arbitrary constant translation. However, this fact does not
cause difficulty. Since Py(x)= P0—§ (x), realizations generated from either probability

function will generate an equivalent sampling of X.

Our observation was denoted by y. More generally, if p+1 observations are available,
they will be denoted by y,, #=1,2,...p, Thus, it is convenient to denote a realization of X
by u, i.e., u denotes any realization, whereas y, denotes a specific observation. Defining

NC
h(ul @) = exp[— S (u)al] = exp[— <n(u),0 >], (5.5.13)
1=1

‘the probability function for a given @ can be written as

Py )= hiwl0). (5.5.14)
Similarly, if 0=y
1
By (@)= huly). (5.5.15)

If £2 denotes the set of all realizations of X, then summing over all e in Eq. 5.5.14

gives

= ZPg(u)=_1_-z.:h(u|9)= L 5 By @) h(u 1)
ueQ Z(0) uer Z(0) yeqr| B ly)/ Z(y)

Zw) . [hulo)
=12 P 3
Z(©) ugg[hwm] v ()

Note that the sum in the last term of Eq. 5.5.16 is the expected value of

(5.5.16)

h(u18)/ h(uiy) relative to the probability function Py(w), i.e.,
[ R 16)

E,[hu16)/ ny)]= X

ueQ| h(u1y)

Using Eq. 5.5.17 in Eq. 5.5.16 and rearranging gives

} P, ). (5.5.17)

199




Z(©6)

=] hul@®/ hul 5.
) = E,, [1(u10)/ h(u1y)]. (5.5.18)

The right side of Eq.- 5.5.18 can be approximated by generating m samples, u;,

Uy,....um, Oof X from the probability function P,,(u); using this approximation, we have

m | h(u;10)

z0) 1§ |28 7 (5.5.19)
Z(y) m o | hw;ly) |

Using Eq. 5.5.19, the likelihood ratio L(6)/L(y) can be approximated by

Ly) _Z@huly) |1 = h(uj10) | h(uly)
LO) Zwhule) m 5 h(uj ly) hu'6)

Using the definition of Eq. 5.5.13 to replace A(uly) and A(ul6) in Eq. 5.5.20, and taking

(5.5.20)

the natural logarithm of the resulting equation gives

L(y) 1 m h(u 18) | N,
&=In 1 —_— 6, - , 5.5.21
f= { (5)} n[ a W, 1) +1§1nl(y)(l v ( )

where the first equality in Eq. 5.5.21 serves to define f{0). From Eq. 5.5.13, we have
m h(u;18) m
— 7 _ 3 explntu;)y -65]. (5.5.22)
j= b ly) o

It follows that Eq. 5.5.21 can be written as

=1

NC
f(¢9)=ln[ Z eXP(an(u Xy - 9,)}} > ()6 ~y;). (5.5.23)

j=1

If yis fixed and u;, j=1,2,...,m, are specific samples of X based on the probability
function P(u), then minimizing f(0), when m is large, is equivalent to minimizing
= ln[L(Q)] . Note that the /th component of the gradient of £(0) is given by

o

——=ny(y)— Z n[(u w(j) forl=1,2,..N_, (5.5.24)
00, j=1

NC
expLan ;)W) -6, )]
=]

m N ’
hX {CXP[ZW i)y, -6 ):'}
j=1 =1

w(j) = (5.5.25)




In our work, Eq. 5.5.23 is minimized by using the GBB algorithm presented by
Raydan [43]. This algorithm can be thought of as a modified steepest descent algorithm
which contains an automatic procedure for determining the size of the step to be taken in
the direction of the negative gradient of f (8). The algorithm was designed to be more
robust for noisy data by allowing a slight increase in the objective function at any
iteration.

As can be observed from Eqs. 5.5.23-25, if at any iteration of the GBB algorithm, 16,

y,| becomes “large”, we encounter overflow or underflow problem in evaluating f (6) and
its gradient. A procedure for avoiding this problem is to use a constrained minimization
~process. The resulting procedure for constructing the maximum likelihood estimate

denoted by @ from this point on is now presented in algorithm form.
Let = 6° denote an initial guess for g;

1) Generate m samples of X, u;,u5,....l,,, from the Markov chain Monte Carlo
algorithm described before. These samples are generated using the probability
function PBO (u).

2) Minimize (@) in the region N(8°) = {9| 16, -6 i< 5}, using the GBB algorithm.

We let 6° denote the & vector which minimizes f(6) in N(6°).
3) Check for convergence. For convergence to the maximum likelihood estimate, we

require that the gradient of f (@) at 8 ° be close to zero, i.e., IVAO), < g, where we

typically use £ <10. If the convergence condition is satisfied, we let d =6° and the
algorithm is complete. If not, let #°=8° and return to step 2).

As the computing cost of generating m samples of X in step (ii) is high, it is desirable
to minimize the number of times we need to update the probability function P<9° and

resample. Intuitively, if we can generate a good initial guess of 6, we might expect that
only one, or at least only a very few, updates of ° would be required. A procedure for
generating an initial guess is described later.

. Example 1

This is a synthetic two-dimensional, two-facies example where an observation was
generated by sampling Pg(x) using Markov chain Monte Carlo simulation. In this
example, a two-dimensional region V is used and a 40x40 grid is used to partition § into
1600 pixels. Here @ is defined based on the neighborhood system and clique
configurations defined previously, see Figs. 5.5.1 and 5.5.2. The values of & (see Eq.
5.5.3) are specified by
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6, ==0.7, 0, =05, 03 =02, 6, =1.0, s = 4.0, 5 = 5.0,

97 = —0.7, 98 = —0,5, 99 = —-0’2, 910 = 1.0’ 911 — 4-0’ 012 __:5.0 (5.5.26)

Note & through & refer to five-pixel clique configurations where the center pixel is
occupied by facies A and & through &, refer to the analogous five-pixel clique
configurations where the center pixel is occupied by facies B.

Our objective is to use an observation of X to estimate 8°. To illustrate our procedure,
we sample Pg(x) to construct a synthetic observation, y. From this point on, we assume
that € is unknown, and we wish to calculate the values of these statistical parameters by

generating the maximum likelihood estimate, @, based on the observation y and then set
6; =6;,1=1,2,...,12 to obtain the probability function. The initial guess of 8, i.e., 8, is
shown in the third column of Table 5.5.1a (for this same example, we observed that if we
did not constrain the GBB algorithm, the overall procedure did not converge). In step (ii)
of the algorithm, we set 6 = 0.05. In sampling Poo (x) in step (ii), we set m=1000. The

last column of Table 5.5.1a gives the estimate & of @ obtained after one iteration of the
algorithm. The table gives the number of GBB iterations required in step (ii) of the
algorithm, the value of objective function (f (8°)) and the two-norm of the gradient at 8°.
Table 5.5.1b presents a comparison of statistics obtained from the results of Table 5.5.1a.
Column 2 of Table 5.5.1b gives the number of each of the 12 five-pixel configurations
contained in the observation y. The third column gives the weighted average of the
number of each configuration, i.e.,

NC
exp[lzln, ;) ~6f )]

m N, ’
5 {eXP{an )y -6 )]}

2 W)= 3 m)) (5.5.27)
= =

j=1 1=1

where 9° is the estimate of @ obtained after the first iteration.




Table 5.5.2a and 5.5.2b show the results obtained after two iterations of the algorithm.

Table 5.5.1a — Results after 1 iteration of the algorithm

Parameter True Initial Estimate
value guess
6, -0.7 -0.55 -0.597
6, -0.5 -0.4 -0.383
03 -0.2 -0.2 -0.172
04 10 1.0 1.005
05 4.0 4.0 3.999
06 50 5.0 5.000
0 -0.7 -0.55 -0.600
O3 -0.5 -0.4 -0.386
O -0.2 -0.2 -0.171
010 1.0 1.0 1.005
0 4.0 4.0 4.000
012 5.0 5.0 5.000
# of GBB iterations 2
Value of obj. function -10.277
Norm of gradient 73.48

Table 5.5.1b — Comparison of statistics

Statistics | Observation | Weighted Difference
average
nj 1551 1519 32
ny 1526 1505 21
nj3 810 833 23
ny 145 169 24
N5 3 5 2
g 1 0 1
ng 1494 1454 50
ng 1512 1512 0
ng 804 837 33
Nio 149 159 10
nii 4 2 2
j15%] 1 0 1
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Table 5.5.2a — Results after 2 iterations of the algorithm

Parameter

True
value

Initial
guess

Estimate

0,

-0.7

-0.597

-0.606

02

-0.5

-0.383

-0.394

6;

0.2

-0.172

-0.161

04

1.0

1.005

1.005

0s

4.0

3.999

3.999

0s

5.0

5.000

5.000

0y

-0.7

-0.600

-0.609

03

-0.5

-0.386

-0.394

O

-0.2

-0.171

-0.162

010

1.0

1.005

1.020

On

4.0

4.000

4.000

012

5.0

5.000

5.000

# of GBB iterations

22

Value of obj. function

-1.541

Norm of gradient

3.728

Table 5.5.2b — Comparison of statistics

Statistics

Observation

Weighted
average

Difference

I

1551

1549

ny

1526

1526

n3

810

810

171

- 145

146

s

3

1

Iig

1

1

17

1494

1492

ng

1512

1512

Ng

804

803

n;o

149

151

253

4

3

1

0

e = [N = OO = O|O| N




Note that based on the convergence criteria [Vf (6, )"2 < £=10, we have converged

to @. Note however, that § is not equal to the true values of 0. As discussed previously,
we believe that 6 can only be estimated up to a constant vector of translation. If we
subtract the constant § =0.094 from the estimate of  obtained in Table 5.5.2a, we
obtain the following results (the value of & was chosen so that él -6 =8)).

Table 5.5.3 — Translated maximum likelihood estimate

Parameter True Translated

value MLE
0, -0.7 -0.700
0, -0.5 -0.488
0; -0.2 -0.255
04 1.0 1.099
Os 4.0 3.905
O¢ 5.0 4,906
0, -0.7 -0.703
Os -0.5 -0.488
0o -0.2 -0.256
610 1.0 0.926
o1 4.0 3.906
012 5.0 4906

To illustrate that the values of & obtained in Table 5.5.2a give a reliable
characterization of the true probability function, we generate a set of realizations by
sampling Pe(x) and a set of realizations by sampling P;(x) using a Markov chain Monte

Carlo sampling procedure. Note the basic structure characteristics of all realizations are
the same.

(a) Realization 1 (true 0) (b) Realization 2 (true )
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(c) Realization 1 (estimated &) (d) Realization 2 (estimated &)

Fig. 5.5.4 — Realizations from the probability function based on true 6 and
realizations from the probability function based on the maximum

likelihood estimate.

Figure 5.5.5 shows comparison of statistics n; for 3000 realizations obtained by
sampling the true probability function with statistics n; for 3000 samples generated based

on Py (x) where & is the maximum likelihood estimate generated by our algorithm.
Means as well as the standard deviations of n; from these realizations corresponding to

each case are also listed on the top of the figures. By comparison, we can see that the
estimated parameters give reliable characteristics of the true probability function.

Realiztions from Estimatecitheta Realizations fromthe true theta
Mean: 15462 Sd. Deviation: 186.8 Mean: 1555.6 Std. Deviation: 187.7

Frequency
Frequency

50 800 TO0 W00 TA0 2000 23(0 2500 500 800 100 KO0 1700 2000 2300 2600

n,

n,

Fig. 5.5.5 — Comparison of statistic n; for 3000 samples from the probability
functions based on the true parameters as well as estimated

parameters.

Note, in generating the results of Figs. 5.5.4 and 5.5.5, we specified an initial guess for
the maximum likelihood estimate which was close to the true value of 6. If a good initial
guess is not available, the algorithm may either require an excessive number of iterations
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or may fail to converge. Thus we implemented ideas of Derin and Elliott [14] to generate

an initial guess for 6. This method allows us to generate an initial guess 8 ° for 2
directly from the observation y. Generation of the initial guess requires the solution of a
linear least square problem. In our implementation, this least square problem was solved
by singular value decomposition.

Table 5.5.4 shows the initial guess generated by our implementation of the Derin and
Elliott method. Using these initial guesses in our algorithm, we obtained the maximum
likelihood estimate of 6, shown in the second column of Table 5.5.5. The third column of
Table 5.5.5 gives the number of each configuration contained in the observation x and
the last column gives the weighted average of Eq. 5.5.27.

Table 5.5.4 — Initial Guess by Derin and Elliott method

6, =—0.519, 6, =~0.103, &5 = 0.263, 8, = 0.59, 65 = 0.0, 6 = 0.0,
67 = -0.637, 3 =-0.408, 6y =—0.188, 6;y =1.0, ;7 = 0.0, G, =0.0

Table 5.5.5 — Maximum likelihood estimate

Parameter MLE by Observation | Weighted
GBB average
6, -0.581 1551 1547
0, -0.362 1526 1525
03 -0.037 810 804
04 0.973 145 152
05 4.000 3 3
06 5.000 1 1
0, -0.569 - 1494 1490
Og | -0.373 1512 1514
09 -0.110 804 801
010 1.054 149 155
013 4.000 4 3
0, 5.000 1 0

To check the validity of the maximum likelihood estimate é, we generated 3000
realizations using the true probability function Pg(x) and 3000 realizations from Pé (x)

using a Markov chain Monte Carlo procedure. Fig. 5.5.6 shows a realization obtained
from Pyg(x) and a realization obtained from Pé (x). Note that although the two

realizations are distinctly different, the basic geological features are similar in both
realizations. Fig. 5.5.7 presents two histograms of the statistic, 3, from the two sets of
3000 realizations, one set based on the true parameters and the other based on the MLE.
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The means and the standard deviations of n; based on the respective 3000 samples are
given on the figures. These results illustrate that appropriate samples of X can be
generated using the probability function P5(x) generated from the maximum likelihood

estimate of @ constructed from our algorithm. For example, the mean of #; obtained from
the probability function based on the estimates differs by only 10.9 from the mean value
of n; obtained by sampling the true probability function.

; -. B 8
(a) Realization (true 8) (b) Realization (MLE of 6)

Fig. 5.5.6 — Realizations from the probability functions based on true 6 and
on the MLE of 0 from initial guess obtained by Derin and Elliott

method.
Realizations from true theta Realizations fromMLE
Mean: 810.8 Std. Deviation: 54.1 Mean: 799.9 Std. Deviation: 56.3
1000 + =
g 8004 g
S 600+ S
o : o
@ 400 ¢ -
[T 'S
200 -
0 k i by A
500 600 700 800 900 1000 More
n3 n3

Fig. 5.5.7 — Comparison of statistics n3 from the samples of the probability
functions, one based on the true © (left) and another based on the
MLE (right). :

Remarks

Although the results of the preceding example are quite impressive, it represents
one of the few results where the procedure actually resulted in a reasonable
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approximation of the maximum likelihood estimate. In the vast majority of cases, the
overall algorithm failed to converge.

GENERATING RANDOMLY DISTRIBUTED CHANNELS IN FLUVIAL
SYSTEMS

Introduction

The objective of this work is to generate realizations of facies distributions
constrained to observations (well or outcrop) and geological interpretation. This
particular section of the report focuses on Boolean methods. The work of this section
uses well information together with geological interpretation to generate a wide variety of
statistics (e.g. channel thickness, ratios of channel width to thickness etc.) and these are
used to create probability distributions for the relevant quantities. These probability
functions can then be sampled to generate realizations.

Throughout this section we focus on fluvial reservoirs. In these reservoirs the
background is assumed to be nearly impermeable rock which contains permeable
sandfilled channels. The models are important because sandfilled channels may contain
oil and gas reserves. In the paper we model the distribution of channels within the
background matrix for a three dimensional section of the reservoir. The model captures
the natural clustering of channels and sheetsplay sands are easily added. We use Markov
Chain Monte Carlo (MCMC) methods and both parametric and nonparametric density
estimates in our statistical model building.

In pature, rivers are known to avulse (change channel course) in a quasisystematic
manner (Ref. [36]). A regional avulsion event is typically followed by localized avulsion
events. Geologic features, such as faulting, may control the preferred location of
avulsion nodes. Continued deposition results in channel deposit clustering.

We use MCMC methods (see for example Refs. [2], [21], [51], and [26]) to generate
the cluster centers for each set of channels. Noting that a random set of points tends to
clump together, we use an MCMC method to generate random samples that tend to be
well separated. The well-separated points represent the centers of clusters of channels.
Once we have determined the channel cluster centers, individual channels can be
generated around each cluster center according to a multivariate normal distribution. All
of this can be done in accordance with measured statistics from fluvial deposits of
interest. -

However, in some cases the data measured from wells does not immediately give the
statistics required. Take for example the problem of determining the distribution of
maximum channel thickness. The information obtained from wells provides a random
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sample of channel thickness and from this we need the distribution of maximum channel
thickness. We show how this information can be obtained from well data.

Our goal is to distribute random channels in a rock volume of interest. We will first
determine the channel centers in a 2 dimensional slice of the reservoir and then we will
extend the channels into the third dimension. We want to create random collections of
channels whose statistics match the data from field studies. The features that we want to
capture are

1) the geometries and the statistics of those geometries of individual channels;
2) the clustering of channels; and
3) the fact that there are a random number of channels and channel clusters.

We begin with the problem of generating randomly distributed clusters.

Generating a random cluster of channels

By looking at a two dimensional cross-sections of the reservoir, we can accumulate
statistics concerning the clustering of channels. An individual cluster may be modeled in
many ways, but we will consider only the bivariate normal distribution with mean p and
covariance matrix 2. By analyzing data we can form an estimate for the covariance of
each cluster of channels. The standard formula and maximum likelihood estimator is
(Ref. [18])

1 N — —.T
Ly = T (X — X)X —X;) - (561
N;=1p5

where x;x denotes the k-th data point, x; is the sample mean of the data and N, is the
number of samples in the i-th cluster. If the covariance matrix for each cluster is the
same, these covariance estimators can be pooled together to get a better estimate of this
parameter. This is important since the estimates of Z; will be inaccurate when the sample
sizes are small. The pooled covariance estimate using m individual covariance estimates
is

N;Z; where  N= 3} N; (5.6.2)

1 i=1

Mz

s =L
N ;

The generation of random variables from the normal distribution with mean p and
covariance matrix X is straightforward. Let A be any matrix with the property that
$=AAT. If z is a standard normal deviate, i.e. mean zero and identity covariance matrix,
then x=Az+p is normally distributed with mean p and covariance matrix X. The matrix A
can be obtained by performing a Cholesky decomposition of the matrix X. The number of




channels in each cluster is considered to be a random variable with mean S and this
distribution is sampled to determine the cluster sizes

Generating random cluster centers

We now describe our model for the clustering of channels. We recognize that there is a
physical mechanism that causes this clustering. That is, small events can generate small
changes in the location of the channel. New channels may erode older channels and in
this case, the channels can be considered to overlap. Of course, the rock record will only
preserve the latest of these channels. Our model handles this by assigning a depth order
priority to the channels and using the channels with a higher priority to replace parts or
all of some of the lower channels. Regional avlusion results in the formation of a new
cluster.

We now describe a method for distributing the centers of these channel clusters. One
possible option would be to distribute the cluster centers uniformly over a rectangular
region of interest. But a uniformly distributed set of points in a rectangle will often have
sets of points which are very close together and this would cause the clusters to overlap
or for the clusters to cluster together. Figure 5.6.1 contains the plot of 100 randomly
distributed points in the plain. The clustering or structures in this figure are not desirable
in this application and so we will generate randomly distributed points using an MCMC
method. We can use this to generate a sample of cluster centers which has a tendency to
avoid one another.

1 . . ® . .
o *° %% . . ® o0 o o
0.8} o e e . ® ‘. ® .
o ¢ e ©o
0.6 Py ’ [ ] ® ® o
®e . ®ge © -
® a ® o © ®
0.4 o bd o b d bd ®
) o o *® o o ) *
® ® L 4 Ps
0.2 e v... - ..“ P .,.. ‘.
o ®* o O S o
° : ° 2
0.2 0.4 0.6 0.8 1
Fig. 5.6.1 -- 100 random points in a rectangular region.
To accomplish this we define a probability function )
p(ttys pigsenspty) = C Exp[— = 7~ p; n)} (5.6.3)
i<j
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for some normalizing constant C, function f and norm Il . The function f should be
nonincreasing on (0,00) with a large value when its argument is small (i.e. when points are
““too" close together) and should be essentially zero outside of some range. One such
example would be

a if x<b
c
_ ——— | ] 5-6.4
f(x) PTe otherwise (3.6.4)
A

with nonnegative parameters (a,b,c,d). These parameters all have a clear physical
meaning. First the function is nonincreasing as long as c>a and if we choose c=a, then the
function f is also continuous on [0, «). If a is much greater than ¢ then the probability of
points lying within a distance b of one another is small. When x>>d, f (x) will be close to
zero which corresponds to an event with a relatively high probability. Figure 5.6.2
contains a graph of f using typical values of (a,b,c.d). Since we are using a covariance
matrix %, it is natural to define Ii*=x"S" x. With this choice, the statistical model is
independent of changes in scale.

0.2 0.4 0.6 0.8 1
Fig. 5.6.2 -- Graph of f using a=5, b=.07, c=1 and d=b.

The main difficulty with this approach is that there is an edge effect. When a point is
on the edge, it has fewer neighbors, and hence the probability of putting a point on the
edge is larger than the probability of having a point fall in an equal size area away from
the edge. But for the applications that we are working with, the area or volume of rocks
that we are looking at is an arbitrary slice of some larger area or volume. So the edge has
no physical meaning and should certainly not have any effect on the simulation.

We propose a method for fixing this problem. We first observe that points on the edge
have about one half as many neighbors as points in the interior, while points in the
corners have about one fourth as many neighbors. So we might consider defining a
weight function of the form




2-x/b  ifx<b;
h(x)= 1 ifb<x<b-1, (5.6.5)
2-(1-x)}/b if x>1-b.

A more general model is a weight function of the form

a(l-x/b)+x/b if x<b,
h(x) = 1 ifb<x<b-1 (5.6.6)
a(l-(1-x)/b)+(1-x)/b if x>1-b

that simplifies to the formula above when o=2. This function gives a weight of a on the
edges and o in the corners. In the horizontal direction, points which are within by=b o
(where o, is the variance in the horizontal direction) are strongly penalized (at least
when a is large). In the vertical direction, points which are within by=b o, (where &, is
the variance in the vertical direction) are strongly penalized. So the edge has a strong
effect when you are within by, units from the left or right edges and when you are within
br units from the top and bottom boundary. Since the function is defined on a unit square
we define a weight function g(x,y) = h(x/w,bw)h(3/h,by). A graph of this function is shown
in Figure 5.6.3.

Fig. 5.6.3 — A graph of the correction function with =3 and b=.07.

We now modify the way we express the probability function from Eq. 5.6.3 in order to
include the weight function. So we write

P(ﬂl,ﬂz,---=ﬂm)=CEw(—Z T Al -n n)/z} (56.7)

i i#j

For each point p we should adjust the weight associated with the distance to each of the
other points by multiplying by g(u;) which leads to

Pl 12 eees tim)= CFJCP(—Z Z.fﬂl Hi—Hj Il)g(ﬂf )/2]- (5.6.8)

i i%j




But if we calculate the density this way, then we would compute each distance twice, so
we rewrite the expression as

p(ﬂ1,#z,--~,#m)=CExp(— 5 £~ W)+ gl )V ] (5.6.9)
i<j

We now show how we can use an MCMC method to sample from this distribution even
though the normalizing constant C is unknown. The scheme is based on proposing new
values from the sample and accepting them or rejecting them bases on the test

U < P(ﬂ]a---ﬂ'k ""’/’lm) (56.10)

Pttt b )
Specifically, at each step of the algorithm, we choose a random index k and propose to
exchange py with some random point 'y After generating a random point U between 0
and 1, the new point p’y is accepted if Eq. 5.6.10 is satisfied and otherwise the new point
is rejected and the old point is retained. This sampling scheme asymptotically samples
the probability density function p(y;,....1m). Of course, most of the terms cancel in Eq.
5.6.10 leaving us with :

- kf(ll pi = gl )+ gl )2 - | (5.6.11)

Exp) iz
FO 2 = gy WY g (et )+ 8 )12

When points are on the edge, then there are only about one half as many nearby
points, so it is natural to try a weight of a=2. Numerical experiments with Mathematica
seem to imply that the choice of the value of a=2 is too small. We can compute the
expected number of points which are within by, or by of a horizontal or vertical edge
respectively and compare that with the results of simulations. These limited simulations
appear to show that a value closer to a=3 in Eq. 5.6.6 gives better results in some cases.
A simulation generating 100 random point in a unit rectangle is contained in Figure 5.6.4.

1r

Fig.5.6.4-A picture of 100 well spaced points generated using the MCMC method.




The MCMC method is implemented in a standard way except for one slight change.
Since the value of the exponent in Eq. 5.6.11 can be a large negative number, we choose
to not evaluate the exponential function at this point. So in place of the acceptance rule
in Eq. 5.6.10 (using U as a uniformly distributed random variate) we compare In U to the
exponent of Eq. 5.6.11.

The deconvelution data problem

As we work with these problems we need statistical descriptions for the model
parameters. Unfortunately, in the case of channel thickness, we are not able to measure
the maximum thickness from well data, but instead what we have are the results of
measuring thickness of channels at random locations. Let's suppose that we have a single
channel geometry for which the thickness is the only varying parameter. If f{ib) denotes
the distribution of maximum thickness of channels and g(tlb) denotes the distribution of
random thickness given a choice of parameter b, then

g(t)= (1) () ab, (5.6.12)

is the distribution of thickness which would be observed by measuring a random
thickness of a random channel. What we can measure is the resulting thickness and so
we have data on the density function g(t). Given a fixed geometry we can also determine
the conditional density function g(tlb). What we want to know, of course, is the
distribution f{b). This is then some sort of deconvolution problem.

Let's discuss the conditional density function g(tlb) first. Suppose that we are given
channels which look like the bottom half of the ellipse x/a’+ y*/b’=1 so that the
maximum depth is b. If we take a random vertical slice through this region, what is that
distribution of values? First observe that if you take a slice through the region with a
positive x value, then by symmetry, this gives you the same distribution as you would get
from a random x value between -a and a. We obtain the distribution by thinking of this
process as a change of variables y=-bV{1-x*/a*}. The original density for X is

_Jl/a if0<x<a
h(x)= {0 hermise (5.6.13)
and the Jacobian of this transformation is
& _dafe_2.8 -y (5.6.14)
dy dyb b [p2 _ y?'

This gives us a density for g(tlb) which is

a t 1 1
1)z ———— —_——— , 5.6.15
g(tib) b 210,518 PR e 210,67 (¢) ( )
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which is fortunately independent of a. This brings us to the deconvolution type problem
of determining f(b) given g(t) and g(tlb). The procedure that we develop will be based on
the type of information that we have on g(t). Most likely, we have only a nonparametric
density estimate of the function g(t) and want to use this to construct an estimate of f(b)
of the same type. Consider, for example, the case that we have a histogram estimate for
g(t) with bin boundaries at the points (ag,a;,...,a,). We construct an estimate of f{ib) with
the same structure. So we assume that f{x)=c; for a;<x<a;,; and that f is zero outside of the
interval [ay, a,]. We then have that

n=1 @i+ 4+
="Ta()a - e | Iskib)ar, (5.6.16)
a; J_O a; aJ

for 1=0,1,....,n-1. This provided us with a system of n equations in n unknowns. Of course
we have, in addition to these equations, the constraints that the constants satisfy

-1
Z C; (aJ_,_l aj)=1 and cj 20 for j=0l1,. -1. (5.6.17)

j —
The values of the integrals

aix 441
[ JsCIb)ar (5.6.18)
a; ' aj

can be computed. First we note that g(tlb)=0 for t>b. This implies that when i>j that a; <
b < aj,; < 3;< t < a3, so that g(th)=0 except perhaps at one point. So the value of Eq.
5.6.18 is zero in this case. To evaluate the integral in the other cases we will need to use

e dx=sec! -’ti+c, (5.6.19)

Ix\/x2 -2

jsec‘1 ;dx = xsec ™} b_ b2 -x% +C. (5.6.20)

X

and

So in the case that i=j, then
ajy1 @ j+1
i Te1b)dt=1sec1 2 b2 _ 12 IZ A i (5.6.21)
a a] 1 a t= a;

_ Since for ¢>0,

1 c a1 ay
lim sec —=x/2 then | [g(tib)dt=a;. (5.6.22)
a; —)O+ ai (VY )
In the case that i<j, then
a +1 @ j+1 = ,
T g(tlb)dt—\[a,,ﬂ a? —a;sec™ 2t (5.6.23)
a,- aj a;

where we use




lim tsec™12=0. (5.6.24)
t—>0" g
to handle the case that i=0 and ay=0.
The linear system in Eq. 5.6.16 can be written as Ac=d, where ¢=(C,C1,-.-,Cn1) and

d=(do,d;,...,dn1)". The ij-th element of A is

Qi1 441
[ Jgib)ar, (5.6.25)
a; a;

and is zero when i>j. Hence A is upper triangular. Furthermore, if we assume that ay=0,
then since g(tlb) is a probability density function, then we have that the value of the sum
of the jth column of A is

-18i1 ¢ dj+1ay
D jg(zlb)dbdt— j jg(tlb)dtdb— jldb ajy—aj. (5.6.26)
i=0 q; a; aj ag a;
This implies that

—-1n-1 n—-1n-1
Zd = Z Z ij J Z Z i ] Z (aJ"'I )CJ (5.6.27)
i=0 i=0 j=0 Jj=0i=0

And this implies that, if d is a vector of percentages which sums to 1, then the constants ¢
will define a probability density function and so this extra constraint is automatically
satisfied. Unfortunately, we must also satisfy ¢;=0 for each i and this is not automatically
satisfied. Furthermore the process of deconvolution increases the level of noise in the
data and smoothing may be required. To handle the first problem we might naturally
consider the following optimization problem

MinllAc-dll

Subject to cj»g, 1=0,1,...n-1 and (5.6.28)
n-1
jEOCj(aj+l —aj)=1

whose solution should provide an excellent solution to our problem.

Another procedure for the construction of a density function f which satisfies these

constraints is the following.

1. Use the standard backsolve algorithm to solve the equation Ac=d with the
modification that c; is set to zero if the calculated value from the backsolve step is
less than zero.

2. Upon completion of step 1, renormalize c; to satisfy

217




n—1
> cjlajy—aj)=1. (5.6.29)
j=0

3. If smoothing is required apply a linear filter which has the property that it preserves

the sum of the values and preserves nonnegativity.

In particular we define
n-1
d; - . Z ajcj
¢; = Max| 0,——I=*"1 , (5.6.30)
Qi
for i=n-1,n-2...,0. Then for
n-1
oldnum = j;ocj (@;.-a;). (5.6.31)
set ¢; =cyoldsum for i=0,1,...,n-1. Finally we define our filtered estimate by
2co +cC
fo = £070
3
of; = Sl ”3" *Cixl (5.6.32)
Cp_n +2c,_
Cfn—lz‘n 2 ; n 1.

Nonparametric density estimation

For the distribution of cluster channel centers we were able to use a multivariate
normal density function. The mean and covariance matrix for random variables, that are
normally distributed, completely determines the function. The mean and covariance
matrices are the only parameters in this model. Unfortunately, in many cases random
variables come from density functions whose form is unknown and so we use
nonparametric density estimation techniques.

The histogram (normalized to integrate to 1) is the most familiar example of a
nonparametric density estimate. Recently B-Spline density estimators (see Ref. 44) have
been studied for use in computer graphics and other applications. It has been discovered
that these nonparametric density estimates are efficient to use since they are defined in
terms of splines and that B-Spline nonparametric density estimates ‘converge rapidly to
the true density function as the sample size increases.

Let N™(x) be the m-th order normalized uniform B-Spline associated with the evenly
spaced knots 0,1,...,m, i.e.,
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m _ m _ m (x'“i)+
N (x)—igo( 1)(Z,J————(m~ K (5.6.33)

where
zZ, if z2>0;
= 5.6.34
(Z)+ {0, otherwise. (5.6.34)
Given evenly spaced data point {x;} with h=x;,;-x; we define
BM(x) = N”’(f-%ﬁ] . (5.6.35)

Give data X;, Xj,...,Xn the B-Spline nonparametric density estimate on the interval [a,b]
is

v = Z%B,-’"(x) , (5.6.36)
i Y
where
b N
b, = [B"(x)dx and o; = Y B"(X}), (5.6.37)
a k=1

for each integer i. This estimator can be used to estimate density functions over bounded,
semi-infinite and unbounded intervals.

Estimation of parameters for the Oligocene Frio Sandstone of South Texas

Working in close collaboration with other members of the research team we have been
able to gather data on the Oligocene Frio Sandstone of South Texas (Refs. 34, 59). It has
been determined by observation that this geological interval contains two subintervals
which have different characteristics. In the top portion of this interval we find channels
which tend to cluster together, while in the lower portion, channels are randomly
scattered throughout the rock volume with no apparent clustering. In the top lay we have
statistics on the location of 59 channel centers, grouped into 10 clusters. Using this data
we have estimated the pooled covariance matrix for this data to be

14624790 -10175
. (5.6.38)
-10175  123.68

The correlation for this data in quite small and since data is measured from a marker
bed it should probably be almost zero. So we will use a covariance matrix for the
simulation of the form
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(.2
G(;‘ OZJ, (5.6.39)
Y 9y

where 6,=3824.24 and c,=11.12. The number of clusters in three different cross sections
is 2, 2 and 4 respectively. We currently use a random integer between 2 and 6 for our
simulations. The number of channels in these 8 clusters ranges from 2 to 14 and we
currently use a random integer between 2 and 14 for our simulations.

We have data on channel thickness from well information (see Ref. 34). In Figure
5.6.5 we have a histogram of the original thickness data and the deconvolved thickness
data. The deconvolved thickness data is represented by the right most histogram.
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Fig. 5.6.5 — Distribution of channel thickness

We have made the observation that the width of channels varies with thickness and so
we have determined the distribution of the width to thickness ratio. After discussion with
geologists it was determined that a minimum ratio of 50 to 1 was reasonable and so the
nonparametric density estimate of the ratio of width to thickness was determined on the
interval [50,00). The values for the weights are (.1252, .6674, .1681, .03926) using linear
splines with 4 basis function on the interval [50,250]. A graph of the nonparametric
density estimate is given in Figure 5.6.6.

0.00025
0.00(2
0.00015
0.000L
0.00006

100 150 200 20
Fig. 5.6.6 — Distribution of width to thickness ratio.
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The final distribution that we determined is the angle which the channels make with
the primary direction of the river flow. We assume that the rock volume for the
simulation is aligned in the primary direction of drainage for the river system. Under the
assumption that the sign of the angle is random, we have determined a nonparametric
density estimate of the magnitude of the angle on the interval [0,90]. The estimate is
contained in Figure 5.6.7. The estimated alpha values are (.3088, .5053, .1544, .0316)
using linear B-Splines with 4 basis function on the interval [0,90].

0.3
0.5
0.@
0.15
0.4y

0.0

2 40 €0 S0

Fig. 5.6.7 — Distribution of angle magnitudes.

We have now described all of the distributions that we will use in the simulations. We
will generate random channels over a three dimensional volume. The first simulation is
of the upper top section of the interval and has dimensions 60,000 ft by 80 ft by 16,000 ft.

The simulation is performed by sampling the distribution of channel cluster centers in
a vertical slice of the reservoir using the MCMC method. Next the bivariate normal
density function is sampled to provide the centers of individual channels in this vertical
slice. For each channel we sample the thickness distribution and the ratio of width to
thickness distribution to determine the maximum thickness and width of the channel at
the top of the channel. The angle distribution is then sampled and given a random sign to
determine the angle that the three-dimensional channel makes with the vertical slice.
Again, it is assumed the general direction of the drainage is perpendicular to the vertical
slice. We then create channels of length 1 mile using the values generated above.
Additional sections of the channel can easily be generated. In the simulation below we
have assumed that each channel section for an individual channel has the same width and
thickness, but this could easily be modified so that width and thickness of the channel
change along its length. To determine the angle of each of the additional sections of the
channel we sample the angle distribution and give the angles of connecting section
opposite sign.

This sampling procedure provides one realization for the top interval where clustering
is found. However, on the geologic interval immediately below the first layer, no
clustering is found. The same software used to generate clusters of channels can also be
used to generate a sample of channels that are randomly located within a slice of the rock
volume and then extended to create three-dimensional channels. The final simulation
composed of the two geologic intervals combined is shown in Figs. 5.6.8a, 5.6.8b and
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5.6.8c at the end of this section. These images have been created using Mathematica and
a description of the software is located in Appendix 5SB. We note that sheetsplay sands
could easily be added to the model but that statistics that determine the frequency and
dimensions of the sheetsplay sands have not been compiled.

Closing Remarks

This section of the report describes a preliminary attempt to model a fluvial system
using a combination of MCMC methods, and parametric and nonparametric density
estimation. We have used MCMC methods to sample the distribution of channel centers.
The bivariate normal distribution has been sampled to determine the location of
individual channels within each cluster. Deconvolution of well data to obtain the
distribution of maximum thickness values has also been described and implemented.
Finally nonparametric density estimates of channel thickness, the width to thickness ratio
and the channel angles have been obtained and sampled.

It should be noted that the statistical model is nonstationary due to several distinct
factors. It is nonstationary due to the fact that we have identified two distinct layers in
the Frio interval which have distinct statistical characteristics. In the top layer channels
tend to cluster while in the lower layer they do not and are instead simply randomly
distributed in the volume. The use of Boolean models in general provides a
nonstationary model. Even if the distribution of object is constant over a region or
volume the physical properties of the rock within an object are distinct from the rock
outside of the object.

Future work will more fully integrate measured data from wells, seismic data and
geological interpretation to make a model which more accurately reflects reality.
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Fig. 5.6.8a — An oblique view of the simulated reservoir.
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-
Fig. 5.6.8b — A side view of the simulated reservoir.




Fig. 5.6.8¢c — A top view of the simulated reservoir.
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APPENDIX A

DESCRIPTION AND USE OF THE FORTRAN CODE FOR A 3D,
SECOND-ORDER MARKOYV RANDOM FIELD MODEL

In this appendix, we explain the implementation of a 3D, second-order MRF model,
using FORTRAN. This model is used to generate facies distributions in three dimensions.
The corresponding FORTRAN code can be compiled and built on any machine with a
FORTRAN 77 compiler. But in order to visualize the realizations of the model by
SPYGLASS SLICER, the output of the program, i.e., the realization of the MRF model,
is written in SPYGLASS SLICER format.

The driver for the program is MRF_2D2N2C with the corresponding executable file.
Both source code with a sample data file and include file are given on disk. An
executable file with sample input file is given on the same disk.

In this model, the second-order neighborhood system and 2-pixel cliques are used. As
described in section 5.4, there are nine types of cliques. We use 9 two-dimensional
arrays, betal through beta9 to represent the potential values (parameters of the model) of
the corresponding clique configurations in the corresponding directions. The dimensions
of the arrays are all KxK, K is the number of facies considered. With our notation, the
physical meaning of the parameters is very clear. For example, if three facies labeled 1, 2
and 3 are considered, betal(1,1) simply represents the potential value for a 2-pixel clique
along the x-direction in the x-y plane, with both pixels in the clique occupied by facies 1;
beta5(2,3) is the potential value for the vertical (z-direction) two-pixel clique with facies
2 in the “top” pixel and facies 3 in the “bottom” pixel. Therefore, betal(1,1) controls the
continuity of facies 1 in the x direction ~ of the x-y plane and betaS(2,3) controls the
transition between facies 2 and facies 3 in the vertical direction.

In this model, the free boundary treatment is applied. This means that the values of all
the missing pixels of the boundary pixel are simply set to be zero and only the remaining
clique potentials are considered. The total potential in a neighborhood of a pixel is
calculated in subroutine POTENTIAL which calls the subroutine C_POTENTIAL to
calculate the potential values of the two cliques in each direction.

All the input data are read by subroutine READ_DATA and transmitted by several
COMMON BLOCKS to other routines.

Subroutine SET_FACIES is used to initialize the whole lattice by assigning a facies
value randomly from K facies. The random number generator used in this routine is
function RAN2 from Numerical Recipes in FORTRAN, the art of Scientific Computing
by W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Second edition,
Cambridge University Press, 1992. However, any reliable random number generator can
be substituted for this small subroutine.

The routine SIMULATION carries out the MCMC sampling procedure based on the
initial distribution created by SET_FACIES and finally the OUTPUT subroutine writes a
realization into a datafile which is named “imageXX”. XX here is a two-digital number

233




from 01 to 10. This is designed to output multiple realizations from a long run of MCMC
procedure. The maximum number of realizations is limited to 10 in the program and the
iteration interval between realization is controlled by a parameter called “LAG”. If more
than 10 realizations are expected from the sampling procedure, the user can just modify
the dimension of the array “FILENAMES” and the corresponding data statement.

In the code, the origin of the lattice is at the lower-left corner of the three-dimensional
volume. The first index of the lattice (PIXEL) is for the x direction and from 1 to Ny, the
second index for the y direction and varies from 1 to N, and the third index pertains to
the z direction and varies from 1 to N,.

The dimension of the 3D lattice as well as the number of facies are defined in
“parameter.inc” which is included in the routines. The user can easily change the
dimensions in this file and then rebuild the code conveniently.

Input Data of the Program

All the required information is set in a parameter file which is named by user with less
than 40 characters. Each parameter in the file can be put in free format (separated by
commas). A sample of the parameters is listed below with explanations.

“facies_3D.par”
Parameter for the 3D, MRF model /* title of the parameter file */
64,64,64 /* the number of pixels in X, y and z directions: nx, ny, nz */

500,200,100 /* the number of iterations, iterations for convergence
and lag for multiple realizations */

-0.3,-0.5,0.5 * two-pixel clique potentials for direction 1 */

0.5,-0.3,-0.5

-0.5,0.5,-0.3

-0.5,0.5,0.5 /* two-pixel clique potentials for direction 2 */
0.5,-0.5,0.5
0.5,0.5,-0.5

-0.3,-0.5,0.5 /* two-pixel clique potentials for direction 3 */
0.5,-0.3,-0.5
-0.5,0.5,.-0.3

-0.3,-0.5,0.5 /* two-pixel clique potentials for direction 4 */
0.5,-0.3,-0.5
-0.5,0.5.-0.3
-0.3,-0.1,0.5 /* two-pixel clique potentials for direction 5 */
0.5,-0.3,-0.1
-0.1,0.5,-0.3

-0.6,0.5,0.5 * two-pixel clique potentials for direction 6 */
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0.5,-0.6,0.5

0.5,0.5,-0.6

-0.2,-0.5,0.5 /* two-pixel clique potentials for direction 7 */
0.5,-0.2,-0.5 :

-0.5,0.5,-0.2

-0.5,0.5,0.5 /* two-pixel clique potentials for direction 8 */
0.5,-0.5,0.5 :
0.5,0.5,-0.5

-0.5,0.5,0.5 /* two-pixel clique potentials for direction 9 */
0.5,-0.5,0.5

0.5,0.5,-0.5

1.0,2.0,3.0 /* facies values */
0.0,0.333334,0.666667,1.0  /* prior probability distribution of the facies*/
1 /* apply penalty term(1) or not (0) */
3*1.0 : /* relaxation factors for the facies */
1.0 /* temperature */

-45366 /* random seed (No longer than 6_digits) for random number generator */

A sample of file “parameter.inc” is listed below.

C definition of the lattice and the number of facies
Parameter (nf=3,maxx=64,maxy=64,maxz=64)
C this is included in the program

In the above input, the data corresponding to “prior probability distribution of the
facies” needs explanation. Even though there are only three facies considered, this data
line contains four entries: 0.0,0.33334,0.66667,1.0. This indicates that according to the
prior probability distribution, the probability of drawing facies 1 is 0.33334-0.0=0.33334,
the probability of drawing facies 2 is 0.66667-0.33334=0.33333 and the probability of
drawing facies 3 is 1.0-0.66667=0.33333. Also the parameter labeled “temperature” is set
to 1.0. If any value other than T=1.0 is used, all input potential values (the beta’s) will be
divided by the value of T. '

Output of the program

The output of the program is a realization or multiple realizations. If
iteration=nconverge, then only one realization named imageOl is generated, while if
iteration > nconverge, then multiple realizations with lag “LAG” are generated. These
realizations can be visualized by SPYGLASS SLICER. Each realization is output to a
separate file. These files are labeled as imageOl to imagelQ if we generate 10
realizations. Each image file is stored as one-dimensional array for input to SPYGLASS
SLICER. Each one-dimensional array is indexed first in the x-direction, then in the y-
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direction and finally in the z-direction. Specifically, the facies occupying each pixel in
the image files is written out as in the following pseudo code:

Do 5 k=1,Nz
Do 5j=1, Ny
Do 5i=1, Nx
Write(100,*) pixel(i,j,k)
5 Continue.
6
In the above example, the program will output 3 realizations with lag=100 and in
SLICER. With the potential values given in the above data file, the realizations of the
model will look like Fig. 5.4.15 in section 5.4. Subroutine READ_DATA will display all
the input parameters on the screen for the user to check and also subroutine
SET_FACIES will write the initial fractions of each facies on the screen.
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Appendix B

The symbolic computation package Mathematica was used to simulate fluvial systems
and in particular to generate channels in a fluvial reservoir. In support of this project a
variety of small Mathematica Notebooks were developed. A larger more substantial
Notebook was constructed for the final Frio reservoir simulation.

The following Notebooks are included with this report.

Density Estimation is a Notebook for the estimation of B-Spline nonparametric density

estimates if there is no assumption of boundary.

Boundary Estimation is a Notebook for the estimation of B-Spline nonparametric

density estimates if the data is assume to lie on an interval of the form [a,).

Two-Boundary Estimation is a Notebook for the estimation of B-Spline nonparametric

density estimates if the data is assumed to be on an interval of the form [a,b].

Random Generation is a Notebook that generates multivariate normal random variables
and data from B-Spline density functions for the bounded, semi-infinite and

unbounded cases.

Deconvolve is a Notebook which deconvolves the thickness data measured from wells

and computes the maximum thickness histogram.

ClusterSim is a Notebook which generates clusters of channels in a fluvial reservoir.

It is easy to use each of these Mathematica Notebooks. Of course, to use a Mathematica
Notebook, you must have access to the Mathematica program. Given that this is true,
then you may begin to use any Mathematica Notebook by double clicking on the
Notebook icon. This will open the Mathematica application and give you access to the
Notebook. Most of these Notebooks have two sections. The first section contains fields
for the user to enter their data. We will describe the input to each of the particular
Notebooks later in this Appendix. Given that the input data has been entered, you can
execute the entire Notebook by using the kermel pulldown menu, and selecting
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Evaluation and then selecting Evaluate Notebook. The entire Notebook will now be
evaluated and you may scroll through the Notebook to get the results. However, if just
want to explore the Notebook, each Notebook has sample data included and is ready to
execute. You can then enter you own data and rerun the Notebook when you are ready.

We will now describe the function, input and output of each of the Mathematica
Notebooks that have been included in this report. Throughout this documentation, file
names and variable names from Mathematica Notebooks will be in bold face type. We
will begin our description of the individual Notebooks by discussing the three
nonparametric density estimation Notebooks.

Density Estimation, Boundary Estimation and
Two-Boundary Estimation Notebooks

These three Notebooks are used in almost exactly the same way. In each case, the
nonparametric density estimate is determined by a vector of data and four parameters.
The specific input is

data A list of data points separated by commas and enclosed is curly braces.

m The order of the spline. A value of m=3 for example would give you quadratic
splines.

amin and bmax The density estimate will have support on the interval [amin,bmax].
These values should be chosen so that all of the data lies in this interval.

N1 The number of subintervals into which the interval [amin,bmax] is subdivided

into to create the B-Spline density estimate.

For example, the following input will generate a piecewise linear nonparametric density
estimate for the values in the list data on the interval [0,10] and this interval will be
divided intervals of length 2.5.

m=2;
data={2,3,4,4,5,6}
amin=0

bmax=10

N1=4




The output from the Notebook includes:
1. The mean and the standard deviation of the data.
The mean and standard deviation for the estimated B-Spline density function.
A graph of the unweighted basis functions B; (x) for each i.
A graph of the weighted basis functions o; B; (x)/b; for each i.
A graph df the final B-Spline density function.

AN e i

Values of ¢; for each index i and the number of basis functions.

If you use the Notebook Density Estimation, your estimate will tail off to zero outside of
the interval [amin,bmax]. If you use the Notebook Boundary Estimation your estimate
will be truncated at the point amin and tail off to zero to the right of bmax. If you use the
Notebook Two-Boundary Estimation the estimator will be truncated at amin and bmax.

Random Generation

This Mathematica Notebook contains routines for the generation of multivariate normal
random variables and data from B-Spline density functions for the bounded, semi-infinite
and unbounded cases. There is no input required to use these routines. Simply execute
the Notebook and you will be able to use the newly defined functions to generate random
variables.

In the first half of the Notebook we have the routines associated with the generation of
multivariate normal random variables. To generate an n-dimensional multivariate
normally distributed random variable with mean mu and covariance matrix sigma enter
mu as a list of n values and sigma as a list of lists of the rows of your covariance matrix.
The following statement will then return a n-dimensional multivariate normally
distributed random variable with mean mu and covariance matrix sigma.

Normalvar|mu,sigma]

This routine will perform the necessary decomposition of the matrix sigma needed to for
the generation of multivariate data. However, this decomposition take a small amount of
computing resources and so this function is inefficient if you need to generate many data
point. Two additional functions have been added to solve this problem. The first
function generates the Cholesky factor needed in the generation of multivariate normal
data. The second function uses this factor to efficiently generate data. To determine the
Cholesky factor of sigma type (you will only need to do this once)
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rootsigma=root[sigma]

Then use

Normalwithroot|mu,rootsigma]

each time that you wish to generate a random variable with mean mu and covariance

matrix sigma.

For example you could generate a table of 50 independent multivariate normally
distributed data points with mean (1,2,3) and covariance matrix with 1, 10 and 100 down
the diagonal by executing

mu={1,2,3}
sigma=DiagonalMatrix[{1,10,100}]
data=Table[Normalvar[mu,sigma] ,{50}]

To generate the same data more efficiently use

rootsigma=root[sigma]

data=Table[Normalwithroot[mu,rootsigma} ,{50}]

You will find examples within the Notebook and Mathematica expressions for testing
that everything is working correctly.

" The second half of this Notebook contains the functions that can be used to generate data
from a B-Spline nonparametric density function. If you execute the entire Notebook you
will be able to use all of the functions defined by the Notebook.

The SplineDistribution function allows to you define a B-Spline distribution by name.
You may give the distribution any name that you like and then you generate data from
this distribution by using that name. So to define a B-Spline distribution enter




SplineDistribution[alpha,x1,h,m,’name’’]

where

alpha is alist of proportions (a list of number that is nonnegative and sums to 1,
x1 is the minimum value of the support of the density function,

h is the distance between knots (must be positive),

m is the order of the spline (integer greater than 0) and

name is the name of the distribution.

For example if you enter

data={2/10,3/10,3/10,2/10};
SplineDistribution[data,0,30,2,”testname”’]

you will have defined a B-Spline density function which is linear (order m=2), which
starts at zero, has a bin width of h=30 and is named testname. This named distribution
function can be interpreted as B-Spline density functions on an unbounded domain, a
semi-infinite domain (left truncated estimator) and a bounded domain (truncated
estimator). To generate a random value from each of these three types of distributions
by entering

makeRpoint[*“testname’’]
makeRpointL T{“testname’’]
makeRpointT[“testname’’]

The letters LT and T in these names stand for left truncated and truncated respectively.

Examples are included in the Notebook.
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Deconvolve

This Notebook can be used to deconvolve thickness data measured from well and to
compute the maximum thickness histogram. The input to the Mathematica Notebook is a
description of the histogram. This data consists of the following values.

Sand is a list of the sand thickness values from the histogram.
Sandmin is the leftmost point on the histogram.

SandDelta is the width of the sand thickness histogram bins.
The following data is the input data for the Frio Sands reservoir from this report

Sand={2,14,34,46,38,35,13,6,1};
Sandmin=0;
SandDelta=4;

The output from the Notebook is a list of values for the new histogram and a plot of the
new and old histogram.

ClusterSim

This Mathematica Notebook titled ClusterSim generates well separated clusters of
channels in a reservoir. Cluster centers are generated using an MCMC algorithm to
insure that the cluster centers are well separated. Each cluster of channels is assumed to
follow a multivariate normal distribution. The input into the first portion of the Notebook
is

thewidth  the width of the reservoir

theheight the height of the reservoir

chlength the length of each section of the channel

maxnpoints the maximum number of clusters of channels

clustersize the average size of clusters of channels

sigmal  the standard deviation of an individual cluster in the horizontal direction.

sigma2 the standard deviation of an individual cluster in the vertical direction.
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a controls the penalty for having clusters overlap, increasing a make it less
probable that two cluster center will be close

b controls the separation of cluster centers, increasing b generates points
which are further apart

numiter  the number of iterations of the MCMC algorithm. One iteration is one pass
through the data.

The second section of the input portion of the Notebook contains information, which
specifies the thickness, width to thickness and angle distributions. For each distribution
you must enter in the proportions which defines the B-Spline density function and initiate
the SplineDistribution function, which allows you to use a named B-Spline throughout
the Notebook. For example, to define the angle distribution with proportions (.3, .5, .15,
.05) starting with a minimum angle of zero with 30 degree intervals and named angle you
need to enter the following statements.

angle={.3,.5,.15,.05}
SplineDistribution[angle,0,30,2,”angle’’]

The thickness distribution and the width to thickness distributions are defined in exactly
the same way. All of these are already in the Notebook and you can easily change the
values if you have different distribution that you want to use. After you have entered
your data, simply execute the entire Notebooks and scroll down to see your resuits at the
end of the Notebook.

The outputs of the ClusterSim program are images of the clusters of channels from an
oblique view, a side view and a top view. Mathematica allows you to interactively
rescale the images and to change the view.
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PART VI

ESTIMATION OF GEOLOGICAL ARCHITECTURE
USING BAYESIAN/MAXIMUM ENTROPY APPROACH

By: Ruijian Li, Mohan Kelkar, and Erdal Ozkan

Summary

This project investigates the use of the Bayesian Maximum Entropy (BME)
method to generate geological facies as part of the reservoir description. The advantages
of the proposed method over the conventional approaches are first, the method can
account for non-stationarity in geological properties and second, it is general enough so
that various constraints can be accommodated as part of the description.

During the first year of the project, we developed a generalized procedure, which
accounts for the presence of seismic data as part of the geological description. These
functions include variogram, covariances, and cross-covariances among the neighboring
values. The method can also account for local probability distribution of facies, which
can be obtained from the seismic information. The results indicate that the use of seismic
data can improve the facies estimation compared to using simple kriging.

In the second year, we examined the feasibility of extending the method for
multipoint connectivity function. Our studies in the second year comprised three main
investigations. First we modeled higher order moments. We showed that the higher order
moments bear similar characteristics to that of the second order moments. Second, based
on a nonlinear regression scheme, we developed an independent means of incorporating
multi-point connection into reservoir architecture modeling. This proves to be a robust
procedure and improves our ability to estimate the reservoir architecture. It also provides
the basis for checking the results obtained by the BME method. In the final phase of the
study, we applied the BME method to the four-point connectivity case and showed the
improvements of reservoir architecture modeling and thus the potential of the BME
method.

Introduction

Geological description using quantitative methods is becoming increasingly
popular. The two approaches commonly used in describing the geological facies are the
grid based and object based methods.

The grid-based methods generate geological facies on a grid block level so that
the information can be directly used as input in the reservoir simulation. The two grid
based methods commonly used are sequential indicator simulation and sequential
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Gaussian simulation. Both methods essentially follow the same approach in generating
the geological facies at the grid block location. In the first step, the original data
(categorical facies data) are transformed into quantitative form. In the second step,
various continuity measures are estimated in the transformed domain. Typically these
measures are variogram and co-variances. In the third step, unsampled locations are
visited in a random sequence, and the value of the transformed variable is estimated using
the sample values in a search neighborhood as well as prior estimated values in the same
neighborhood. Once all the unsampled points are visited, the estimated values are back
transformed into categorical facies data. The main difference between the two methods is
the type of transform used in transforming the original categorical data into the
transformed data. Indicator simulation transforms the data into indicator variables
(discrete variables), whereas Gaussian simulation transforms the data into Gaussian
variables (continuous variables).

Both these methods have been extensively applied in the literature with varying
degree of success. The main drawbacks of these methods are: they do not account for
non-stationarity as a function of spatial locations, they do not account for relationships
which extend beyond two point connectivity functions, and they do not account for
geological rules such as physical relationships between facies (e.g., splay is attached to
the channel) explicitly. We need to develop methods that can overcome some of these
drawbacks.

Approach

The overall approach of this project is to transform the facies data into indicator domain,
develop various constraints, and develop a procedure that will allow the estimation of
facies at the unsampled location. We briefly describe the steps below. Detailed
derivations regarding the method are included in the Appendix.

Indicator Formalism

We propose to use indicator function to define the facies. The indicator function
can be defined as:

Iwk)={ 7 Kw=K 6.1)
o if K@) #K, '

Where K, is a threshold facies, K(u) is the facies at a location u. This definition is

flexible enough to accommodate both the hard (knowledge with 100 % certainty) and the
soft (knowledge with less than 100% confidence) information. For example, by assigning
an indicator value between 0 and 1, we can represent the probability that a certain facies
is present at a particular location. Further, by using indicator variables to describe the
geological facies, we are able to capture different spatial characteristics for different
facies.




Similar to any other variable, in the case that the information about spatial variability is
available, we can estimate the connectivity between sample points. For example,
variogram can be defined as,

n(h)
LS Ly, K ~icuj+ b, K, 62)
2n(h) J=1

A
(b, K) =

Cross variogram can be defined as,

A , n(h) , ,
7, (K, K,)= 1 > [Tituj,K,)—i(uj+h, Kl j,K,)—i(uj+h,K,)]
2n(h) /7

(6.3)

Where, 7;1 is the variogram, h is the lag distance, and n(h) is the number of pairs at lag

distance h. In addition, using the indicator formulation, we can also describe multi-point
connectivity. For example,

A 1 & M
Hz(hl,...,hM;K,l,...,K,M>=7Z ([T iu+h, K] (6.4)
=1 j=1

Where, H; represents multi-point histogram connecting M neighboring values. This type
of connectivity can capture geological objects, which have unique shapes.

Bayesian/Maximum Entropy (BME) Formalism

The BME approach is based on three basic principles. These principles can be
stated as:

e The information is more valuable when the uncertainty prior to obtaining that
information is bigger. For example, if the probability that event A will occur is 90%,
the fact that event A has occurred is not as valuable. Compare that with the
probability that event A will occur is only 5%. If the event A occurs, then that
information is much more valuable.

e The posterior probability of an event is obtained by using Bayes’ rule. Bayes’ rule
relates the prior probability to the posterior probability of an event.

e The best estimate of the posterior probability is obtained by maximizing the
information. :

In applying BME approach, we will assume that we are interested in estimating

I(uo,K,) at the unsampled location ug given sampled values i(u;,KX,), j=12,..,n.

A
Let I(uo,K,) be the estimator of I(uo,X,) at an unsampled location up where no
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observation is available. If f;(ug,ui,u2,...,u,) is the joint probability density function
of the associated random variables /(u;,K,), j=12,..,n,. prior to observing the data
Iuj,K,)=i(uj,K,), the fundamental probability density constraint needs to be

satisfied.

H j fi(uo, 1,02, up )dipdi;..di, =1 (6.5)

n+ltimes

The information contained in the random variables is assumed to be measured by.

inf[I(uj,K,), j=0L12,.,n)]=-In[f;(uo,u1,uz2,..,us)] (6.6)
This definition of the information is consistent with the first principle, which states that
the information is more valuable when the probability of that event occurring is small.

As the probability increases, the negative log normal value becomes smaller. The
expected information can be written as,

E(inflI(u},K,), j=012,..n)]}= E(~In[f; (w0, u1,u2,.. un)l} = &(f) (6.7)
where &(f,) is Shannon entropy function .

The prior physical constraints can be expressed mathematically as

E(gq) =] ” f gq(uo,ul,uz,...,u,,)f,- (uo,u1,u2,...,0,)diydi; ..di, (6.8)

n+ltimes

where 84 (uo,ui,u2,...,up),g=12,...,0, are suitable functions of I(u,K,).

For convenience, we define gg(ug,ui,u2,..,up)=1 so that E[ggl=1 defines the
normalization constraint defined in Eq. 6.5.

The function g can take various forms. For example, in the presence of observed values,
we can write, ’

8guj)=i(u;,K,) (6.9)

where j=0,1,2,....,n ; g=1,2,....m+1.
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another example would be a bivariate relationship,

gq(uj up)=[i(u;,K,)~E{I(u;, K )}li(ur,K,)~E{I(ur,.K,)}]  (6.10)
where 1,j=0,1,2,....n; g=n+2,n+3,...,(n+1)(n+4)/2.
The prior probability f;(uo,ui,u2,...,u,) and the posterior probability

f,-* (ug lug,uz2,...,u,) arerelated by Bayes’ Law,

fi(ug,u1,uz,...,uy)

£ (uo lug, uz,e..s tn) = (6.11)

f;(ul ’ uZ,---v un)

We can define BME (Bayesian Maximum Entropy) function as,
B;(uo) =In[f;" (uo 1u;, Uz, )] | 6.12)

=In[f;(ug,u;,us,...u,)]-1In[f;(uy,u,,...,u,)]

This function has to be maximized to get the desired benefit. Specifically, in BME
approach, the estimated value K(uy) is the solution of the equation

dIn{f, (K(ug), K(uy),.... K(u,))} o (6.13)
dK(ug) K(ug)=K(ug)

where the joint probability density function is defined as:

0
Ji (K(ug), K(uy),..., K(uy)) = %exP[ goﬂng (K(ug), K(uy),..., K(uy))]
. q=

(6.14)

and the LaGrange multipliers z,, ¢=0,1,.., Q can be obtained by solving

Elg,(K(ug), K(wy),....K(uy))]=

o
% [[- | 8K @p), K@y),....Kup))xexpld 11,8, (K (Wg) K(ty),....K () JdK (g )dK (0y). dK (u,)
n+l times g=0
g=01...0 (@=(n+Dn+4/2)
(6.15)
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where g, are the constraints imposed on the estimation equation. Depending on the types
of constraints imposed, Eq.15 can be solved analytically. For two-point connectivity case,
for example, knowing co-variances, analytical solution of Eq. 6.15 is possible. For higher
order connectivities, on the other hand, solution procedure must be numerical.
Appendices 6.A and 6.B provide the details of the analytical and numerical solution
procedures for two-point and multi-point connectivity cases, respectively.

An Application Example for Two-Point Connectivity Information

To illustrate the application of the BME method, here we consider an example of
generating geological facies in two dimensions (details of the computational
procedure can be found in Appendix 6.A). Suppose we know the means and
covariance at points 1 and 2, and we want to estimate the facies value at the
point 0 as shown in Fig. 6.1.

[

1 0
+ X +
|< a >|

Fig. 6.1 Location of Sampled and Unsampled Points for the Example

In this example, we assume that we have seismic data, which provides us with local
probability density function. That is, given a seismic attribute value, we
assume that the probability of individual facies is known. This is a prior
probability information, which is location dependent or non-stationary. We
estimate the posterior probability density function using the spatial
relationships as an additional information. Following the procedure derived
in Appendix 6.A, the computational procedure is as follows:

Let E[K]=0, assume that the covariance is only the function of distance. From Eq. 6.A.37
of Appendix 6.A, we construct the following matrix:

c(0) c(a) c(a)
Bl=lc(@) c(©) c(2a) - (6.16)
c(a) cRa) <(0)

Inverting the matrix in Eq. 6.16, we obtain



B 1
[c(0) — c(2a)][2c(a) % ~ c(0)? ~c(0)c(2a)]
cCa)?-c(0?  c(0)c(a)-cRa)(a) c(0)c(a)-ca)c(a) (6.17)
c(0)c(a)—c(Ra)c(a)  c(a)? —c(0)? c(0)c(2a) —c(a)?
c(0)c(@)-cRa)c(a)  c(0)c(2a)—c(a)? c(a@)? - c(0)*

X

The entries of the matrix in Eq. 6.17 correspond to the negative of the LaGrange
multipliers (see Eq 6.A.11). Thus, using Eq. 6.A.41, we have

~ 2
K(ug) = m(ug) ———3" s1o(K (0;) — m(u;))

Hoo =1
=- 21 5-1(c(0)c(a) — c(2a)c(a)) K (uy) + (c(0)c(a) — c(2a)c(a)) K (uy)]
c(2a)® —c(0)
_ c(a)
- c(2a) + c(0) (K(uy)+K(uz))

(6.18)

Using the procedure as described in Appendix 6.A, we compared the results of facies
description under different conditions. In this case, we assumed that we had
seismic data available at each location that provided us with prior
probability of facies. We also assumed that we had actual facies information
at limited number of wells. Fig. 6.2 shows the geological facies description
using simple kriging method. In this figure, we assumed that only well data
are available. Fig. 6.3 shows the geological description using only seismic
attribute information. Fig. 6.4 shows the geological facies description using
the well data as well as the seismic information using the procedure
described in Appendix 6.A. As can be seen, there is a significant
improvement in the geological description by incorporating the seismic data.
Although not obvious, incorporation of both seismic and well data matches
with the reference data set much better as compared to using only seismic or
well data.
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Fig. 6.4 Facies Distribution Estimated by Using Both Well and Seismic Data

High Order Moments

- As we noted before, the advantage of the BME procedure is to consider multi-point
connectivity information. The use of multi-point connectivity information in the area of
geostatistics is new and practically no information about the modeling of high order
moments is available. The correct usage of multi-point connectivity functions is restricted
to computation of probabilities of various configurations based on training or a reference
image. Since the number of combinations increase very rapidly as the number of points
increase, the method is typically restricted to 3 or 4 nearest neighbors. This type of
connectivity, however, is difficult to implement in practice because training image is
rarely available. Instead, we wanted to develop a procedure that can capture multi-point
connectivity based on well data or seismic data. Therefore, we devoted some of this study
to modeling high order moments.

The basic advantages of multi-point connectivity functions are the following:

1) They provide flexibility in defining dis-jointed connectivity
2) They can be used with limited data using lag tolerance

3) Direction dependence can be incorporated

4) Connectivity between different facies can be integrated

The multi-point connectivity functions can be defined similar to the conventional
two-point connectivity functions. The multi-point histogram representing the multi-point
probability function, for example, is defined as follows:




Similarly, the multivariance is defined by

C,@l,...,}z—n;K,):—’l;iEGj,K,)»m(K,)]n--E@,,j,K,)m(K,)] (6.20)

J=1

For example, the tri-variance can be defined as follows

=1

¢, 1’};2’;3;Kt)=7n1—i [@1] ’Kt]Lm(Kt)]EQZj ’Kt)m(KI)IGJ’Kt)‘m(Kt)]
(6.21)

We have used these definitions of multi-point connectivity functions for the
training image shown in Fig. 6.5. This image represents probability of Facies 1 based on
seismic data. 1 indicates 100% probability that Facies 1 is present. O indicates 100%
probability that Facies 1 is absent. A value in between indicates probability of that facies
being present. Figs. 6.6 and 6.7 show the tri-variance and quadri-variance functions for
this image, respectively. As can be seen from these figures, multi-point connectivity
functions display similar characteristics as two-point connectivity functions at a higher
dimension.

The functions are well behaved and are consistent with an intuitive understanding
of connectivities. For example, at a given lag distance between two points, as the distance
of the third point increases, the multi-variance is reduced indicating diminishing
relationship. Beyond the range of correlation, the multi-variance is zero indicating
uncorrelated nature. This range is the same as observed for two-point connectivity. This
is consistent with the idea that if two points are uncorrelated beyond certain lag distance,
three points will also be uncorrelated beyond that distance. Also observed is that the
initial value of multi-variance is smaller as the distance between the first two points
decreases. This is expected since with increasing distance, the relationship between these
points should weaken indicating a smaller value of multi-variance.

In practice, the data usually come from the well information. In this case, it is
very convenient to have appropriate models to represent the multi-point connectivity
functions such as the ones shown in Figs. 6.6 and 6.7. We have tried the spherical,
exponential, and Gaussian models for the quadri-variance functions shown in Fig. 6.7 and
have presented the results in Figs. 6.8-6.10, respectively. The spherical and exponential
models match the actual functions fairly well. To be used in practical applications,
however, both models will require more improvements.




40

30

20

10

col

0.0 0.2 0.4 0.6 0.8 1
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A Nonlinear Estimation Procedure

In this project, we have concentrated on defining the complex constraints that
would provide a better description of the reservoir geology. We have investigated the
high order moment methods and developed a semi-analytical method to incorporate
multi-point connectivity information as opposed to the conventional two-point
connectivity information. Here, we present a method that uses the fourth moments 'in
describing the reservoir architecture. Although this method is useful in itself, it will also
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provide the check for the numerical BME method we developed before and will help
better understand the type, quality, and the quantity of the data required to describe the
complex constraints based on multi-point connectivity information.

The Fourth Moment

The conventional methods use two-point connectivity information to describe the
reservoir architecture. Our objective here is to investigate the possibility of incorporating
multi-point connectivity information in reservoir architecture modeling. High order
moments have been used in the literature to incorporate multi-point connectivity
information (see, for example, Stuart and Ord, 1987). In the general framework of
moments, two-point connectivity information corresponds to the second moment. Below
we use the fourth moment.

The property of the fourth mornent can be described by the following expression:

M4(X =Y)=M4(X)+My(Y)=4M 5, +6M

where

x2p? -4M xy3 (6.22)

uy = E[X]

py = E[Y]

M4(X) = E[(X - ux)*]

My, = EU(X - px )’ (Y - py)]
M yapr = EI(X = px )* (¥ = py)°]
M s = EI(X — ux )Y — py)’]
M,(Y) = EI(¥ - py)*]

We will use the preceding property of the fourth moments in the estimation of the
unknown value of X, from the known values of X;,X5.....Xx.

Let

Xo =g+ > A(X; 1) (6.23)

i=1

This equation is similar to conventional kriging equation. In this equation, we assume
that the estimated value at the unsampled location is linearly related to nearby samples.
The fourth moments of the difference between the true value, X, and the estimated value,

XO 1s:




&= My(Xo - Xo) = My(Y 4(X; ~ 1)~ (Xo — o))

i=1

= M, Q. A(X; — )~ 4B A (X — 1)) (X — )]

i=1 i=1

+6E[Y. 4(X; — 1) (Xo — 16)* 1= 4EIQ. 4:(X; — )Xo = o)’
i=l1 i=1
+ M4 (XO -ﬂo)

n n n

n n n n n
222, AAihAMag =433 > ZiAiAMijo + 623 4:;Mjoo

b2 l]=1k=ll=1 i=1 J=1k=1 i=1 j=1

n
n

—4) " M0 +M4(Xo — 1)

i=1

(6.24)

where

My = EN(X; ~ XX ; "Hj)(Xk — XX — )]
Similar to kriging, minimizing fourth moment (Eq. 6.24), we have
n n n n n n
04; j=lk=11=1 j=lk=1 j=1

(6.25)

or

n n n n n n
DD AMAMuy =33 AiaMgo+3Y AiMa — Mg =0; fori=1,.2,....n
j=lk=l1i=1 j=lk=1 j=1

(6.26)

The solution of Eq. 6.26 provides the coefficients A; for i=1,2,...,n. Then, the estimated

value of X can be obtained from Eq. 6.23. Note that Eq. 6.26 is a nonlinear equation

and an iterative procedure is required to solve it. We have used Newton’s method to solve
Eq. 6.26. The details of the iterative solution by Newton’s method are presented in
Appendix 6.C. It must be emphasized that because we use multi-point connectivity
information (higher order moments), the results estimated.by this procedure should be
better then those obtained by the procedures that use two-point connectivity information.
A manual for the computer program, describing the procedure, is included in Appendix
6.D.
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Application Examples for Four-Point Connectivity Information

Here we consider examples of generating geological facies in two dimensions by
using the nonlinear regression method described above. For the first example, we use the
training image shown in Fig. 6.5 and the four point connectivity functions shown in Fig.
6.7.

Regression

Fig. 6.11 — Comparison of Nonlinear Regression and Kriging Results; First
Example, 200 points
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01"
0 10 20 30 40

col col

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6.12 — Comparison of Nonlinear Regression and Kriging Results; First
Example, 50 points

To generate the images shown in Fig. 6.11, we used 200 sample points. Comparison of
the image obtained by using the nonlinear regression method (Fig. 6.11)
with the training image (Fig. 6.5) shows the ability of the proposed method
to determine the reservoir architecture. For comparison, Fig. 6.11 also
shows the image obtained by using the kriging procedure. The differences
between the two images shown in Fig. 6.11 are indistinguishable for all
practical purposes. We have, however, found that as the number of sample
points decreases, the differences between the nonlinear regression and
kriging results become noticeable. As an example, in Fig. 6.12, we compare
the images obtained by nonlinear regression and kriging techniques by using
50 sample points. Here, the nonlinear regression method creates a better
image and proves the advantage using higher order estimation methods.
Especially notice the differences at central-west and northeast parts of the
reservoir. It should be noted at this point that the nonlinear regression
procedure suggested here is fast and accurate. Therefore, it can always be

~ preferred to the kriging method.

For the second example, we use the training image shown in Fig. 6.13. Fig. 6.14 shows
the estimates by using the kriging and nonlinear regression methods. It is
clear that neither method provides a completely satisfactory image. In Fig.
6.15, we show the difference between the training image and the estimates
by the two procedures. Based on the training image, on these figures, we
have marked the regions with 100% probability of the facies. These figures
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Fig. 6.13 — Training Image for the Second Example
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Fig. 6.14 — Comparison of Nonlinear Regression and Kriging Results; Second
Example, 50 points
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Fig. 6.15 — Differences Between the Training Image and the Estimates by the Two
Methods; Second Example, 50 points

Conclusions

Based on the work presented in this report, following conclusions can be
drawn:

o To properly capture geological features, it is critical that multi-point connectivity
functions be properly represented.

o BME method has a desired flexibility to incorporate the multi-point connectivity
functions. However, because the procedure is numerical, it is difficult to use in
practice.

e A new regression procedure, which incorporates multi-point connectivity functions, is
introduced. The method is robust and flexible enough to apply in practice. In general,
-it provides as good or better results than conventional kriging procedure. However,
the method needs to be tested further under different conditions to validate it further.
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APPENDIX A

BME Approach

In BME approach, the estimated value K(uyg) is the solution of the equation

dIn{fi (K(ug),K(uy),....,K(uy))} . =0 (6.A.1)
dK (ug) K(ug)=K(ug)

where the joint probability density function is defined as:
1 g
fk (K(“0)9 K(ul)r“’ K(un )) = ’Xexp[ ZO lquq (K(u() )’ K(ul)s"-a K(un ))] (6'A'2)
q=

and the LaGrange multipliers i, g =0,1,...,Q can be obtained by solving

E[g,(K(ug), K(uy),..., K(uy)] =
[J | 84K @g). K@p)mes K(@p)) % fi (K (ug), K (uy),err K (wy DK (u )dK (uy)...dK (u,,)

n+1 times

q=0l1,..,0 Q=n+1)n+4)/2)
or
E[gq(K(uo)’K(ul)v"’K(“n))]=

Q
% ([ | 8(K@g). Ktuy),... K@) xexply” 1,8, (K@g), K(Wy),....K(uy))JdK wg)dK(y). 4K (1)

n+l times gq=0
g=01,...0 Q@=(n+Dn+47/2)
(6.A.3)

where g, are the constraints imposed on the estimation equation. Depending on the types
of constraints imposed, Eq. 6.A.3 can be solved analytically. If we know the means

E[K(u;)]=m(u;) and the covariance c;(u;,u;), we can use following constraint
conditions to estimate the indicator K value of unknown point uy. The constraints are:

(20 =1 |

8o =K@g) ¢=012,...n

1841 = K@) —m@)E@p)—m@p)  g=n+ln+2...(1+D(n+4)/2~1 (6.A4)

L i,j=012,..n gq= (2”+2;)(z+1) "
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and

(E[ggl=1

Elg ul=mug) ¢=012,...n

1E[8 g1 ]=ci (K(w;),K(u)) g=n+lLn+2,...(n+Dn+4)/2-1 (6.A.5)
i,j=012,..n g= (2n+2;z)(z+1) .

The probability density function is :
: 1 0
fk (K(uo )» K(ul )9'"9 K(un )) = Texp[ ; ,quq (K(U()), K(UI),..., K(un))]

=%6Xp[,uo+ S K@)+ 52 . ()= mu)(K )= map)]
i=0 j=0
(6.A.6)

where ﬂlj =Uu ji

We need to solve the following (n+1)(n+4)/2 integral equations to get the
LaGrange multipliers Hg g=01,...,(n+D)(n+4)/2

= j [ eXP[/lo+Z,U,+1K(u)+~ 3 3 (K ()~ m(up))(K (@5) ~m(uy)]

2 =0 j=0

m+1 times
dK (ug)dK (uy)...dK(u,) =1
(6.A.7)
— jj | K(ug)expluy + z  piaK )+ 20 zo 115 (K () = m(uy))(K (u;) — m(u;))]
m+1 times ==
dK(ug)dK(ay)..dK(u,) = m(,uq)
g=012,...n

7 Jf- | () —m))K @) - mQuy Yexplu + Zu,+1K(U,)

m+l times
+7ZO ZO,U,](K (uy) - m(u,))(K (u;) —m(;)}dK (ug)dK (uy)..dK (uy) = c(uy,uy )
=0 j=
[1=0L12,...,n
k=L1+1,.n




Egs. 6.A.7 - 6.A9 can be solved. analytically to get the LaGrange multipliers
#y g=0L...(n+Dn+4)/2.

We can write the probability density function f}, (K(ug), K(uy),....K(u,)) ina
matrix form.

Fo(K@g), K(y),.... K(uy)) = _;_exp[yo + foymx(ui) + -12- io io iy (K () = m(up) XK () - m(u;))]
. I s

- %exP[—(-;— (K ~m)7 B —m)) + K7 4 + s19)]

(6.A.10) -
where
(K(llo)\ (m(uo)\ /_Iul
K(uy) m(u; )
K = m= l[[ =
o o ~Hn
\K(uy)) O \~ Hns1 )
E Moo — Hoi /JOn-
—Ho —Hn — Hin
B=
LT Hm —Hp2 - - T Hpn | 6.A.11
BT=B or ﬂlj=”ﬁ ( - o )
i=01..,n j=Li+l..,n
M = Hy e (2n+21—i) +j

Egs. 6.A.7 — 6.A.9 can be rewritten in matrix form as:

10=-i—‘ﬂ... | exp[—-(%(K—m)TB(K-—m)+KT,u+,uo)]dK=1 (6.A.12)

m+1 times

1
I =— ”' j'K(uq)exp[—(‘é‘(K—m)TB(K—m)+KT/l+#o)]dK=m(“q)

m+1 times

q=012,..,n
(6.A.13)
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1
I=—- j [ j (K (1) — m(up))(K (uy,) — m(uy, )

m+l times

1 T " (6.A.14)
exp[—(E(K -m) BK-m)+K" g+ 14)]dK = c(uy,uy)

1=012,...,n

For the multiple integral equations such as Egs. 6.A.12 —6.A.14, we have the following
general analytical solutions

Let ap and by be scalar constants; Let a and b be a vector of constants; let D be an nxn
symmetric matrix of constants; let B be a positive definite matrix of constants. We get :

T
[[-[ (XTAX +XTa+ag)e™X BX+X b0\ g g, iy,
Vo niaypit/2 By I SO S N N |
=~—2-7z" |BI " et [ir(AB™)-b"B"a+—-b" B~ AB"b+2ag]

(6.A.15)
Let X=K-m. From Eq. 6.A.12 , we have
1 .
A= [.. | expl-(—-(K —m)” BK -m) + K7 s + p)ldK
n+l times
= ™4 [[.. | expl-(—X"BX + X7 s+ pp))dX (6.A.16)
n+l times 2
2 47 "2 0
From Eqg. 6.A.13, we have
e 6
11 --—A‘ 1= m(uq) ( .A17)
where
7 1 T T
L= {[.. [ K@g)expl—(—®-m) BEK-m)+K s+ up)ldK
m+1  times 2 . (6.A.18)

qg=012,...,n

Let X=K-m. From Eq. 6.A.18, we have
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L=e#m j j j (X, +m(uq))exp[—(ixTBX+ X7y + pg)1dX
m+1 times 2 (6A19)
=111+ 1
where

~ ' _ T 1
=e#" [ [x exp[—(-Z—XTBX+XT,u+ o)X

m+l times

(6.A.20)

~ _ Tm 1 T T
Lp=c#m [ | m(ug)expl—(-X BX+ X' pt+ pp)lAX  (6.A21)

m+l times

Note from Eq. 6.A.16

-1/2

;12 =m(ug)x A= m(uq)X\/Jz"+1 —%——B

1 7.1
GXP[T/JT (5B L= g~ )
(6.A.22)

We also obtain

1 Y2 g 1. r sl
— B ex—T—B' -m" u-—- — —B) "a
2 P[4#(2)# ﬂ#o][,u(z) ]

1 T 1 _1
= A—I[-uy (—B) a
> [ ( ; ) a]
(6.A.23)
where

/0\

a= ie. a; = 1,when i=gq a; = 0,when i#q (6.A24)

\0/
Thus we can write

~ - - 1 _ 1 =
=T+l =—{-u" (—%—B) 'a]A+m(uy)A = [%[—/F B 'a]+ m(uy)]A = m(uy)A)
(6.A.25)

or
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%.[_ !,T(% B)la=0 (6.A.26)
From Eq. 6.A.26 , we obtain:

pe =0 For qg=12,..,n+1 (6.A.27)
For L, , we have

1y = 711-;2 == c(uy,uy ) (6.A.28)
where

I 2 = H I (K(ay) — m(u))(K(uy) - m(uk))exp[—(—lz—(K -m)’ BK -m) + KT g1 + yp)ldK

m+1 times
(6.A.29)
Let X=K-m, we obtain:
I=e#'m [f ] X2, expl—(—-XTBX + Xyt + 120)1dK
mil times 2 (6.A.30)
= [f- [ xTpx expl—(—XTBX + X7 1 + Uo)dK
m+1 times 2
where
D=[d;=1 for i=] and j=k, dy=0 otherwise ] (6.A.31)
Thus we have
-1/2

B

;2 — /ﬂn+l __;_

= Altr(DB )] = Ax c(up,uy )

1 1 1 _ ot
exP[—Z,uT(-E-B) 1u—mTy~u0][—yT<—2—B) 'a)[rr(DB ™))

(6.A.32)
So we get:
r(DB™Y) = c(uy,uy) (6.A.33)
Assume
B'=(by) (6.A.34)

From Eq. 6.A.33, we have
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tr(DB)=by (6.A.35)
or

bu=c(uy,u) (6.A.36)
We obtain:
c(ug,ug) c(ug,uy) . . c(ug,u,)

c(a,ug) clug,uy) . . c(ag,u,)
Bl=| . . .. . (6.A.37)

cu,,ug) c(uy,uy) . . clay,u,)

By inverting the matrix in the Eq. 6.A.37, we can get the value of LaGrange multipliers
Hij -

From Eq. 6.A.6, we get the density function

1 n n
fi(K (@), K (0),-, K(uy)) = Cexplr—2" 3, (K () = mup))(K () = m(uy))]
i=0 j=0
(6.A.38)
where C is a constant.
BME method requires
din{ f (K(ug),K(ay),....K(u, )} L (6.A.39)
dK(llo) K(ug)=K(uy)
By combining Equations.A.37 and A.38, we get
d n n
K@) [§ ,Zo py (K (@) =m@;))(K@p)-m@)) . =0
or (6.A.40)

Hoo (K@) ~m(@; )+ s1i0(K(u;)~mu;)) =0

i=]

The estimated value of unknown point vy is:
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~ n 6.A41
K(ug) = miug)) --%Z sy (K () = m(u; )) (e.A4D)
00 =t

Multi-Facies Case

The above set of equations can be generalized for a multi-facies case where we can also
account for inter relationships among the facies. This is accomplished through cross-
covariance’s. In the multi-facies case, if we know the mean, covariance and cross
covariance , we can estimate the facies at the unknown points by a similar procedure. The
solution is analytical.

Suppose we have d kinds of facies. The constraints are:

(80=1 |

g ga=Kuy) ¢=012..n [=12.d

18tk g =K @) —my W) K () —m (W) g=n+Ln+2.. (n+D@n+4)/2-1
_ (2n+2;i)(i+2) .

i,j=012..n Lk=12..d
(6.A.42)

fEtgo]=1
Hggul=muy) q=012..n 1=12..4
VB8 gl = (K ). K (0y))  g=n+1ln+2,.. (n+Dn+4)/2-1

,j=012..n Lk=12,..d gq= (2n+2;i)(i+1) ‘i

(6.A.43)
The probability density function is:

n_.

i d
fi(Kq, Ky, Kg) =—A—exp[ﬂo +2, 2 HanK @)
1 i=0
1 d d n n

+—2—Z > Z 2 My (Ki(wy)

I=1 k=l i=0 j=0
= my (W; (K (u3) — my (u;))]

= % exp[—-(—;— K —m)T BK —m)) + K g + 14)]




(Kz(“o)\
Kl (ul)

K (uy))

-~

— M .00
~Hir 10

— Hi. 01
= Hix 11

|~ Hirem  — Hien2

[ By,

By, By

By Bi

Hp=|-

my(ug))
m; (ui)
ml =
m (un)
K1 3\ (ml \
K, m,
m =
\Ka) my
_,ulk,On-
—Hixin
forlLk=
—Julk,nn_,
By |
By,
BT =B or
By, |

Using similar steps as a single facies case, we obtain

where

1 -l
B;y By .
1 el
Byi By .
Bl =
1 p-l
Bn Bi
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—Hi1

[=12,..,d
—Hin

\"~ Hin+1

(- H1
—H2

\"Hd )

1,2,....d, Blk = Bkl, or ,ulk,z:j = lukl,ij

By =By

(6.A. 45)
Bi}
B3
(6.A.46)
By,




ey (wg,ug) cp(ug,uy) ey (g uy)
cpag,ug) cp(ug,ug) . . cp(ag,uy)
By = . . .. : | Lk=12,...d (6.A47)

cp(up,ug) cp(uy,ug) . . cp(ug,uy,)
Eq. 6.A.46 can be rewritten as:

aiptp) - G)@gln) Gyuglp) - GoUpsly) - . Gu(Ugolg) - G yQug,uy,)

aiugug) . ¢ iUn,y) 6o,y . goun,ty) . . Ggy(Ug,ug) . Cld(un,“n)
©1(Ug:8p) - CyUgsly)  CpplUg,lg) - Cpp(agsUng) - - C1(WpsUp) - Cpp(lgyy)

B = o,ug) - oty o) . Cplinl) . . Coylin,tg) . Cpy(u)

caltgp) - Cnlugly) cpligy) - Cnliply) - .. Cuallgolg) - Caallipsty

Cai(n,ug) .. uULUy) p@p,iy) - Cpn,uy) - . CiUn,tg) . Cup(un,uy)
(6.A.48)

By inverting the Eq. 6.A.48, we can obtain the LaGrange multipliers uj ; lk=1,2,...d
and 1,j=0,1,...,n

The probability density function for multi-facies case is given by:

d d n
Z ‘Z Z ,Ulk,i_,'(Kl(ui)—ml(“i))(Kk(uj)—mk (Uj))]

|
—
T
]
—
~.
"
(=]
~
]
(=]

(6.A.49)
To estimate the 1 facies K (uo) ,1=1,2,...,d . we use the equation

dln{f, (K1, K, Kg)) o (6.A.50)
dKl (u‘D) K;(ug)=K;(uy)

By combining Eqgs. 6.A.49 and 6.A.50, we get




D Hini Ky (@) = my () (K (wg) — g ()] =0

d
1= K1(uo)=121(uo)

1 _5%3

[

dK,(ug) 15 i3 o j=0
or

& d n
M. 00(K o) =myp)) + D D pip s (K@) —my (w;)) =0
k=1 i=l
' (6.A.51)

Thus, the estimated value of facies 1 at the unknown point uy is:

d & 6.A.52
1 D g0 K (ag) —my (u;)) ( )

Moo 1o =1
I=1,2,....d

121 (ug)=m;(ugy)-

APPENDIX B

BME Approach for Multi-Point Connectivity

For multi-point connectivity case, the analytical solution of Eqs. 6.A.12 — 6.A.14 is not
possible. Therefore, a numerical algorithm is needed to compute the Lagrange multipliers
required by the application of Bayesian/Maximum Entropy (BME) procedure. The
algorithm we have developed includes two crucial elements: i) a convergent and stable
iterative solution procedure for the Lagrange multipliers and ii) an efficient and accurate
numerical integration procedure to compute multiple integrals. We have tested the
Newton-Raphson iteration procedure and determined that this procedure is stable and
convergent if a sufficient degree of accuracy can be attained in the numerical evaluation
of multiple integrals. We have also compared various numerical integration procedures
and convinced ourselves that integration by using Chebyshev polynomials would yield
accurate results for our applications. Below, we present the specific details of the
iteration procedure and document some results to demonstrate the validity of our
numerical approach.

Numerical Solution Procedure for BME Method

Our computational scheme for the LaGrange multipliers involves an iterative solution
that is accomplished by the Newton-Raphson procedure. The application of the Newton-
Raphson iterative procedure is summarized below:

The probability density function is given by,

ERETS S

i=1 j=1
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where y;; are the LaGrange multipliers and A is given by (the normalization constraint),
A= j I J. exp{ 2 ,uu )( )}dxldxz ...dx, (6.B.2)
1=l j=1

To obtain the LaGrange multipliers, u;, for a given set of covariances,

Cp = C(S,. 8, ), we need to solve the following set of equations,

— ” J(xe my Xxy —my )CXP{ Z#q )( j)}dxldxz edx, = C(Sy, i)
i=1 j=1
for 4,k=12,...n. (6.B.3)

Combining Eqgs. 6.B.2 and 6.B.4 and rearranging, we can write,

ga )= J-_['"J()’Z.Vk—cék)exp{ ZZ#,,y,y,}dyldyz .dy, =0 (6B.4)

i=1 j=1
for £,k=12,...n.

The set of equations given in Eq. 6.B.4 can be solved for ,u,-j,i, j=L2,...n by the
Newton-Raphson iteration procedure. For convenience, let us define

Gi(u)=[gu (1) gin (). 8 (W] i=1,...m (6.B.5)

i =y tins e ttin] i=l..n (6.B.6)

TR T (6.B.7)

Then, we can write Eq. 6.B.4 as,

G(x)=[G1 (1), G, (1}..... G, (u)] =0 (6.B.8)

PLAL L (6.B.9)

where &% is the solution of,

slu* b* = 6" ) (6.B.10)




with the matrix #(z) defined as,

¢(ﬂ)=[ o (”)} i,j=L...n (6B.11)

i
OH;
For a given set of covariances, Cgy =C(S;,S; ), starting with an initial guess

;10 = Lulo,,ug,... ,,u,? J, we solve Eq. 6.B.10 for 5*. We update ,uk by using Eq. 6.B.9
until max{§}< TOL, where TOL is a sufficiently small number.

We have coded the iterative computation algorithm and tested for convergence and
stability. Our findings can be summarized as follows:

1) The Newton-Raphson iteration procedure can be used to compute the Lagrange
multipliers required by the BME approach.

ii) The algorithm is always convergent for small initial guesses (in the order of 10™ or
less).

iii) The key to the success of the iteration procedure is the accuracy of the numerical
evaluation of multiple integrals.

As explained above, the integrals we need to evaluate have the following form:

+00 400 +00
I= [ [ [f(x1 2000 %, )dxp, dxy . d, (6.B.12)

We have found that the following relation leads to the transformation of the improper
integral in Eq. 6.B.12 to a computationally efficient form:

+c0
Ii = If(xl,xz,...,xi,...,xn)dxl-
- (6.B.13)

7 dt;
= I[f(xl,xz,...,Znt,-,...,xn)+f(x1,xz,...,—fnti,...,xn)]T.'—
0 _

1

Note that the integral in Eq. 6.B.13 has an integrable singularity at the lower limit and
can be numerically evaluated by using procedures that avoid the evaluation of the
integrand at the end points. We have tried Simpson’s rule with open formulas, Romberg
integration, and integration by using Chebyshev polynomials. Our results indicate that
Chebyshev polynomials are the most efficient numerical integration procedure for our
purposes.

To demonstrate the success of our numerical solution algorithm, below we present

some results. In all the examples, we use bivariate distributions to be able to compare our
results with those obtained by the analytical procedure.
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Examples

‘We now present some numerical results to demonstrate the accuracy of our procedure. In
each example, for a given set of covariances, C, =C (S,,5;), we compute the

LaGrange multipliers, y;; . The initial guesses for the Lagrange multipliers to start the

iteration process and the correct values of LaGrange multipliers computed by using the
analytical (kriging) technique are noted in the examples for comparison purposes. CPU

times for the computations are also provided. We use TOL = 107 to terminate the
iterations in all examples.

Example 1: 2-Data Points

10 05
Covari ,C{Sp.S
variences, (s, ")z(o.s 1.0]

.. . . o (-0.05 0.03
Initial guess for Lagrange multipliers, u;; =

0.03 -0.05

ial _(- 0.666648  0.333333 )
ij

Estimated values of Lagrange multipliers, g;;" = 0333333 0.666648

. -0.666667 0.333333
Correct values of Lagrange multipliers, x; =

0.333333 -0.666667

Total CPU time: O hours, 0 minutes, 6 seconds.

Example 2A: 3-Data Points

1.0 08 0.8
Caovariences, C(Sg,Sk)= 0.8 1.0 05
0.5 05 1.0

-05 02 02
Initial guess for Lagrange multipliers, ,ug- = 02 -05 -0.1
02 -01 -05

~3.40905 181817  1.81817
Estimated values of Lagrange multipliers, #;™ =| 1.81817 -1.63634 -0.63634
181817 -1.63634 -1.63634
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—-3.409091 1.818182  1.818182
Correct values of Lagrange multipliers, #; =| 1.818182 -1.636364 -0.636364
1.818182 -0.636364 -1.636364

Total CPU time: 0 hours, 15 minutes, 2 seconds.

Example 2B: 3-Data Points

1.0 0.8 08
Covariences, C(s;,5; }={ 0.8 1.0 0.5
0.5 05 1.0

-32 16 1.6
Initial guess for Lagrange multipliers, ,ug 16 -15 -05
16 -05 -15

~-3.40905 1.81817 1.81817
Estimated values of Lagrange multipliers, /‘i];' 12 181817 -1.63634 -0.63634
1.81817 -1.63634 -1.63634

-3.409091 1.818182  1.818182
Correct values of Lagrange multipliers, u; =| 1.818182 -1.636364 —0.636364
1.818182 —0.636364 -1.636364

Total CPU time: 0 hours, 8 minutes, 2 seconds.

Example 3: 4-Data Points

1.0 09 0.7 038
09 10 05 0.6
0.7 05 1.0 08
08 06 08 1.0

Covariences, C(S,,5; =

-63 41 08 1.9
41 -34 -05 -038
08 -05 -15 038
19 -08 08 -22

Initial guess for Lagrange multipliers, yg
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-6.38842 4.16611 0.833329 1.94442
. - w1 | 416611 -3.49952 -0.499997 -0.833322
Estimated values of Lagrange multipliers, 14;" = T -

1.94442 —-0.833322 0.83332  -2.22218

—-6.388886 4.166664  0.833333  1.944444
4.166664 —3.499998 -0.500000 -0.833333
0.833333 -0.500000 -1.500000 0.833334
1.944444 -0.833333 0.833333 -2.222222

Correct values of Lagrange multipliers, ; =

Total CPU time: 4 hours, 57 minutes, 43 seconds.

The examples presented above clearly show the stability and accuracy of the
computational algorithm we have developed. The computational time increases as the
number of data points increases. Examples 2A and 2B indicate, as expected, that the
closer the initial guesses are to the correct values the shorter the computational time. It is
clear that the computational time is largely owing to the numerical evaluation of multiple
integrals.
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APPENDIX C
Iterative Solution for Nonlinear Regression Procedure

Here we briefly describe the iterative solution of Eq. 6.26 by using Newton’s
method. Let us, for convenience , define the following:

7 =A@ L) £ R)] (6.C.1)
where
=23 A M4M - 322 A MM ,Jk0+3z A;M ;500 — M ;000 =0

e for :1k 21 .n (6.C.2)
and

A=A, Ag s A ] (6.C.3)
Let,

Ak < gk s* (6.C.4)

where 6% is the solution of,

o —-r) (6C5)

with the matrix ¢(1) defined as,

#(1)= [Qgﬂ(’”] i,m=1,..n (6.C.6)

The entries of the matrix (1) are given by

of;
oA

n n n
=3M 00 =60, A Mjimo +3D. D A 0 M i, (6.C.7)
m j=1 Jj= k=1
For a given set of M ;;, values, starting with an initial guess A= ?,zg,...,x‘,’, J, we solve
Eq. 6.C.6 for 6°. We update 4* by using Eq. 6.C.4 until max {6} < TOL, where TOL is

a sufficiently small number. We have observed that the initial guess of A%°s can be
obtained either based on kriging estimates or starting with very small values. The
convergence is always fast.
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Appendix .D
User Manual for forth moments estimate

1. CalForthMoment

Calculate the forth moments by input indicator values.

Input file format,
X y Indicator
For example,

1 1

1 2 1

5 10 0.7

Output file format,
h1 h2 h3 Forth Moments

where hl, h2 and h3 are the lag distance.

For example,
0 1 12 0.00753541
5 1 13 0.00565549
0 7 14 0.00403898

2. ForthEstimate

This program solve the non linear equations and get the forth moments estimation by
using Newton method. We use the solution of Kriging estimate as the initial guess of the
non-linear equations. The input data are forth moments, data point to be estimated,
sample points and covariance. The output is estimated values of the forth moments.

Input data file format,
Forth Moments
hl h2 h3 moments

data points
X y

sample points
X y indicator

covariance
h covariance
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Output file format,
X y indicator

3. KrigingEstimate

Estimate indicators by using simply Kriging. Input covariance and data points to be
estimated. Output estimated values.

Input data format,
covariance

h covariance

data points
X y

Output file format,
X y indicator

4. Other Programs
Covariance: calculate covariance.

Lu:  solve linear equations.
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