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PART I 

EXECUTIVE SUMMARY 

Fluvial facies architecture dimensions were investigated through a literature 
search. Dimensionsal relationships were considered for meandering channel, crevasse 
splay and fluvial-dominated delta channels. Although this effort provided insight into the 
appropriate scale for such facies elements, the usefulness for estimating modeling 
parameters was very limited. 

A three-dimensional process-based stratigraphy simulation model is specified and 
used to predict the channel sandstone distribution and facies architecture within E and F 
reservoir units of Middle Frio Formation, Stratton field. The process based fluvial facies 
architecture simulation model is modified from the model developed by others. 
Geological processes and features can be simulated in this model include floodplain and 
channel belt configuration, tectonism, aggradation, compaction and avulsion. Based on 
the specific geological characteristics in the Middle Frio Formation, modifications are 
made to incorporate the growth faulting and rollover mechanism, avulsion hierarchy and 
local subsidence rate variation. 

The program is written in C t t  language. Each geological process is coded into 
individual functions and the lower order processes are nested into higher order processes. 
35 input parameters are needed to define the geological processes. Simulation output 
include calculation information, 2D and 3D graphic view of the simulated facies 
distribution and facies architecture statistic parameters. Multiple realizations are 
generated to simulate the dispersed and concentrated architecture and the stacking pattern 
variation within each type of architecture. The major facies architecture features can be 
successfully simulated. 

Geophysics efforts focused on seismic amplitude and velocity are two important 
attributes for reservoir characterization. The study of seismic amplitude involves the 
complete field of geophysics due to several contributing factors. Here, we studied the 
seismic amplitude contribution with and without consideration totransmission losses and 
with and without incorporating mdtiples.hso, the contribution to seismic amplitude for 
marine and land environmentare analyzed. 

Markov random field and boolean models have been directed at generating 
realizations of facies distributions constrained to observations (well or outcrop) and 
geological interpretation with specific emphasis on fluvial systems. The work has 
emphasized the development of two very different types of statistical models, Markov 
Random Field (MRF) models and Boolean models. 

MRF models allow us to define a joint probability function for the distribution of 
facies by specifying local characteristics, or more mathematically, conditional 
probabilities based on local neighborhood systems. This is an extremely convenient 
feature as it is usually intuitively obvious how to specify the conditional probabilities to 
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incorporate desired geologic features, continuity, anisotropy (or more generally 
orientation), and ordering and to soine extent overall structure. Once the statistical 
parameters in the joint probability fiinction have been determined realizations of the 
facies distribution are generated by ii Markov chain Monte Carlo (MCMC) sampling 
procedure. A penalty term can be incorporated in the probability function to ensure that 
the fraction of facies in each realization is within some specified range. Conditioning to 
facies observed at wells is a trivial task. The main model we developed is extremely 
simple in that it is based on a second order neighborhood system and controls geologic 
features using only two-pixel cliques. Because of this, we are able to simply use a free 
boundary condition and avoid the unsolved problem of determining an appropriate 
definition of potential functions (statistical parameters) on cliques adjacent to the actual 
three-dimensional reservoir. This simplicity also makes it much easier to define 
conditional probabilities to simulate desired geologic features. Despite this simplicity, 
this MRF model can be applied to generate a rich variety of facies configurations. 
However, use of the model and code developed requires some understanding and 
intuitive insight on the way conditional probabilities affect geologic features, but much of 
this insight can be developed simply by reading this report. It would of course be 
preferable to develop an automatic procedure to generate the statistical parameters which 
define the probability function for the MRF model directly from geologic interpretation. 
For this purpose, we have investigated a number of algorithms, e.g., maximum likelihood 
estimation, coding and histogramming. Many of these methods have been successfully 
applied in the image analysis literature. Thus, we tried to apply various modifications of 
these procedures to our problem. Unfimtunately, none of them proved generally reliable. 
The maximum likelihood estimation procedure is reliable only when a good initial guess 
is available for the statistical parameters, and even then, it is computationally expensive. 

Although we do believe that the M R F  model developed will prove to be a useful tool 
for the generation of many facies distributions of interest to geologists, it is not easily 
applied to generate facies as geometrical objects having a desired structure, e.g., channels 
and splays in a fluvial system. Thus, we have investigated the application of Boolean 
methods. With Boolean methods, or more generally, Marked Point Process techniques, 
distinct objects are inserted into the reservoir. With this approach, well-organized 
structures are easily obtained. By working closely with geologists, detailed information 
on the statistics of the parameters in thie model can be obtained. For example in our study 
of the Middle Frio Stratton Field, we have accumulated data on channel thickness, 
channel width to thickness ratios, the angles that the channel makes with respect to some 
reference point and the natural clustering of channels. With these and other pieces of 
data we can make relatively realistic simulations of channel belts. Even more realistic 
simulations are possible if additional clata are incorporated into the model. 

The inclusion of specific well and outcrop information can be used to generate 
statistics to help understand the nature of the field and can also be used to constrain the 
stochastic realizations that are generated. At this time we have only used the data from 
the study areas to generate statistics which are used to generate simulations. We have 
not, at this time, used this type of infarmation to constrain the simulations. 
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Bayesian maximum entropy (BME) method investigates the use of the this method 
to generate geological facies as part of the reservoir description. The advantages of the 
proposed method over the conventional approaches are first, the method can account for 
non-stationarity in geological properties and second, it is general enough so that various 
constraints can be accommodated as part of the description. 

During the first year of the project, we developed a generalized procedure, which 
accounts for the presence of seismic data as part of the geological description. These 
functions include variogram, covariances, and cross-covariances among the neighboring 
values. The method can also account for local probability distribution of facies, which 
can be obtained from the seismic information. The results indicate that the use of seismic 
data can improve the facies estimation compared to using simple kriging. 

In the second year, we examined the feasibility of extending the method for 
multipoint connectivity function. Our studies in the second year comprised three main 
investigations. First we modeled higher order moments. We showed that the higher order 
moments bear similar characteristics to that of the second order moments. Second, based 
on a nonlinear regression scheme, we developed an independent means of incorporating 
multi-point connection into reservoir architecture modeling. This proves to be a robust 
procedure and improves our ability to estimate the reservoir architecture. It also provides 
the basis for checking the results obtained by the BME method. In the final phase of the 
study, we applied the BME method to the four-point connectivity case and showed the 
improvements of reservoir architecture modeling and thus the potential of the BME 
method. 



PART: I1 

PROJECT OBJECTIVES AND ACCOMPLISHMENTS 

Facies Architecture 

An early tasWobjective for the facies architecture component of the RAM Project 
was to develop and present tutorials. Tutorial sessions covered the subjects of: 
stratigraphic and facies architecture principles and concepts; meandering fluvial process 
and facies; process based simulation model of fluvial facies architecture; and application 
of process based fluvial facies architecture simulation. The tutorials helped to familiarize 
the various project members with the fluvial deposition process, facies architecture 
produced and preserved, geological process based simulation technique and its 
application. More importantly, these sessions served as a catalyst for developing 
modeling efforts. 

From literature search and compilation, fluvial facies architecture dimensions 
were assessed. Accomplishments of this investigation include: literature data subsurface 
data compilation; compilation of other quantitative facies architecture information; and 
development of synthetic data volume. Relevant information and data are provided to 
other team members working on different modeling techniques. .. 

Subsurface case study of the fluvial facies architecture on the middle Frio 
Formation, Stratton field was completed. This study is mainly based on digital log data of 
350 wells from Stratton field. A facies architecture model is established according to 
variations of discrete genetic interval stacking styles. Stacking style is related to other 
geological processes including aggradation rate change and structure activities. 

The fluvial facies architecture of the middle Frio formation was successfully 
simulated using process-based modeling technique. Achievements include: modified 
previous simulation models to incorporate the specific geological processes in Stratton 
area; implemented the simulation model into a C t t  program; and applied this simulation 
model to the middle Frio formation and successfully captured the major facies 
architecture features. 

Some issues that require additional inquiry or improvements are briefly discussed. 
We were unable to adequately quantify aspects of the facies architecture. Conventional 
techniques are not very useful in providing the estimation of the modeling parameters. 
Work needs to address this point in order to obtain realistic modeling output. None of the 
efforts achieved an approach conditioned on the subsurface data; this point, although 
stated as a project goal, wasconsidered long-range objective in the project proposal. We 
were not able to achieve realistic models through a wide range of spatial scales. For 
example, object-based methods were used to lay down channels or channel belts, but 
these objects were not filled with any realistic material. One approach discussed (but not 
fully considered, due to the limited project schedule) is to use hybrid modeling: object-based, 
controlled in part by processed-based routines, are laided down and then the objects are filled 
using Markov random field process. 
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Seismic Modeling and Interpretation 

Reservoir characterization involves interdisciplinary study of complex geologic 
features such as boundaries, faults, or facies bodies. The accuracy of imaging these 
features is a challenging geophysical problem. Also, the accuracy in seismic amplitudes 
and velocity field will give valuable insight into the observability of pertinent geological 
and reservoir properties. So, the main objective of the geophysical component of this 
research is to model and interpret seismic data in the light of the depositional model and 
utilize this interpretation for conditioning data for the predictive methods that can utilize 
nonstationary models. 
The following tasks were defined: 

a) Literature survey on factors that contribute to seismic amplitude. 
b) Development of software for synthetic seismogram. 

c) Synthetic data for geologic model:;. 
d) Processing and interpreting seismic data. 

In this period of research, we have taken a few more key approaches to better 
understand a reservoir along with the ones outlined above. 
The achievements are as follows: 

a) Delivered 3 tutorials to the group to familiarize the geophysical concepts in reservoir 
modeli 

b) Performed literature survey on sei,smic amplitude and velocity analysis. 
c) Developed algorithm and software for synthetic seismogram; developed the 

fundamental concept of generating particle velocity synthetic seismogram (for land 
seismics) and pressure synthetic seismogram (for offshore seismics). 

d) Developed a ray tracing software for computing the travel times over geological 
models of various degrees of complexities and obtained the uncertainty estimates for 
velocity calculations. 

e) We have obtained a 3-D seismic data from the Stratton Field, South Texas, loaded on 
Landmark Interpretation System, imd interpreted the E41 and F11 horizons 

We have learned that seismic amplitude and velocities are important attributes for 
reservoir characterization. We have performed a systematic study on the contributing 
factors and uncertainties. Also, 3-D seismic data provides an extremely good 
interpretable subsurface image if constrained with the VSP, well log information. 
However, the main disadvantage of the seismic techniques (if used alone) are the 
resolution (both vertical and horizontal), and uncertain 'depth estimation. We have 
addressed this problem with the field data. 

We have not noted any failures in this research, but given more time we would 
have constrained the geologic mode.1 obtained for the Stratton Field data which was 
mainly produced from the well log correlation. 
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Markov Random Field and Boolean Models for Geologic Modeling of Facies 
Distributions 

Our over-riding objective was to develop stochastic models for generating facies 
distributions conditioned to well data with a particular emphasis on nonstationary models. 
In relation to this primary objective, the main sub-objectives were to (a) to quantify 
geologic information in order to generate estimates of the statistical parameters which 
determine the probability function for the distribution of facies, (b) to distribute 
petrophysical properties within facies. 

Regarding the primary objective, we have developed both Markov Random Field 
(MRF) models and models based on marked point processes (specifically Boolean 
models) to generate facies distributions. With the Markov random field models 
developed, we can generate a rich variety of facies distributions. Specifically, based on 
geologic interpretation and information, one can select the statistical parameters defining 
the Gibbs probability function for the MRF to generate realizations of the facies 
distribution that display the desired geologic features, orientation, anisotropy, continuity, 
ordering, facies proportion and to some extent structure. Moreover, the MRF models can 
be easily conditioned to facies observed at wells. However, if one wishes to generate 
facies as large-scale objects, e.g., channels and splays in a fluvial environment, the 
Boolean model we have developed is preferable. With this model, one can generate 
channels and splays within a background facies. Conceptually, both models can be 
applied to nonstationary problems, by defining the statistical parameters as functions of 
position. However, at this point, this can not be easily done with the code we have 
developed. Instead to implement nonstationarity, one must use zonation, i.e., divide the 
volume of interest into specific regions and apply the stochastic algorithm to individual 
regions. This approach is particularly useful for fields such as the Oligocene Frio 
Sandstone of South Texas where in the top part of the geologic interval, channels tend to 
cluster, whereas, the lower portion, channels are randomly distributed with no apparent 
clustering. 

A significant amount of work was devoted to the investigation of procedures to 
estimate statistical parameters directly from observations, e. g., outcrop data or geologic 
interpretation. For MRF field models, we modified and experimented with several 
procedures that have been used successfully in image analysis research. However, we 
were unable to develop any reliable method. On the other hand, for Boolean models, we 
were able to generate a stochastic model from well data and geologic interpretation for 
the Oligocene Frio Sandstone of South Texas using a combination parametric and 
nonparametric density estimation. Then, by applying a Markov chain Monte Carlo 
simulation procedure, we are able to generate realizations of channel distributions. 

The fruitless time invested in attempting to estimate statistical parameters from 
geologic information and interpretation precluded an investigation of procedures for 
distributing petrophysical properties within facies. However, there exist many procedures 
for doing so, ranging from simple procedures such as assigning the same value at each 
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gridblock occupied by the same facies to more complex procedures such as Gaussian 
cosimulation and indicator methods. 

In summary, we delineate our successes, failures and lessons learned. 

Successes: We have developed Markov Random Field models which can be applied to 
model a rich variety of facies distributions and capture pertinent geologic features, e.g., 
orientation, continuity, anisotropy, ord.ering and facies proportions. With this model, it is 
easy to condition realizations to faciles observed at wells. Boolean models have been 
developed for generating channel distributions in a fluvial environment. Statistical 
methods have been developed for estimating the statistical parameters defining the 
Boolean model from geologic observations and interpretations and applied to a specific 
field example. 

Failures: Procedures to distribute petrophysical properties within facies have not been 
investigated. We were unable to develop a generally reliable model to estimate the 
statistical parameters defining the Giblx probability mass function directly from geologic 
interpret ation. 

Lessons Learned: Contrary to previous thought, a rich variety of pertinent geologic 
features can be captured using MRF models using only two-pixel cliques. High order 
neighborhood systems are not required. Boolean models for the distribution of channels 
and crevasse splays within a background facies can be generated using a very simple 
polygonal parameterization in which all objects lie within intersecting planes. This 
characterization should prove extremely useful for distributing petrophysical properties 
within the facies and in conditioning Boolean models to production data. In fact 
we have already begun work on conditioning Boolean models to well-test pressure data 
under the auspices of the Tulsa University Petroleum Reservoir Exploitation Projects. 

Final Comments: The ultimate goal of reservoir characterization should be to evaluate 
the uncertainty in predicted reservoir performance under proposed operating conditions. 
By doing so, one can make more informed reservoir management decisions which will 
lead to reduced operational and developmental costs. To reduce uncertainty in simulated 
reservoir descriptions, one clearly should condition models to production data. We fully 
expect that many of the results obtained in this research will prove useful in our work on 
generating reservoir realizations conditioned to production data and geologic data and 
interpretation. 



Estimation of Geological Architecture Using BayesianMaximum Entropy 
Approach 

The overall project objective was to develop a more flexible technique to describe 
geological properties. Ideally, the technique should have the ability to capture non- 
stationarity, typically observed in geological descriptions. Further, the technique should 
also have the ability to capture geological constraints, which may not be captured using 
conventional two-point connectivity functions such as variogram and co-variance. 

We chose the technique of Bayesian Maximum Entropy to apply it for geological 
description process. Based on the publications available, the technique had the ability to 
capture the non-stationarity in description. The technique is also flexible enough to 
accommodate various geological constraints. 

We started implementing Bayesian Maximum Entropy (BME) method by first 
developing the necessary analytical solutions for two point connectivity functions. These 
functions include variogram and co-variance. The development of solutions is provided 
in the Appendix. The method has the flexibility to also incorporate cross-covariance 
among geological facies. We used the procedure to develop geological facies description 
in the presence of seismic data, and showed that the method works well in incorporating 
soft information. 

Unfortunately, when we tried to extend the technique to multi-point connectivity 
functions, we realized that we were not able to obtain analytical solutions. We tried 
using discrete variables instead of continuous variables, but still were not able to resolve 
the problem of obtaining analytical solutions. To overcome the problem, we decided to 
develop a numerical procedure, the details of which are provided in the Appendix. The 
procedure proved to be very robust, and was able to converge to a solution independent 
of the starting values. However, since it involved numerical integration, it proved to be 
time consuming. As the size of multi-point connectivity function increased, the integral 
size increased proportionately. Computationally, it became more demanding. Although 
we were able to solve the problems of four-point connectivity function, its practical 
implications are unclear. The program can be optimized to improve the integration; 
however, it still seems impractical with current computational resources. Further,' as the 
number of neighboring values increase, the numerical solution becomes more 
cumbersome. 

To briefly summarize the BME method, the method is extremely flexible and 
robust. It has the ability to accommodate various constraints. We have shown that it can 
be used in cases where traditional interpolation techniques may not be used. In practical 
terms, however, the method cannot be easily used because of the requirement of 
numerical solution. The solution, although robust, is computationally intensive, and 
cannot be applied in practice at present time. 

As an alternative to BME method, we investigated a method that can provide us 
with flexibility similar to BME method, but, at the same time, provide us with an 
analytical solution. The In the report, we present this new regression technique. 
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technique can account for four-point connectivity function - a substantial improvement 
over conventional kriging technique. The procedure provides an analytical solution, 
which results in estimation of weights assigned to the neighboring values. The weights 
are estimated using an iterative scheme; however, the iterative procedure is extremely 
efficient, and converges very quickly. By comparing the proposed method with 
conventional kriging technique, we have shown that the proposed method always 
produces better or as good results as kriging technique. We believe that this technique 
has the requisite flexibility to incorporate higher point connectivity functions; at the same 
time, has the computational efficiency to apply it in practice. 
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*PART 111 

FACIES ARCHITECTURE 

By: Dennis R. Kerr, Kexian Yang and Amy Richardson 

SUMMARY. 

Fluvial facies architecture dimensions were investigated through a literature search. 
Dimensionsal relationships were considered for meandering channel, crevasse splay and 
fluvial-dominated delta channels. Although this effort provided insight into the 
appropriate scale for such facies elements, the usefulness for estimating modeling 
parameters was very limited. 

The Oligocene Middle Frio Formation is one of the major reservoir intervalin the 
Gulf Coast Basin. The succession is characterized by a sediment-supply dominated 
fluvial system with rapid deposition and high subsidence. In the study area, the Middle 
Frio is the major subunit of Frio Formation which is composed of interbedded mudstone 
and lenticular channel and splay sandstones. Previous geological studies reveals that 
channel sandbodies are arranged into different stack pattems as response to the varying 
aggradation rate of the coastal plain. A structural and facies analysis in this study 
suggests that the growth fault zone normal to the depositional axis and associated 
rollover structure play an very important role on the distribution of reservoir sandbodies. 
A quantitative geological characterization is carried out to provide information of input 
parameters, and also served as a comparison model for the simulation results. 

A three-dimensional process-based stratigraphy simulation model is specified and 
used to predict the channei sandstone distribution and facies architecture within E and F 
reservoir units of Middle Frio Formation, Stratton field. The process based fluvial facies 
architecture simulation model is modified from the model developed by Bridge and 
Leeder (1978), and Mackey and Bridge (1992; 1995). Geological processes and features 
can be simulated in this model include floodplain and channel belt configuration, 
tectonism, aggradation, compaction and avulsion. Based on the specific geological 
characteristics in the Middle Frio Formation, modifications are made to incorporate the 
growth faulting and rollover mechanism, avulsion hierarchy and local subsidence rate 
variation. 

The program is written in C++ language. Each geological process is coded into 
individual functions and the lower order processes are nested into higher order processes. 
35 input parameters are needed to define the geological processes. All the input 
parameters are taken according to the quantitative geological characterization, earlier 
studies of the middle Frio Formation and general geological knowledge. Simulation 
output include calculation information, 2D and 3D graphic view of the simulated facies 
distribution and facies architecture statistic parameters. 

Multiple realizations are generated to simulate the dispersed and concentrated 
architecture and the stacking pattern variation within each type of architecture. Major 

7 



considerations in the simulation include aggradation rate variation, tectonic subsidence 
rate variation and probability of different type of avulsions. The major facies architecture 
features can be successfully simulated. 

Process based facies architecture: simulation has good potential to produce 
geologically reasonable realizations in predicting spatial fluvial facies distribution. 
However, geological study of the simulated area is necessary to understand the geological 
processes involved and to define the input parameters. 

Based on the model used in this study, simulation effects show that the periodic 
variation of regional aggradation rate caused repeated change of channel fill facies 
architecture from concentrated to dispersed. This simulation effect is in agreement with 
the explanation by Kerr and Jirik (1990). 

The channel belt avulsion hierarchy, especially the effect of nodal avulsion in 
response to growth faulting has significant impact on facies stacking pattern variation in 
the field scale. Channel belt avulsion and deviation from the location of growth fault can 
results in: 1) increase of channel belt sandbody number and 2) change of channel belt facies - 
stacking pattern from vertical to more lateral. 

Depression along deposition direction can produce the effect of channel belt 
shifting towards the depression axis. As a result, channel belt facies density along the axis 
is higher than adjacent areas. 

INTRODUCTION. 

The facies architecture component of the RAM Project pursued the following 
efforts in the course the project: 1) Developed tutorials for establishing a foundation from 
which modeling efforts could proceed. 2) Investigated the literature for data and 
empirical relations of facies architecture element geometry. 3) Developed a synthetic 
meandering fluvial system volume. 4) Developed and applied a process-based model for 
meandering fluvial architecture. Items 2 and 4 are presented in this report. 

The decision to develop a process-based model came from: 1) The literature 
investigation of fluvial facies architecture dimensions pointed to a gap in the 
incorporation of geological processes in controling fluvial sand-body geometry. This 
point is particularly important when considering elements of differing scale and potential 
for sand-body connnectedness. 2) This endeavor bore more fruit when working with the 
other object-based modeling efforts of the RAM Project. However, the limited time of 
this project did not permit the full integration of these different lines of modeling. 3) The Stratton data 
set was available and familiar to the investigators. 

Details of the processed based modeling can be found in a Masters of Science thesis 
by K. Yang. The thesis is available through the McFarlin Library at The University of 
Tulsa. Also Appendix provides instructions for using the program included on disk with 



this report. Subsurface maps prepared by D. Ken (unpublished 1989-1990) were used for 
parts of this study. Kerr's subsurface maps are archived at The University of Texas 
Bureau of Economic Geology in Austin, Texas. 

FLUVIAL FACIES ARCHITECTURE DIMENSIONS. 

An early project objective was to collect fluvial facies architecture geometry 
information from the literature. This objective was deemed vital to any attempts at 
realistic simulation of fluvial architecture. This section summarizes the results of this 
effort. 

The most widely available stratal dimension available from subsurface data is 
thickness. The thickness of a stratal unit is readily measured from wireline logs. The 
width of a stratal unit is generally unknown, except perhaps in the case of high-resolution 
3D seismic image. Thus, stratal width is estimated from some relationship tied to 
thickness. Following is a summary of relationships between thickness and width of sand 
bodies found in the literature. Given the depositional systems emphasis stated in the 
original proposal, meandering channel, crevasse splay, and fluvial-dominated delta 
dimensions were the focus of the literature search. 

Meandering Channel Dimensions 

Several empirical equations have been suggested for the dimensional relationships 
of meandering channel strata. 

Geomorphology Approach 

Schumm (1963; 1972) developed an equation that relates width and depth of fluvial 
channels: 

F= 225 M-'.08 

where: 

F = width:depth ratio 

M = weighted mean percent silt and clay 

Schumm doesn't give an error for his formula, but Cotter (1971) uses a standard error of 
0.20. Schumm (1972) related meander wavelength to F with the equation: 

1 1=18 (F" 53 wo.69 

or 

log I = 1.27809 + 0.52822 log F + 0.6877410g w. 

where: 

I= meander wavelength 
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w = bankfull width 

The standard error is 0.21 log units. 
One of the more commonly used. formulas is from Leeder (1 973): 

w = 6.8h”” 

where: 

w = bankfull width 

h = banlcNl depth 

This relationship is based on 57 modeirn meandering rivers with sinuosity (channel length 
to valley length ratio) greater than 1.7. The correlation between w and h is strong (r = 
0.91). This equation is widely used (]Bridge and Mackey, 1993; Lorenz et al., 1985; 
Stancliffe and Adams, 1986; Collinson, 1978; and Williams, 1988). 

Williams (1986) offers two equations for width and depth relation: 

(for 30 sites with sinuosity > 1.7) 

(for 67 sites irregardless of sinuosity) 

w = 15.5 d’.4 

w = 21.3 d’.45 

where: 

w = bankfull width 

d =bankfulldepth 

Sand-Body Geometry Approach 

Collinson (1978) compiled sand-body shapes for fluvial deposits regarded as being 
of a meandering channel origin. Thus, this approach uses the depositional geometry, and 
results in the relationship: 

W m  = 64.6 t’- 

h = 74.1 t’.” 

where: 

Wm = channel belt width 

t = sand body thickness 

h = meander wavelength 

However, there is a lot of variation in the data compiled, and Collinson (1978) offers no 
measure of the strength of the correlation. 
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Fielding and Crane (1987) considered Collinson's (1978) equation, but developed a 
best-fit equation from their own data compilation: 

Wm = 12.1 tl.8' 

where: 

Wm = channel belt width 

t = sand body thickness 

Again, Fielding and Crane's (1987) data are highly variable and include the deposits from 
fluvial systems other than meandering. They suggest that meandering fluvial channel 
belts likely reside between: 

Wm = 0.95 tZo7 

Wm = 64.6 t'" 

upper bounding line 

fully developed meanders (Collinson, 1978) 

where: 

Wm = channel belt width 

t = sand body thickness 

Fielding and Crane (1987) continue to consider a simple descriptive model for relating 
thickness of channel-belt sand bodies to assumed widths (Le. best-fit line equation) in a 
given well. Next they compute a cross sectional area of all sandstones that is intersected 
by a well, excluding any that are less than 2 meters thick: 

cross sectional area = C tiW 
n 

i=l 

where: 

t = thickness 

W = channel-belt width 

i = sand-body index, from 1 to n (=total nun.,er of beL,) 

The procedure is extended to consider the success rate of an offset well located a distance 
W (or shorter) from the first well: 

R 

Ctiminimum ( w i , ~ )  
i-1 successrate = 

where: 

t = thickness 

W = channel-belt width 
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i = sand-body index, from 1 to n (=total number of beds) 

For secondary or tertiary development: the success rate equation was rewritten as 

i success rate = 

i=l 

Selected Literature Compilation 

Using 20 data points compiled from Williams (1986), Puigdefabregas (1973), 
Schumm (1972) a graph was made plotting thickness vs. width meandering channel 
deposits (figure 3.1). 

~ 

Meandering Streams width v s  depth 

0.1 1 10 

depth rn 

100 loo0 

Fp = 0.7999 
y = 19.735x'3572 

Figure 3.1. Cross plot of meandering channel deposits selected from the literature. 

A best-fit line is: 

Wm = 19.735 t',3572 

where: 

Wm = channel-belt width 

t = thickness 

This result is reasonably comparable to the other width to thickness relationships 
discussed above; the equation is very similar to Leeder's relationship. However, each 
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width to thickness (or depth) relationship given above offers markedly different results as 
the thickness increases. This draws into question which to choose, or perhaps is this a 
useful approach at all. 

Crevasse Splay Dimensions 

Crevasse splays are overbank deposits that occur when a river flooded breaches its 
levee. A crevasse channel forms, and fan- or lobate-shaped splay of sand and mud is 
deposited on the floodplain. Deposits can range from a few inches (cm) in thickness to 
10s feet (m). Smith et al. (1989) article related stages of crevasse splays to geometry. 
Stage I is an immature splay that is small and produces lense or wedge shaped deposits. 
Stage II fonns less tabular deposits that are disconnected by channelization. The cross 
sections are irregular. Stage III produces linear and more isolated sand bodies as 
channelization is even more common. With each stage the size of the splay increases. 

Few empirical formulas were offered in the literature that related the thickness and 
width of crevasse splay deposits. Mjos et al. (1993) indicated maximum 1ength:thickness 
ratio is 2000. More typically the ratio ranges between 150-1500, and thicknesses range 
0.3 to 4.5 m. Crevasse channel sandstones have widtldthickness ratios of 5-60, and 
thickness are usually less than 4m, but can range up to 7m. 

With data given in Rhee and Chough (1993), O'Brien and Wells (1986), Flores 
(1984), and Chrzastowski et al. (1994), a graph relating width to thickness came up with 
a slope of 426.87(figure 3.2 ). This fits in with Mjos et al. assumptions, but is not 
conclusive because of the few data points. Larger splays gave ratios that were closer to 
the published norms. 

Crevasse Splay Width vs. Thickness 

thickness ft. y = 462.87X - 1448.1 
R! = 0.81 59 

Figure 3.2. Crevasse splay deposit width vs thickness. 

Fluvial Delta Dimensions 

13 



Despite the voluminous literature on delta systems, the literature seems to contain 
little factual information on the geometry of entire deltas and channel-fill deposits. There 
is some research on deltaic channels and bar deposits. 

Lowry and Jacobson ( 1993) give an empirical formula for channel width to 
thickness ratio for isolated channels that incise mouth-bars: 

w = 12.7 t'.' 

where: 

w = channel width 

t = channel-fill thickness 

They also found distributary channel width to thickness ratios range from 10 to 20. 

Tyler et al. (1991) found that in the Ferron Sandstone basal channels have fairly 
consistent width to thickness ratios. The average is 9.5 . These are small features at the 
base of the distributary complex. F a h e r  and Fielding ( 1993) found in their study area 
that proximal mouth bars have width 1.0 thickness ratios of 5 to 25. 

From study of the Atchafalaya River delta, Wells et al. (1984) mapped five deltas in 
different stages of development. Each were measured to find length perpendicular to the 
main river channel, width parallel to the main river channel, and the channel width of the 
main distributary channel to the delta. The length (1) to width (w) ratio for all deltas is 
charted in figure 3.3. There seems to be two main groups in this data. The deltas where 
the Yw ratio is greater than 1 and the group where it is less than 1. The cause of this 
difference seems to be delata size -- smaller deltas have ratios greater than 1, and the 
larger deltas have Yw ratios smaller th.an 1. Compiled data offer a best-fit line: 

c = - 0.0302 I/w + 0.1995 

c = 0.3663 YW + 0.345:8 

where: 

c = main distributary channel width 

(deltas < 10 km in length; figure 3.4) 

(deltas >10 km in length; figure 3.5) 

1 = length measured perpendicular to main channel 

w = width measured parallel to main channel 

The correlation coefficient is so low tlnat it is difficult to say whether any real relationship 
exists among the variables considered. However, the outlier with >1 km channel width is 
likely distorting the correlation coefficient. 
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Figure 3.3 Atchafalaya delta dimensions. 
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Figure 3.4 Atchafalaya delta dimensions for Vw less than 1. 
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General Assessment. 

The literature is rich with attempts to relate dimensions of fluvial facies 
architectural elements. Unfortunately, the usefulness for modeling efforts is questionable. 

Meandering channel dimensions seem to present reasonable correlations in their 
dimensional character. The geomorphology based approach provides highly variable 
results. The problem appears to be that channel width is defined differently, or not clearly 
defined at all. Channel sand-body relationships are also reasonably correlated. However, 
other geological processes come in to play in the deposition and preservation of rock 
volumes. This include, but are not limited to, accommodation space and alluvial plain 
aggradation. 

The data for crevasse splay deposits is interesting. But one needs to keep in mind 
that crevasse splay sand-bodies are approximated by low-profile cone segments. 

The fluival deltaic data is diffku;lt to decipher. It was not used in our work. 

The dimensional data and relationships are interesting, but their usefulness to 
modeling architectural elements is limited. The greatest limitation comes from the fact 
that individual data sets are small and not well documented in terms of how and exactly 
what was collected. This is an area the sedimentology community needs to address. For 
the RAM Project, these relationships were not helpful in estimating parameters for the 
other modeling efforts. 

PROCESSED-BASED 3D FLUWAIL ARCHITECTURE SIMULATION: MIDDLE 
FRIO FORMATION SOUTH TEXAS. 

Motivation and Objectives 

Geological process-based 2D and 3D quantitative models of fluvial stratigrahpy 
have been developed to simulate the distribution, proportion and connectedness of coarse 
grained channel-belt deposits within alluvial strata (Bridge and Leeder, 1972; 1992, 
Mackey and Bridge, 1995). Geological processes considered in current models usually 
include: floodplain aggradation; compaction; tectonism; and channel avulsion. Process- 
based simulation approach has a good potential to predict facies distribution in fluvial 
successions. Though some preliminary efforts have been made to apply these models to 
modern natural cases (Mackey and Bridge, 1995), application to ancient subsurface cases 
in the published literature was not fourid. Difficulties of the application mainly come 
from: 1) the models are too generalizeld or simplified to simulated natural cases with 
more specific and complicated geologiical processes; 2) the input parameters needed by 
the models are difficult to define in real-world cases, especially subsurface cases since 
data density are not sufficient, and some of the geological processes are not obviously 
recorded in the rock volume. 



Efforts are needed to apply this approach to real-world cases, especially 
subsurface cases, to understand for specific geological setting, how these processes can 
influence facies architecture. Motivated by this idea, an object-oriented model will be 
built based on a real subsurface case -- the middle Frio Formation of south Texas. 

Overview of Frio Formation and Stratton Field Study Area 

The case chosen to simulate is the middle Frio Sandstone in south Texas 
(according to the stratigraphic subdivision by Ken and Grigsby, 1991), which is one of 
the major reservoir intervals in the Gulf Coast Basin (Galloway et al., 1982; Galloway et 
al., 1983; Kosters et al., 1989). The study area includes Stratton Field and adjacent area 
as shown in Fig. 3.6. EarIier geological studies suggest a fluvialdeltaic depositional 
system (Galloway, 1982). Growth faults and associated structures that cross depositional 
trends impact sandstone accumulation. The effects of varying aggradation rate with time 
are thought to be recorded by changing of channel sandbody stacking patterns (Kerr and 
Jirik, 1990). 

Stratton field is located within the onshore Gulf Coast basin of south Texas along 
the Vicksburg fault zone (Fig. 3.6), near the northern end of FR-4 gas play (Kosters et al., 
1989). Geographically, it is in area overlapping Nueces, Kleberg and Jim Wells 
Counties. 

The area of detailed analysis comprises about 31 mi2 (80 km’) which covers the 
major part of Stratton field. The detailed study is mainly based on logs from about 400 
wells, mostly in digital format. A rich source of previously published and unpublished 
studies in this area are available and can serve as good references and foundation to this 
study. These works include both regional and detailed deposition, structure, reservoir and 
hydrocarbon resources investigation (Galloway, 1977; Galloway et al., 1982, Galloway et 
al., 1983; Kosters et al., 1989; Jackson and Galloway, 1984; Ewing, 1986; Ken, 1989- 
1990 unplished maps; Kerr and Jirik, 1990; Kerr, 1990; Kerr and Grigsby, 1991; Levey et 
al., 1993). 

The Oligocene Frio Formation is a major progradational offlapping stratigraphic 
unit in the Northwest Gulf of Mexico Basin. The succession is characterized by a 
sediment-supply dominated fluvial system with rapid deposition and high subsidence rate 
(Galloway and others, 1982; Morton and Galloway, 1991). 



Fig. 3.6. Location map of the study area (from Hardge et al.1994 and Levey et al. 1993). 
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The Frio Formation is informally subdivided into three subunits in the region along 
Vicksburg fault zone refered to as the lower, middle and upper. The total thickness of 
Frio Formation varies from less than 2,000 ft  (610 m) to great than 9,OOO ft (2740 m). 
The middle Frio is 2000 to 2500 ft (610 to 760 m) thick and composed of interbedded 
floodplain mudstone and fluvial channel-fill sandstones and splay sandstones (Kerr and 
Jirik, 1990 Kerr and Grigsby, 1991). In Stratton Field, the middle Frio Formation is 
subdivided into F to B reservoirs (Fig. 3.7). The interval of detailed analysis in this study 
includes E41 to F11 with a total thickness of about 300 ft  (91 m). 

Stratton field lies within the KO Grande Embayment structural province (Levey et 
al., 1993). The structural style in this region is characterized by discontinuous belts of 
growth faults parallel to the striking direction. A series of normal faults are developed in 
the Vicksburg and lower Frio Formation and sole out into the Vicksburg detachment zone 
within the Jackson Shale. The structure framework of the middle and upper Frio 
Formation is much simpler than the underlying formations and the strata are relatively 
undeformed and flat-lying. At the study interval from E41 - F1 1, The structure attitude is 
mostly affected by the master growth fault while all the antithetic and faults are 
diminished at this level. 

Middle Frio reservoir in Stratton field are part of the Gueydan fluvial system with 
the general depositional direction from north west to south east which is perpendicular to 
the growth faults. Middle Frio strata consist of fluvial depositional systems that contain 
channel-fill and splay reservoir facies (Galloway, 1977; Kerr and Jirik, 1990). 

Kerr and Grigsby (1991) show that the volcanic glass present in Frio sandstones 
at Stratton is absent in sandstones at Seeligson field. This variation is explained by 
differences in source terrain. That is, different fluvial systems with separate catchment 
basins may have coexisted and delivered sediments to these two different area. 

The established depositional model (Galloway, 1977; Kerr, 1990) suggests a 
meandering river system composed of floodplain, levee, splay and channel fdvpoint bar 
facies (Fig. 3.8). 

Criteria for identifymg channel-fill and splay facies from cores and well logs were 
described by Kerr and Jirik (1990), Ken et al. (1991). Channel fill facies maybe 
vertically stacked with the upper part of the underlying channel fdl being eroded by the 
overlying channel fill (Fig. 3.9). 

Geological Characterization 

Field scale structure and facies architecture study is based on well data within the 
study area. Fig. 3.10 shows the well locations and stratigraphic cross section grid. Two 
major markers named E31m and F1 lm are used for stratigraphic correlation. Each 
corresponds to the top of a extensive and continuous shale (paleosoil ?) above E41 and 
F11 sand respectively (Fig. 3.1 1 ). 
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Fig. 3.8. Fluvial sedimentological model of middle Frio Formation (from Galloway, 1977; Kerr and Jirik, 1990). 
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Fig. 3.9. Facies interpretation on cores cut through part of the middle Frio 
inwardner 184 well, Stratton field (from Kerr and Jirik, 1990). 
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Fig. 3.11. Type well log from Wardner 195 showing reservoir subdivision, 
markers and facies architecture type of the study interval. 
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The structure maps of the two markers show that the master Vicksburg growth fault 
is the dominant feature of the structure framework (Fig. 3.12 and 3.13). Parallel to the 
master fault, a rollover anticline is developed about 1.5 mi (2.4 km) to the east in the 
hanging wall block. The fault throw and folding amplitude decrease upward at different 
statigraphic level. The structure of F1 lm shows the fault throw from 150 - 350 ft (45 - 
107 m) and roll over amplitude from 100 - 250 ft  (30 - 76 m). Up to the level of E41m, 
the fault throw decreases to 80 - 230 ft (25 - 70 m) and the rollover amplitude decreases 
to 50 - 100 ft  (15 - 30 m). 

Since the growth fault was active during deposition, it has significant control over 
gross thickness variation at different locations with respect to the growth fault. The 
interval thickness between E41m and F l lm illustrates the variation pattern (Fig 3.14). In 
the footwall block, the interval thickness is about 150 ft  (46 m). As more accommodation 
space created by growth faulting in the hanging wall block, the thickness increases to 
about 200 ft  (61 m). A wedge shaped space is create by the rollover effect. As a result, 
the interval thickens towards the growth fault and the total thickness can increase up to 
250 fi (76 m). 

The interval thickness variation indicates that structural subsidence resulted in 
increase of aggradation, which may suggest a rich sediment supply during the deposition 
of middle Frio Formation and the capability of the fluvial system to compensate the 
accommodation space created by the structure activities. 

Previous reservoir studies on the middle Frio Formation have been carried out at 
different hierarchical levels. Based on regional stratigraphic analysis, middle Frio 
consists of deposits of Gueydan fluvial system (Galloway et al., 1982). Discrete genetic 
interval (DGI) is define and used in reservoir compartmentalization study by Kerr and 
Jirik (1990). Each DGI is composed of facies including channel fill, levee splay and 
floodplain. The interest of this study is to model the facies distribution at the level of 
channel belt, which is approximately the same level of DGI and equivalent to Group 8 
according to the facies hierarchical scheme of Miall (1991). 

Based on the established facies identification criteria (Kerr and Jirik, 1990; Kerr, 
et al., 1991), a field scale facies correlation is completed to analyze facies architecture 
and its variation. The interval of detailed study comprises reservoir units from E41 to 
F11. The two marker beds E4lm and F l lm are the essential control for stratigraphic 
correlation. Correlation of markers was accomplished using logs from 350 wells. Seven 
cross-sections through 89 wells were used to establish facies architecture. Efforts have 
been made to quantify facies architecture variation based on observation of the seven 
stratigraphic cross-sections generated across Stratton field. 

The cross-section network was set up to evaluate architecture and its variation 
relative to the growth fault coursing through the study area. Three sections are parallel to 
regional depositional dip and perpendicular to the growth fault . Four sections are in the 
perpendicular to the growth fault. Major features of facies architecture observed include: 
1) Channel-fill facies show a higher lateral 



Fig. 3.12 3D view of Mlm structure. 

26 

Fig. 3.13.3D view of Fllm structure. 
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Fig. 3.14. Interval thickness map between E41m and F1 lm. 
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continuity in the direction of depositional dip compared to perpendicular to depositional 
dip. This observation is not surprising for meandering fluvial systems. 2) Channel-fill 
facies repeat vertically from concentrated architecture to dispersed architecture (Figure 
3.15). This variation was noted earlier by Kerr and Jirik(l990) and named as lateral 
stacking and vertical stacking respectively. 3) Channel-fill facies in the major reservoir 
units such as E41 and F11 (concentrated architecture) transition from laterally to 
vertically stacked toward the growth fault. In the vertically stacked pattern, channel belts 
are gathered into clusters with relative small lateral extent and more layers overlapped 
vertically. While in the laterally stacked pattern, channel belts become more laterally 
spread out and evenly distributed. 4) The number of channel fill facies is increased on the 
hanging wall block side across the growth fault. This observation is more obvious in the 
units of dispersed architecture. 

The explanation for the variation from concentrated to dispersed channel-fill 
facies stacking is a change of aggradation rate. As the floodplain aggradation rate 
increases, more fine grained material will be deposited onto the floodplain and channel- 
fill facies will become more dispersed (Figure 3.16 and 3.17). The increase of channel 
facies number across the growth fault and stacking pattern variation within the 
concentrated architecture unit may be caused by growth faulting activity. The events of 
faulting are likely to increase the probability of river avulsion. As a result, nodal avulsion 
may occur at the fault location and river start to deviate from the avulsion point. The 
effect of channel deviation may have caused more even distribution of channel facies 
laterally. 

Preliminary quantitative characterization of facies architecture is made based on 
three cross-sections @-D’, E-E’ and 1:-F’) parallel to the growth fault. The objective of 
this study is to characterize facies architecture variation both vertically and laterally. The 
study interval can be vertically classified into units with architecture of concentrated 
channel-fill (as E41 and F1 1) and units with architecture of dispersed channel-fill (as 
from E49 - F7). Since the three cross sections have different length and cut through 
different portion of the field, standaraization was made in calculating architecture 
parameters to get comparable results. Cross section E-E’ has the most extensive coverage 
and is chosen as the standard cross section. Cross sections D-D’ and F-F’ are artificially 
extended to have the same projected length and coverage. Architecture parameter values 
calculated based on the actual cross sections need to be adjusted after the artificial 
extension. This adjustment is made for each extended cross section accordingly in 
considering extended length of the crcss section and facies distribution across the field. 
Statistics show difference between these two types of architecture. 

Concentrated architecture has a channel belt to gross thickness ratio ranging from 
0.54 to 0.60. Dispersed stacking architecture has a ratio ranging from 0.14 to 0.18 (Table 
1 and Fig. 3.16, numbers used are aftex standardization). The increase in number of 
channel-fill facies across the growth fault can be estimated on the cross sections. In the 
unit of concentrated architecture, the standardized number of channel fill layers based on 
interpretation is 17 in section D-D’, 26 in section E-E’ and 25 in F-F’. While in the unit 
of dispersed architecture, the standardized number of channel fill layer is 14 in section D- 
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D', and 22 in section E-E' and F-F' (Fig. 3.16).In concentrated architecture, channel belts 
are gathered in to clusters with small lateral extent at the upstream location close to the 
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Fig. 3.15. Facies architecture and controlling factors of middle Frio Formation (modified from 
Kerr and Jirik, 1990). 

29 



70  

60 

$ 50 
Y 

0 - " 
40 cn 

cn 
2 

a 
P - 

20 
c 
.G 
m 

10 

0 
D-D' E-E' 

C r o s s  section 

F-F' 

Fig. 3.16. Channel belt to gross thickness ratio in different type of facies architecture. The defhtion of 
channel belt and gross thickness is shown in the diagram at the upper right, 

30 



30 

25 

5 

0 

16 

5 

4 

3 

2 

1 

0 

D-D' E- E' 

Cross section 

F-F' 

Fig. 3.17. Histogram showing number of channel belts and channel belt cluster width variation with 
cross section location. 

31 



- 
growth fault and become spread out at more downstream locations (Table 1 and Plate 4, 
5,6 and 7). Channel facies connectedness is high and has a increasing trend in down 
stream direction. Channel belts are usually low to unconnected in the dispersed 
architecture. However, relatively high connectedness is observed in cross section E-E’ . 
This is probably because that it is closer to the growth fault where nodal avulsion occurs. 
Channel belts are more likely to be connected. 

Based on measurements from the unpublished facies mapping by Ken: (1989- 
1990), the width of single story channel fill sandbody is usually 2000 to 3600 ft (600 - 
1100 m), averaging 2700 ft (820 m) (Fig. 3.22). The single story thickness measurement 
from the cross sections is usually 10 to 20 ft (3 to 6 m), averaging 16 ft (4.9 m). 
However, within the concentrated stacking architecture, channel belt sands may be 
stacked up to miles wide and over 50 ft (15 m) thick. 

Simulation Model and Program 

Various simulation models of general alluvial stratigraphy have been developed to 
understand and predict the spatial distribution of channel-belt sandstone bodies in alluvial 
succession. Of these approaches, process-based models, which are based on the 
simulation of geological processes, have the best potential to predict realistically the 
architecture of alluvial stratigraphy (e.g., Leeder 1978; Allen 1978,1979; Bridge and 
Leeder 1979; Bridge and Mackey, 19B3; Mackey and Bkidge, 1992; 1995). 

A comprehensive two-dimens:ional alluvial stratigraphic model was developed by 
Bridge and Leeder (1979). Geologicali effects considered in this model include channel- 
belt dimension, floodplain width, variable floodplain aggradation across channel valley, 
channel avulsion and tectonism. Bridge and Mackey modified this two-dimensional 
model to simulate alluvial process more accurately and to predict more aspects of alluvial 
architecture (Bridge and Mackey, 1993). 

A process-based three-dimensional model of alluvial stratigraphy was published 
by Mackey and Bridge (1995). The three-dimensional model made it possible to simulate 
down-valley variation in alluvial architecture in response to tilting of the floodplain due 
to faulting and realistically simulate channel avulsion. 

To simulate the specific features of the geological processes involved in the case 
of the middle Frio Formation, the model is modified from the early models and is 
described below. 
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Table 1. Facies architecture characterization based on cross sections. 

no. of chnl in cluster 2-49 6-7, <3 8-14, <2 

no. of lyr stacked 2-3, 1 3-6, <2 1-3, 1 
ave. 3 ave. 6 ave. 1 1  

ave. 2.5 ave. 4.2 ave. 2 

c/g ratio: channel belt to gross thickness ratio. 

Std: vaiues after adjustment of standardization. 
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Fig. 3.19. Floodplain configuration (from Bridge and Leeder, 1979). 
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Description of the Simulation Model 

Floodplain. In the model, the floodplain (Fig. 3.19) is defined as having finite 
width, confined by obstacles to river migration such as terrace or fault scarps, and 
traversed by a single river which is free to migrate laterally within the channel-belt 
(Bridge and Leeder, 1979). Floodplain width in natural rivers is often of the order of ten 
times channel belt width (Fisk, 1947; Russell, 1954; Bernard et al., 1970). Within the 
channel belt, deposits are considered 1.0 be mainly sand whereas adjacent overbank 
deposits are considered to be predominantly silt and clay. Crevasse splay is included in 
the overbank deposits in this model. 

In this study, the simulation area is a segment of a floodplain that covers Stratton 

Initialfloodplain surfuce. In nature, a floodplain usually has varying width and 
field. 

down-vdley slope which is represented by an exponential or linear function in the model 
developed by Mackey and Bridge (1995). Since only a segment of the floodplain is to be 
simulated in this model, the initial floiodplain surface is considered to have a rectana@ar 
shape and a constant downvalley slope (Fig. 3.20). Initial floodplain elevation is 
calculated by: 

yz: floodplain surface elevation at down valley location z. 

Si: initial floodplain slope. 

L floodplain (simulated area) length. 

Local relief can be added as user defined by center, width and amplitude. 
Trigonometric function is used to model the local relief surface. For example, the cross 
section of a down valley striking local relief can be defined as: 

Rel, = { 1 + cos[2~(x-C)/W]}Relmsr . 

Rel,: local relief magnitute at cross valley location x. 

C: local relief center in x coordinate. 

W: width of relief. 

Relmax: maximum magnitude of local relief. 

ChanneLbeZt dimension. A single channel belt is first incised into the floodplain surface 
with a certain width and initial bankful depth, and then start to aggrade (see 
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Fig. 3.20. Floodplain initialization with a constant slope. X: axis parallel to depositional 
strike; 2: axis parailel to depositional dip; Y: axis parallel to aggradation direction. 
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floodplain amradation for more detailed discussion). The channel-belt is generated using 
a fixed user defined width or can have variable width sampled from a user provided 
distribution. Channel depth is obtained by a user given width-depth ratio. Channel-belt 
width and depth are constant within th.e simulated area at each single increment (Mackey 
and Bridge, 1992). 

Tectonism 

Tectonism (faulting, tilting and folding) can cause changes in the rate and 
direction of floodplain subsidence and. result in floodplain topographic variation. These 
changes and variation in turn have significant impact on channel-belt location and 
distribution fluvial sediments. For example, avulsion may be the direct response to an 
individual tectonic event (Fisk 1944). Channel geometry may be forced to change by a 
change in gradient and result in incision and reduced probability of avulsion, or result in 
aggradation and increased probability of avulsion (Mackey and Bridge, 1995). 

The major tectonic activities involved in the study area include 1) growth faulting, 
2) rollover structure associated with the growth fault and 3) local variation of subsidence 
rate. Growth fault is the predominant tectonic event and controls the structural 
framework. The nature of these tectonic activities may be different and complicated. 
However, for convenience and simplicity of computation in the model, these activities are 
treated as gradual and continuous events. 

The simulated interval in this study is approximately from the reservoir unit E41 
to F11 in middle Frio, which is near the upper end of the growth fault. Since we are only 
modeling the topmost of the growth fault where it becomes fairly steep, the growth fault 
is approximately treated as a vertical plane striking in the cross-valley direction. The axis 
of the rollover structure is parallel to the growth fault at a user provided distance on the 
hanging wall block (see Fig. 3.21). 

In the simulation model, the taltal tectonic subsidence rate of the simulated 
floodplain surface is be subdivided into four elements: regional subsidence rate Rreg, 
faulting subsidence rate Rfault, rollover subsidence rate Rroll, and local subsidence rate 
Rloc. In the footwall block, the floodplain surface subsides at the basic regional rate 
Rreg. At the downstream side of the rollover axis in the hanging wall block, subsidence 
of the floodplain surface is the combined effect of both Rreg and Rfault. In the area 
between growth fault and rollover axi,s, in addition to Rreg and Rfault, the rollover 
subsidence rate Rroll should also be taken into consideration. 

The effect of rollover is simulitted by a parabolic function where the subsidence 
rate varies with the position relative to the rollover axis (Fig. 3.22). It can be expressed 
as: 

Rroll, = (RrollmaxYD2)d2 (3) 

Rroll,: rollover subsidence rate at down valley location z. 

Rrollmax: the maximum rollover subsidence rate near the fault. 
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D: the distance between the growth fault and rollover axis. 

Growth fault Rollover anticline axis 

Channel belt 

Fig. 3.21. Tectonic sketch of the simulated area. 
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d: the distance from the cun:ent point to the rollover axis. 

Fig. 3.22. Diagram showing tectonic subsidence elements calculated in the model. 

Local structure activities can also be simulated in the model. These local 
variations of subsidence rate may be in  different pattern and magnitude. The most 
important local tectonism observed in the study area that can remarkably influence the 
fluvial architecture is the down valley oriented depression. Trigonometric function is 
used to model the effect of this type (Fig. 3.23) : 

Rloc, = -{ l+cos [2~(x-Axis)iWidth]}Rlocmax/2 (4) 

Rloc,: local depression rate at cross valley location x 

Axis: cross valley location of local depression axis 

Width: local depression width 

FUocmax: maximum subsidence rate (along the axis of depression center) 

Aggradation 

Floodplain aggrades in the form of channel belt and overbank deposition as 
accommodation space created by various geological processes. Responding to 
subsidence rate changes, the aggradation rate varies both with time and relative position 
in the floodplain. The major consideration of this variation in the study area include: 1) 
periodic variation of aggradation rate responding to regional tectonism and baselevel 
fluctuation, 2) aggradation rate changes with location responding to local tectonism and 
3) decrease of aggradation rate on the floodplain with increasing distance from the edge 
of channel belt. 

Periodic variation of aggradation rate is modeled by varying the basic channel belt 
aggradation rate for different simulated interval. The magnitude of this variation is in the 
range of a few times. Based on the assumption that rich sediment supply of the fluvial 
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Fig.3.23. Diagram showing subsidence rate variation across a local structure depression. 
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Fig. 3.24. Channel belt aggradation increase as fault fall compensation. 
A: Increase of channel belt aggradation caused by fault fall. 
B: Fault fall compensation aggradation decreases exponentially with 
distance in down valley direction. Explanation for F see equation 5. 
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system was capable to compensate the accommodation space created by growth fault and 
rollover structure, channel belt aggradation rate will be increased by the same amount as 
the subsidence rate caused by these local tectonism. However, at distal locations from the 
channel belt where less sediments are deposited and overbank aggradation rate is low, the 
subsidence created by growth faulting and rollover may not be fully compensated. As a 
result, a topographic fall will be developed across the fault. While a river coursing across 
the fault at such locations, the probable responses will be deeper incision on the footwall 
block and increased aggradation on the hanging wall block. In the model, this 
compensation rate is calculated by a exponential function: 

*acornpz = Afdiwmpz 1 Tad 

Afammpz: channel belt aggradation increment responding to fault fall 
compensation at location z 

*ammpz: channel belt aggradation rate increment responding to fault fall 
compensation at location z 

F topographic fall at the fault location 

xfadc down valley location of the growth fault 

L len,oth of floodplain 

Tad: avulsion period 

Total channel belt aggradation rate can be expressed as: 

% = ab&= + awt + %UZ + amamp (7) 

q: channel belt aggradation rate at down valley location z 

abasic: basic channel belt aggradation rate, varying with time 

abdt channel belt aggradation rate increment corresponding to growth 
faulting, equal to Rfault 

&k channel belt aggradation rate increment corresponding to rollover 
structure at location z, equal to Rroll, 

afalleOmpz: channel belt aggradation rate increment corresponding to fault fall 
compensation at location z 

n: fault fall compensation exponential 

Overbank deposition on floodplain occurs just about every year during floods. 
Generally, the amount and grainsize of sediments carried by and deposited from the flood 
water decrease with increasing distance from the edge of channel belt (Fig. 3.25). In the 
model, overbank aggradation rate is calculated by: 

r, = a, ( 1 + d/w )-b (modified from Mackey and Bridge, 1995) (8) 
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r,: overbank aggradation rate at down valley location z and cross valley 
locatio x 

d: distance from edge of the channel belt 

w: floodplain width 

b: overbank aggradation exponent, a parameter describes the rapidity with 
which deposition rate decreased with increasing distance 

Realistic value of b is estimated 0.5 - 1.8 for multiple flood events from 
Brandywine Creek, Pennsylvania (Pizzuto, 1987) and 5 - 10 for a single flood from the 
Mississippi River (Kesel et al., 1974). 

Compaction 

Compaction of all sediments starts immediately after burial. Compaction of 
sediments will cause reduction of porosity and consequently, reduction of gross 
thickness. For a given layer of recently deposited sediments of thickness T, the solid 
thickness is 

T layer thickness 

P(y): porosity at the depth y 

Assuming that no mineral material is added and removed or otherwise 
transformed in density. the solid thickness T, remains constant irrespective of depth of 
burial, which can be expressed as 

where P(y) is the porosity function with burial depth y. y1 and y2 are the burial depth of 
the bottom and top of the sediment layer respectively (Perrier and Quiblier, 1974). 
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Fig. 3.25. Diagram showing floodplain aggradation (modified from Mackey and Bridge, 1995). 
See text and equation 7 and 8 for explanation of a~ and rm. 
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For mud sediments, the porosity can be calculated regarding burial depth according to the 
empirical function 

P(y) = 0.50 + 0.0222 ln(y+l) - 0.0092 [ln(y+1)I2 

Solid thickness can be obtained by: 

T, = 0 . 5 4 ~  -(y+l) ln(y+l) :* [0.0406 - 0.0092 ln(y+l) ]I 2 
(Mackey and Bridge, 1992). 

The porosity-depth relationship for sandstone can be represented as: 

The solid thickness for a given sand layer can be expressed as 

P(y)=0.49e-yn'00 (Baldwin and Butler, 1985) 
(13) 

T, = y+1813e~y'3700 I . 

T,: solid thickness 

Thus, with known Ts and the depth of one layer boundary, the depth of the other 
boundary can be obtained. 

Avulsion 

Avulsion is defined as the process where a channel-belt suddenly changes its 
course. This process is recorded in geological history by abandoned channel-belt 
preserved in floodplain. In nature, the mean period of avulsion is usually of the order of 
10' - lo3 years, often about lo3  years (Bridge and Leeder, 1979; Mackey and Bridge, 
1995). In the models developed by Bridge and Leeder (1979), and Mackey and 
Bridge( 1992), it is considered that the probability of occurrence of avulsion as a function 
of at least 1) relative elevation of alluvial ridge and floodplain, and 2) a measure of the 
severity and persistence of the seasonal flood. However, in Stratton area during the 
deposition of middle Frio, growth faullting perpendicular in cross valley direction may 
significantly increase the probability of river avulsion and diversion at the faulting 
location. 

All of these factors are time dependent, avulsion would become more likely as 
time progressed (Bridge and Leeder, 11979). As quantitative description of this process in 
this models, avulsion recurrence time!; are obtained by Monte Carlo sampling from a 
presumed distribution. Considering ita time dependent nature, a Weiball distribution is 
used to model this process (Bridge anld Leeder, 1979). 

Three types of avulsion are incorporated in the simulation model: regional 
avulsion, upperstream avulsion and nodal avulsion. The regional avulsion occurs at very 
upstream location and causes regional. shift of channel belt from one part of the 
floodplain to another. It is observed in the nature that each of this regional avulsion may 
followed by a series of more downstream avulsion (Fig. 3.26). This process is described 
by Mackey 
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Fig. 3.26. Avulsion hierarchy in the model. Three types of avulsion are 

incorporated in a hierarchical order. See text for explanation of avulsion styles. 
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and Bridge (1995 as avulsion sequencie). The term upperstream avulsion refers to the 
more localized avulsions following a regional avulsion and occurs at a upperstream 
location from the simulated area. The avulsions occurred at more downstream location 
are not simulated in the model. Nodal avulsions are considered to be caused by the 
activity of growth faulting. 

In the case of regional avulsion, it is assumed that avulsion occurs far enough 
upstream to allow free migration of the channel to enter the first upstream section at 
position of the lowest elevation of floodplain surface. Each regional avulsion is followed 
by one or more nodal avulsions and the number is calculated by Monte Carlo sampling 
from a presumed distribution. The location at which the river enters the first upstream 
transection of the simulated floodplain segment after a upperstream avulsion is deviated 
from the course of preceding regional avulsion and somewhat restricted by the regional 
avulsion. In the simulation model, this offset at the first upstream transection is calculated 
by uniformly sampling from a given range, usually about one third to one half of the 
floodplain width. Nodal avulsion is cclnsidered to be caused by growth faulting and 
occurs at the faulting location. The number of nodal avulsion following each upperstream 
avulsion a upstream avulsion is also sampled from a presumed distribution. 

The initial phase of avulsion in terms of spatial and temporal changes is 
complicated and poorly understood. Hlowever, for convenience of calculation, it is 
generally assumed that immediately after the avulsion, the river will erode its course 
down to the initial depth and fill by cclarse material up to the banks, and the new course 
will follow the direction of maximum slope. 

Program Design and Implementaticm 

The simulation program is written to have high readability, portability and can be 
easily modified. Each major geological process is coded into individual functions and the 
lower order processes are nested into higher order processes. User input parameters can 
be imported from a data file or interactively typed in. The computer program is written in 
C++ Language and runs on SUN workstations (Appendix). Two computer graphic 
programs are also written to visualize the simulation results. One is used to render the 3D 
realization volume and the other is i:o create cross section images at chosen locations 
(Appendix). The underlying graphic interface for both the visualization programs is 
OpenGL and the driving language is C. 

The simulation is started with initialization of the floodplain. After the initial 
floodplain is initialized, a loop is used to control the maximum number of increments to 
be generated in the particular realization. Avulsion period is the basic calculation time 
step and a genetic stratigraphic increment is generated during each avulsion period. 
Within each of the basic time step, a cycle is executed in the following order: 1) 
calculation of the current avulsion period, type and location, 2) calculation of channel 
belt dimension , 3) placement of the channel belt onto the current floodplain surface, 4) 
calculation of tectonism and adjusting floodplain surface, 5 )  aggradation of channel belt 
and overbank and 6)  compaction of all the sediments previously deposited. This cycle is 
repeated until the desired number of increments is reached. After the realization is 
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generated, the results will be exported into output files for computer graphic imaging. 
Architecture parameters are then calculated based on the realization (Appendix). 

Algorithm, input and output 

The function InitialFPS is used to initialize floodplain surface (Appendix). Input 
parameters needed to define the size, slope and local relief of the floodplain include 
floodplain length (LFP), floodplain width (WFP), initial slope (Slopehi), local 
depression center (Lcenter), width (Lwidth) and depth (Mepth). A subfunction 
LocalRelief is called within the initialization function to calculate local topographic 
relief. The floodplain is subdivided into equal sized gridblocks. Gridblock size is defined 
by the interval length in both X (JntervX) and Z(IntervZ) direction. A three dimensional 
array FPS[x][z][increment] is used to store the elevation of every increment top surface at 
every grid point. After initialization, elevation of floodplain surface is calculated at each 
grid point and stored as FPS[x][z][O]. 

Each avulsion period is calculated by sampling from a predefined Weilball 
distribution. Expected avulsion period (ExpeAvul) and the exponential factor (AvulExpo) 
are required to define this distribution. The number of upperstream avulsions following a 
regional avulsion, number of nodal avulsions following a upperstream avulsion and the 
offset of the current upperstream avulsion from preceding regional avulsion at the 
location of first entering the simulated area are calculated by sampling from predefined 
distributions (normal distribution or uniform distribution). In case of normal distribution, 
a mean value, maximum value, minimum value and standard deviation are provided to 
define it. While in case of uniform distribution, a range is needed. Before each regional 
avulsion, the subroutine LowFPS is called to calculate the location of the lowest elevation 
point on the floodplain along the fxst upstream transection. The river will then enter the 
simulated area at this point (Appendix). 

For each avulsion, the function ChannelDimension will be called to calculate the 
channel belt width by sampling a given normal distribution. This distribution is defined 
by user input mean (WcMean), maximum (WcMax), minimum (WcMin) and standard 
deviation (WcStdv) values. Channel belt depth (Dc) is obtained by a widtlddepth ratio 
(WDRatio). An array is used Wc[increment] is used to record the channel belt width of 
each increment. 

After the channel dimension is calculated, the function Placechannel will place 
the channel belt onto the floodplain. The new channel belt follow its old course down to 
its new avulsion point if the avulsion point is within the simulated area, and then start to 
deviate. At each cross valley transection location, the function ChanErosion will enable 
the channel belt to erode the floodplain down to its initial depth @c) and the function 
Pointslope will calculate the floodplain slope at different directions and chose the 
maximum slope as channel belt flow direction. The left boundary and right boundary of 
the channel belt at each transection in each increment will be assigned respectively into 
two two dimensional arrays named ChanLeft[increment] [transection] and 
ChanRight[increment] [transection] to record its location. 
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A three dimensional array Lith[x][z][incrementJ is used to record the lithology for 
each increment at each grid point loc*ation. Its values are assigned by functions Lithology 
and ChanneErosion. The value 0 represents overbank facies, 1 represents channel fill 
facies, 2 represents partially eroded channel fill facies and 3 represent totally eroded 
overbank or channel fill facies (Appendix). 

The function Tectonism will calculate different tectonism subsidence rates at each 
grid point location on the floodplain imd adjust the elevation at each location. Input 
parameters needed to define tectonism include growth fault location in terms of distance 
from the first upstream transection (FaultDist), faulting rate (Rfacult), rollover axis 
location (AxisDist), maximum rollover rate (Fbm), local depression center (Dcenter), 
depression width @width) and maxirnum depression rate at the center (Drate). Rollover 
folding subsidence rate is calculated by a parabolic. function and local depression is 
defined by a trigonometric function. The total tectonism subsidence during each 
increment is the product of total subs:idence rate and avulsion time period. The elevation 
of the current floodplain surface and id1 previous increment surfaces are adjusted by 
reassigning the array FPS [XI [z] [increment] according to total subsidence (Appendix). 

The process of floodplain aggradation is modeled by the function Aggradation. 
The channel belt aggradation rate is calculated prier to overbank aggradation rate. The 
channel belt is first filled up to the current floodplain surface and start to aggrade upward. 
The total channel belt aggradation rate is the sum of the user given basic aggradation rate 
(Rbasic) and aggradation rates increments responding tectonic activities. These 
increments include faulting compensation, rollover compensation and fault fall 
compensation. The increment of aggradation rate corresponding to faulting compensation 
and rollover Compensation equal the tectonic subsidence rate respectively. The fault fall 
compensation rate is calculated by function FaultFallComp which first determines the 
elevation difference between footwall block and hangingwall block at the fault location 
along channel belt course, and then crdculate the compensation rate using a exponential 
function (6). After the channel belt aggradation rate is determined at each location along 
its course, overbank aggradation rate can be obtained by using function (8). 

Total aggradation is the product of total aggradation rate and the avulsion period. 
Again, elevation of the current floodplain surface will be adjusted by reassign 
n?S[x][z] [increment] array according to total aggradation (Appendix). 

The compaction procedure used in this program is basically modified from 
Mackey and Bridge (1992) and transli3ted from FORTRAN into C+t. The purpose of the 
function Compaction is to compact the whole sediment volume and respectively adjust 
each increment surfaces by reassign array FPS[x][y][increment] according to the 
compaction result. 

Right after each new increment is deposited, its solid thickness is calculated at 
every grid point location and recorded in the array SolidT[x][z][increment] by functions 
SandSolid and ShaleSolid. This solid thickness will remain constant unless it is eroded by 
a later channel belt. During the burial history, if we the solid thickness, lithology and 
burial depth of a given layer, we can restore its real thickness by adding back the porosity 
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calculated according to the given porosity - depth relationship. This work is done by 
functions SandComp and ShaleComp and Newton-Raphson method is used to solve 
equation (12) and (14). Parameters needed to define porosity - depth relationship are hard 
coded (Appendix). 

The numerical results of realization are exported into two external files named 
“results” and “cross” by function Output. These two files are later used as input to 
graphic program to generate 3D visualization of facies architecture and 2D cross-sections 
respectively. 

Simulated architecture parmeters including number of channel belts, channel belt 
to gross thickness ratio, channel belt connectedness ratio and other parameters are 
calculated by function ArchParaCal at each chosen cross section and output by function 
Display. 

Since channel belt start to deviate at the avulsion point, a new channel belt is 
generated in the area down stream to the avulsion point after each avulsion. At the area 
upstream to the avulsion point, the river will remain in the same course and no new 
channel belt is formed. As a result, the number of channel belt may vary from one cross 
section location to another. Channel belt connectedness ratio is calculated by using a 
connectedness indicator correspondent to each channel belt. When a new channel belt 
erodes into an preexisting channel belt at a given cross section location, the indicator for 
the new channel belt will be assigned a 1. Otherwise it will be assigned a 0. The final 
connectedness ratio is defined as the sum of indicator values divided by the total number 
of channel belts in the specific cross section (Fig. 3.27 and Appendix). 

Simulation and Realizations 

Considerations in Defining Input Parameters 

The input parameters for simulation of middle Frio Formation facies architecture 
are defined according to subsurface geological study and characterization, modern 
sedimentation study and general knowledge of fluvial deposition. Some of the parameters 
are adjusted during the simulation process and finalized after a number of realizations. 

Two sets of realizations are generated. One is for the concentrated stacking and 
the other is for dispersed stacking. The input parameters for each set of realizations are 
listed in Table 2. 

The total number of increments to be generated in each set of realization is 
approximately equal to the number of channel belts observed in the stratigraphic cross 
sections perpendicular to depositional direction (Table 1). The simulation area covering 
Stratton field is a segment of floodplain and is defined to have a square shape. The exact 
width of floodplain for the river system that was delivering sediments to Stratton area 
during the deposition of middle Frio is difficult to define. For practical purpose, the width 
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of the simulation area is chosen as 12000 m which is about the size of Stratton field in the 
cross valley direction. The length of the simulation area is 
also 12000 m covering both sides of the major growth fault. 

Channel belt width distribution is obtained from early detailed facies mapping in 
the scale of individual DGI by Ken (1989-1990 unpublished maps) which shows a 
normal distribution with a mean value of 820 m and standard deviation of 180 m (see 
Chapter 11 for more information). The initial channel depth is calculated by a given 
channel belt width and depth ratio. A ,single storey channel fill thickness is the result of 
channel erosion and fill, aggradation and later compaction. Given a certain river system, 
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Fig. 3.27. Diagram showing channel belt connectedness definition. 
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the initial channel erosiondepth and aggradation rate usually have a reversed relationship 
according to baselevel fluctuation. A low baselevel may result in deeper channel erosion 
and slow aggradation and a high baselevel can cause shallow channel erosion and high 
aggradation rate. These parameters are estimated from channel fill facies thickness and 
adjusted during simulation process. 

Channel belt avulsion period .is estimated according to modern deposition study 
and its value usually falls into the order of 10' - lo3 years. Since avulsion frequency is 
also affected by the baselevel fluctuaition, a shorter average avulsion period of 500 years 
is used during high baselevel and a longer average avulsion period of lo00 years is used 
during low baselevel. The distribution of upperstream avulsion number following each 
regional avulsion and nodal avulsion following each upperstream avulsion is estimated 
according to channel facies distribution and stacking pattern variation observed from 
subsurface cross section of Stratton fjeld (Table 1). These parameters are also adjusted 
during simulation. The value usually falls into the range of 1 to 4. 

The growth fault is treated as a straight line in cross valley direction, located 1200 
m down stream from the upperstream boundary of the simulated area. According to 
subsurface structure study on markers F1 lm and mlm,  the rollover axis is about 2400 m 
downstream from the major growth fault (3600 ft fiom the upstream boundary of the 
simulation area). Growth faulting rate: and maximum rollover rate are estimated from 
interval thickness variation observed From subsurface geological characterization. These 
tectonic activities also seems related to baselevel changes. The growth fault appears less 
active during low baselevel period and more active during high baselevel period. The 
possible explanation for this variation is that when the baselevel drops, the thick delta- 
front deposition moves farther away from the growth fault location and less material is 
deposited on the floodplain, the effects of differential loading, differential compaction 
and differential gravity gliding that cause growth faulting (Jackson and Galloway, 1984) 
are reduced. Other type of local structural subsidence variation is also observed fiom 
isopach map and cross sections and the relatively high subsidence rate in the south part of 
Stratton field seems to cause high density of channel belt facies. 

Since the facies architecture cliaracterization of the middle Frio Formation is 
mainly based on observation of stratigraphic cross sections, cross section view of the 
simulation results is also made at threle locations roughly correspondent to cross section 
D-D', E-E' and F-F' for comparison. 

Simulation of the Concentrated Architecture 

The concentrated stacking pattern is considered to be resulted from low 
aggradation rate (Ken and Jirik, 1990). This deposition period may have a relatively low 
baselevel. Consequently, rivers will cut deeper down to the floodplain during the initial 
period. Avulsion probability is decreased and avulsion frequency is relatively low. As 
results, less overbank deposition events occur and floodplain aggradation is slow. These 
geological characteristics is reflected an the input parameters by a low channel belt 
widtlddepth ratio (BO), long avulsion period (1000 years), low aggradation rate (0.0012 
d y r )  and higher overbank exponent value (5.5) (Table 2). 
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Totally 26 increments are generated in the simulation of concentrated stacking 
which is about the same number of channel belts observed in the cross-sections (Table 3). 
Realization produced using the above input parameters shows a high sand/gross ratio of 
54 - 67%, close to the ratio of 54 - 64% estimated from real subsurface cross-sections. 
The gross thickness of the realization also shows a good match with the subsurface cross 
sections at the correspondent locations (Table 4 ). 

The stacking pattern variation observed from the subsurface cross sections are 
also captured in the simulation (Fig. 3.28 and Fig. 3.29). The effect of facies architecture 
variation from vertical stacking near the growth fault to lateral stacking at more distal 
location is produced by avulsion hierarchy including regional avulsion, avulsion 
sequence and nodal avulsion. 

Simulation of the Dispersed Architecture 

The dispersed architecture is considered to be developed during a period of high 
aggradation rate which may correspondent to a high baselevel phase. The river cut 
shallower down to the floodplain. Since more accommodation space is created and 
sufficient sediments supply is available, floodplain aggrades relatively faster during this 
phase. The frequency of overbank events as well as river avulsion are likely to increase. 
A relative thickening of this interval in the midsouth of Stratton field generally parallel to 
deposition direction can be observed both from isopach map and cross section. This may 
reflect a relatively high local subsidence rate. This down valley structural feature is 
simulated as a local depression. 

Totally 22 increments are generated in this realization (Table 5). Resulted from 
growth fault and rollover structure subsidence, significant gross thickness variation is 
produced at different location relative to the growth fault. The gross thickness of the 
simulation result matches the subsurface data at correspondent cross section locations 
(Table 6). Simulation effects also show that the increased aggradation rate resulted in the 
low sand/gross ratio of 18 - 19%, close to the subsurface calculation of 14 - 18%. 
Channel belt facies become more dispersed (Fig. 3.30 and Fig. 3.3 1). 

As a result of nodal avulsion which is caused by the growth fault activity, a higher 
number of channel belt are encountered in cross sections on the down stream side of the 
fault than on the upstream side. Immediately across the growth fault where rivers start to 
deviate fiom its old course after nodal avulsion, channel belt facies are more connected 
than at other locations (Table 6). The simulation local depression generally along 
deposition direction in the midsouth of Stratton field caused the effect that channel belts 
tend to shifting towards the depression axis and the channel belt density close to the 
depression center is relatively high. These variations fit the observation of subsurface 
cross sections. 
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Fig. 3.28. Sample realization of concentrated architecture. 
A. 3D visualization of concentrated :uchitecture realization with cross section index. 
B. Sliced view of the concentrated r t h t i o n  (sliced at location SS' and viewed from left). , 
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Table 3. Summary of avulsion increment information for concentrated architecture 

avulsion avulsion down valley cross valley avulsion channel belt initial 
increment tvpe location(m) locationr'm) Deriodhrs) width (m) deuth (m) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

R 
U 
N 
U 
R 
U 
N 
U 
N 
R 
N 
U 
U 
N 
U 
N 
R 
U 
U 
N 
R 
U 
U 
U 
R 
N 

0 
0 
1200 
0 
0 
0 
1200 
0 
1200 
0 
1200 
0 
0 
1200 
0 
1200 
0 
0 
0 
1200 
0 
0 
0 
0 
0 
1200 

0 
0 

960 
240 
11640 
11640 
10680 
1 1520 
11640 
5520 
5520 
5280 
5640 
61360 
5 880 
5 160 
2520 
2400 
2280 
2280 
8520 
8520 
7 920 
7 080 
0 

3 60 

832 
1099 
813 
1015 
1263 
662 
813 
1020 
1245 
1216 
398 
552 
1073 
1357 
1245 
398 
705 
1009 
862 
1067 
850 
764 
1113 
723 
838 
7 14 

72 1 
793 
677.8 
877.6 
845.2 
830.8 
812.8 
694 
1012.6 
688.6 
641.8 
937 
715.6 
821.8 
627.4 
649 
874 
906.4 
863.2 
1048 -6 
1032.4 
836.2 
692.2 
683.2 
667 
79 1.2 

4.0 
4.4 

3.8 
4.9 
4.7 
4.7 
4.5 
3.9 
5.6 
3.8 
3.6 
5.2 
4.0 
4.6 
3.5 
3.6 
4.9 
5.0 
4.8 
5.8 
5.7 
4.6 
3.8 
3.8 
3.7 
4.4 

*Avulsion type: R - regional, U - upperstream, N - nodal 

58 



Table 4. Simulation results for the concentrated architecture 

cross section 

gross thickness (m) 

c/g thickness ratio(%) 

no. of channel belts 

stacking pattern 

connectedness ratio 

d-d’ 

10.9 

61 

18 

vertical 

0.66 
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Table 5. Summary of avulsion increment information for dispersed architecture 

avulsion avulsion down valley cross valley avulsion channel belt initial 

increment me location(m) locatiordm) Reriodhrs) width (m) depth (m) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

R 

R 

N 

R 

N 

U 

N 

R 

N 

U 

N 

R 

N 

U 

R 

N 

U 

N 

R 

U 

R 

U 

0 

0 

1200 

0 

1200 

0 

1200 

0 

1200 

0 

1200 

0 

1200 

0 

0 

1200 

0 

1200 

0 

0 

0 

0 

3000 

12000 

1 1520 

840 

840 

3240 

3480 

go00 

9Ooo 

7200 

6600 

1440 

2640 

3960 

12000 

11520 

9480 

8880 

2400 

3000 

2400 

2400 

416 

510 

347 

304 

386 

347 

403 

311 

361 

318 

530 

437 

403 

556 

502 

453 

464 

459 

304 

199 

590 

470 

1036 

928 

730 

838 

604 

1018 

730 

784 

946 

946 

748 

892 

622 

1018 

874 

874 

766 

748 

1018 

784 

1018 

622 

3.0 

2.7 

2.1 

2.4 

1.7 

2.9 

2.1 

2.2 

2.7 

2.7 

2.1 

2.5 

1.8 

2.9 

2.5 

2.5 

2.2 

2.1 

2.9 

2.2 

2.9 

1.8 



. . . . . .  . . I , . . I . . . . .  . . . . . .  

. . . . . . .  . . . . . .  . . . . . .  . . . . . .  ,.. , . .  . . . . . . .  . . . . . . .  ........ ........ . . . . . . .  . . . . . . .  . . . . . .  . . . . .  . . . . . .  . . . . . . . .  . . , . .  , .  . . . . . . . .  . . . . . . . .  . . . . . .  . . . . . .  . . . . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  . . . . . . . . . . . . .  s.. .............. . . I , . . I , . . I , , . , , . . . . . . . . . . . . . . .  c:: 

.......... .......... ........... . , , . . , , . . 

. . . .  . . . . .  

. . . .  . . . .  . . . .  . . . . .  . . , . .  ..,,. . . . . .  . . . . .  

. . . . .  . . I ,. . . . . .  . . .  

. . . . . .  . . . . . .  . . . . .  . . . . .  . . . . . .  . . . . . .  . . . . . .  . , , . ~ ,  .,,.., . . . . . .  . . . . . .  . . . . . .  . . . . .  . . . . .  . . . . .  . . . . . .  ...... ,..,,. . . , . . ,  . . . . .  . . . . . .  

. . . . .  . . . . . .  ...... .,,.., . . . . . .  ...... 

................ ............... ........ . . . . . . .  ........ . . . . . . . .  . . . . . . . .  . . . . . . .  ....... ....... ....... ....... ....... ....... . . . . . . .  . . . . . . . .  . . . . . . .  . . . . . . .  ....... ....... ....... ....... . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . . .  

. . . . . . . .  . . . . . . .  ~ . ,  . . I I  . . . . . . .  . . . . . .  . . . . . .  . ....... . . . . . . . .  ........ . . . . . . . .  ........ . . . . . . .  . . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  ........ . . . . . . . .  . . . . . . .  . . . . . . . .  . . . . . . .  

. . . .  . . . . . .  . . .  . . . .  . . . . . .  . . . . . .  . . I . . I  ~ , , . . ,  ...... . . , . . ,  . . . . . .  . . . . .  . . . . .  . . . . .  . . . . . .  . . . . . .  . . . . . .  ...... . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  . . .  , . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  

. .  . . .  . . .  
. . .  .,. .,. 
. I .  .,, .,, . .  
. . .  
. .  . .  . .  . . .  ,.. ,,. . . .  ,. . . .  
. . .  . . .  .,. .,. .,. .,, .,, . ,  . .  
. .  

....... ....... ........... . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .  . . . .  . . .  . . . . .  . . . . .  ..... , . . , ,  
. . . . .  . . . . .  . . , .  . . . .  
. . . . .  . . . . .  . . . . .  . . . . .  . , . ~ .  ..... 
. . . .  . . . .  . . . . .  . . . . .  . . . .  ..... ,..,, . . . .  . . , .  . . . .  . . . .  
. . . .  . .... . . . . .  

. . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  

B 

Fig. 3.30. Sample realization of dispersed 
A. 3D visualization of dispersed architecture realization with cross section index. 
B. Sliced view of the dispersed realization (sliced at location S-S' and viewed from left). 
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Fig. 331. Cross section view of the sample realization ior dispersed architecture. The number of channel belts is increased 
from d-d’ to e-e’ and f-f’ and channel belts are more concentrated towards the depression center. Upstream to the avulsion 
point, channel belt deposition is considered to be contiiiuons during consecutive avulsion period and form one channel belt. 
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Table 6. Simulation results for the dispersed architecture 

cross secQon 

no. of channel belts ' 

I I I I I I I 
Note: c/g: channel belt to gross 

uncnct. : unconnected 
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Suggestions for Further Improvements 

Even though three dimensional process based model can produce realistic results 
and capture some of the major architecture features, it is still very difficult to match 
different quantitative statistic parameters and to honor local data. Further development is 
needed in the following areas: 

1) Better understanding of physical mechanisms of the interaction between 
growth faulting and river behavior. Aspects of study include growth faulting fashion, 
fluid flow, channel incision, sedimentation and avulsion. Studies in similar modem 
environment is especially important. 

2) Geological parameterization. Some of the input parameters are difficult to 
define from direct geological characterization. Techniques need to be developed to help 
define these parameters based on characterization of real geological data. 

3) Incorporate conditional modeling techniques in this forward modeling 
procedure in order to honor local data and statistic parameters. 
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APPENDIX I: Computer Programs 

Description 

The directory “appendix” contains both the source code and executable of the 
computer programs generated and used in the study of 3D Fluvial Facies 
Architecture Simulation of the Middle Frio Formation, Stratton Field, South Texas 
(see readme file under appendix). The program file names are listed and descripted 

1. facsim.cpp: source code of facies simulation program written in C++; 
2. facsim: executable of the facies simulation program “facsim.cpp”, compiled at a UMX Sun 

workstation of Tulsa University euler system; 
3. strav.c: source code of 3D visualization program written in OpenGL and using C as driven language; 
4. strav: executable of “strav.~”, compiled at a UNIX HP workstation of Tulsa University hpserv system; 
5. crossv: source code of cross section visualization program written in OpenGL and using C as driven 

language; 
6. crossv: executable of “crossv”, compiled at a UNIX HP workstation of Tulsa University hpserv 

system; 

as following: 

Instructions 
The procedure to use this proam package is listed as following: 
1. Prepare the input file to “facsim” 

A input file named “param.data” must prepared before facsim can be used. Values of all the 34 
parameters needed for the facies architecture simulation should be defined in this file. All the 
parameter values are delimited by a space or end of line. The order of the parameters is: 
IncreMax 
LFJ? WFP SlopeIni IntervX IntervY 
Lcenter Lwidth Ldepth 
WcMean WcMax WcMin WcStdv WDRatio 
ExpeAvul AvulExpo 
NudMean NudMax NudMin NudStdv 
SeqMean seqMax seqMin seqStd offMax 
FaultDist Rfault AxisDist Rrm 
Dcenter Dwidth Drate 
Rbas b 
See report text for explanation of the parameters. 

2. Run the facsim program by simply type in facsim and press enter key. Some statistical results will 
appear on the screen as the program running and two output files named “results” and “cross” will be 
produced. The file “results” contains the data for 3D visualization and “cross” contains data for cross 
section visualization. 

3. Run the strav and crossv program by simply typing in their names and pressing enter key respectively. 
Note that the input files “results” and “cross” must be under the same directory as the program strav 
and crossv. 

Note: a different computer system environment may cause some unexpected problems in 
using these programs. 
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PART IV 

SEISMIC MODELING AND INTERPRETATION 

By: Durydhan Epili, Chong Chung, Bassel M. AI-moughraby and Ink Arpandi 

SUMMARY. 
Seismic amplitude and velocity are two important attributes for reservoir 
characterization. The study of seismic amplitude involves the complete field of 
geophysics due to several contributing factors. Here, we studied the seismic amplitude 
contribution with and without consideration totransmission losses and with and without 
incorporating multiples.Als0, the contribution to seismic amplitude for marine and land 
environmentare analyzed. 

SYNTHETIC SEISMOGRAM (1-D, ZERO OFFSET, NO MULTIPLES) 

The basic concepts of the reflection seismograph method are relatively simple and 
straightforward. A pulse from a seismic source travels outwards gets reflected when it 
encounters an impedance (product of velocity and density) change, travels upwards 
towards the surface and gets recorded by seismometer. The energy with which the 
reflected wave travels is dependent on the acoustic impedance contrast at the boundary 
separating 2 media. 

Although the process is simple, a number of complicating factors enter into the 
process. In order to understand and interpret the data on seismograms it is necessary to 
look all the processes closely. A complete analysis of these factors would encompass the 
entire field of reflection seismology. We will limit our analysis on multi-layered rocks 
where accurate velocity information from well information is available. 

Several approaches to generate a synthetic seismogram have been reported in 
geophysical literature; they range in some simple convolution models to more 
complicated viscoelastic f ~ t e  difference models. Here for understanding the concepts, 
we present a simple one-dimensional convolutional model. 

We have generated a one-dimensional synthetic seismogram for a simple geologic 
model (Figure 4.1). It is simply a zero phase Ricker wavelet shown in Figure 4.2 
convolved with a reflectivity sequence assuming zero offset and horizontal layering. 
Reflectivity is the response of a seismic wavelet to an acoustic impedance change within 
the earth. In equation form, 

s(t) = w(t) * r(t) + n(t) 
where 

s(t) = the seismic trace 

w(t) = a seismic wavelet, 
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r(t) = earth reflectivity 

Where p1, p2 are the densities, and VI, v2 are the velocities of media one and two 

respectively. 

n(t) = additive noise, 

* implies convolution 

In this seismogram, we assumed that noise is zero. 

Procedure to generate synthetic seismogram (vertical ray path) 

The steps for generating the seismogram are as follows: (Sheriff and Gildart, 1995; 
Gadallah, 1994; Dobrin and Savit, 1988) 
(a) Digitize the sonic and density log at uniform depth. 
(b) Convert the depth values of the vdocity and density to time values. 
(c) Combine transit time and density samples to produce acoustic impedance. The 

acoustic impedance is derived as a function of one way time by multiplying velocity 
and density values. 

(d) Compute the reflectivity series as a function of time. 
(e) Convolute the reflectivity series with a wavelet of the same bandwidth of theseismic 

section with which the synthetics will be compared. 
The reflectivity sequence and the synthetic seismogram (after convolution with the 

wavelet) are shown in Figures 4.3 and 4.4. 

Fluvial Channels and Their Seismic: Response 

Fluvial refers to process related to rivers. Channel patterns are related to 
controlling factors that include susperision of the load, sinuosity, and discharge (Schumm, 
1981). In Figure 4.5, we are looking as a 3-D model of a fluvial system. The channel is 
meandering but we are looking at a straight part of the channel. The model has no 
velocity variations in the X, Y direction. The seismic response generated for this model is 
very similar to the response generated. for a l-D synthetic seismogram. The acoustic 
impedance was derived; the reflectivity series was computed as a function of time (Figure 
4.6). At last the reflectivity series was convolved with a zero phase Ricker wavelet 
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(Figure 4.7). In this model, the facies changes do not occur in a horizontal lines, but 
rather in a synclines. The seismic response also takes a similar shape and we can clearly 
see the boundaries between the facies. 

In seismic processing, we deal with digital data that is sampled at a constant time 
interval. If we consider the reflectivity to consist of a reflection coefficient at each time 
sample (some of which could be zero), and the wavelet to be a smooth function in time, 
convolution can be thought of as replacing each reflection coefficient with a scaled 
version of the wavelet and summing the results.One of the important aspects of this 
convolution to notice is that the wavelet smears the reflection coefficients. The outcome 
is the loss of resolution, which is the ability to resolve closely spaced reflectors. 

Vertical Resolution 
One of the fundamental equations governing the wave propagation is 

V A = -  
f 

Where 
h = wave length, 

V = velocity 

f = frequency of the wavelet 

The vertical resolution limit, h/4 is the thin bed that can be seen in the data from distinct 
top and bottom reflections. This assumes that tophase of the reflections from the bed are 
the same polarity. If the topbase reflections are of opposite polarity, then W4 bed 
thickness causes high amplitude interference effect called tuning. For beds thinner than 
?J4, the beds become unresolvable; the wavelet alignment is lost and the amplitude falls 
off rapidly. 

Horizontal Resolution 

Another fundamental concept in seismology is that a reflection does not arise 
from a single point on a reflector. It arises from an area called Fresnel zone. The Fresnel 
zone is considered as the horizontal resolution. The Fresnel diameter (F) is defined as 

c 

where 
t = two way travel time, 



V = wave velocity, 

f = dominant frequency. 

AMPLITUDE 

We see a lot of amplitude variations in seismic data, most of which do not give 
any information about the subsurfacle. The information we are interested in are the 
primary waves reflected from the refkctors. We usually think of reflection as dependent 
on density and velocity. The factors contribute to the reflection coefficients are lithology, 
porosity and fluid content. If we want to attribute lithologic or hydrocarbon accumulation 
to amplitude variations, we must reduce the distracting factors as much as possible. Some 
factors are multiple reflection, array attenuation, coherent and random noise, spherical 
spreading, reflector curvature, spherical wavefronts, transmission coefficients, 
instrumentatiodprocessing, inelastic attenuation, and diffraction (Castagna, 1993; 
Ostrander, 1984). 

In a simplified form, the seismic amplitude is given approximately by: 

where, 
A 

S 

DSDR 

G 

n 

= received amplitude 

= source amplitude 

= source and receiver directivities (radiation patterns) 

= geometrical spreading function 

= reflection and transmission coefficients (angular) 

= Product symbol 

= attenuation factor 

= raypath length. 

= counter for each layer transverse by the ray. 
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This fonnda ignores several factors including, sourceheceiver coupling (land 
data), instrument performances, interference from multiple reflections, interference from 
ground roll, refractions and other source-generated noise, random noise, data processing, 
and reflector curvature. A few manipulations are performed on seismic wiggles to correct 
the amplitude losses. 

It is not easy to estimate or compensate for each contribution to amplitude. 
Spherical divergence correction, attenuation, and loss due to reflection and transmission 
is usually compensated and rest are all put in some sort of normalization. Thus, 
conventionally a relative amplitude is preserved for interpretation. 

On the following section, we study the reflection and transmission charactristic of 
seismic response. 
D Simulation (Amplitude with transmission loss and multiples). 

A seismic wave is an acoustic wave in a solid rock. It represents the motion of 
particles and the effect of the inter-particle or elastic forces. It has been questioned what 
should be measured in a seismic wave. Therefore the knowledge of the environment that 
we conduct the seismic survey needs to be understood. 

There is a significant confusion in literature on seismic amplitude. Main part of 
the confusion is whether our measurements is particle velocity response or particle 
pressure. Unless this is clear, the physics behind the problem can be inaccurate. 

Amplitude signifies the magnitude of the acoustic pressure for marine survey and 
magnitude of the particle velocity for land survey. When we work on land with 
geophones at the free surfaces, it is essential that we use geophones sensitive to motion in 
the form of particle velocity not to pressure. When we work at sea, the free surface is too 
noisy, in order to avoid this noise we place the detectors deep in the water, which allow 
us to use hydrophones that are sensitive to pressure not to motion. 

When source initiates a seismic wavefield, that wavefield interacts with the earth. 
The wave is partially transmitted and reflected. Only receivers at the earth’s surface 
measure the reflected wave. The measured field at the surface is known as the seismic 
response of the earth at that particular location. 

Reflection coefficient at normal incidence 
By making displacement and stress continuous across an interface, a simple 

relationship for the ratio of the amplitude of the reflected wave compared to the 
amplitude of the incident wave, (called as reflection coefficient (Ro)) can be calculated as 
(Sheriff, 1975) 

& = Reflected amplitude /Incidence amplitude 
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Two ways of calculating th.e reflection coefficient depend on the seismic 
acquisition: a land geophone measures particle velocity; a marine streamer hydrophone 
measures acoustic pressure. 

Pressure amplitude 
If a plane wave of pressure amplitude, pi, propagating in a material of acoustic 

impedance I], is incident on the interface into a material of acoustic impedance Iz, then a 
wave of pressure amplitude pr,  is reflected from the interface, where: 

I =vp (4.4) 

Rp is the reflection coefficient, V is thle acoustic velocity, p is the density of the material 
and land 2 are the upper and lower layer. 

Particle velocity amplitude 
A wave of particle velocity amplitude vi, is propagating through the similar 

material of acoustic impedance as in pressure amplitude then v, is reflected from the 
interface, where: 

(4.6) 

There are two limiting values implicit in the reflection coefficient formula; when 
I2  is zero for a free surface and when 12 is infinite for a fixed surface. The first limitation 

- is approximated by the interface between earth or sea and the air. Substantially the 
reflection coefficient is equal to -1, which implies that an upcoming seismic wave is 
transmitted back down to the earth by the free surface. 

Transmission coefficient at normal incidence 
The proportion of the signal reflected is defined by the reflection coefficient R, 

and the proportion transmitted is defined by the transmission coefficient T. 
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Pressure amplitude 

The transmission coefficient Tp, for pressure amplitude is represented as follows: 

Where pj is the incident pressure and pr is the transmitted pressure. 

Particle velocity amplitude 

The transmission coefficient, T,, for particle velocity amplitude is written as: 

(4.8) 

The transmission coefficient, for both of the pressure and particle velocity 
amplitude can be written as: 

T p = l + R p  (4.9) 

T, =l+R,  (4.10) 

If the reflection coefficient is positive then transmitted signal is larger than the 
incident signals, which seems incorrect. However, it is mathematically correct and 
physically reasonable. If there is no reflected signal, all the incident energy gets 
transmitted into the lower layer. The pressure amplitude in the lower layer increases to a 
large value, which correspond to reduction of particle velocity (see Figure 4.8). 

Figure 4.8 shows the wave propagation through a horizontal layer. The sketch at 
the left is for the pressure measurement and that at the right is for the particle velocity 
measurement. Note that from the right sketch the reflection recorded by a velocity- 
sensitive geophone appears to be negative, not because the reflection coefficient is 
negative but due to the wave has changed direction. 



LATTICE FORMULATION 

The fundamental problem addressed in seismic modeling or simulation is 
calculation of the seismic response (is. traveltime and amplitude) for a given earth 
model. The seismic simulation can lead to generate the synthetic seismograms that are 
essential to identify events for seismic interpretation and analysis. 

The stratified earth model is based on the fact that wave motion in each layer is 
traveling up-going as reflected wave and down-going as transmitted wave for the upper 
layer. By applying the lattice formulation, we can obtain a complete time and amplitude 
profile of the up-going and down-going wave in multi-layered media. 

propagating from one interface to the other within several layers. This one-way 
traveltime corresponds to one-half unit time. Figure 4.9 shows the details of assigning the 
up-going and down-going waves for each traveltime. 

In Figure 4.9 we set the down-going and up-going waves at the top of layer k 
respectively as ddt) and udt). At the bottom of layer k,  set dk’(t) and uk’(t) as the down- 
going and up-going waves respective1.y. As the waves propagate through the medium 
there is no absorption in the layer. Thle down-going and up-going waves are formulated 

In this analysis, it is assumed to have the same one-way traveltime for a pulse 

as: 

(4.1 1) 

(4.12) 

At the interface k, the waves correspond to the up-going, uk+~(t) ,  and down-going, 

The wave uk’(t) consists of a contribution due to the reflection of dk’(t) and 
dk+I(t), in the next layer. 

contribution due to the transmission of uk+l(t), then uk ’(t) yields: 

(4.13) 

Where Rk is reflection coefficient for the Ph layer. 

to the reflection of uk+l(t) and a contribution due to the transmission of dk’(t); 
We can also arrange the equation for dk+l(t) which consists of a contribution due 

(4.14) 
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Eqs. (4.13) and (4.14) are valid for pressure amplitude and particle velocity amplitude 
conditions . 

4.4.4. Traveltime formulation 

Traveltime is the time spent traveling from source to receiver, (Figure 4.10). For 
zero offset, traveltime can be calculated from layer thickness and velocity. For many 
layers the traveltime is calculated as 

(4.15) 

Where t is traveltime, h is layer thickness, and V is layer velocity. Figure 4.10 
also shows the layer interface numbering scheme. 

Simulation examples 

This study shows two 1-D seismic simulation examples. The first example is 
taken from Robinson’s analysis and the second example is obtained by setting the 
arbitrary earth’s geological model. Both of the examples present the synthetic 
seismogram resulted by applying the lattice formulation. 

Robinson’s model (1983) 

Robinson generated the synthetic seismogram at the surface and in the subsurface 
by inputting the reflection coefficients for four interfaces. Those reflection coefficients 
are assigned as cl, CZ, c3, and c4 with values 0.1, -0.2, 0.3, and -0.4 respectively. 
Assuming the reflection coefficient at the surface, co, is -1 (i.e., for the interface between 
the earth and sea), he calculated each upgoing and down-going particle velocity 
amplitude at equal time, (Figure 4.1 1). The computer code is presented in Appendix A. 

Earth’s geological model 

The purpose of this study is to verify Robinson’s method and apply the method 
Earth’s model is set-up by giving different for the pressure amplitude conditions. 

velocity and thickness for each layer (see Table 4.1). 

81 



Following the lattice formulation two synthetic seismograms are obtained for up- 
going and downgoing waves for pressure amplitude conditions. The detail of each up- 
going and down-going wave calculation is presented in Appendix B and the diagrams of 
both the results are shown in Figure 4.12. The spikes of the synthetic seismogram are 
convolved with Ricker wavelet as illustrated before. 

Use of amplitude for seismic interpretation 

The energy recorded is a function of the spatial attenuation factors, the partition of 
energy at the reflection boundaries, and the geometrical spreading. If a proper correction 
can be made, the amplitude is useful fix subsurface interpretation. 

Currently, large 3-D seismic surveys are routinely used to assist in the 
development of the hydrocarbon reservoirs. Seismic attributes, especially 
amplitude, are now easily mapped. It allows visualizing subtle tectonic and 
structural elements, which are not obviously seen on time-structure maps. 

Stratigraphic, structural, tectonic, and fluid distribution information may be 
obtained by displaying the amplitude variation A = A (x, y, t )  (Enachescu, 1991) 
associated with a particular reflective surface. Horizon amplitude map is the most 
powerful tool available to the amp:litude interpreter. Dependence of the amplitude 
response on the shape of the reflector provides important geometrical constraints on the 
interpretation. 

Amplitude interpretation can reveal useful information concerning reservoir 
properties such as porous intervals, gas-filled reservoir, fluid contacts, distribution and 
continuity of reservoirs, reservoir heterogenites and abnormal reservoir pressure. The 
nature of the reservoir boundaries (unconformity, faults and stratigraphic barriers) can 
also be inferred from the amplitude analysis. 
SEISMIC VELOCITY 

Introduction 

The measurement or estimaticm of velocity is a major task in the processing and 
interpretation of seismic data. The velocity can be estimated from the reflection 
traveltime data because the velocity is implicitly contained within the acquired reflection 
traveltime data. However the estimated velocity is not exactly the same as the true 
velocity of seismic propagation in the subsurface medium. In the interpretation stage, 
velocity itself contains information about lithology and stratigraphy. Marsden (1993) 
emphasized velocity as a common element for the following processes: depth map, 
pressure prediction, lithology prediction, and depth migration. 

Velocity analysis based on normal. moveout (NMO) equation has serious limitations 
when using the parameter in the processing and interpretation. The main reason is that 
the velocity analysis using the hyperbolic moveout formula has conditions, which are too 
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restrictive to yield useful information. The main factors affecting velocity determinations 
are: 

1) Acquisition error (due to irregular survey geometries and uncontrolled acquisition 
parameters). 

2) Processing error (all processings, which influence the resolution, related to velocity 
analysis). 

3) Noise (coherent and random noises). 

4) Errors related to wavelet form (not to exceed 0.5-1.0 9%). 
5) Errors related to wave propagation (refracted path, anisotropy, multiples, dipping 

interfaces, diffractions, etc.). 
6) Velocity and structure variations in the ground (statics, velocity heterogeneity within 

a layer, dipping layer). 

7) Subjective error (interpreter’s experience in identifying seismic events). 

There is no general mathematical expression for representing errors in estimating 
velocity. However, accuracy studies of velocity estimation have been done by several 
researchers with their own specifications. Landa et al. (1991) mentioned that the error in 
velocity estimation is weakly dependent upon the form of the interfaces. For example, 
when the dip changed from 10 to 40 degrees, the value of velocity error increased by 20 
percent. Also Sorin (1995) studied the accuracy of velocity estimation in 3D layered 
structures formed by plane and curved interfaces. When he used the coherency inversion 
for 3-D velocity estimation, he found that the layer velocity resolution is affected by the 
refractor shape. Blackburn (1980) used various geological model to show errors in 
stacking velocity due to geological complexities including dip and velocity structure. In 
this report, we analyze the errors related to velocity and structure variations which are 
main factors, affecting the velocity estimations. 

Seismic velocity and its eAors 

Before discussing the error in velocity estimation, the terminology of velocity will 
be reviewed briefly because of the confusion in terminology and concepts, even in the 
geophysics world. Seismic velocity is an intrinsic physical property of material in which 
seismic waves propagate. Different wave types propagate through the same medium with 
different velocities (Marsden, 1993). Various wave types are air waves (P-waves), 
surface waves (Rayleigh, hydrodynamic, Love), interface waves (Stoneley), body waves 
(P- and S-waves), and channel waves (quasi-Rayleigh, quasi-love). In our exploration 
seismic, we have conventionally confined ourselves to using the P-waves. Seismic 
velocities are affected by other physical properties such as lithology, pore size, fluid, 
depth of burial, and different pressure. The seismic velocities are obtained from 
laboratory measurements, sonic logs, and analysis of seismic reflection data. A statistical 
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I 
representation for velocity is needed due to the different scale of measurement, even 
though there are mathematical complexities of our treatment of velocity. For example, 
interval velocities are measured wiithin a given interval from core samples in the 
laboratory andor by sonic logging in the well with a measurement scale of less than 2 ft, 
which is much less than the wavelet scale of seismic exploration (2 50 feet). 

Seismic velocities described here are interval velocity (Vi), average velocity (Va), 
normal moveout velocity (Vn), stacking velocity (Vs), and rms velocity (Vr). Detailed 
mathematical definitions and relationships between these velocities can be found in Al- 
Chalabi (1994), Amery (1993), and Byun (1990). 
Interval velocity (Vi) is the interval-time-weighted average of the velocities of all the 
lamina that compose the unit. Internal velocity can be obtained from a sonic log usually 
with 2 ft spacing, although the Vi is obtained by averaging the sonic log velocity. 
Average velocity (Va) is the average of all the interval velocities from the surface to the 
depth of a particular horizon. It can be measured during a velocity survey, which is 
performed by measuring traveltime shot from the surface to the geophone in the borehole 
in the vertical direction. Therefore Va, a true vertical velocity, is used for depth 
conversion rather than NMO calculation. 
NMO velocity (Vn) is defined by the reciprocal of the square root of the slope of the t -x 
curve at zero offset (where t is 2-way traveltime and x is offset distance). Vn is a 
function of subsurface geologic parameters in a certain form (Shah, 1973). The 
parameters are the emergence angle and wavefront curvature of the normal incidence ray 
at the zero-offset point. 
Stacking velocity (Vs) is an apparent velocity chosen to fit the data using the NMO 
equation, so no corresponding mathematical expression can be given. Vs is often used 
synonymously with NMO velocity. Vs is some average moveout velocity which gives 
optimum stack. With short width of gathering, Vs may serve as a good approximation to 
NMO velocity (Shah, 1973). Vs increases with increased spread length or with increased 
dip of the reflector. Vs is greater than Va because raypaths follow a minimum time path 
(Fermat’s principle) rather than a minimum distance path for the multilayer model. 
RMS velocity (Vr) is a mathematical quantity with no physical meaning. It is not a 
measurable parameter. It is the truncated product of expansion of the squared traveltime 
in the infinite series of squared offset distance. 

Errors in estimating the &X&S velocitv from seismic data can be attributed to 
statistical and nonstatistical sources (Schneider, 1971). 
Statistical errors: The more accurate E M S  velocity is obtained when a data set has 
1) higher S / N  ratio (improvement by isquare root of number of folding traces) 
2) wider frequency bandwidth 
3) longer spread length (depends on the square of the spread length) 

when offset approximately equals depth (called X/D concept). 
Nonstatistical errors: The sources of the nonstatistical error may be the limiting factor. 

2 2  

Minimum statistical error in estimating RMS velocity from seismic data occurs 
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1) Dip effect (correction factor fails when inflecting dip occurs) 

2) Geometric errors (feather, not straight survey-line; can be reduced in processing 
stage) 

3) Complex horizon sequence (due to thin layers) 
4) Multiple reflection (interference with primaries) 
5) Near-surface velocity (smoothing the estimated RMS velocity) 

Procedure 

In this report, we use the NMO equation to estimate velocity, which is a stacking 
velocity (or NMO velocity), based on the definition discussed earlier. The procedure for 
estimating errors in stacking velocity are followed: 

1) Set up the model. 
2) Forward modeling using a ray tracing method. 
3) Apply the Least-Square method to estimate velocity. 
4) Estimate errors correspond to different degrees of heterogeneity and non-flatness. 

The method of Langan et al. (1985) is used for the ray-tracing because of its 
efficiency, flexibility, and compatibility. The Langan method used here can be replaced 
by any other ray-tracing methods for the purpose of the forward modeling. Rays are 
traced through a velocity field discretized into cells. Each cell has a velocity gradient 
calculated from given velocities. Velocity gradients are used algebraically to produce 
traveltimes, orientation vectors, and position vectors. To find the ray path between two 
fixed points, a shooting method is employed. Topographic geometries for shots and 
receivers are expressed by smoothed line segments, and arbitrary locations of shots and 
receivers are allowed. Reflecting interfaces are defined by a cubic spline within each cell 
because the reflecting interfaces should be smooth and continuous across cell boundaries. 
For the continuity of the reflecting interfaces, the polynomial extrapolation and 
interpolation are applied where reflecting points do not exist during the forward 
modeling. 

The NMO equation is applied to synthetic traveltime data obtained through the ray 
tracing: 

t2(x) = t2(0) + x2/v2, 
Where x is distance (offset) between the source and receiver positions, v is the 

velocity of the medium above the reflecting interface, t(0) is twice the zero-offset 
traveltime. The Least-Square method is used to estimate the velocity. 

(4.16) 



An error factor is adopted from Blackburn (1980). According to his definition, 
the error factor to ascertain the variations in stacking velocity is the ratio of the difference 
in stacking velocity as derived from riiiy modeling and the average velocity at the location 
to the stacking velocity. The error factor is expressed as a percentage. Variations in error 
factors and their magnitudes will represent the area having velocity problems. 
The Fortran code is described in Appendix C 

Synthetic examples 

Simplified models are set up tcb isolate the problems associated with geological 
complexities in estimating stacking velocities. In this project, six models are designed 
based on the factors affecting velocity determinations discussed before. All models have 
100 x 40 cells and a cell has 10 x 10 m in dimension except depth model (10 x 20 m). 
Distances of far- and near-offset are 300 and 20 m, respectively. Each cmp has 100 m 
interval and a cmp has fifteen traces. The raypaths and velocities for our six models are 
shown in the Figures 4.13- 4.18 (a). The models and their configurations are followed 

1. Depth model: 7 different flat beds (55, 155, 255, 355,455,555,655 m); constant 
velocity (lo00 d s ) ;  1 cmp par each depth model; Figure 4.13-(a). 

2. Dip model: a dipping bed (1.1'); constant velocity (lo00 d s ) ;  7 cmps; Figure 
4.14-(a). 

3. Lateral velocity-variation model: a flat bed (355 m); lateral gradient k* (0, 1, 2, 3, 
4); 1 cmp; Figure 4.15 -(a). 

4. Vertical velocity-variation maldel: a flat bed (355 m); vertical gradient k (0, 1, 2, 
3,4); 1 cmp; Figure 4.16 -(a). 

5. Trap model: a flat bed (355 In); pinching-out velocity anomaly; 7 cmps; Figure 
4.17 (a). 

6. Near-surface anomaly model: a flat bed (355 m); near-surface velocity anomaly; 
6 cmps; Figure 4.18 -(a). 

* velocity(x) = initial velocity(x=O) + k*x 

Two observation methods are considered for our specific purpose of estimating 
errors in determining velocities: t-tmno and error factor. The t-tnmo is a RMS value of 
residuals which is discrepant valules between traveltimes from a ray tracing and 
traveltimes obtained from stacking velocity through NMO equation. High value of t- 
tnmo represents that the NMO equation does not work well for a given model. However 
it does not mean that a small t-tnmo always implies well estimated velocity. For example, 
dip model and velocity-variation models (lateral and vertical both) have relatively small 
range of t-tnmo values. Estimated stacking velocities are not well matched with true and 
average velocities as shown Table 4.2. 3-D diagrams showing t-tnmo against offset, 
depth, k, and cmp # can be found in Figures 4.13-4.18 (b) for each models. And t-x 
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curves showing hyperbolic fitting are in Figures 4.13-4.18 (c). The most reliable method 
for examining the errors is an error factor defined earlier. Large fluctuations of the error 
factor always indicate the areas having problem to estimate velocities as shown in 
Figures 4.13-4.18 (d). 

Our models can be grouped into three based on their characteristics: (1) inie@xe 
change (depth model and dip model), (2) gradient velocity change (lateral and vertical 
velocity-variation model), and (3) abrupt velocity change (trap and near-surface anomaly 
model). I summarized the results with following table 4.3 showing averaged numbers of 
t-tnmo and error factor. 

The group of interface is very reliable to estimate stacking velocity even with a 
dipping layer. In the group of gradient velocity change, lateral velocity changes are more 
serious in deterring stacking velocities than the vertical change. The worst case occurs in 
the group of abrupt velocity change. Considering that lateral velocity change with large 
gradient number is the special case of the group of abrupt velocity change, abrupt 
velocity change is the most significant factor affecting velocity determinations. 

SEISMIC INTERPRETATION 

Introduction 

Horizon interpretation of the seismic data combined with the well information and 
the geological information of the area can help in developing a unified model of the 
reservoir system in the study area. The seismic data provide considerable amount of extra 
information in the interwell areas and can give a more accurate information on the 
location of the boundaries of the thin-bed compartment. 

The 3-D seismic data under study comes from Stratton field, South Texas. It is 
confmed to 2 square miles. It has 3 seconds of data with a sampling rate of 2 ms. It 
comprises 100 inlines (oriented east-west) and 200 crosslines (oriented north-south) with 
a trace spacing of 55 ft. A larger seismic 3-D data has been acquired in this area but is not 
available to us yet. The seismic sections show a smooth, non-faulted area almost 
throughout the whole seiscube above 1700 ms. Below that area and on some of the 
sections we can detect a few faults. The VSP calibration is very important to identify the 
faulted horizons. We see from (Hardage et al, 1994) that the undeformed area is the upper 
Frio and a large part of the middle Frio formation. Few faults extend from lower Frio to 
middle Frio formation. The quality of the data set is good in general and the target 
horizons appear to be clear on the seismic sections. The interpretation has been 
performed using Landmark interactive interpretation system. 

Interpretation procedure 
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The main challenge that we are facing in this area is the thickness of the target 
horizons. The Frio reservoirs that we: are interested in are very thin (less than 15 feet). 
Also the separation between them is very small (10 to 15 feet). These conditions require 
extra attention to get the precise calibration of the stratigraphic depth with seismic 
reflection time. For the two main target reservoir which are E41 and F11 the events on 
the seismic sections appears to be clear throughout most of the 3-D seismic set. As for the 
E 49 reservoir it appears to be discontinuous over the area and that makes it untrackable. 
The fact that EX9 can not be tracked in 3D dose not mean that it is useless in the seismic 
sense. Actually the information that 31D provide on this reservoir can prove to be useful in 
the context of the comprehensive model, taking into consideration the resolution of the 
seismic data. 

The procedure that we followed to get the product maps for E41 and F11 reservoir is 
as fellows: 

a. 

b. 

C. 

d. 

Identify the target horizons on the seismic section using the VSP data from well #@. 
The location of this well is defined on the base map of the seismic data as the 
intersection of line 80 (E-W) and trace 89 (N-S) .  Figure 4.19 shows the location of 
the well on the base map. 
Track the target horizons in 2D sections using autodip-tracking mode, which 
following the actual dip of the horizon. This procedure aims basically to define seed 
points for the target horizons over the whole area to improve the 3D tracking. 
Perform 3D auto tracking for the target horizons. 
Produce time structure maps and amplitude maps for both horizons. 

Interpretation 

The seismic section that shows the target horizons is in Figure 4.20. This seismic 
section is for line #1 on the base map and shows clearly the time interval that separates 
the base of reservoir F11 from the bise of reservoir E41. We can see these horizons in 
prospective view in Figure 4.21 which represent a 500 ms section from the 3D seismic 
cube between 1400 and 1900 ms. In Figure 4.20 we can see a tuning eflect which is a 
signature mark for thin beds. 

The tuning effect can be summarized as follows: if the bed is thick enough to be 
resolved by seismic, we can see distinct positive and negative reflections proportional to 
the reflection coefficient. If the thickness of this bed decreases, the amplitude of the 
reflection from the top of the bed will interfere with the reflection from the bottom of the 
bed causing the tuning effect. The amplitude of the result of the interference reaches a 
maximum for a thickness of ?4 of the wavelength, which is called the tuning thickness. 
For beds thinner than the tuning thickness the shape of the wavelet is the same but with 
less amplitude content. The tuning thickness depends solely on the wavelet frequency. 
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The black rectangular in Figure 4.22 highlights an example of the tuning effect on the 
sections. 

Even though we can not map these spots that we believe that it is the E41 
reservoir, we can see these patches allover the 3D cube (Figure 4.22). 

The bright spot indicated by the arrow in Figure 4.22 is emphasized in the two 
time slices in Figure 4.23. We can see clearly how this compartment stands out in the 
time slice where we can determine the spatial diameters for this compartment. 

These results can prove to be very helpful if we put into our consideration the 
following considerations and restrictions: 
(a) The seismic data covers only a small section of the field, and we might need to 

interpret a larger data set to generalize our conclusions. 
(b) Most of the time the compartments thickness is thinner than the seismic resolution. 

That means any visible compartments are only the ones that are thicker than the 
seismic resolution and the result achieved can not be extended to the smaller 
compartments through the conventional seismic interpretation. 

(c) A better mapping of the channels can be achieved using the procedure proposed by 
Hardage et al. (1994) to get the original depositional surface. The seismic flattening 
technique is not available to us. 

(d) Reservoirs EN1 and F11 appear to be continuous over most of the area from the time 
structure map (Figures 4.24 and 4.25). 
The high values are in dark blue. A possible local dome closure is indicated in Figure 

4.24. 
The empty patches on the time structure maps are due to the tracking technique of the 

software we are using; the empty points did not meet the tracking parameters defined by 
the interpreter. Figure 4.25 shows a time structure map for the E41 reservoir. We need to 
keep in mind that these are time structure maps and not depth maps. Without an 
independent source of velocities that can enable us to perform a time-depth conversion, 
these horizon maps can be misleading. 

The amplitude maps give a good idea about the amplitude content of the horizons, 
lithology and possible hydrocarbon accumulations. Figure 4.26 shows the amplitude map 
of F11 reservoir. The high amplitude values are in red and the low values are in blue. 

The lateral changes in amplitude can mean a potential area of prospect that needs to 
be studied closely with the integration of other available data. 

The amplitude map for the E41 horizon is shown Figure 4.27. This map shows less 
variation than the F11 horizon, but it has some promising areas, especially the ones that 
has the bright spots possibly associated with hydrocarbon accumulations. 
CONCLUSIONS 

Estimation of seismic amplitude and velocity are very important to characterize a 
reservoir and these are the main topics considered here. Seismic amplitudes is a result of 
several factors some of those are coupled with data acquisition and processing. They can 
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not be estimated correctly. Thus, traditionally 1-D synthetic seismogram is generated in 
x, y space and compared to the seismic processed real data. Although it is important to 
study the seismic amplitude and its uncertainties, we limited our analysis to study the 
amplitude due to transmission and multiples only. 

A significant confusion arises in the literature as to the seismic measurements, 
seismic particle velocity or pressure response. The physics behind these two is different, 
thus, a different response is expected for both measurements. For land data, the geophons 
respond to particle velocity and for marine data the sensors respond to the change in 
pressure. In order to avoid this confusion, a simple modeling study was carried out, and 
total response of the simple earth modiel is obtained, 

Seismic velocity estimation is another area studied extensively. Again, the 
terminology is vast and confusing. If there is no well control, the seismic velocity 
obtained measurements is the stacking velocity and is far fiom accurate. Also, the 
accuracy changes from simple to complex subsurface geometry and for lateral velocity 
variation. Using simple subsurface models with varying degree of complexity, we 
obtained the stacking velocities and the error inherent to the estimation. The error in 
stacking velocity computation could be as much as 25% for complex models. The only 
way to reduce this uncertainty is with log correlation and migration velocity analysis. 

Finally an attempt was made tlo interpret a 3-D seismic data from the Stratton 
field, south Texas, taking resolution into consideration. The dominant frequency of this 
set is 60 Hz. For the formation under study here t, the vertical resolution is about lOm, 
and the horizontal resolution is about 20 meters after 3-D migration. With this kind of 
resolution the smaller reservoir comp;utments are not well resolved. 

qualitative interpretation. The seismic: data at hand provided us with some valuable 
information about the subsurface structure especially in the areas where we do not have 
any well information or geological data. The results are promising, and can be enhanced 
with well log correlation and depth inversion. 

The interpretation that has been performed on the seismic data is only a basic 
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Table 4.1. Earth model. 

Table 4.2 Estimated stacking velocities (Vstk) compared to average velocities (Vave). 

40 1019 1000 
50 I 10181 loo0 
60 I 10181 1000 
70 I 10181 1000 
801 10161 1000 

(3) Lateral velocity-variation model 
H o ~ .  k I Vstk(ds) I Wave (I&) 

01 so01 500 
I 11 971 I 10301 

21 14141 1581 
31 18591 2137 

I 41 23041 2692 

(4) Vertical velocity-variation model 
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(6) Near-surface anomalv model 
cmp# 1 Vstak(ds) I Vave(ds) 

201 lo001 lo00 

I 301 l000l lo00 
40 I lo001 1000 

Table 4.3. Summary of error observations 
MODEL depth dip lateral k=4 vertical k=4 trap near-surface 
t-tnmo 1.5 0.4 1.5 0.5 5 23 

error factor (%) 0.3 1.8 16 6 10 25 
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Figure 4.1. Hypothetical subsurface model with two well log information. 
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Figure 4.2. Zero phase Ricker wavelet with 30 Hz frequency. 
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Figure 4.3. Reflectivity series of Figure 4.1. 
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Figure 4.4. Synthetic Seismogram, after convolution of reflectivity (Figure 4.3) with 
Ricker wavelet (Figure 4.2). 
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Figure 4.5. Subsurface fluvial channel. 
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Figure 4.6. Reflectivity series for a single cross section shown in Figure 4.5. 

Figure 4.7. Synthetic Seismogram for a fluvial channel, obtained after convolving Ricker 
wavelet with reflectivity shown in Figure 6.  
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Figure 4.8: Waves propagation for marine survey (left sketch) and land survey (right 
sketch). 

Figure 4.9: Lattice configuration for reflected and transmitted waves in layer k and at 
interface k. 
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Figure 4.10: Numbering scheme for traveltime formulation. 
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co = -1.0 

C] = 0.1 

CI = -0.2 

cj = 0.3 1.1410 

c4 = -0.4 

J-I-i-1 I !  I I I I +time 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
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co = -1.0 

c, = 0.1 

c2 = -0.2 

4.4576 ~3 = 0.3 

Figure 4.1 1: Schematic diagram of downgoing and upgoing waves at equal time for 
Robinson’s model (Robinson, 1983). 

Source 
R, = -1.OOOO 
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R2 = 0.2143 

R3 = -0.2593 

R4 = -1.OOOO 
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R4 = -1 .W 

Figure 4.12 Schematic diagram of downgoing and upgoing waves at equal time for 
earth’s model conditions. 
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a) Depth model 

Depth model (55-655 m) 
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(c) t-x m e  (depth model, depth = 655 m) 
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Figure 4.13. Depth model. (a) seven d!ifferent depths used (55 - 655 m), (b) t-tnmo for 
different depths, (c) t-x curve between true traveltimes and traveltimes obtained NMO 
equation (depth = 655 m), and (d) error factors for different depths. 
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(a) Dip model 
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(c) t-x curve (dip model, unp # = 30) 

t-x curve (dip model; empY E 30)  
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Figure 4.14. Dip model (1 1 degree dip). Larger number of cmp represents shallower 
depth. (a) seven cmp data sets used, 0)) t-tnmo for different cmp, (c) t-x curve between 
true traveltimes and traveltimes obtained the NMO equation, and (d) error factors for 
different cmp numbers. 
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(a) Lateral velocity-variation model (le 0 - 4) 

Lateral velocity gradient model 
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(b) t-tnmo (lateral velocity-variation model) 

Lateral velocity gndlent  model 
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(c) t-x curve ( l a t a  velocity-variation modeI, b4) 
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Figure 4.15. Lateral velocity-variation model. Five different lateral gradients (k) are used 
(k= 0, 1,2,3,4). (a) lateral velocity-variation model and curved raypaths for k=4, (b) t- 

tnmo for different k, (c) t-x curve between true traveltimes and traveltimes obtained the 
NMO equation, and (d) error factors for lateral-velocity variations along different ks. 
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(a) Vertical velocity-variation model (k= 0-4) 

Vertical velocity gradient model 
offset (m) 

200 400 600 800 

(b) t-tnmo (vertical velocity-variation model) 

vertlcal velocity gradient model 
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(c) t-x curve (venical velocity-variation model, H) 

t-x curve (vertical change: ks4)  
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Figure 4.16. Vertical velocity-variation model. Five diffkrent vertical gradients (k) are 
used (k= 0, 1,2,3,4). (a) vertical velccity-variation model and curved raypaths for H, 
(b) t-tnmo for different ks, (e) t-x curve between true traveltimes and traveltimes obtained 
the NMO equation, and (d) error factors for vertical-velocity variations along different ks. 
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(a) Trapmodel 
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(c) t-x mve (trap model, crqp# = 30) 

t-x curve (trap modef; cmp # = 30) 
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Figure 4.17. Trap model, Seven cmp data sets are used. (a) geological trap and curved 
raypaths, (b) t-tnmo for different cmp numbers, (c) t-x curve between true traveltimes and 
traveltimes obtained the NMO equation, and (d) error factors for different cmp numbers. 

110 



(a) Near-surface anomaly model 

Near-surface model offset (m) 
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(b) t-tnmo (near-surface anomaly model) 
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(c) t-x m e  (near-surface anomaly model, an@# = 60) 

Near-surface anomaly model 
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Figure 4.18. Near-surface anomaly moldel. Six cmp data sets are used. Background and 
anomaly velocities are 1000 and 500 ds, respectively. (a) low-velocity anomaly and 
curved raypaths, (b) t-tnmo for diffkrent cmp numbers, (c) t-x curve between true 
traveltimes and traveltimes obtained the NMO equation, and (d) error factors for different 
CmP numbers. 
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Figure 4.19: A base map uf the seismic data area showing the location ofthe VSP wel2 
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Figure 4.24: F?I 2 reservoir $time stnrcture map. 

Figure 4-25: E41 reservoir time strLlcture. 

116 



- 

Figure 4.26: ampl'itude map for FII 

Figure 4.27: amplitude map for E41 



Appendix A 

Program Marine: 

Synthetic seismogram from reflection coefficients. 
Program is written in Fortran.77 and reside in a separate disk. 

Subroutines: 

read-data 
twotime 
time 
amplitude 
ricker 
fold 
zero 
convolve 

Variable Discribtion: 

M = number of layers. 
V = velocity. 
H= thickness. 
T = two way travel time. 
D = down going response. 
RO = reflection coefficient 
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Appendix B 

Source 
RO 

R! 

RZ 

4 

R4 

I I I I I I I I I I + d m  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 

Figure B 1: Numbering scheme diagram for downgoing and upgoing waves at equal time. 

Pressure amplitude 
Calculate the reflection coefficient 

Assumed the densities are constant, then reflection coefficients for each layer are 
calculated as: 

= 0.0476 vz-v, - 11o0o-loooo 
v,+v, 11o0o+1m 

R1 = - 
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V y V 4  0-loo00 
V,+V4 0+10000 

= -1.0006 - R4 = - 

1. d10.5= 1.000 

2. dzl = 1.O00(1.000+0.0476) + (0~(-0.0476)) = 1.0476 

3. d31-5 = 1.0476(1.000+0.2143) + (OX(-0.2143)) = 1.2721 

4. d: = 1.2721 (1 .OOO-0.2593) + (0~0.2593) = 0.9422 

5. uyo” = 0(1.000-0.0476) + (1.000~0.0476) = 0.0476 

6. uzl = O( 1 .000-0.2 143) + (1 .O476~0.2 143) = 0.2245 

7. ~ 3 ~ ’ ~  = O( 1.000+0.2593) + (1.2721 x(-0.2593)) = -0.3299 

8. ~ 4 ’  = O(l.OoO+l.O00) + (0.9422~(-1.000)) = -0.9422 

9. ~ 1 ~ . ~  = 0.2245(1.000-0.0476) + (0.0476~0.0476) = 0.2161 

10. 

11. d: = 0.0476 (1.OOO + 0.0476) + (0.2245 x (-0.0476)) = 0.03918 

12. u: = -0.3299 (1.O00 - 0.2143) + l(0.03918 x 0.2143) = -0.2508 

13. d32’ = 0.03918 (1.o00 + 0.2143) + (-0.3299 x (-0.2143)) = 0.11827 

14. ~3~~~ = -0.9422 (1 .000 + 0.2593) + (0.1 1827 x (-0.2593)) = -1 -2 172 

= O( 1.000+0.0476) + (0.0476~-(-1 .O00)) = 0.0476 

15. d1*” = 0(1.000+0.0476) + (0.2161~ -(-1.000)) = 0.2161 

16. d? = 0.2161 (l.OOO + 0.0476) + (-0.2508 x (-0.0476)) = 0.2383 

17. u12.5 = -0.2508 (1.000 - 0.0476) + (0.2161 x 0.04’76) = -0.2286 
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18. U: = -1.2172 (1.000 - 0.2143) + (0.2383 x 0.2143) = -0.9053 

19. d13.5 = 0 (1.000 + 0.0476) + (-0.2286 x -(-l.OOO)) = -0.2286 

20. ~ 1 ~ - ~  = -0.9053 (1.OOO - 0.0476) + (-0.2286 x 0.0476) = -0.8731 
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Appendix C. 

This velocity-analysis software package consists of 3 main parts: 

0 Model setup: to make cell velocity distributions and geometries (reflectors, shot and 
receivers). 

0 Rav tracing: to calculate traveltimes with a velocity model given by user. 
Velocity estimation: to estimate velocity from given traveltimes. 

The programs are in Fortran 77 and reside in a separate disk. 

Model setup 

1) vmod.for --- to make a cell velocity model for a true model or a starting model. 
Option: horizontal and/or vertical velocity gradient or constant velocity. 

2) ref.for --- to create reflection interface. 
Option: line segment with different dipping and/or sine function. 

3) ele.for --- to make a shot-receiver elevation file (used linear interpolation with known 
heights for every station numbers, st #). It creates boundary coordinates of each pixel 
and coefficients of straight line for an elevation function. 

input: random elevation data from elevation survey .. 
ex) st# elevation 

0 79.8 
” 

... 
11 100.2 

output: output3-coordinates transformed (inline offset, shooting depth employed) 
ex) st #, shx, shy, recx, recy 

output 4-- boundary x, y and a, b for y=ax+b 
ex) boundx, boundy, a, b 

*note: start ix(i)=first st # and finish ix(i)=last st # for linear interpolation 
(that is, extrapolation not allowed) 

4) shst.for --- to generate the fde for shot and receiver station number. 
Option: different spreads geometry (end spread, split spread, and CMP sorted). 

Ray tracing 

5 )  ray.for --- to trace curved rays for 2-D seismic data using cells based on a shooting 
method. All algorithms for the code can be found in Langan’s paper (1985, 
Geophysics, 50,1456-1465). The program can be used for borehole, VSP (Vertical 
Seismic Profile), RVSP (Reverse Vertical Seismic Profile), refraction (Turing wave), 
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and reflection. It uses cubic spline reflection interface. Stations for shot and receiver 
can be located anywhere for reflection geometries. 

I 

input source x,y and ray definition data nput infoin(2): example 
x 

1 0 1  istraflag (0 = curv:), ismooth (O=no), ireflect ( b n o  reflect) 
" 

1 10. 45 20 20 iautoang (1 = auto), angmin, angmax, nangle, niter 
I 

1 
0 

itflag (blast iter. :ray; 1 = 0 & tome-out; 2 = every itrr. ray) 
idata (0 = for borehole/vsp ; 1 = for reflectionhefraction) 

I 

shot and station information depend on idata 
filename (shstin) 

" 

if, idata = 0 
" 

2 (nshots) 
1 100 0. 
2 110 0. 
1 (nstations) 
1 150.0. 

idata = 1 

2 100. 1. (nshots, shotxl, shspace) 
24 (nstations = channels) 
1 -6. 0. (ist, ichx, ichy) 
2 ---I- 
24 8. O. 

... 
line I**** 
" 

istrflag: flag for straight or refracting rays 
x 

0 = normal mode, use snell's law at each boundary 
x 

1 = straight ray mode, ignore snell's law 

ismooth: flag for smoothing velocity. ... 
0 = no smoothing 
1 = smoothing 

0 = no reflecting interface (ex: bore..,., 
1 - ? = how many interfaces 

ireflect: # of reflecting interface 

line 2**** 
iautoang: angle given automatically 

0 = not auto 
1 = auto (ignore angminmgmax) 

angmin: minimum takeoff ang for 1st iteratio:n (deg) 
angmax: maximum takeoff ang for 1st iteration (deg) 
nangs : number of ray angs tried for each iteration 
niter : number of iteration steps 

line 3**** 
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itflag: flag for operating mode 
0 = write out only rays from last iteration 

1 = write out only rays from last iteration, but 

2 = write out all rays to check # of iterations 

don't create the tomo.out file for the tomography program 

create the tomo.out file 

don't create the tomo.out file 

" 

line 4**** 

data: flag for data type 
- 
x 

0 = for boreholdvsp 

1 = for reflectionlrefraction 
", 

I: 
Velocity estimation 

6)  1sqv.for --- to solve X = G"b where denotes the generalized inverse matrix. This 
routine takes the equation Ax = b and solves the associated least-squares problem 
A'Ax = A b  where prime denotes transpose. In the code, matrix A(n,m) n is # of 
columns, m is # of rows, and b(m) and x(n) have one column. g and bb are work 
spaces for the intermediate arrays and vectors but g ends up holding the generalized 
inverse matrix G" at the end. 





PART V 

MARKOV RANDOM FIELD AND BOOLEAN MODELS FOR GEOLOGIC 
MODELING OF FACIES DISTRIBUTIONS 

By: 2. X. Bi, R. A. Redner, D. S. Oliver, Y. Abacioglu and A. C. Reynolds 

The objective of this work has been to generate realizations of facies distributions 
constrained to observations (well or outcrop) and geological interpretation with specific 
emphasis on fluvial systems. The work has emphasized the development of two very 
different types of statistical models, Markov Random Field (MRF) models and Boolean 
models. 

MRF models allow us to define a joint probability function for the distribution of 
facies by specifying local characteristics, or more mathematically, conditional 
probabilities based on local neighborhood systems. This is an extremely convenient 
feature as it is usually intuitively obvious how to specify the conditional probabilities to 
incorporate desired geologic features, continuity, anisotropy (or more generally 
orientation), and ordering and to some extent overall structure. Once the statistical 
parameters in the joint probability function have been determined realizations of the 
facies distribution are generated by a Markov chain Monte Carlo (MCMC) sampling 
procedure. A penalty term can be incorporated in the probability function to ensure that 
the fraction of facies in each realization is within some specified range. Conditioning to 
facies observed at wells is a trivial task. The main model we developed is extremely 
simple in that it is based on a second order neighborhood system and controls geologic 
features using only two-pixel cliques. Because of this, we are able to simply use a free 
boundary condition and avoid the unsolved problem of determining an appropriate 
definition of potential functions (statistical parameters) on cliques adjacent to the actual 
three-dimensional reservoir. This simplicity also makes it much easier to define 
conditional probabilities to simulate desired geologic features. Despite this simplicity, 
this MRF model can be applied to generate a rich variety of facies configurations. 
However, use of the model and code developed requires some understanding and 
intuitive insight on the way conditional probabilities affect geologic features, but much of 
this insight can be developed simply by reading this report. It would of course be 
preferable to develop an automatic procedure to generate the statistical parameters which 
define the probability function for the MRF model directly from geologic interpretation. 
For this purpose, we have investigated a number of algorithms, e.g., maximum likelihood 
estimation, coding and histogramming. Many of these methods have been successfully 
applied in the image analysis literature. Thus, we tried to apply various modifications of . 
these procedures to our problem. Unfortunately, none of them proved generally reliable. 
The maximum likelihood estimation procedure is reliable only when a good initial guess 
is available for the statistical parameters, and even then, it is computationally expensive. 
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Although we do believe that the hrlW model developed will prove to be a useful tool 
for the generation of many facies distributions of interest to geologists, it is not easily 
applied to generate facies as geometrical objects having a desired structure, e.g., channels 
and splays in a fluvial system. Thus, we have investigated the application of Boolean 
methods. With Boolean methods, or more generally, Marked Point Process techniques, 
distinct objects are inserted into the reservoir. With this approach, well-organized 
structures are easily obtained. By working closely with geologists, detailed information 
on the statistics of the parameters in the model can be obtained. For example in our study 
of the Middle Frio Stratton Field, we have accumulated data on channel thickness, 
channel width to thickness ratios, the angles that the channel makes with respect to some 
reference point and the natural clustering of channels. With these and other pieces of 
data we can make relatively realistic: simulations of channel belts. Even more realistic 
simulations are possible if additional data are incorporated into the model. 

The inclusion of specific well and outcrop information can be used to generate 
statistics to help understand the nature of the field and can also be used to constrain the 
stochastic realizations that are generaited. At this time we have only used the data from 
the study areas to generate statistics which are used to generate simulations. We have 
not, at this time, used this type of information to constrain the simulations. 

Introduction 
The distribution of geological facies in petroleum reservoirs is a key element for 

reservoir characterization and flow simulation because it controls the heterogeneity of 
physical properties of the reservoir over multiple scales. In practice, some general 
information about this distribution is usually available from outcrop studies or geological 
interpretation. Although various stochastic models have been proposed to generate facies 
distributions, this section of the report focuses on Markov Random Field (MRF) models 
and Boolean models for generating facies distributions. 

MRFs provide a powerful tool foir modeling spatial interactions and have been used 
extensively to defme prior distributions in Bayesian image analysis and statistical 
physics. It has also been suggested that one could apply a MRF to generate geological 
facies distributions, but many of the special issues related to this problem have not been 
previously explored. The MRF models developed in this work can be applied to generate 
realizations of facies distributions that display desirable characteristics determined from 
geologic interpretation, for example:, continuity, orientation and ordering. Boolean 
methods are more applicable for generating facies as large, geometric, geologic objects 
having a specified shape, e.g., channels and splays in a fluvial environment. Norwegian 
researchers have been responsible for developing many of the stochastic algorithms for 
generating facies distributions. They have proved especially adept at developing and 
applying stochastic simulation techniques based on Boolean models, or more generally 
marked-point processes. 

128 



In Boolean methods, facies are distributed in space as geometrical objects according to 
probability laws developed from well data, geological data and interpretation. The 
process of distributing objects in space by applying a probability law, which governs the 
distribution of the centers of the objects, is normally referred to a “point process” since 
the distribution of objects is determined explicitly by the distribution of the points 
describing the centers. In a marked point process, the point process defining the center of 
objects is “marked” (associated) with other probability distributions which may be used 
to describe properties of the object, e.g., size, shape and type. 

Generally, there are three basic problems involved in the application of any 
probabilistic model: (a) application of geological knowledge to propose an underlying 
stochastic model; (b) use of information, observations and geologic interpretation to 
estimate the parameters needed to define the probability function; (e) simulation or 
sampling of the probability function to generate realizations. This last part includes 
conditioning realizations to actual observations. In this research, we investigate these 
problems systematically. Unfortunately, the parameter estimation problem is one that we 
have been able to solve only in special cases. 

Literature Review 

When Markov random fields are used in stochastic modeling, one must first divide the 
region (surface or volume) into an array of “grid-blocks” or pixels, which are labeled 1 to 
n. Following the notation of Ref. [54], we let S ={ 1,2 ,..., n} and let X= (XI, X2, ..., X,) be 
a random vector with Xj representing a random variable defined on pixel j. For example, 
as in Ref. [54], Xj could represent the facies located at grid-block j if we wish to generate 
realizations of the facies distributions on the grid-blocks. Alternately, Xj could represent 
shale thickness in a grid-block, or the shale thickness at a pixel located on a correlation 
surface [31, 321. Ref. [54] gives a formal definition of what it means for X to be a 
Markov random field. The main characteristic of a Markov random field is that the 
conditional probability of Xj given values of all Xi for i f j depends only on the values of 
those Xi located in some neighborhood of Xj, Le., in a “local neighborhood”. This 
property results in significant computational speedup when one samples X by starting 
with an initial distribution, proposes a new distribution by some algorithm and accepts 
the new distribution with a specified probability (e.g. Gibbs sampler or Metropolis 
algorithm). As in a Markov chain Monte Carlo procedure, iteration is continued until the 
distribution of X converges. This type of procedure was used very successfully in the 
classical paper of Geman and Geman E211 on image reconstruction. However, when 
Tjelmeland and Holden [54] used the procedure to generate facies distributions with little 
or no well conditioning data, they found that the realization obtained either looks like 
independent noise or is completely dominated by one facies. In certain simple cases, 
justification of why a realization may be dominated by one facies- is provided by the 
theoretical results of Kinderman and Snell [35]. Tjelmeland and Holden recommended 
using a semi-Markov random field to overcome the apparent inability of Markov random 
fields to capture large-scale features. In this procedure, one can ensure that realizations 
contain at least a prescribed number of “bodies” where the same facies is assigned at each 
gridblock within a particular body. Although we have experimented extensively with this 
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type of approach, it appears to be highly computationally inefficient due to the extensive 
computation required to keep track of the number of bodies. 

The trend setting work of Haldorsen and Lake [29] represents one of the earliest 
attempts to use a stochastic algorithm to generate facies distributions. They presented a 
procedure to distribute shales within. a vertical cross section of a reservoir. Their work 
may be viewed as distributing shale units within a background facies (sandstone). They 
considered both “deterministic” and stochastic shales, where deterministic shales are 
continuous between observation points. Stochastic shales are randomly located within 
the sand body. In a two dimensional cross-section, shales are represented by rectangles. 
(In three dimensions, shales are assumed to be rectangular parallelpipeds.) They assume 
that the thickness and length of rectangular shale bodies are independent and that the 
locations of shale bodies are independent so that shales may overlap. The probability 
distribution of shale thicknesses is formulated based on observations at wells. The 
probability distribution for the length is built from outcrop studies or by general 
correlation on lateral continuity based on depositional environment, see Fig. 5 of Ref. 
[29] which was reproduced from Ref. [57]. 

The papers [31,32] by Hoiberg, Omre and Tjelmeland are more complex, but ones 
which make more thorough use of geological information. In particular, the geological 
setting for these papers is the North Sea, and the model is a permeable sandstone 
background with good flow properties with nearly impermeable shale barriers lying 
within this sandstone matrix. These shale barriers are assumed to be of two types. The 
first shale type is that of large lateral shale bodies that may intersect multiple wells. The 
second shale type is smaller shale-units which are not correlated between wells. The 
procedure assumes that shale within core data can be delineated from sandstone and also 
assumes that shale corresponding to large lateral shale barriers and shale of small units 
can be distinguished from the analysi,s of core samples. We note, as do the authors of this 
paper, that the strength of this approach is that all realizations reproduce specified data 
about the reservoir. In particular, the occurrence and thickness of shales observed in 
wells will be reproduced and the problabilities that wells are connected by shale sheets are 
satisfied. Furthermore, the percentage of shale versus sand will be as specified and the 
thickness distribution of shale thiclmesses in each simulation will match the shale 
thickness distribution which was specified. 

The geological model used by Syversveen and Omre [49,50] is much simpler than the 
model of [31]. In this paper, the aiuthors consider a reservoir which has a sandstone 
background. But within the background matrix, only a single type of shale barrier can 
exist and the paper is written for only two dimensions (although it could easily be 
extended to a third dimension). Within the sandstone background, they consider the 
problem of introducing impermeable shale barriers using a marked point process. 

In contrast to [31] and [49], the geological setting for the paper by Egeland, Georgsen 
and Knarud [19] is a fluvial reservoir and hence the background is assumed to be a nearly 
impermeable floodplain matrix that contains permeable sand-filled channels. Sheetsplay 
sand and barriers are added to the model to produce a more realistic and complex 
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geology. This paper provides only a broad overview of the stochastic models but 
underlying theoretical details can be found in Georgsen and Ome[22]. In Ref. [ 191, sand 
channels are modeled by marked point process. Each channel is initially identified with a 
straight line that provides the main direction for the channel. A joint probability 
distribution for these lines is used to provide correlation between channels. The second 
part of the model gives additional information on the size and shape of these individual 
channels. A finite number of points are selected along each line, and at each of these 
points, random values for the location (as a perturbation from the original line), thickness 
and width of the channels is generated. Gaussian random functions are used to general 
these random values. Additionally, sheetsplays are deposited along the edges of the 
channel. Finally elliptic-shape barriers are placed randomly along the line defining the 
channel. These are perturbed using the location information that was used to perturb the 
channel from the initial reference line. 

Papers of interest that deal with the general problem of facies distribution include Ref. 
[53, 553 presented by Tjelmeland. This approach is based on defining probabilities for 
special configurations that exist within cliques arising from higher order neighborhoods. 
The procedure is sufficiently general to incorporate a known ordering of facies. Our 
implementation of this basic idea, as well as the study of the related issues, is the main 
subject of this section of the report. The basic method used in Ref. [55] is actually an 
extension of an image segmentation model, which was introduced and called a Multi- 
Level Logistic (h4LL) model by Derin and Ellioitt [14]. In the MLL model, clique 
potentials can take on only two values, one when all the pixels in the clique are identical 
(for our problem, this means all occupied by the same facies) and one when they are not. 
Tjelmeland noted that some realizations that have been generated by this model are not 
truly representative of the underlying MRF model, but instead represent results generated 
during the transient part of a Markov chain. Our experiments confirm this conclusion. 
Thus, Tjelmeland proposed a MRF with higher order interactions, i.e., larger 
neighborhood systems, with clique potentials dependent on the specific configuration in 
the clique. 

Regarding the problem of parameter estimation, Beseg [2] proposed a procedure 
called the coding method. This procedure may be viewed as a maximum likelihood 
estimation method that yields parameter estimates that maximize the product of the 
conditional probabilities of a subset of the random variables in a field, conditioned to the 
rest of the field. The codings depend on the specified neighborhood. The advantage of 
this method is that the maximization is computationally efficient because the normalizing 
constant can be calculated exactly. However there exist different possible codings for a 
specified neighborhood system and the estimates of parameters obtained depend on the 
specific coding used. It has also been shown [53] that the estimates obtained by coding 
may be highly inaccurate for some probabilistic models. 

In view of the difficulties involved in the coding method, Derin and Elliott [14] 
introduced a histogram approach. This method is also relatively easy to implement and is 
efficient, but unlike the maximum likelihood estimate, it does not have a clear 
probabilistic interpretation. For some of the problems, the method is not applicable 
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because the number of equations that can be obtained from the observation is less than 
the number of parameters to be estimated. 

Because of the unknown normalizing constant in the MRF model, some statisticians 
have presented procedures to estimate this normalizing constant. Geyer and Thompson 
[23, 24, 251 proposed a procedure called Markov chain Monte Carlo Maximum 
Likelihood Estimation in which the normalizing constant is estimated by samples from a 
Markov chain Monte Carlo run based on an initial guess of the parameters. It turns out 
that when the initial guess is close enough to the truth, this method works very well, but 
for problems where the MRF probability function involves a large number of statistical 
parameters, the computational cost is very high. 

The preceding papers were reviewed in detail because they contain basic ideas that 
motivated our interest in the general problem of generating facies distributions. Important 
background on statistical theory related to these subjects is given in Cressie [9], Ripley 
[45], Stoyan et al.[47], Besag [2] and Besag and Green [3]. References [9], [45] and 
[47] are especially important as they provide information on the Hammersley-Clifford 
Theorem which gives conditions such that conditional probability distributions used in 
Markov random field models yield a consistent statistical model. We discuss the 
generation of facies as three-dimensional geometical objects within a background facies 
using Boolean models (or more generally, marked point processes) in another part of the 
report. We note that marked point processes have been used in other related applications, 
e.g., to model the distribution of faults [38]. We also note that various forms of marked 
point processes have actually been applied to model geological architecture field cases, 
see, for example, Refs.[12] and [56]. Both of these papers use a two step procedure. In 
the first stage, a marked-point process; is used to distribute facies and in the second stage, 
a continuous Gaussian model is used to distribute petrophysical properties within each 
facies. Finally, we note that there: exist numerous papers on non-Boolean types 
procedures for generating facies distributions, e.g., truncated Gaussian fields and 
indicator methods, which are not dislcussed here. Good overviews of stochastic models 
and the reasons for applying stochastic models are provided in Refs. [13], [28] and [39]; 
Ref. [58] presents a geologist's viewpoint. 

Markov Random Fields 

Basic Notation 

When Markov random fields are applied for modeling geological facies distributions, 
one must first divide the region of interest (2D surface or cross-section or 3D volume) 
into an array of regular gridblocks, pixels or sites. We use S as the set of subscripts or 
indices of pixels or sites. For example, for a two-dimensional MxN lattice, S = { (i, j), IS i 
I M, IS j5 N } ,  and for a three-dimensional system with N,xN,xN, gridblocks, S = { (i, j, 
k), 1I i 5 N,, 15 jS Ny, 15 k I N,} .  Hjere, each pair (i, j) or triple (i, j, k) is called a pixel 
or a site or a grid-block. In theoretical developments, the notation is significantly simpler 
if we use a single index for the random variables, Le., S = {i, 1< i I n}. Here, n is the 
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number of pixels in the region of interest, e.g., n = MxN or n = N,xN,xN,. Although S 
could be infinite, our discussion will be restricted to the cases where S is finite. 

Throughout, capital letters such as X and Y, are used for random variables or random 
fields and the corresponding lower case letters are used for realizations of these random 
variables. Capital letters used without any subscripts are used to denote the random fields 
from which the random variables are taken. For example, X ={Xij, (i, j ) d }  represents a 
two-dimensional random field; it is a collection of random variables, one defined at each 
pixel (i, j). We use XC to represent a subset of the entire random field X where C is a 
subset of S. The notation P (x) refers to a probability mass function. Our objective is to 
generate facies distribution on the system of pixels and consequently the random variable 
can take only discrete values representing facies so P (x) is a probability mass function, 
not a probability density function. Note we use P (x), instead of P (X = x), to denote the 
probability that the random field X takes on a value x. 

In our application, the random variable defined on pixel i ( i d ) ,  Xi, represents the 
facies value located at pixel i since we wish to generate realizations of the facies 
distribution on the system of pixels. For convenience, we use alphabetic letters, A, B, C, 
. . . to represent different facies, but we use numbers, 1,2, 3, . . . as the facies values in the 
corresponding computer program. The set of facies that each Xi can take on is denoted by 
F, ie., F = (A, B, C, ...} or F = {l, 2, ......, K}, where K is the number of facies or 
values to be considered. A few basic definitions are in order. 

Neighborhood System and Cliques 

Definition 1: A collection of sets of subscripts *{ai I i E S }  of S is called a neighborhood 

system if 

(a) for each i d ,  ai d 
(b) for each i d ,  i& 

(c) for each i d  and j ES, j E ai implies i E aj. 

This definition indicates that neighborhoods must lie within S, a pixel i is not its own 
neighbor and if i is a neighbor of j, then j is a neighbor of i. Consider for example the 
traditional first order neighborhood system in two dimensions. In this case, the neighbors 
of a pixel i are the pixels immediately above, below, to the left and right of pixel i; see 
Fig. 5.1.la. Of course, this must be suitably modified in the obvious way when i is on the 
edge of the pixel system, depending on what type of boundary treatment is applied. For 
example, if pixel i is on the right edge of a two-dimensional lattice and a free boundary is 
adopted, then the neighbors of i are only the pixels above, below and-to the left of pixel i; 
see Fig. 5.1.lb. Thus, pixel i has fewer neighbors than the interior pixels. (From the 
experiments that we have done, it appears that this free boundary procedure is the best 
way to avoid visual boundary effects.) Similar adjustments should also be made around 
the entire border. 



c 1 
(a> 0) 

Fig. 5.1.1 (a) first order neighborh!ood of pixel i consists of the dotted 4 pixels; 
(b) pixel i, has only three pixels as neighbors. 

Fig. 5.1.2 - A hierarchical sequence of neighborhoods of pixel i in a 
twodimensional lattice. 

Actually, there is a hierarchicdl sequence of neighborhood systems in a two- 
dimensional lattice; see Fig. 5.1.2. The second-order neighborhood consists of the fmt- 
order neighborhood plus the 4 nearest neighbors in the diagonal directions and the j* 
order (j=1,2, ..., 5) neighborhood contains all pixels that are labeled with a number less 
than or equal to j. Of course, neighborhood systems are not limited to the ones in the 
above sequence, any set of pixels satisfying the definition qualifies as a neighborhood 
system. Obviously the highest order neighborhood consists of the entire lattice. Notice 
also that a’s does not have to be the same for each pixel i. However, in OUT applications, 
ai is chosen to be the same for every i in the lattice (homogeneity) except near the edges 
where we use a free boundary. 

Given a neighborhood system, a clique is defined as follows. 
Definition 2: A clique c is a subset of S such that 
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(a) c contains only a single pixel, or in the case that c contains two or more pixels then 

(b) if i E c and j E c then i and j are neighbors of each other. 

By this definition, individual pixels are cliques. The set of all cliques in a 
neighborhood system is denoted by C. sometimes we use Cl to denote the set of single 
pixel cliques, C2 the set of two pixel cliques and so on. Clique types for the fust-, second- 
and third-order neighborhood systems are depicted in Fig. 5.1.3. 

B m 

Fig. 5.1.3 - Clique types for (a) first-, (b) second-, (c) third-order 
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neighlborhood systems in two dimensions. 

Markov Random Fields 

Definition 3: A random field X defined on S with probability function P(x), is said to be a 
Markov random field with respect to a neighborhood system d if the following two 
conditions are satisfied 
(a)  (Positivity) P(X = x )  > 0 fur all x E i2 (5.1.1) 

(b) (Markovianity) P(xi I x . , j # i) == P(xi  I x ,  , j E ai) i, j E S (5.1.2) 
J 

where SZ is called the sample space or state space. In our application, the size of 0 
depends on the number of pixels as well as the number of values that each random 
variable can assume, i.e., the number of elements in the set F. For example, if F contains 
K elements and the lattice contains n pixels, then tSZl=Kn. The positivity condition 
requires that every x in S2 has a nonzero probability of occurrence. The second property, 
called Markovianity, states that the conditional probability of Xi taking on a value xi, 
given values of all other Xj, depends only on the values of those Xj located in the 
neighborhood of i. This condition provides a way to compute conditional probabilities 
easily and efficiently if the neighborhood is not very large. But, defining a MRF by 
specifying a local property or conditional probability can make it difficult to determine a 
joint probability function which is consistent with the conditional probabilities unless 
care is taken. Ensuring a consistent probabilistic model is the objective of the 
Hammers1 y-Clifford Theorem. 

Gibbs Random Fields (GRF) 

Defiaitiun 4: A random field X defined on S has a Gibbs distribution, or equivalently is a 
Gibbs random field with respect to a neighborhood system d on S, if and only if its joint 
probability mass function P (x) is of the form 

(5.1.3) 1 
z P ( X  = x )  =-exp(--U(x)/T}, 

where 

U ( x )  = C Vc(xc)  is referred to as energy function and Vc(xc)  is called the potential 
CE c 

function associated with clique c; the sum is over the set of all cliques C. 

z = c exp{- ~ ( x )  1 T}is simply a normalizing constant, also known-as partition function, 

which ensures that the sum of the probabilities over all possible realizations x is unity. 
This is necessary in order for P (x) to be a probability function. T is a constant (often 
called temperature) which will be assumed to be unity unless otherwise stated 

X€Q 
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To calculate the Gibbs distribution, it is necessary to evaluate the partition function. 
Since the size of the state space C2 of X is K", even for a problems where K is small (two 
for the case where there are only two possible facies) and the number of elements in S is 
only a few hundred, the evaluation of the partition function is computationally intensive. 
This problem adds to the complexity of deriving procedures for sampling and/or 
estimating the statistical parameters defining the probability function. 

Note also that V,(x,) is dependent only on the pixel values within a clique c, Le., x,. For 
our application, a clique potential Vc(xc) can be specified by parameters which quantify 
the influence of different configurations of x, on the characteristics of the entire random 
field. This aspect will be discussed later in detail. 

A GRF is said to be homogenous if VC&) is independent of the relative position 
(location) of clique c in S. It is said to be isotropic if Vc(xc) is independent of the 
orientation of c. In this work, homogeneity is always assumed unless we explicitly state 
otherwise. Anisotropy will be applied to describe the direction-dependent characteristics 
of the facies distribution. 

The temperature T controls the sharpness of the distribution. When the temperature is 
very high, all of the possible facies distributions have essentially the same probability and 
consequently there is no pattern or structure in a realization generated, i.e., the 
realizations looks much like random noise. If the temperature is near zero, realizations 
the will concentrate around the global minima of U (x). This phenomenon will be 
discussed later. 

The origins of Gibbs distributions lie in the physics and statistical mechanics 
literature. Much of the research results pertain to the king model (see Refs. [16, 351) 
which is a special case of the Gibbs distribution. Unfortunately, the analysis of even this 
very simple Gibbs distribution is difficult. In the application of modeling facies 
distributions, the analysis is basically prohibitive because of the huge state space or the 
intractable normalizing constant. The advantage of the Gibbs distribution is that it 
provides an effective probability model by specifying a joint (or global) probability mass 
function. The celebrated Hammersley-Clifford theorem indicates that a unique GRF 
exists for every MRF and conversely as long as the Gibbs random field is defined based 
on the cliques in a neighborhood system. 

The HammersIey-Clifford Theorem 

Theorem I. (The Hammersley-Clifford Theorem) Assume that . P ( q ,  x2 ,..., xn)  is a 
probability function which satisfies the positivity condition and let {ai I i d }  be a 
neighborhood system. If for each i, markovianity of Eq. 5.1.2 holds, then 
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1 
z 1 i< j 

P(x1, x 2 ,  ..., x n )  = -exp{-[C xiGi ( x i )  + C x i x j G q  (x i  ,xi) 
(5.1.4) 

where each of the G functions is zero if the indices for that G function do not form a 
clique. Subject to this restriction, the (5 functions may be chosen arbitrarily. 

The last statement of the theorem should of course be interpreted as saying that the G 
functions can be chosen arbitrarily subject to the restriction that they are zero if the 
indices do not form a clique and then 2 is chosen as a normalizing constant so that the 
total probability is one. 

Now clearly the formula for P can bje written more compactly as the Gibbs distribution 

(5.1.5) 

where the sum is taken over all cliques. So the question which we now address is “what 
restrictions must be placed on the functions V, in order to get a well defined probability 
function.” In the discrete case, we require that the sum over all states of X be a finite 
number, i.e., 2 = C exp{- ZV, ( x , ) }  < a. As long as the function can be properly 

normalized, then it defines a probability function. 
X€Q C€C 

So the next question is whether 01’ not joint probability function of Eq. 5.1.5 has the 
type of conditional probability structure we desire. It turns out that it does and we might 
attempt to solve this problem by expressing the relationship between the “VC,, functions 
and the Gs. But, this is not the easiest way to proceed. Instead, we will prove directly 
that the V, functions can be chosen arbitrarily. 

Theorem 2. Given that the sum over d l  states of exp(- ZV,) is a finite positive number 
C€C 

(3, then 
1 

P(xl,x2,.--,xn)8 =-exp(- CV,) 
z C€C 

is a probability function and 

(5.1.6) 

(5.1.7) 

Proof: We begin by reemphasizing that there are no restrictions on the values of the 
probability function except that each probability must be non-negative and that the sum 
of all probabilities must be exactly one. Since the exponential function is non-negative, 
then P is a probability function. 
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To continue, we recall that 

Since P(xl ,..., xi-l , xi+l, ..., x,) is the marginal probability, it follows that 

(5.1.8) 

(5.1.9) 

where is the swn over all possible values of Xi. Using the above equations, 
xi 

(5.1.10) 

where C in the exponent refers to the sum over all cliques containing Xi. The last 
i 

equality holds since all of the other terms factor out and cancel since the cliques for these 
terms are independent of the summation over xi. That this expression is the same as 
P(xi t x j  , j E a i )  is intuitively reasonable but will be proven below, as it is not obvious. 

In order to establish this final fact, we will need additional notation. Let denote 

the sum over all of the possible values of Xj for all j such that j is not i and is not a 
neighbor of i. As above, let C denote the s u m  over all cliques which depend on i and let 

-ai 

2 

denote the sum over all cliques which do not depend on i. It follows that 
-i 
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(5.1.1 1) 

1 =-- c exp(-C v, 1 
xi 1 

Note that the positivity condition is automatically satisfied since the exponential function 
is positive. Note that we have also shown that are no restrictions on the choice of the 
potential functions (the Vis) except that they must depend only on values in cliques and 
that they sum to a finite value. Also note that Eq. 5.1.6 expresses the joint probability 
function as a Gibbs distribution. 

The equivalence between a MRF and a GRF was also proved by Beseg[2] using a 
factorization theorem. Through his proof of the Hammersley-Clifford theorem, Beseg 
gives the most general form for the conditional probability such that it is consistent with 
the joint probability given by Eq. 5.1.41 in Theorem 1. 

The preceding theorem indicates that the global characterization of a GRF by its joint 
probability function (Eq. 5.1.6) encapsulates the local characteristics of a MEW; see Eq. 
5.1.7. This allows us to capture the global characteristics in modeling facies distributions 
while using the local characteristics to sample the distribution. Theorem 2 also shows 
that to define a MFW on S, it suffices to define the neighborhood system 8, specify the 
associated cliques and then define the clique potential functions. How to choose the 
forms and parameters of the potential function is the focus of much of the remainder of 
this work. It should be pointed out that for neighborhood system, there are different 
types of cliques, but we do not need to define explicitly potential functions for all of them 
to capture structural features. We can specify nonzero values on some of them to capture 
structural properties and simply define the potential to be zero on the other cliques. 

Markov chain Monte Carlo sampling 

Here, we assume that we have partitioned the domain of interest into n pixels. To each 
pixel s, there is an associated random variable Xs. We define the random field X by 

x := (X,,X* ,..., X,) (5.1.12) 
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where the random variable X, ,which can take on any one of the K values from the facies 
set F, represents the facies in pixel s. As in our previous discussion, S denotes the entire 
set of pixels (grid-blocks). We also assume that X is a Markov random field (MRF) with 
respect to some neighborhood system a defined on S and that its probability mass 
function is a Gibbs distribution. Thus, we can define conditional probability distributions 
consistent with the joint probability function for X using the results of the Hammersley- 
Clifford theorem as presented in Theorem 2. In this section, we use s and r to index 
pixels, and i and j to represent states of a Markov chain for convenience. 

The objective is to apply a Markov chain Monte Carlo (MCMC) method to sample X, 
which we also refer to as sampling the probability distribution for X. This probability 
distribution is again denoted by P (x). For our application, a Markov chain may be 
thought of as a sequence of random vectors, X', k0, 1,2, ... Here each X' has the form, 

xe = (X,[, x; ,..., X:), (5.1.13) 

and the random variable X: represents the facies at pixel s in state C. Each X p  will have 
its own probability function, P, (x), with the specific form of this probability determined 
by how the stochastic variables (the X') in the Markov chain are defined. The theory of 
Markov chains is summarized below. Additive details can be found in Refs. [26] and [51] 
Applications to petroleum engineering problems can be found in Refs. [5] and 161. Our 
objective is to generate realizations of X by constructing a sequence xe where xe is a 
sample of X p .  If the Markov chain is constructed properly, eventually, the sequence of 
samples we construct will represent samples of X. We refer to any specific sample xi 
generated in the Markov chain as state i. For the problem of interest here, the state space 
S2 refers to all possible realizations of the random vector X. For the problem of interest 
to us, at each of the s pixels, we can have one of K facies so the dimension of the state 
space R is I?. A Markov chain with a finite state space is referred to as a finite Markov 
chain. 

The objective is to construct the Markov chain such that 

(5.1.14) 

for all 1 2 L regardless of how Po(x) (the probability function for X? is defined. More 
formally, if a Markov chain satisfies 

!+a 
lim Pe ( x )  = P ( x )  , (5.1.15) 

for any Po(x) defined on Xo, we say that the Markov chain converges to the correct 
probability function. If Eq. 5.1.14 holds and xe is a sample of Xc (or P,(x)) then the set of 
realizations x', != L, L+1, ... represents an approximate sampling of X. 
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(5.1.1 6) 

which is often referred to as the Histings-Metropolis condition. If q i j  = q,i, then Eq. 
5.1.16 reduces to 

(5.1.17) 

which is the well known Metropolis [37] condition. The product of the Q j  and &,j gives 
the transition probabilities, 

ni, j = qi, jai, j 3 
(5.1.18) 

andthe InlxlRl matrix 

n=[ni,jI, 

is referred to as the transition probabi:lity matrix. 

(5.1.19) 

To construct a sequence of states iin the Markov chain, we generate a sample xi of Xo 
by sampling PO (x). Subsequent states are generated by the following procedure. If x' = xi 
is a realization of X' (t* state generated in the Markov chain), we obtain a realization of 
Xe+' as follows: propose a new state ;$ (realization of X) with probability qijl and accept 
this new state with probability QJ. If the new state is accepted, set xe+' = 2, otherwise, 
set xe"' = A!. The transition probability 'nij gives the probability that we will obtain state 2 
at step .t+l (i.e., obtain 2 as a realization of Xe") given that Xe = xi . If, as in our 
application, the transition probabilities are independent of l ,  the Markov chain is said to 
be homogeneous. 

We let n, = [ n ! F ) ]  denote the infh power of the transition probability matrix, Le., 

TC,= f f .  If for any i and j, there exists a finite rn such that nF)> 0, then the Markov 
chain is said to be irreducible. If a chain is irreducible, then there is a nonzero probability 
of obtaining any state in the state space in a finite number of steps. If there exists at least 
one i such that R,i > 0 ,  the state space is said to be aperiodic. 
The following theorem is well known (Refs. [21], [26]). 

rJ 

Theorem 3: A finite, homogeneous, irreducible, aperiodic Markov chain with acceptance 
probabilities defined by Eq. 5.1.16 is convergent, Le., 

linn Pe ( x )  = P ( x )  , (5.1.20) 
e-+m 
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for any Po(x) defined on Xo. 

Next, a Markov chain Monte Carlo (MCMC) method for generating facies 
distributions is considered. Assume that there are K facies in the set F={ 1,2, ..., K}, and 
the “prior” probability of drawing facies k is given by Tk , k=l, 2, ..., K , where we 
require that 

K 

k=l  
=I .  (5.1.21) 

Let x= (xIJ~,...J~) denote any state of X (see Eq. 5.1.13) and let n&) be the number of 
pixels that are occupied by facies k in the realization x. Then to honor this prior 
probability distribution, it is desirable that 

-- -Tk. (5.1.22) nk (x) 
n 

Since we wish to use the results of the Hammersley-Clifford Theorem to define 
conditional probabilities, we define the probability function on X by 

P(x) = P( X = x) = - expi- 1 
V, (x,  ) } . z C € C  

As previously, the MRF hypothesis implies that the conditional probability of the 
random variable X, is given by 

P ( X ,  =xs IX, = x , , l I r I n , r # s ) =  

P ( X ,  =xs IX, =xr , r~ds )=-exp( -  CVc(x , ) } ,  1 
z s  C X C  

(5.1.23) 

(5.1.24) 

where Z is a normalizing constant and the last sum in Eq. 5.1.24 is over all cliques that 
contain the pixel s, Le., over all cliques contained in the neighborhood of s. As before, it 
is simpler to rewrite Eq. 5.1.24 as 

1 P(x,  I x,,r z s) =-exp{- CV,(x,)}. 
2, c:s& 

(5.1.25) 

Now suppose x‘” and d2) are two realizations of X which differ only at pixel s, i.e., 

x‘” = ( X I ,  ~ 2 ,  ~ s - 1 ,  xS(l), XS+I, ..., Xn) (5.1.26) 
and 

(5.1.27) 
Now we have, 

(5.1.28) 

where the last probability function in Eq. 5.1.28 is the marginal probability for the 
remaining n-1 random variables. Similarly, 

P (X (2) ) = P(x:~’ I xr, 1 I r I n, S) P ( x ~ ,  . . . ~ , - l ,  xS+l, ..., xn). (5.1.29) 
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Dividing Eq. 5.1.29 by Eq. 5.1.28 and using Eq. 5.1.25, it follows that 

MCMC Algorithm 

(5.1.30) 

Here, we present the Metropolis-Hastings algorithm for generating facies distributions 
on a system of pixels S. To generate the first state (realization of X? in the Markov chain, 
one simply cycles through the pixels s= 1,2, ..., n and at pixel s, one assigns facies k with 
probability T k .  This gives the initial facies distribution generated from the prior 
probability distributions {Tk, k=1,2, ..., K). Given that we have generated state xi as a 
sample of Xe at step l ,  the next state (sample of Xe+') is generated by the following 
procedure. 

(i) Randomly choose a pixel s in S. Choose facies k' with probability Tk' from the set of 
facies and propose replacing the current facies located at pixel s by facies k'. If we 
choose the same facies that already axupies pixel s, there is no point in continuing so we 
actually exclude this probability and modify the Tk's appropriately. The state (overall 
facies distribution) that would be obtained by making this change at pixel s represents the 
proposed state A!. Note that the probability of proposing a transition from state i to state j 
is then given by 

qi j = T' / ~ 1 ,  (5.1.3 1) 
where 1 / n is the probability of choosing pixel s, and T' is the probability of selecting 
facies k' from the prior probability function. (If all facies are equally probable, then Tk' = 
1K.) Also note that if pixel s is occupied by facies k in state a?, then the probability of 
proposing the reverse transition from A! to x' is given by 

%,i= Tk/Il .  (5.1.32) 

(5.1.33) 

Once the potential functions have been defined, using Eqs. 5.1.33, 5.1.31 and 5.1.32 in 
the Hastings-Metropolis condition (Eq. 5.1.16) defines ai,j. 

(iii) Accept the new state A! with probability Ctijij. This is done by generating a random 
number with a random number generator (R4N2) first. If &,j is greater than or equal to 
the random number generated, then replace the old state xi with the proposed new state 2. 
Otherwise, keep the old state xi as the new state. 
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To assure that xe is the right sample from the probability distribution P(x), steps (i) 
through (iii) may have to be repeated many times, say for L iterations, where here, one 
iteration actually represents n attempted replacements, one for each pixel on average. 
According to Theorem 3, once L is sufficiently large (formally as L goes to i n f ~ t y ) ,  the 
set of samples from that point on will represent a correct sampling of P(x). 

Note that the only difference between xi and 2 is in the selected pixel s. Since the 
limiting distribution P(x) appears only in the ratio P(2) / P(2) and the Markov hypothesis 
applies, so only those cliques containing pixel s have to be included when evaluating 
Eq. 5.1.16; see Eq. 5.1.33. This is the computational advantage of using MRF models. 
Also note that Eq. 5.1.33 does not require knowledge of the normalizing constant (a. 

This basic MCMC procedure is done in the subroutine SIMULATION in the 
FORTRAN program. (see Appendix 5A) 

MODELING GEOLOGICAL FACIES DISTRIBUTIONS BY MFWS 

As discussed in the introduction, our goal is to generate geological facies distributions 
in a particular depositional system by using a MRF model that encompasses knowledge 
obtained from geological information or interpretation. We seek a MRF model that can 
generate realizations of facies distributions that exhibit the expected geologic features. 
The first assumption in stochastic modeling is that a realization of the facies distribution 
can be generated as a sample from a probability distribution, in our case, a Gibbs 
distribution. We have seen that the Markov random field model defines a Gibbs joint 
probability distribution on a set of random variables representing facies values. Of 
course, we want the MRF model to impose statistical dependence in a spatially 
meaningful way. This requires an appropriate definition of the conditional probabilities or 
the Gibbs clique potential functions. Our general knowledge about facies distribution 
includes the proportion, continuity, orientation and ordering of the facies. Therefore, we 
must consider how to impose this “real-world knowledge” on the definition of clique 
potential functions. It should be noted that MRF models have been extensively and 
successfully used in image analysis for at least two decades. Models that are relevant to 
our problem include the so-called multi-level logistic model of Derin and Elliott [ 141 and 
the models of Strauss [47], and Beseg [4]. Although the body of literature concerning 
MRF models in image analysis is vast, application of MRFs to the modeling of 
geological facies distribution has only been considered recently; see Refs. [52], [53] and 
[55]. Thus, problems such as the selection of the order of the neighborhood system, the 
choice of cliques, the definition of potential functions, phase transitions, boundary 
effects, and estimation of the model parameters, need to be studied systematically. 
Below, we concentrate on appropriate definitions of the clique potential functions and 
associated issues. 

. 

145 



MLL Model 

As described previously, the joint probability mass function of a Gibbs distribution 
with T=l is 

1 
‘Z 

P ( x )  = ;-exp{-U(x)} 

and the most general form of energy U(x), as shown in the 
Theorem, is 

U ( X ) =  C ~ i G i ( x i )  -t C x i x j G i , j ( x i , ~ j )  
11iSn 1Si< j l n  

(5.2.1) 

Hammersle y-Cli fford 

(5.2.2) 
+**....+ ~ 1 x 2  * . * x n G 1 , 2  ,......, n ( x 1 , ~ 2 ,  .**7x,)-  

Since we consider only homogeneous MRFs, Le., assume that the clique potential 
functions are independent of the locations of the cliques, we can rewrite the most general 
form of U (x) as the sum of potential functions over all types of cliques, i.e., 

(5.2.3) 

where C1, Cz and C3 simply represent the sets of one-, two-, and three-pixel cliques 
respectively. We will see that there are different types of cliques in each set. For example, 
in a two-dimensional first order neighborhood system, there are two types of two-pixel 
clique in set C2, e g ,  horizontal cliques and vertical cliques. 

The widely used Multi-Level Logistic (MLL) model for image processing applications 
defines clique potential functions in terms of whether all pixel values in a clique are the 
same or not. A clique potential function does not depend on exactly how pixel values 
vary within the clique. Tjelmeland and Holden [54] tried this model. They defined all V, 
=O except on two-pixel cliques in a 2D, second-order neighborhood system. Thus, the 
energy function is 

U ( x ) = =  c V,(Xi,Xj). (5.2.4) 
( L  j k C 2  

On cliques containing exactly two pixels, say pixels i and j, define 

(5.2.5a) 

if 4 = xj and 

V ~ ( X )  = Kj = p (5.2.5b) 

for some p > 0 if xi#xj. Note with this definition, the most probable realizations of X are 
those that have the same facies at all pixels. In fact, unless J3 is very small, Tjelmeland 
and Holden found that after a sufficiently large number of iterations; the states generated 
in the Markov chain are all equal to a realization x, where one facies occupies all pixels. 
On the other hand if p is sufficiently small, the realizations obtained look like random 
noise. 
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Fig. 5.2.l(a) through 5.2.l(e) illustrate the case where one facies totally dominates after 
a large number of iterations have been executed. In this case, we applied the Markov 
chain Monte Carlo algorithm presented in the last chapter to a five facies example with T k  
= 0.2 for k=1,2, ..., 5, and with p = 0.6 . Fig. 5.2.l(a) shows the initial distribution of facies 
on a 60 x 60 grid, i.e., there are n = 3,600 pixels. Again, in our terminology, one iteration 
consists of randomly selecting 3600 pixels in the MCMC simulation procedure. Each 
time a pixel s is selected, we consider changing the facies at that pixel, Le., consider 
changing the value of x, using the perturbation mechanism described in the MCMC 
sampling procedure. Fig. 5.2.l(b) through 5.2.l(d), respectively, show the facies 
distributions obtained after 10, 5,000 and 20,000 iterations. Note that at iteration 5,000 
only 3 facies remain and by iteration 20,000, except at a few “stray pixels”, only one 
facies exists. 

Hjelmeland and Holden [54] noted that some scenes (“realizations”) that have been 
shown in the image processing literature, e.g., the one generated after 10 iterations in the 
example of Fig. 5.2.1, are not truly representative of the underlying MRF model, but 
instead represent results generated during the transient part of a Markov chain, Le., 
represent scenes generated before the Markov chain has converged to its stationary 
distribution. The problem of obtaining either a realization that is random noise or one that 
contains only one facies occurs because of the “phase transition” problem; see Refs. 
[16], [35] and [40]. 

Since, one would like most, if not all, realizations to contain all five facies and would 
also like the prior probability distribution to hold approximately, it is clear the results 
obtained in this example are inappropriate. To obtain an appropriate procedure, it is 
necessary to modify the neighborhood system and the associated potential functions. 
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Configuration . .  model 
Tjelmeland [52] also noted that semi-MRF's have been proposed (see, for example 

Ref. [54]) to generate more realistic structures, but the resulting models suffer from slow 
convergence and may still be unable to control large-scale structures. Thus, following the 
methodology of Beseg[4], Strauss [48], Tjelmeland and Besag 1521, he proposed a MRF 
with higher order interactions, i.e., larger neighborhood systems. In this model, the 
conditional probabilities or the clique potential function is defined based on specific 
facies configurations that exist within cliques. A configuration is defined in terms of the 
facies that exist at each pixel within a clique including the structure of the overall facies 
distribution within a clique. We refer to this model as a clique configuration model to 
avoid confirsion with the gkeral term configuration that is used in other fields to simply 
represent a possible x in $2. This model is sufEciently general to incorporate continuity, 

. 
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orientation and ordering. If the parameters are appropriate, the proportions of each facies 
theoretically could also be controlled. 

As before, we denote x, as the facies configuration on a particular type of clique Cp 
(p=1,2,. . .,n) in a neighborhood system, i.e., x, gives the set of facies occupying the pixels 
of clique type C,. Cp is a subset of C.. Generally, we use only one or two types of cliques 
in a neighborhood system, e.g., C2 or C3. So we define Vc(xc) = 0 for other types of 
cliques. For example, if we wish to c:ontrol the features of the realization by using only 
single- and two-pixel cliques in a second-order neighborhood system, we simply consider 
the potentials for all other cliques (3- and 4-pixel cliques) to be zero. Therefore Vc(xc) is 
defined by 

et if c E! C ,  and X ,  E Dt , t = 1,2 ,......, N, 
ifCf€C, 

(5.2.6) 

where De, t=l, 2, . . . , Nc, are the specified configuration sets for cliques Cp, and Nc is the 
number of configurations which depends on C,, and the number of facies K. The et’s 
represent values which define the potential functions. In general we refer to the ee’s as the 
model or statistical parameters. Apparently, the bigger the S,, the less likely the 
corresponding clique configuration since there is a negative sign in front of the 
summation of potential functions; see Eq. 5.2.1. Conceptually, the values of the Be’s 
control both the structure of any realization obtained as well as the expected value of the 
relative number of pixels occupied by each facies. However, how to choose the 9,’s to 
control the structure of realizations or the number of expected number of pixels occupied 
by each facies is not an easy problem. If the values of 4’s are not appropriate, then the 
sequence of states generated in the Markov chain may converge to a realization which 
contains only one facies. This is the: well known “phase transition” phenomena which 
will be discussed in more detail latter. 

Possible clique configurations for two-dimensional lattice are shown below. We define 
a second-order neighborhood system on this lattice as shown in Fig. 5.1.3 and assume 
potential functions are zero except on two pixel cliques. Also suppose that there are only 
two possible facies, facies A and B. till possible two-pixel clique configurations as well 
as the notation used for the corresponcling potentials are shown in Fig. 5.2.2. 
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Fig. 5.2.2 - Two-dimensional, 2-pixel clique configurations for 2 facies A and B. 

The first configuration with potential 41 affects the continuity of facies A in the 
horizontal direction. Larger negative values of 811 tend to promote continuity of facies A 
in the horizontal direction. If we want to promote continuity of facies A in the horizontal 
direction, we can assign a smaller value to 41 than to other potential functions, 
otherwise, we increase the value of 41. Similarly, a low value (or larger negative value) 
of the potential 043 tends to promote a transition from facies B to A in the northwest to 
southeast direction, or, more specifically to increase the probability that facies A will 
occur to the right and below facies B. Intuitively, the clique configurations are very 
simple, but all parameters have an effect on the realizations generated so choosing 
appropriate values for a specific geologic model is not always easy. However, we can 
generate a lot of relatively complicated facies structures by appropriate modification of 
the potential values. This is a major advantage of the MRF model, i.e., it is possible to 
determine the global structure, or more mathematically, the joint probability function by 
using conditional probabilities with local characteristics. It should be pointed out that in 
general, the above configurations are not considered rotation-free, e.g. &;e&#&#841. 
Thus, in general, the Markov random field is not isotropic. 

More complicated clique configurations can be obtained by cliques with more pixels 
as shown in Fig. 5.2.3 in which 5-pixel cliques in a two-dimensional, third-order 
neighborhood system are used, and 3 facies A, B, C are considered. We could interpret , 

the first configuration (a) as a 2D corner for facies A and the second configuration (b) as 
straight edge for facies B with facies C located above. However, we prefer not to use 
cliques containing several pixels because this increases the computational cost, the 
boundary effect problem tends to become more severe, and the complexity of the 
implementation increases and intuitive understanding decreases. 
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@, 
Fig. 5.2.3 - Examples of 5-pixel clique configurations for a 2D, 

third-order neighborhood system. 

Applying the Hmersley-Clifford theorem with the definition of Eq. 5.2.6 gives 

(5.2.7) 

where ne(X), &=1,2, . . ., N,, is the number of cliques in x with configuration De. 

To impose an ordering between facies, Tjelmeland [55] modified the above d e f ~ t i o n  
and added additional parameters in the definition of potential functions. For example, he 
used 

V, (x , )  = Bf +@(E, E')+P! (E,E")  (5.2.8) 

for imposing vertical ordering in three dimensions. Here E is the facies value of the 
current pixel, E' denotes the facies value located below the current pixel of a clique and 
E" denotes the facies located above the center pixel (in vertical direction). Pt's and Pe 'S  
are used to impose an ordering on the. facies, e.g., facies E below facies E and facies E' 
above facies E. If no ordering is required, those parameters are just set to be zero. This 
modification appears to introduce additional difficulty in the parameter estimation 
procedure. Moreover, our experiments showed that this modification is not necessary 
because we can honor the ordering directly by appropriately defining the Be's. Using only 
2-pixel cliques, we will see this clearly from the results presented later. Therefore, we 
will define potential functions using Eiq. 5.2.6. 

' 

Phase transition and penalty term 

A MRF exhibits a phase transition problem (see Dubes and Jain [ 171, Pickard [40], 
Derin [15]), that is, as parameters vary over critical values, abrupt change in statistics 
occur and the realizations generated may contain only one facies as shown in Fig. 5.2.1. 
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Pickard [40] interpret the phase transition problem as a specification of parameters such 
that a short-term correlation between neighboring pixels develops into long-term 
correlation. From another point of view, the Gibbs probability mass function for the MRF 
in phase transition has several sharp peaks. Of course, models exhibiting phase transition 
are not physically reasonable. To avoid the phase transition problem and assure the 
validity of the models, we propose a modified configuration model based on a global 
neighborhood system. 

For a global neighborhood system and a given pixel i on S, all pixels j with j#i are 
neighbors of i, i.e., jE& for j +i. Moreover, all subsets of the complete set of n pixels are 
cliques. However, we define V, = 0 on cliques unless the clique is contained in C,, (e.g. 
except on two-pixel cliques) or the clique is the one containing all pixels. On the clique 
containing all pixels, V, is defined as 

(5.2.9) 

where &(x) represents the number of pixels in the realization x that correspond to facies 
k. Since this clique contains all pixels of S, we drop the subscript c on x. The o k  
parameter is a scale factor and essentially specifies a term like the standard deviation for 
the variable &(x). This V, function is referred to as a penalty term which penalizes 
realizations which do not contain a reasonable (in a probabilistic sense) percentage of 
each facies as prescribed by the prior probability function Tk. 
The definition of clique potential function V,(x,) for cliques in C, is similar to Eq. 5.2.6. 

Therefore the probability of obtaining realization x is given by 

(5.2.10) 

Note that n,(x) and &(x) are different. The former represents the number of cliques in 
x with clique configuration D!, and the later is the number of pixels occupied by facies k 
in realization x. 

MCMC for realizations of facies distribution 

To generate a facies distribution, we generate a Markov chain. To do this, we begin by 
generating an initial distribution of the facies by cycling through all pixels and assigning 
a facies in each pixel by sampling from the prior distribution, i.e, the probability of 
selecting facies k in pixel k is Tk,  k=1,2,. . .,K, where K is the number of possible facies. 
At each subsequent step, we randomly select one of the n pixels, say pixel s, which is 
currently occupied by facies k. We let xi denote the facies distribution obtained as the i" 
state in the Markov chain and here, also refer to 2 as the current configuration. We 
propose a new facies k' for this pixel by sampling from remaining K-1 facies and let 2 
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denote the new distribution of facies {obtained by replacing facies k in pixel s by the new 
facies k’ we have selected. In the language of Markov chains, xi is the current state or i* 
state and 2 is the proposed state or jth state, where as noted previously, x’ represents the 
facies distribution determined at the ith step of the Markov chain. The probability of 
proposing the transition from state i to state j is given by 

- Tk 
4ij - - T I  (5.2.1 la) 

and the probability of proposing the reverse transition is given by 

(5.2.1 lb) 

Note since we exclude choosing the same facies as the one currently occupied the Tk’s 
actually must be modified to reflect the probability of drawing a potential facies from the 
remaining K-1 facies. Thus, the Hastings-Metropolis acceptance criterion is simply 

(5.2.12) 

Since xi and 2 differ only at pixel s anid the MRF hypothesis applies, we have 

(5.2.13) 

where the frst sum in each exponential term of the exponents is over cliques that contain 
pixel s and are in C,. The Gk’s in the second sums are evaluated on all the pixels of S. 
However, in the implementation of IVICMC sampling, we compute all the &’s. when 
generating the initial distribution and then we simply keep track of how these numbers 
change from iteration to iteration of the MCMC procedure. This significantly enhances 
computational efficiency. 

MODEL EXPERIMENTS FOR TWO-DIMENSIONAL PROBLEMS 

Here, we present examples of the application of Markov Random Field models to the 
modeling of geological facies distribution. Particular relevant issues, e.g., boundary 
effects, clique types, order of the neighborhood system, and conditioning to observed 
data are also addressed in this section. 
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Boundary effects and treatment 

As discussed previously, the application of MRFs in practice inevitably deals with a 
finite region, i.e., S, contains a finite number of pixels. This means that a border or region 
boundary must be present. Depending on the order of the neighborhood system, the 
pixels adjacent to the boundary or pixels at some distance away from the boundary have 
missing neighbors. Fig. 5.3.1 illustrates the boundary effect where a two-dimensional, 
second-order neighborhood system is used and only 4-pixel cliques are considered. Fig. 
5.3.la shows a complete second-order neighborhood for an interior black pixel and the 
four 4-pixel cliques that contain this black pixel. Fig. 5.3.lb shows a boundary pixel 
(black) located in the lower left corner of the two-dimensional region of interest, its 
incomplete second-order neighborhood and the missing pixels (with dashed line edges) 
for 4-pixel cliques that contain this pixel. 

The boundary problem may be summarized as follows. Consider an isolated system of 
pixels, S, over which the MRF random variable X, is distributed. The finite region S 
consists of the set of interior pixels, SI, which contains those without missing neighbors 
and the set of boundary pixels denoted by SB, i.e., S=Sp!& and SInS,=O. The values of 
random variables outside of S are not defmed or available. If a pixel i is an interior pixel, 
that is, i&, then the conditional probability P(skj, j&) is completely defined in terms 
of the potentials of the cliques contained in ai. However, if i is a boundary pixel, that is, 
i&, then it is not clear how one should define P (&lxj, j&i) because, some of the pixels 
that should be contained in ai are not within the region of interest. We can not expect that 
P (Xikj, jc&) to be equal to P (&lxj, j E 8 i )  where ns‘ and S’=S \ i. Unfortunately, 
how conditional probabilities are defmed at boundary pixels will affect the joint 
probability distribution. 

(a) The second-order neighborhood of interior black pixel and its 4-pixel cliques. 

(b) Boundary pixel (black), its second-order neighborhood and 
4-pixel cliques, pixels with dashed-line edges are missing. 

Fig. 5.3.1 - Illustration of boundary effect 
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I 
Griffith E271 provides both an extensive overview of this problem and a survey of 

methods for dealing with it. Basically, there are three commonly used approaches in the 
image analysis literature. In the fiee boundary treatment, missing pixels are simply 
ignored. This treatment appears to be most applicable if cliques with less than three 
pixels are used. If the cliques contain more than two pixels, then only some of the pixels 
in a clique are missing and it appears that one must still define a conditional probability 
on the reduced clique. As shown in Fig. 5.3.1 (b), there is only one complete 4-pixel 
clique and one clique with all the neighboring pixels missing. For the other two 4-pixel 
cliques, there are two pixels missing. If the free boundary is used, then either we must 
ignore the clique potential for the later two cliques or define it in some way. 

Using a periodic boundary is another alternative that has been proposed for treating 
boundary pixels. This is illustrated in Fig. 5.3.2 (a). In this procedure, we treat the row of 
pixels along the top boundary as if they occur immediately below the bottom row of 
pixels with a similar treatment at other boundaries. The main drawback to this treatment 
is the introduction of an unexpected and undesirable correlation between boundaries, e.g., 
between the bottom row of pixels and the top row of pixels. 

The final procedure for dealing with boundary pixels is to introduce an artificial guard 
region or extra border. This is a very easy procedure to implement and guarantees that 
every pixel in region S has a complete neighborhood and a complete set of cliques. But, 
this introduces the problem of dealing with pixel values in the guard region, especially at 
the boundaries of the guard region. If the guard region is large, computational costs are 
increased significantly. How large a guard region should be used appears to be an 
unsolved problem. 

All three of these methods for dealing with boundary pixels attempt to provide a 
medium for removing the bias introduced into spatial statistical analysis, especially 
statistical inference, by the presence of boundaries. Tjelmeland [55] actually proposed a 
procedure to define potentials on reduced cliques that occur near the boundary and we 
have tried his and various other methods for defining potentials on reduced cliques, but 
ultimately, we adopted the free boundiary treatment. Since, we use only two pixel cliques, 
this free boundary treatment is very convenient since reduced cliques never occur. 

u 
(a). Torus boundary treatment. (b). Construction of guard region. 

Fig. 5.3.2 - Periodic boimdary and guard region for boundary pixels. 
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Experimental results on second-order models 

As discussed before, geological facies distributions, e.g., in a fluvial depositional 
environment, may exhibit continuity, orientation and variation in facies body size, 
anisotropy and large-scale facies structures. We first present results for experiments that 
we have done for 2D problems using a second-order neighborhood. We illustrate how 
model parameters control the pertinent characteristics of realizations of the facies 
distribution. Three-dimensional problems are considered latter. 

We consider a three facies case, so that we can impose special ordering on the 
realizations. The 2D, second-order neighborhood system and the type of cliques are 
depicted in Fig. 5.1.2 (a). If three facies labeled A, B and C are considered and only 2- 
pixel cliques are used, then the only possible clique configurations are those shown in 
Fig. 5.3.3. In our discussion, the first subscript on the parameters represents the clique 
type and the second subscript indicates configuration type. We will refer to horizontal 2- 
pixel cliques in two dimensions as clique type 1, vertical 2-pixel cliques as type 2,2-pixeI 
cliques in southwest-northeast direction as clique type 3 and cliques in northwest- 
southeast direction as type 4. 

From Fig. 5.3.3, we note that there are a total of 36 configurations, or parameters, for 
this three facies problem. 

All the realizations assume a 64x64 grid, i.e., 64 gridblocks in each of the two 
directions. Thus, our domain contains 4,096 pixels. The number of iterations for the 
MCMC algorithm is lo00 and the free boundary treatment is applied. 
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Fig. 5.3.3 - Clique configurations and the corresponding potentials 
for three facies A, B and C. 
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We can see from Fig. 5.3.3 that there are a total of 36 configurations or statistical 
parameters for this three facies case, nine for each type of clique. Each parameter has its 
own physical interpretation. For example, 031 represents the continuity of facies A in the 
southwest to northeast direction in the sense that a large negative value of 831 promotes 
continuity of facies A in this direction that should be exhibitedly in realizations of the 
facies distribution obtained by sampling the resulting Gibbs probability function. 
Similarly, the value of 048 has a strong influence on the transition (or ordering) between 
facies C and A in the northwest to southeast direction. If 848 is a relatively large negative 
number, we expect to see transitions from C to A in this direction and there will be a 
tendency for facies C to appear “above” facies A in this diagonal direction. If, for 
example, more continuity in the horizontal direction is desired in the realization, this can 
be accomplished by using larger negative values of 811, 015 and 019. Although, these 
simple intuitive arguments are valid and can normally be used to select parameter values 
so that realizations have the desired features, all parameters influence the joint probability 
function and the effect that the interaction of all 36 parameters will have on realizations is 
not always obvious. 

All realizations shown in Fig. 5.3.4 again pertain to a 64x64 grid system. However, 
each realization was generated with a different set of parameter values that were selected 
to promote a particular type of structure in the realizations. Each realization represents 
the one obtained after 500 iterations of the MCMC algorithm, and in all cases, the free 
boundary condition was applied. Facies A is blue, facies B is green and facies C is red. 
All the potential values for each realization are listed in Table 5.3.1. The purpose of this 
exampIe is to show that a variety of facies structures (orientation, continuity, ordering 
and shape of the facies body) can be captured by appropriate selection of the values of 
potentials, i.e., the 8 values. 

Note that in Fig. 53.4% each of the facies A, B and C is highly continuous in the 
horizontal direction because the most negative values were assigned to 811, e15 and 819; 
all were set equal to -1.5; see Fig. 5.3.3 and Table 5.3.1. Also note that in Fig. 3.4(a), 
facies B (green) tends to be found above facies C (red) and below facies A (blue). These 
features were promoted by the following strategy. We assigned a relatively large negative 
number to 826 which gives a high probability to the occurrence of the green facies above 
the red facies while assigning 828 = 0.5 which gives a much lower probability to the 
occurrence of the green facies below the red facies. Note we also set 824 = 0.5 to 
discourage the appearance of the green facies above the blue facies. By using this same 
type of strategy to assign values for the other e’s, it was easy to promote the ordering 
shown in Fig. 5.3.4a. Also note that relatively high values (0.5) were assigned to all 8’s 
pertaining to diagonal cliques as we did not wish to promote either continuity or 
transitions in the diagonal directions. Note that we set 8z1 =OB =e28 = -0.5 as we do 
wish to have some continuity in the vertical direction. 
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To obtain the results shown in Fig. 5.3.4 (b)-(d), we assigned relatively large negative 
values to the potentials that control continuity in particular diagonal directions. It is 
instructive to compare Fig. 5.3.4b ant1 c. In both cases, we assigned 841=845=849=-1.5 to 
promote continuity in the southeast to northwest direction. However, in (b), except for 
847, we used smaller theta values than in (c) for the configurations that promote 
transitions in the southeast to northwest direction. Thus, in (b), we see more transitions 
between facies in this direction. In borh cases, in the southwest to northeast direction, we 
see that transitions occur from red (facies C) to blue (facies A) (this transition is 
controlled by 837=-0.5 and 833=0.5), from blue to green (facies B) (this transition is 
controlled by 832 and 8% and from green (B) to red (C); this last transition is controlled 
by 836 (negative in both cases) and 833 =OS. Case b was generated using a penalty term 
(see Eq. 5.2.9 and the discussion in the next subsection) to ensure that the proportion of 
each facies in any realization is close to the prescribed value noted in the figure caption. 

The results of Fig. 5.3.4d are similar to those of Figs. 3 . 4 ~  except that to generate the 
realization shown in Fig. 5.3.4d, we: specified 8 values to promote continuity in the 
southwest to northeast direction. The most interesting feature of Figs 5.3.4e and 5.3.4f is 
that there is never a transition from red (facies C) to the green (facies B). This was 
accomplished by setting the values of 8 that control transitions between these two facies 
to unity to discourage any such transitions. 

Conceptually, the values assigned to the statistical parameters should determine the 
relative proportion of each facies appearing in any realization, however, we have been 
able to tightly control these proportions only by using a penalty term. The penalty term 
also causes the model to be stable. In inany cases, if the 8’s are not chosen carefully, then 
after a large number of iterations of the MCMC procedure, the states generated all 
contain only one facies. As discussed1 in more detail in the next subsection, the penalty 
term prevents this. 

Stability of the model and the penalty term 

As noted previously, MRF models suffer from the phase transition problem. In this 
report, the “phase transition” refers to a selection of model parameters that tend to cause 
realization to contain only single facies. In other words, the MCMC sampling procedure 
always generates a realization that coritains only one facies if a large number of iterations 
are done. More specifically, there exists a range of values of the 8’s such that the MCMC 
sampling procedure will generate realizations which have similar features. But if all 
parameters are divided by a Sufficiently small constant, then the MCMC will generate 
realizations from some point on such that all states contain only one facies. On the other 
hand, if the 8 values are all divided b!y a sufficiently large constant, then realizations will 
always have the appearance of random noise. If the MRF model parameters are such that 
we generate reasonable realizations, then the model is said to be or refered to a stable or a 
equilibrium model. If the values of 8’s specified result in a stable model, then from the 
point in the Markov chain where we begin sampling the probability function correctly, 
the relative proportion of each facies will oscillate within some reasonable range as the 
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iterations proceed. Fig. 5.3.5 shows 4 realizations from the same model used to generate 
the results of Fig. 5.3.4 (a). 

Table 5.3.1 - Potential values for realizations (a) through (f) in Fig. 3.4 

e48 0.5 -0.3 0.5 0.5 1 .o 1 .o 
e49 0.5 -1.5 -1.5 -0.5 -0.4 -0.4 

163 



(a) Uniform prior distribution for facies, 
without penalty term. 

(c) Uniform prior distribution for facies, 
without penalty term. 

(e) A=500/4 B=20% and C=30%, 
withpenalty temandok=l.O, *1,2,3. 

(b) A=30%, B40% and C=lOo/, 
with penalty term and ok=l.O, l~1 ,2 ,3 ,  

(d) Uniform prior distribution for hcies, 
with penalty tern andok=l.O, b l ,  2,3.  

Fig. 5.3.4 - Realizations of 21D, second-order, clique configuration models. 
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(a) Realization 500 iterations. (b) Realization after 600 iterations. 

(c) R d m t i o n  after 700 iterations. (d) Realization after 800 iterations. 

Fig. 5.3.5 -Realizations from the model (a) of Table 3.1 show similarity in features. 

These realizations are fiom a long run of the MCMC procedure. Realization (b) occurs 
100 iterations after rdization (a) and so on. We can see very clearly that the structures in 
all four realizations are similar; all exhibit continuity in the horizontal direction and the 
same ordering between facies in the vertical direction. But, the relative proportion of the 
facies varies fiom realization to realization as shown in Fig. 5.3.6. The percentage of each 
facies contained in realizations of Fig. 5.3.5 is as follows: in the realization of Fig. 5.3.5 
(a), A (blue) = 30.4%, B (green) = 33.7%, C (red) = 35.9%; in (b), A = 29.2%, B =35.5%, 
C=35.2%;ia(c),A=33.1%,B=34.6%,C=32.3%andin(d),A=33.9%,B=32.4%, 
C=33.7%. 
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Fig. 5.3.6 - The change of proportions of the facies with the number of iterations. 

Although we obviously wish to chocise values of the statistical parameters (values of 
the 0’s) to obtain a stable MRF model, fbr complicated models with a large number of 
statistical parameters, it is dflicult to estimate 8 values that will ensure stability. It is also 
difficult to estimate which will yield realizations that contain relative proportions of 
facies within some specified range. Both of these problems can be overcome by using a 
penalty tern. After a number of experiments, we ultimately choose the penalty term 
given by Eq. 5.2.9 which is repeated here as 

(5.3.1) 

In general, if we use Eq. 5.3.1 with a;k=l, then the states generated in the MCMC 
procedure converge to a realization which does not change at subsequent iterations. The 
results of Fig. 5.3.7 exhibit this phenomenon. The model used to generate the results of 
Figs.5.3.7 and 5.3.8 are the same as the model with the set of potentials listed in Table 
5.3.1 column d. As can be inferred from the four realizations shown in Fig. 5.3.7, all 
states generated between iteration 500 and iteration 800 are for aI1 practical purposes 
identical. Since we wish to generate a set of independent or at least uncorrelated 
realizations, this is not a desirable feature. However, the problem can be avoided by 
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simply starting with a different initial random field and constructing gother Markov 
chain. 

(a) Realization after 500 iterations. (b) Realization &er 600 iterations. 

(c) Realization after 700 iterations. (d) Realization after 800 iterations. 

Fig. 5.3.7 - Realizations of the model listed in Table 3.l(d), with penalty term and 
a = l . O ,  for k-l,2,3. 

Fig. 5.3.8 presents the fiaction of each facies occuring with a realization versus the 
number of iterations of the MCMC algorithm. The set of results shown by a solid line 
pertains to the results of Fig. 5.3.7. Note that after a relatively small number of iterations 
all realizations contain 33.33% of each facies. The other curves in Fig. 5.3.8 show results 
obtained when a penalty term is not applied. In this case, the number of pixels occupied 
by Facies C tends to continually increase. Although not shown, after 3000 iterations, all 
realizations generated contained only facies C 

. .  
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Fig. 5.3.8 - Fractions of facies versus the number of iteration, from the model with 
penalty term ( straight line) and without penalty term. 

By relaxing the penalty term, i.e., increasing crk, we obtain a model such that the 
fraction of pixels occupied by each facies is not fixed, but varies within some reasonable 
range. This relaxation factor is chosen to attempt to specify a reasonable variation in the 
desired relative proportions of each facies. For example, if we wish to have a 6% 
variation in the fraction of each facies, then we set (for k l ,  2,3) 

1 
3 

~k =O.O6xT' x n =  0 . 0 6 ~ - ~ ( 6 4 ~ 6 4 ) = 7 2 .  (5.3.2) 

where T k  is the prior probability of facies k and n is the number of pixels in the region S. 
Essentially, Ok represents a term somewhat similar to the standard deviation for the 
variable & where the mean of each ;'?k is n Tk  and the set of variables &, k=1,2,. . . ,K, 
have a multivariate Gaussian distribution. 

The results of Fig. 5.3.9 pertain to tlhe same model considered in Figs. 5.3.7 and 5.3.8. 
Note in Fig. 5.3.9, we compare the variation in facies from state to state in the Markov 
chain generated. Note when the relaxed penalty term is used, the fraction of each facies 
obtained in the realizations varies within a narrow range. For example, from iteration 300 
on, the fraction of facies B obtained varies from 0.27 to 0.39 approximately as we 
expected from the chosen 0k=72. While with o k = l ,  the fraction of facies B was 0.33 and 
basically no variation. 
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Fig. 5.3.9 - Variation of facies fractions with the number of iterations for the 
model with strong penalty, relaxed penalty and without penalty. 

Conditioning of the model to observations 

In generating realizations of the facies distribution with a MRF model, we would like 
to condition the realizations to well observations. This conditioning is easy to implement. 
We simply fix the facies (at gridblocks penetrated by wells) to their observed values and 
do not perturb them during the MCMC sampling procedure. It might also be expected 
that conditioning realizations to observed data will tend to make the model more stable 
and reduce the phase transition problem. If all facies are observed at well locations, then 
all facies but one can not disappear since the observed values are fixed throughout the 
MCMC simulation. The two examples presented in this subsection indicate that 
conditioning data reduces the phase transition problem. 

In the first example, we apply the model with potential values listed in column d of Table 
5.3.1 except that we interchange the potential values in the two diagonal directions to 
obtain continuity in the southeast to northwest direction. Without a-penalty term, this 
model is unstable; see Fig. 5.3.8. Fig.5. 3.10 shows realizations obtained at iteration 400, 
600,800 and 1000 of the MCMC procedure. As we can see fkom the realizations, the 
proportion of facies C found in a realization tends to increase fairly rapidly as the 
iterations proceed even though at iteration 1000 the basic structure promoted by our 
choice of the statistical parameters is still maintained. The results of Fig. 5.3.10 were 
generated without using conditioning data and no penalty term was used. To clearly 
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illustrate the effect of conditioning data, we did the Same run as in Fig. 5.3.10 up to 400 
iteration, but fiom iteration 400 on we fixed the values in the 32nd column of gridblocks 
to the values obtained at iteration 400. Thus after 400 iterations, facies values on this 
column serves as conditioning data. 

(a) Realization after 400 iterations. (b) Realization after 600 iterations. 

(c) Realization after 800 iterations. (d) Realization after 1000 iterations. 

Fig. 5.3.10 - Realizations fi-om a degenerated model. 

Fig. 5.3.1 1 shows a plot of facies fractions in realizations obtained by the MCMC 
method versus the number of iterations. Results are shown both for the case where 
conditioning data were used and for the case where conditioning data were not used. It is 
apparent that if no conditioning data is used, realizations will eventually contain only 
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facies C. However, when conditioning data is used the fraction of pixels occupied by 
facies C tends to stabilize, or at least its rate of increase is retarded. 
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Fig. 5.3.1 1 - Facies fractions before and aRer model conditioning. 

The results of Fig. 5.3.12 are similar to those shown in F i g 5  3.1 1 except in the 
results of Fig. 5.3.12, we applied the conditioning data beginning with the very first 
iteration of the MCMC algorithm. Again, although the fi-action of pixels occupied by 
facies C tends to increase, the conditioning data tends to modulate the rate of increase. 
One would of course expect that adding additional conditioning data with slow the rate of 
increase even more. 
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Fig. 5.3.12 - Comparison of facies fractions as the number of iterations. 

EXPERIMENTS FOR THREE-DIMENSIONAL PROBLEMS 
In this section, we present results for the case where we wish to generate facies 

distributions in a three-dimensional volume partitioned into pixels with Nx pixels in the x- 
direction, Ny in the y-direction and N, in the z-direction. We first consider the 3D model 
used by Tjelmeland [SI .  We use the same three dimensional third order neighborhood 
system that he used. This neighborhood system, which contain 25 pixels, is shown in Fig. 
5.4.1 in terms of layers (vertical or z-direction pixels). The pixels in the neighborhood 
system are labeled with three indices where the first index as the x-direction index, the 
second as the y-direction index and the third as the z-direction index. Thus, the center 
pixel of the neighborhood is (i, j, k) and, for example, pixel (i, j, k+2) presents a pixel 
two pixels directly above the center pixel in the z-direction. The neighborhood shown in 
Fig. 5.4.1 contains seven cliques containing exactly seven pixels. These cliques are 
shown in Fig. 5.4.2. 
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Fig. 5.4.1 - The cut layers of the three dimensional 3rd-order neighborhood 
system, 24 neighbors, on five layers. 
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Fig. 5.4.2 - The 7- pixel cliques in the neighborhood system 
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Tjelmeland defines the potential functions (the Vis  in the Hammersley-Clifford 
Theorem) based on the configuration that exists in a particular clique. Potential functions 
are defined to be equal to zero on all cliques except the 7-pixel cliques shown in Fig. 
5.4.2. Fig. 5.4.3 shows all the configurations specified for the case where we wish to 
distribute only two facies, facies A and facies B and the center pixel in the clique is 
occupied by facies A. Configuration 1 refers to the case where all pixels are occupied by 
facies A. Configuration 2 represents the case where any one non-central pixel in the 
clique is occupied by facies B and all other pixels are occupied by facies A. 
Configurations are assumed to be rotationally invariant so the location of the white pixel 
is immaterial as long as it does not occupy the center pixel. 

Fig. 5.4.4 shows all possible equivalent alternatives for configuration 2 through 6. 
Again, we emphasize that Fig. 5.4.3 shows the 7 possible configurations where the center 
pixel is occupied by facies A. There also exist seven configurations with facies B 
occupying the center pixel. These can be obtained from FigS.4.3 simply by interchanging 
facies A and facies B, i.e., replacing all white pixels by shaded pixels and all shaded 
pixels by white pixels. Thus, there are actually 14 specified possible configurations. 

Returning to the general case and following Tjelmeland, we let xc denote the facies 
configuration on clique c, i.e., xc gives the set of facies occupying the pixels of clique c. 
We define Vc(xc) = 0 unless c is one of the seven pixel cliques shown in Fig. 5.4.2. On 
each of these seven pixel cliques, Vc(xc) is defined given by 

81 if xC E Di 1 = 1,2, ... N ,  
7 

otherwise 
V&,> = (5.4.1) 

where De, -!! = 1,2, ...,Nc, are the predefined configuration sets (see Fig. 5.4.3 and Fig.5.4.4 
for the two facies case), and Nc denotes the number of configurations and the BP's 
represent values which define the potential functions. In Eq. 5.4.1, x, represents the set 
of facies that occupy the pixels of clique c. 
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Fig. 5.4.3 - The 7 configuratiorls specified with facies A in the center pixel. 
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The values specified for the @'s control both the structure of any realization obtained 
as wells as the expected value of the relative number of pixels occupied by each facies. 
However, how to choose the 6,'s to control the structure of any realization or the 
expected number of pixels occupied by each facies is not an easy problem. As discussed 
later, it appears that the best approach is to try to specify the desirable number of each 
configuration that we wish to appear in any realization. 

(a) Configuration 2 and its alternatives. 

Features: 1. There are 5 pixels with the same value as the central one. 
2. One pair of the opposite pixels is different and other two are similar. 

(b) Configuration 6 and its alternatives. 

Features: One of the pixels is similar to the central pixel and all the others are not. 
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(c) Configuration 3 and its alternatives. 
I .  Four pixels are similar to the central one. 
2. One pair of opposite pixels are the same as central pixel and 

other two pairs are not. 

IAl m 
IAl m 

Al 

B I  

Al 

IBI 
IB( 

IAl 
(d) Configuration 4 and its alternatives. 

Features: 1. All the oppcsite pixels are different. 
2. Three pixels are similar to the middle one. 
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(e) Configuration 4 and its alternatives. 

Features: One pair of the opposite pixels is different from the central one. 
Other two pairs are both different but one pixel in each pair is similar 
to the middle pixel. 

Fig. 5.4.4 - Clique configurations and alternatives. 

Boundary treatment 

A pixel adjacent to the boundary or one pixel away from the boundary has missing 
neighbors as discussed before. In stead of using a free boundary treatment, we work with 
an extended lattice, {-1:Nx+2, -1: Ny+2, -1:N2+2}, rather than the real lattice of interest, 
{ l:Nx, l:Ny, l:N2},  where N,, Ny and Nz are the numbers of pixels in x, y and z directions 
respectively. The guard region is {-l:O, -l:O, -l:O} and {Nx+l:Nx+2, Ny+1:Ny+2, 
Nz+1:Nz+2}. The extended lattice is initialized by uniformly sampling from the K facies. 
But when doing a simulation, we only perturb the pixels in the real lattice of interest and 
all the facies values in the extra cells remain unchanged. This approach makes the 
development of the source code very easy. The disadvantage of this method is the extra 
storage required 'due to the increase in the lattice dimensions. More -importantly, adding 
two rows of pixels is not sufficient to eliminate edge effects. 

Two facies examples 
Here, the procedure is applied to generate three-dimensional realizations of facies 

distributions in the case where only two facies (facies A and facies B), are present (K = 
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2). For this case, the fourteen configurations and all the equivalent alternatives are shown 
in Fig. 5.4.3 and Fig. 5.4.4. The values of the Be 's are specified as 

(el, & , 8 j ,  e4, e5, 6 ,  e7 6 ,  el0, ell, e12, 6214) 
= (-2.0, -2.0, -1.2, -1.2, 1.0, 1.5,5.0). 

Note that decreasing the values of some 0, with all other 8 's kept fixed will increase the 
probability of configuration d (d = 172, ....&). Thus, in this case, the most probable 
configurations are configurations 1 and 2, 8 and 9. Also note that since the clique 
potential with facies A in the center pixel are identical to those with facies B in the 
center, i.e., 4 = 6+7, i=1,2, ..., 7, thus the expected value of the fraction of pixels occupied 
by each facies is 1/2. As before, in all simulation results, one iteration refers to proposing 
n perturbations where n is the number of pixels. For this example, we work with a 
40x40~40 lattice, i.e., n = 64OOO. Fig. 5.4.5 shows a realization of the facies distribution 
after 1,000 iterations. Qualitatively, similar realizations were obtained for all L 2 200, 
where L denotes the number of iterations. This provides an indication that after 200 
iterations, we begin sampling the probability function for the facies distribution correctly, 
i.e., it requires roughly 200 iterations to pass through the transient period of the Markov 
chain. Figs. 5.4.5 and 5.4.6 show realizations obtained after the 500 and lo00 iterations. 
Note that Figs. 5.4.5 and 5.4.6 display qualitatively similar structures but the specific 
pixels occupied by facies A are quite different in the two cases. In Figs. 5.4.5 and 5.4.6, 
resolutions in the coordinate directions refer to the size of the pixels, i.e., all pixels have 
dimensions Ax, Ay, Az, where Ax = 2Ay = 4Az. For the realization of Fig. 5.4.5, 5 1.02% 
of the pixels are occupied by facies A whereas in the realization of Fig. 5.4.6,50.29% of 
the pixels are occupied by facies A. 

The penalty term was not applied for the above example and the three facies example 
in the next section. 
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Three facies case 

In the three facies case, we label the facies as A, B and C. In this case, we split 
configurations 3 and 4 in Fig. 5.4.3 into two configurations, one for cases where only two 
facies are present in the configuratioln and another for the cases where three facies are 
present. We denote the separated configurations by configuration 3 and 8 (these replace 
configuration 3 in Fig. 5.4.3), and configurations 4 and 9. Therefore, we have 27 basic 
configurations, nine of them have facies A in the center pixel, nine have facies B 
occupying the center pixel, finally, nine with facies C occupying the center pixel. In these 
configurations, there can be only twct facies present in configurations 1-7, 10-16, 19-25. 
These two facies could be A and B, A and C, or B and C, depending on the facies in the 
center pixel. The other six configurations, 8 and 9, 17 and 18, and 26 and 27 have three 
facies present. Fig. 5.4.7 (which appear after Fig. 5.4.8) shows the nine configurations 
pertaining to the case where facies A occupies the central pixel. Only one possible case is 
shown in configuration 8 and 9, but there are several possible combinations for cases 
where three facies are present. For example, suppose facies A is in the center pixel of 
configuration 8, then both configurations shown in Fig. 5.4.8 are considered to be 
equivalent configurations and are give: rise to the same value of 88. 

.Fig. 5.4.8 - Configuration 8 with three facies present and facies A in the center pixel 

We label the 8 ' s  for these configurations as b)*, 6)" and eJC, j = 1,2, ..., 9, where the 
superscripts refer to the facies occupying the center pixel. As in Fig. 5.4.3, these 
configurations are assumed to be independent of rotation. Thus, there exist equivalent 
alternatives as in Fig. 5.4.4. 

Ex, represents the facies distribultion on a 7-pixel clique with facies D (D = A, B or 
C) in the center pixel, and x, is the configuration corresponding to Pj, then the potential 
function is defined as. 

v, ( x c )  = e? +.pi (D, D') + py (D, D") , - (5.4.2) 

where D' denotes the facies located below the center pixel (in the z-direction) and D" 
denotes the facies located above the center pixel (in the z-direction). The p'j's and p"j'S 
are used to impose an ordering on the facies, e.g., facies B is above facies C and facies A 
is below facies C. If no such ordering is desired we need to set 

p ;  (D, D') = py (D,D") = 0. (5.4.3) 
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Fig. 5.4.7 - The specified 9 configurations with facies A in the center pixel 

Note the P'j'S and p"j'S control ordering in the z-direction, but we could use similar 
terms to control the ordering in the x and y directions. Unlike Tjelmeland [55], we 
require that the, p'j's and p"j's, depend on the overall configuration, not just on the facies 
in the center pixel and the ones above and below it. 
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Three facies examples 

In this example, the 8’s and p’s are defined below. 

If facies A is in the center pixel, then the values of the 8’s on the nine configurations - 

are given by 

eA= (&A,&A ,..., &,A) = (-2.0, -1.98, -1.6, -1.2,i.o, i ~ ~ 5 . 0 ,  -1.8, -1.6). 
Similarly 

eB= (&B,&B ,... :, t$B) = eA,  
and also 

ec= (&“,hC ,..., &c) = (-1.9, -I.!%, -1.8, -i.6,i.o,i.5,5.0, -1.8, -1.6) 

where the 8’s without subscripts are vectors. 

The vectors A(D,D‘) and /3,,(D,D”) are defined by 

Pl (D, D‘) = 

p, (D,D”) = (P;” (D, O”>,p; (D,D”), ......, p; (D,D”)). 
(D, D W ;  (0, D‘),.-...-,P; (DID’>> 

In this example, we specify 

(5.4.4) 

(5 -4.5) 

(5.4.6) 

(5.4.7) 

pr(A,A) = PY(A,B) = O., pY(B,A:)  = P ; ( B , B )  = O., pY(C,C) = O., j = 1,2 ,...... ,9, 
/?f(A,C) = pf(B,C) = pf(C,A) = /?f(C,B) = 0.0, 
Py(A ,C)  = -O.l,#(B,C) = l.,PY(C,A) = l . , p ; ( C , B )  = -0.1, j = 2,3 ,......, 9. 

These P values were chosen to make it highly probable that facies C will occur below 
facies B and above facies A. 

In the example under consideration, we again use 40x40~40 pixels, i.e., 64,OOO 
pixels. The x and y dimensions of the pixels are four times the z dimension. This 
increases the continuity in the x and y directions. The number of each facies contained in 
a state in the Markov chain stabilizes at about ZOO0 iterations, an indication (but not a 
guarantee) that the Markov chain has converged to the stationary distribution. Table 5.4.1 
shows the percentage of each facies contained in the initial distribution obtained from the 
prior model with Tl=T2=T3=1/3 and the realizations obtained after 100, 300, 500, 1000, 
2O00, 3000 and 4000 iterations. Note that from iteration 300 onward, realizations contain 
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about 41% of facies A, 41.5% of facies B and 17.5 % of facies C. To perform 4000 
iterations requires about 7 cpu-hours on a Pentium-133. 

Table 5.4.1. Proportions of facies (percentage) 

0 
The number of interations 

100 300 500 1000 2000 3000 4OOO 

Facies A 
Facies B 
Facies C 

Fig. 5.4.9 shows four x-z cross-sections of realizations obtained after 3,000 iterations. 
Fig. 5.4.10 shows cross-sections cut at the same locations as in Fig. 5.4.9 corresponding 
to the realization obtained after 4,000 iterations. Although the general structures in the 
scenes after 3,000 and 4,000 iterations are similar, the two realizations are quite different. 

As we can see from the last two examples, different types of structures, particularly 
very complicated local structures, can be obtained by the model that Tjelmeland used. 
Since the clique configurations are considered rotation free, the number of parameters is 
even less than the number of parameters in 2D model with the same number of facies 
type. But there are a few problems in this model. First of all, the use of rotation-invariant 
clique configurations is not allowed in our applications due to the orientation requirement 
of facies distribution. For example, the following two 5-pixel clique configurations 
shown in Fig. 5.4.11 promote totally different orientations for facies A and facies B. 
configuration a encourages interface between A and B along northwest-southeast 
direction, while configuration b proposes interface between A and B along the southwest- 
northeast direction. However, in the model used by Tjelmeland, these two codigurations 
are considered to be equivalent. Secondly, we suspect that imposing ordering via the 
introduction of extra parameters, i.e., p’s, causes the parameter estimation to be more 
difficult but we have not verified this. Moreover, in 3D, third-order neighborhood system 
and 7-pixel cliques, the free boundary treatment does not appear to be feasible. Therefore, 
we pursue a simpler 3D model here by using second-order neighborhood and only 2- 
pixel cliques. 
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Fig. 5.4.9 - A realization of 3D three facies model, 3000 iterations, x-z cross- 
sections at 5, 10, 15,20 (from top to bottom), (facies A: dark, 

facies B: grey, facies C: white). 

a 

Fig. 5.4.10 - A realization of 31) three facies model, 4000 iterations, x-z cross- 
sections at 5, 10, 15,201 (from top to bottom), parameters are the same 
as in Fig. 5.4.9, (facies A: dark, facies B: grey, facies C: white). 
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(a> (b> 
Fig. 5.4.1 1 - Examples of 5-pixel clique configurations 

3D, second-order models 

The 3D, second-order neighborhood system is shown in Fig. 5.4.12. There are nine 
types of 2-pixel cliques as shown in Fig. 5.4.13. In this example, we consider three facies 
labeled A, B and C. Just as in ZD, second-order model, we have 9 configurations for each 
type of 2-pixel clique, each with its own potential function. Thus, there are totally 
9x9=8 1 model parameters. 

i, j-1, k-1 

i-1, j, k i, j, k i+l, j, k 

i-1, j-1, k i,j-1, k i+l, j-1, k 

I i,j+l, k+l I 
~~ 

1, j, k+l i, j, k+l i+l,  j,k+l 

i, j-1, k+l 

Fig. 5.4.12 - The cut layers of the three-dimensional 2nd-order neighborhood. 
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Fig. 5.4.13 - The 2-pixel cliques in the neighborhood system. 

As an illustration, configurations fcir vertical 2-pixel cliques are shown in Fig. 5.4.14. 

We use purple to represent facies A, green for facies B and red for facies C. 

051 eS2 eS3 e54 

I 
e 5 5  

I 

Ll 
eS6 eS7 058 eS9 

Fig. 5.4.14 - Vertical clique canfigurations, A-Purple, B-Green, C-Red. 

In the examples, we work with 64x64~64, i.e., 262;144 pixels. Following the 
conventions used in the previous sectiion, we use the notations below for the parameters 
or the potentials of each type of 2-pixell clique. 
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01=(&1, 012, . . . , 019),  potential vector for 2-pixel cliques along x direction in x-y plane; 

02=(E121,&, . . ., 029),  potential vector for 2-pixel cliques along y direction in x-y plane; 

03=(031,032, . . . , &3), potential vector for cliques having 45" directionality in x-y plane; 

04=(041,&, . . . , &9), potential vector for; cliques having 135"directionality in x-y plane; 

05=(esl, 052, . . ., 059),  potential vector for cliques in z-direction; 

06=(061, 062, . . ., e69),  potential vector for cliques having 45" directionality in x-z plane; 

07=(071,072, ..., 079), potential vector for cliques having 135"directionality in x-z plane; 

08=(081, 082, . . ., egg), potential vector for cliques having 45" directionality in y-z plane; 

09=(091,@92, . . ., e%), potential vector for cliques having 135"directionality in y-z plane. 

In the first application of this model, the preceding parameter vectors are defined as 

follows. 

e1=e2=e3=e4=e6=e7=e8=e9= ( -O .~ ,O .~ ,O .S ,  0.5, -0.5,0.5,0.5,0.5, -0.5) 

e5= (-0.5, -0.5,0.5,0.5, -0.5, -0.5, -0.5,0.5,-0.5). 

This choice promotes continuity of each facies in all directions of the 3D space, i.e., 
the potentials for all the cliques occupied by the same facies have similar negative values 
(-0.5) and most of the potentials controlling the transition between facies are all equal to 
0.5 in order to discourage such transitions. However, we encourage transitions from A 
(purple) to B (green), from B (green) to C (red) and from C to A in the downward vertical 
direction (z direction). The results of Fig. 5.4.14 shows a realization of the model 
obtained at iteration 400 of the MCMC sampling procedure. 





We can see from Fig. 5.4.14a that the overall vertical transition from facies A 
(purple) to facies B (green), from facies B (green) to facies C (red) and from facies C 
(red) to facies A (purple) is apparent, but there exist other types of transitions. The 
continuity of each facies in all directions is also very clear from the cut view of Fig. 
5.4.14b although the scale of continuity varies somewhat from location to location. It 
should be pointed out that the strict penalty term was utilized in this case, i.e., in Eq. 
5.2.9, d l  crk's were set to 1.0 and d l  Tk's were set equal to 1/3. Thus, in the realization of 
Fig. 5.4.14, each facies occupies almost exactly 1/3 of the pixels. Also note that visually, 
there are no boundary effects, i.e., no stray pixels appear along the boundaries. 

In order to check whether we can impose other features, we conducted another 
experiment and tried to impose very strong ordering and orientation. We defined the 
potential vector for each type of cliques as follows. 

el = e3 =e4=(-o.3, -0.5,0.5,0.5, -0.3, -0.5, -0.5,0.5,-0.3) 

9s = (-0.3, -0.1,0.5,0.5, -0.3, -0.1, -0.1,0.5,-0.3) 

e6= (-0.6,0.5,0.5,0.5, -0.6, os, 0.5,0.5,-0.6) 

92=08=99= (-0.5,0.5,0.5,0.5, -0.5,0.5,0.5,0.5, -0.5) 

97 = (-0.2, -0.5,0.5,0.5, -0.2, -0.5, -0.5,0.5,-0.2). 

With these values, we would expect to obtain continuity in the x-z plane with 45" 
directionality and y direction (potential=-0.6). We also expect to obtain more transitions 
from A to B, B to C ,  and C to A in four specific directions, both diagonal directions in the 
x-y plane, x-z plane with 135' directionality as well as the x direction of the x-y plane. 

Fig. 5.4.15 shows a realization from this model. This realization was obtained by 500 
iterations of MCMC sampling algorithm. Actually, a relatively long run was made (2000 
iterations), but the basic structures of all the realizations obtained subsequent to the 400 
iteration are similar. By inspection, we can see the realization displays the features we 
promoted by our choice of the statistical parameters. It is interesting to note that if we 
'view this realization from another position as shown in Fig. 5.4.15b, it is pretty much 
like a layered reservoir model. 
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Fig. 5.4.15 (a) - A realization ofthe 3D model, 500 iterations 

Fig. 5.4.15 @) - View uf Fig. 5.4.15a from another position, resolutions 
in x, y, z dimctions are I, f and 2 respectively. 



Model conditioning 

In the preceding two examples, the strong penalty term was used to avoid phase 
transition problems although in fact, the penalty term for the second example has little 
influence on the realization obtained; the model is stable even if the penalty term is not 
used. 

We now consider a model which does encounter a phase transition problem. We 
condition the model to the facies observed at 4 completely penetrating vertical wells. 
However, we actually do this by starting with no conditioning data and then adding 
conditioning data based on the facies we obtain at the pixels penetrated by wells after 
dozen iterations of the MCMC procedure. This is the same procedure used in some of the 
2D model examples. By comparing the performance of the model before and after 
conditioning, we can understand how the conditioning affects the model. We still work 
with 6 4 x 6 4 ~ 6 4  lattice. The areal locations of the chosen four wells are (lO,lO), (20,20), 
(32,32), (40,40). The MRF model is defined by the following parameter vectors: 

el = e2 =e6=(-o.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5,-0.5) 

e5= (-0.5, -0.5,0.5,0.5, -0.5, -0.5, -0.5,0.5,-0.5) 

(-0.6,0.5,0.5,0.5, -0.6,0.5, OS, 0.5,-0.6) 

e3=e4=eFe7 = (-0.5, -0.2, -0.2, -0.5, -0.5, -0.3, -0.3, -0.3, -0.5). 

Fig. 5.4.16 represents the fraction of facies versus the number of iterations of MCMC 
algorithm with and without using well conditioning data. The solid curves pertain to the 
results obtained without conditioning data. Without conditioning data, it appears that 
after a large number of iterations of the MCMC method, all subsequent realizations 
generated will contain only facies B. Note that facies C disappear after 400 iterations. It 
can be seen that although the conditioning truly improves the model performance and 
stabilizes the fractions of facies A and B appearing in the realizations, facies C still 
disappears after 400 iterations. However, we believe this occurred because we selected 
the well conditioning data from the loo* iteration of the unconditioned run and by this 
iteration, only 10% of the pixels were occupied by facies C. Thus, the conditioning data 
may not have contained enough pixels occupied by facies C to stabilize the model. 
Nevertheless, this example demonstrates the effectiveness of conditioning on a 3D 
model. For example, the fractions of facies A and B at iteration 1000 are 0.273 and 0.727 
respectively if no conditioning data are used, but with well conditioning data, the 
fractions of facies A and facies B are 0.521 and 0.479. Since the selection of model 
parameters imposes no preference on facies A and facies B, and the uniform prior 
probability distribution is used, the fractions of these two facies should be roughly the 
same in any legitimate realizations. 
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Fig. 5.4.16 - Fractions of facies versus the number of iterations, 
models with and without conditioning data. 

ESTIMATION OF MODEL PARAMETERS 

We can write the probability mass $unction of Eq. 5.2.7 as 

(5.5.1) 

where P(x ,9  is the probability mass fb.nction €or the MRF model; 

h (x, 9 is an exponential fbnction referred to as the unnormalized probability hnction; 
x = (XI, x2, ... -.., xn) denotes a realization of the random field X , with each element 
representing the value of a random variable (facies value) corresponding to the ith pixel 
of the lattice S; 
8 is the vector of statistical parameters, i.e., 8 = ( &, a, . . . ~ .., @,T~)~, N, here is the 

number of clique configurations specified; 
t (x) is called a canonical statistics vector, in our case, t(x) =( nl(x), n2(x),. . . . . ., nN&) 

and nj(X) is the number of cliques in x with configuration j ( j=1,2, . . . . . . , ICc); 
< f (x), 6> denotes the inner product ofthe vectors f and 8 ;  

1 94 



Z(@ is the normalizing constant which is related to the parameter vector 8. 

Given a realization (or an observation) of a MRF (e.g., a geological interpretation) and 
a basic MRF model, we would like to be able to estimate the values of the statistical 
parameters from the observation. Generally, there is only one realization available. 

The standard way to obtain an estimate of model parameters, called statistical 
inference, is to apply Maximum Likelihood Estimation. The likelihood function in our 
case is simply the probability mass function corresponding to observation, which is 
denoted by y ,  defined as a function of the parameter vector 9, i.e., 

(5.5.2) 

L( 9 gives the likelihood of 8 given the observed data y. Maximum likelihood estimation 
represents the process of determining the 6 which maximizes L(9 .  This problem is 
difficult because the normalizing constant, which is a function of theta, is unknown so the 
traditional statistical estimation methods are not applicable. Other methods for estimating 
MRF model parameters proposed in the literature, include the Stochastic Approximation 
(SA) procedure proposed by Younes [60], Monte Carlo Maximum Likelihood Estimation 
(MCMLE) by Geyer&Thompson [23,24,25], the Maximum Pseudo-Likelihood (MPL) by 
Beseg [l] and other ad-hoc approaches such as coding by Beseg [2], histogramming 
method by Derin and Elliott [14]. Because of the limitations of SA and MPL, MCMLE 
method has been extensively used and investigated in recent years. We consider the 
application of this approach to our problem. Because the basic computational tools for 
such problems involve optimization and solution of simultaneous nonlinear equations, we 
need to choose an appropriate optimization algorithm. Since maximum likelihood 
estimation is difficult unless a good initial estimate of the parameters is available, we 
have considered application of the coding and histogramming procedures to obtain an 
initial approximation of the parameter vector that maximizes the likelihood. However, for 
our problem neither of these methods is generally applicable or reliable. For other 
interesting papers about parameter estimation of MRF, we refer the reader to Refs. [7], 
181, P O I ,  1333, WI and WI. 

To consider a concrete example, we consider a two-dimensional problem where we 
define a third order neighborhood system as shown in Fig. 5.5.la. Note the center pixel of 
this neighborhood is shaded and all pixels colored white represent the set of neighbors of 
the center pixel. Figure 5.5.lb shows all five pixel cliques that are contained within the 
neighborhood shown in Fig. 5.5.1 a. 



i 
Fig. 5.5.l(a) - Third order neighborhood in 2D. 

I I 1 I 

Fig. 5.5.1 (b) - Five-pixel cliques for third order neighborhood. 

In this example, we assume there are only two possible facies referred to as facies A 
and facies B. For any five-pixel clique, we consider 12 possible configurations for the 
‘arrangement of facies within the clique. Figure 5.5.2 shows the six possible 
configurations for the case where the center pixel of a five-pixel clique is occupied by 
facies A. If a pixel contains facies A, it is shaded or colored dark gray, whereas, if the 
pixel is occupied by facies B, it is shown as white. 

c2 - 
c4 

Any other configuration of five-pixel 
clique with facies A in the center 

C6 

Fig. 5.5.2 - All configurations for a five-pixel clique with facies A in the 
center pixel of the clique. 
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One should note that there are actually four possible alternative configurations for 
the configurations labeled C2, C3, and C4. Fig. 5.5.3 shows the four possible 
configurations where the center pixel contains facies A and exactly one other pixel is 
occupied by facies A. These configurations are labeled Al,  A2, A3 and A4 in Fig. 5.5.3. 
Note that if we define a clique potential such that configurations A1 and A3 are more 
probable than A2 and A4, then this will tend to promote continuity of facies A in the 
horizontal direction. In this example, we assume that configurations are rotationally 
invariant. This means that Al, A2, A3 and A4 are considered as equivalent 
configurations and the associated potential does not depend on which of these 
configurations actually exist. More generally, rotational invariance means that the four 
alternative configurations of C2 are considered equivalent, the four alternative 
configurations for C3 are considered equivalent and the four alternative configurations of 
C4 are considered equivalent. Similar to Fig. 5.5.2, there are 6 possible configurations for 
the case where the center pixel is occupied by facies B. 

Fig. 5.5.3 - Alternative configurations for five pixel cliques, two pixels 
occupied by facies A with A in the center. 

Now let Db, 1=1,2, ...JV,, denote all possible configurations defined on five pixel 
cliques and let x be any realization of X, i.e., x defines the facies located in all pixels 
contained in S. Let x, denote the facies distribution within any clique c, then the potential 
functions defined on any clique c are given by 

61 i f x ,   ED^ 1=1,2, ..., N c  
0 if c is not a five pixel clique. 

(5.5.3) 

The resulting probability function for the Markov random field can then be written as 

(5.5 -4) 

where ne is the number of five-pixel cliques with configuration De and 

(5.5.5) 

Several comments are in order. In Eq. 5.5.4, the probability function is denoted by 
&(x) to emphasize that the probability function depends on how the 6,’s are defined in 
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Eq. 5.5.3. In essence, Eq. 5.5.4 gives a family of probability functions, one for each 
specification of the vector of statistical parameters, 8. It is appropriate to consider this 
family because our objective is to estimate the appropriate values of the components of 8 
directly from observations. Also note: the normalizing constant, Z=Z( 8, depends on the 
definition of 8. Eq. 5.5.3 indicates that V,(x,) is either equal to some 8, or is zero. 
Moreover, V, is zero unless c is a five pixel clique. Thus given x, if the set of all five 
pixel cliques includes exactly ne(x) cliques which contain configuration D,, then the sum 
of all corresponding function Vc’s is .nt(x)Bp . Thus, the general expression (middle term 
of Eq. 5.5.4) can be represented by the: final expression given in Eq. 5.5.4. If the vector of 
configuration numbers is defined by 

(5.5.6) 

where c n(x), 8 > denotes the inner jproduct of n(x) and 6, then Eq. 5.5.4 can also be 

written as 

(5.5.7) 

Given 8, Eq. 5.5.7, or equivalently Eq. 5.5.4, defines a probability function. However, if 
x=y is an observation of the facies distribution (say from outcrop studies or geological 
interpretation), then Eq. 5.5.7 gives the likelihood function for S, given the observation 
(data) y ,  and so we write Eq. 5.5.4 and 5.5.7 as 

(5.5.8) 

Given the data y, our objective is to find 8 which maximizes the probability of 
obtaining the observation (sample) y.  To do so, we maximize L( e), or following Geyer 
and Thompson [23,24], we minimize the negative log likelihood given by 

Nc 
((8) = - ln(L(@)) = nl ( y)BE + ln(Z(8)) . 

E=l 
(5.5.9) 

Note there is no guarantee that e( 8) hits a unique minimum. In fact, if 6 is translated by a 
fixed constant vector, i.e., if 8 is replaced by 8 - e, then Eq. 5.5.8 becomes 

r 

(5.5.10) 
L 

where 
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(5.5.1 1) 

and Eq. 5.5.9 becomes 

Nc 
l(8) = nl (y)Bz + ln(Z(B)) +In@) . 

z=1 
(5.5.12) 

If 8 minimizes Eq. 5.5.9, then e+-, minimizes Eq. 5.5.12. So it is clear that at best, 8 
can be estimated only up to an arbitrary constant translation. However, this fact does not 
cause difficulty. Since P8 ( x )  = PB-g (x) ,  realizations generated from either probability 
function will generate an equivalent sampling of X. 

Our observation was denoted by y .  More generally, if p+l observations are available, 
they will be denoted by ye, l=1,2, ...p, Thus, it is convenient to denote a realization of X 
by u, i.e., u denotes any realization, whereas ye denotes a specific observation. Defining 

h(u I e) = exp - nl ( u ) g  = exp[- < n(u), 8 >], [: I 
the probability function for a given B can be written as 

PQ (u) = - h(u IO) .  
Z(@ 

Similarly, if 8 = y~ 

(5.5.13) 

(5.5.14) 

(5.5.15) 1 
Pw (u)  = - h(u I w). 

Z(W) 

If adenotes the set of all realizations of X, then summing over all u d 2 i n  Eq. 5.5.14 

gives 

(5.5.1 6) 

Note that the sum in the last term of Eq. 5.5.16 is the expected value of 

h(u I O) / h(u 1 ly) relative to the probability function P,,,(u), Le., 

(5.5.17) 

Using Eq. 5.5.17 in Eq. 5.5.16 and rearranging gives 
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(5.5.18) 

The right side of Eq.. 5.5.18 can be approximated by generating m samples, u1, 

242,. ..,urn, of X from the probability function P,+,(u); using this approximation, we have 

(5.5.19) 

Using the definition of Eq. 5.5.13 to replace h(u1~)  and h(ul8) in Eq. 5.5.20, and taking 

the natural logarithm of the resulting equation gives 

where the first equality in Eq. 5.5.21 serves to defmef(8). From Eq. 5.5.13, we have 

(5.5.22) 

It follows that Eq. 5.5.21 can be written as 

If w is fixed and uj, j=1,2, ..., m, are specific samples of X based on the probability 
function Pdu) ,  then minimizing f(O), when m is large, is equivalent to minimizing 
- ln[L(B)]. Note that the Zth component of the gradient off (0) is given by 

where 

(5.5.24) 

(5.5.25) 
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In our work, Eq. 5.5.23 is minimized by using the GBB algorithm presented by 
Raydan [43]. This algorithm can be thought of as a modified steepest descent algorithm 
which contains an automatic procedure for determining the size of the step to be taken in 
the direction of the negative gradient off (e). The algorithm was designed to be more 
robust for noisy data by allowing a slight increase in the objective function at any 
iteration. 

As can be observed from Eqs. 5.5.23-25, if at any iteration of the GBB algorithm, 10,- 
vel becomes "large", we encounter overflow or underflow problem in evaluatingf(8) and 
its gradient. A procedure for avoiding this problem is to use a constrained minimization 
process. The resulting procedure for constructing the maximum likelihood estimate 
denoted by ê  from this point on is now presented in algorithm form. 

3) 

Let y= 8' denote an initial guess for 8; 
Generate m samples of X, u1,u2, ..., urn, from the Markov chain Monte Carlo 

algorithm described before. These samples are generated using the probability 

function Po* (a). 

Minimize f(8) in the region N ( S o )  = 

We let 8" denote the 8 vector which minimizesf(8) in N(0@). 

Check for convergence. For convergence to the lllsuLimum likelihood estimate, we 

require that the gradient off (8) at 8 be close to zero, i.e., IIV'BC)1l2 5 E, where we 

typically use E <IO. If the convergence condition is satisfied, we let & = 6' and the 

algorithm is complete. If not, let 8' =8" and return to step 2). 

As the computing cost of generating m samples of X in step (ii) is high, it is desirable 

1 I I 8, -8: Is SJ, using the GBB algorithm. 

to minimize the number of times we need to update the probability function P'o and 

resample. Intuitively, if we can generate a good initial guess of 6 ,  we might expect that 
only one, or at least only a very few, updates of 8 ' would be required. A procedure for 
generating an initial guess is described later. 

. Example 1 
This is a synthetic two-dimensional, two-facies example where an observation was 

generated by sampling Pe(x) using Markov chain Monte Carlo -simulation. In this 
example, a two-dimensional region V is used and a 40x40 grid is used to partition S into 
1600 pixels. Here 8 is defined based on the neighborhood system and clique 
configurations defined previously, see Figs. 5.5.1 and 5.5.2. The values of B(see Eq. 
5.5.3) are specified by 
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el = -0.7, e, = -0.5, e3 = -0..2, e4 = 1.0, e5 = 4.0, 86 = 5.0, 
e7 = -0.7, e, = -0.5, e9 = -0.2, elo = 1.0, e, = 4.0, 4, = 5.0 (5.5.26) 

Note 4 through 06 refer to five-pixel clique configurations where the center pixel is 
occupied by facies A and Q through 012 refer to the analogous five-pixel clique 
configurations where the center pixel is occupied by facies B. 

Our objective is to use an observation of X to estimate 8". To illustrate our procedure, 
we sample Pe(x) to construct a synthetic observation, y .  From this point on, we assume 
that 8 is unknown, and we wish to calculate the values of these statistical parameters by 
generating the maximum likelihood estimate, 8, based on the observation y and then set 
81 = 61,2 = 1,2,...,12 to obtain the probability function. The initial guess of 8, i.e., eo, is 
shown in the third column of Table 5.5. l a  (for this same example, we observed that if we 
did not constrain the GBB algorithm, the overall procedure did not converge). In step (ii) 
of the algorithm, we set 6 = 0.05. In sampling P'o ( x )  in step (ii), we set m=lOOO. The 

last column of Table 5.5.la gives the estimate @ of 6 obtained after one iteration of the 
algorithm. The table gives the numlber of GBB iterations required in step (ii) of the 
algorithm, the value of objective function (f(8")) and the two-norm of the gradient at 8". 
Table 5.5.lb presents a comparison of statistics obtained from the results of Table 5.5.la. 
Column 2 of Table 5.5.lb gives the number of each of the 12 five-pixel configurations 
contained in the observation y .  The third column gives the weighted average of the 
number of each configuration, i.e., 

1 exp C q  ( u j w l - e ; )  
m m [: c n l ( u j ) w >  = c nz(uj 1 
j=l j=l 

j=l 1=1 

(5.5.27) 

where Bc is the estimate of 6. obtained after the first iteration. 
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Table 5.5.2a and 5.5.2b show the results obtained after two iterations of the algorithm. 

Table 5.5. l a  - Results after 1 iteration of the algorithm 

Parameter True Initial Estimate 
value mess 

I el I -0.7 I -0.55 I -0.597 1 
I e, I -0.5 I -0.4 I -0.383 I 
I e1 I -0.2 I -0.2 I -0.172 I 
I eA I 1.0 I 1.0 1 1.005 I 

-> 

$10 1 -0 1 .o 1.005 
01 1 4.0 4.0 4.000 
e12 5.0 5.0 5.000 

# of GBB iterations 2 
Value of obj. function -10.277 
Norm of gradient 73.48 

Table 5.5. lb - Comparison of statistics 

Statistics Observation Weighted Difference 
averape 

nl 1551 I 1519 I 32 
n? 1526 I 1505 21 
n3 810 833 23 
n A  145 169 24 

I 

n1o 149 159 10 
nl 1 4 2 2 

I n12 1 0 1 
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Table 5.5.2a - Result; after 2 iterations of the algorithm 

I Parameter 1 True I Initial I Estimate I 

-0.383 -0.394 
I 02 I 8 . 2  1-0.172 1-0.161 1 

1.005 1.005 
3.999 3.999 

I e 7  I -01.7 1-0.600 1-0.609 I 
I 02 I -01.5 I -0.386 1 -0.394 I 

0 9  -0.2 -0.171 -0.162 
010 1 .o 1.005 1.020 

I ell  I 4.0 I 4.000 I 4.000 I 
5.000 I 5.000 

22 
-1.541 
3.728 

Table 5.5.2b - Comparison of statistics 

Weighted Difference 
average 

146 1 
1 2 
1 0 

1492 2 
1512 0 .  
803 1 
151 2 
3 1 

I 1 0 1 1 
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Note that based on the convergence criteria IlV’(6c>ll, I &=lo, we have converged 

to 6 .  Note however, that 6 is not equal to the true values of 8. As discussed previously, 
we believe that 6 can only be estimated up to a constant vector of translation. If we 
subtract the constant &=0.094 fiom the estimate of 8 obtained in Table 5.5.2a, we 
obtain the following results (the value of 8 was chosen so that 61 - e = 81). 

Table 5.5.3 - Translated maximum likelihood estimate 

Parameter Translated 

-0.700 
I e2 I -0.5 I -0.488 I 
I 81 I -0.2 I -0.255 I 
I 84 I 1.0 1 1.099 I 

3.905 
4.906 

-0.7 -0.703 
-0.5 -0.488 
-0.2 -0.256 

010 1.0 0.926 
811 4.0 3 -906 
912 I 5.0 I 4.906 

To illustrate that the values of 8 obtained in Table 5.5.2a give a reliable 
characterization of the true probability function, we generate a set of realizations by 
sampling PO@) and a set of realizations by sampling Pi (x) using a Markov chain Monte 
Carlo sampling procedure. Note the basic structure characteristics of all realizations are 
the same. 

(a) Realization 1 (true 9) 

-~ ~- 

(b) Realization 2 (true e) 
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(c) Realization 1 (estimated 9 

.. . . .___ ,.. . 

. .  

(d) Realization 2 (estimated 9 

Fig. 5.5.4 - Realizations from the probability function based on true 8 and 
realizations from the probability function based on the maximum 
likelihood estimate. 

Figure 5.5.5 shows comparison of statistics n1 for 3000 realizations obtained by 
sampling the true probability function with statistics y11 for 3000 samples generated based 
on P ~ ( X )  where 6 is the maximurn likelihood estimate generated by our algorithm. 
Means as well as the standard deviations of nl from these realizations corresponding to 
each case are also listed on the top of the figures. By comparison, we can see that the 
estimated parameters give reliable characteristics of the true probability function. 

~ ~~ ~~ 

Weations fromthetruetheta 
kan: 1555.6 Std. BviatiOn: 187.7 

Fig. 5.5.5 - Comparison of statistic nl for 3000 samples from the probability 
functions based on the true parameters as well as estimated 
parameters. 

Note, in generating the results of Figs. 5.5.4 and 5.5.5, we specified an initial guess for 
the maximum likelihood estimate which was close to the true value of 0. If a good initial 
guess is not available, the algorithm may either require an excessive number of iterations 
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or may fail to converge. Thus we implemented ideas of Derin and Elliott [ 141 to generate 
an initial guess for 8". This method allows us to generate an initial guess B for 8" 
directly from the observation y. Generation of the initial guess requires the soIution of a 
linear least square problem. In our implementation, this least square problem was solved 
by singular value decomposition. 

Table 5.5.4 shows the initial guess generated by our implementation of the Derin and 
Elliott method. Using these initial guesses in our algorithm, we obtained the maximum 
likelihood estimate of 6, shown in the second column of Table 5.5.5. The third column of 
Table 5.5.5 gives the number of each configuration contained in the observation x and 
the last column gives the weighted average of Eq. 5.5.27. 

Table 5.5.4 - Initial Guess by Derin and Elliott method 

el = -0.519, e, = -0.103, e, = 0.263, e, = 0.59, e, = 0.0, e6 = 0.0, 
e, = -0.637, es = -0.408, e9 = -0.188, elo = 1.0, ell = 0.0~612 = 0.0 

Table 5.5.5 - Maximum likelihood estimate 

Parameter MLE by Observation Weighted 
GBB average 

I e, I -0.581 I 1551 I 1547 
0 2  -0.362 1526 1525 
(33 -0.037 810 804 
64 0.973 145 152 
95 4.000 3 3 
06 5.000 1 1 
e, -0.569 1494 1490 
e 8  -0.373 1512 1514 
eQ -0.110 804 801 

I 61n I 1.054 I 149 I 155 
01 1 4.000 4 3 
612 5.000 1 0 

To check the validity of the maximum likelihood estimate 8, we generated 3000 
realizations using the true probability function Pe(x) and 3000 realizations from P,-(x) 
using a Markov chain Monte Carlo procedure. Fig. 5.5.6 shows a realization obtained 
from Pe(x) and a realization obtained from P g ( x ) .  Note that although the two 
realizations are distinctly different, the basic geological features are similar in both 
realizations. Fig. 5.5.7 presents two histograms of the statistic, n3, from the two sets of 
3000 realizations, one set based on the true parameters and the other based on the MLE. 
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The means and the standard deviations of n3 based on the respective 3000 samples are 
given on the figures. These results illustrate that appropriate samples of X can be 
generated using the probability function P' ( x )  generated from the maximum likelihood 
estimate of 8 constructed fiom our algorithm. For example, the mean of n3 obtained fiom 
the probability hnction based on the estimates differs by only 10.9 from the mean value 
of n3 obtained by sampling the true probability function. 

(a) Realization (true 6) (b) Realization (MLE of 0) 

Fig. 5.5.6 - Realizations from the probability functions based on true 6 and 
on the MLE of 8 from initial guess obtained by Derin and Eiliott 

method. 

Reaiiatiins from true theta 
Mean: 810.8 Std. Deviation: 54:l 

Realeations from M E  
W n :  799.9 Std. [kviation: 56.3 

Fig. 5.5.7 - Comparison of statistics n3 from the samples of the probability 
functions, one based on the true 8 (left) and another based on the 

MLE (right). 

Remarks 

Although the results of the precleding example are quite impressive, it represents 
one of the few results where the procedure actually resulted in a reasonable 
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approximation of the maximum likelihood estimate. In the vast majority of cases, the 
overall algorithm failed to converge. 

GENERATING RANDOMLY DISTRIBUTED CHANNELS IN FLUVIAL 
SYSTEMS 

Introduction 

The objective of this work is to generate realizations of facies distributions 
constrained to observations (well or outcrop) and geological interpretation. This 
particular section of the report focuses on Boolean methods. The work of this section 
uses well information together with geological interpretation to generate a wide variety of 
statistics (e.g. channel thickness, ratios of channel width to thickness etc.) and these are 
used to create probability distributions for the relevant quantities. These probability 
functions can then be sampled to generate realizations. 

Throughout this section we focus on fluvial reservoirs. In these reservoirs the 
background is assumed to be nearly impermeable rock which contains permeable 
sandfilled channels. The models are important because sandfilled channels may contain 
oil and gas reserves. In the paper we model the distribution of channels within the 
background matrix for a three dimensional section of the reservoir. The model captures 
the natural clustering of channels and sheetsplay sands are easily added. We use Markov 
Chain Monte Carlo (MCMC) methods and both parametric and nonparametric density 
estimates in our statistical model building. 

In nature, rivers are known to avulse (change channel course) in a quasisystematic 
manner (Ref. [36]). A regional avulsion event is typically followed by localized avulsion 
events. Geologic features, such as faulting, may control the preferred location of 
avulsion nodes. Continued deposition results in channel deposit clustering. 

We use MCMC methods (see for example Refs. [2], [21], [51], and [26]) to generate 
the cluster centers for each set of channels. Noting that a random set of points tends to 
clump together, we use an MCMC method to generate random samples that tend to be 
well separated. The well-separated points represent the centers of clusters of channels. 
Once we have determined the channel cluster centers, individual channels can be 
generated around each cluster center according to a multivariate normal distribution. All 
of this can be done in accordance with measured statistics from fluvial deposits of 
interest. 

However, in some cases the data measured from wells does not immediately give the 
statistics required. Take for example the problem of determining the distribution of 
maximum channel thickness. The information obtained from wells provides a random 
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sample of channel thickness and from this we need the distribution of maximum channel 
thickness. We show how this informaition can be obtained from well data 

Our goal is to distribute random channels in a rock volume of interest. We will first 
determine the channel centers in a 2 dimensional slice of the reservoir and then we will 
extend the channels into the third dimension. We want to create random collections of 
channels whose statistics match the data from field studies. The features that we want to 
capture are 

1) the geometries and the statistics of ,those geometries of individual channels; 

2) the clustering of channels; and 

3) the fact that there are a random number of channels and channel clusters. 

We begin with the problem of generating randomly distributed clusters. 

Generating a random cluster of channels 

By looking at a two dimensional cross-sections of the reservoir, we can accumulate 
statistics concerning the clustering of channels. An individual cluster may be modeled in 
many ways, but we will consider only the bivariate normal distribution with mean p and 
covariance matrix C. By analyzing diata we can form an estimate for the covariance of 
each cluster of channels. The standard formula and maximum likelihood estimator is 
(Ref. [18]) 

(5.6.1) 

where Xi,k denotes the k-th data point, is the sample mean of the data and Ni is the 
number of samples in the i-th cluster. If the covariance matrix for each cluster is the 
same, these covariance estimators car1 be pooled together to get a better estimate of this 
parameter. This is important since the estimates of Ci will be inaccurate when the sample 
sizes are small. The pooled covariance estimate using m individual covariance estimates 
is 

. 

m 

i=l 
where N = Ni (5.6.2) 

The generation of random variables from the normal distribution with mean p and 
covariance matrix I: is straightforward. Let A be any matrix with the property that 
C=AAT. If z is a standard normal deviate, i.e. mean zero and identity covariance matrix, 
then x=Az+p is normally distributed with mean p and covariance matrix C. The matrix A 
can be obtained by performing a Cholesky decomposition of the matrix E. The number of 
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channels in each cluster is considered to be a random variable with mean S and this 
distribution is sampled to determine the cluster sizes 

Generating random cluster centers 

We now describe our model for the clustering of channels. We recognize that there is a 
physical mechanism that causes this clustering. That is, small events can generate small 
changes in the location of the channel. New channels may erode older channels and in 
this case, the channels can be considered to overlap. Of course, the rock record will only 
preserve the latest of these channels. Our model handles this by assigning a depth order 
priority to the channels and using the channels with a higher priority to replace parts or 
all of some of the lower channels. Regional avlusion results in the formation of a new 
cluster. 

We now describe a method for distributing the centers of these channel clusters. One 
possible option would be to distribute the cluster centers uniformly over a rectangular 
region of interest. But a uniformly distributed set of points in a rectangle will often have 
sets of points which are very close together and this would cause the clusters to overlap 
or for the clusters to cluster together. Figure 5.6.1 contains the plot of 100 randomly 
distributed points in the plain. The clustering or structures in this figure are not desirable 
in this application and so we will generate randomly distributed points using an MCMC 
method. We can use this to generate a sample of cluster centers which has a tendency to 
avoid one another. 

1 -  
0 

0.8.  

Fig. 5.6.1 -- 100 random points in a rectangular region. 

To accomplish this we define a probability function 



for some normalizing constant C, function f and norm II II. The function f should be 
nonincreasing on (0,co) with a large value when its argument is small (i.e. when points are 
“too” close together) and should be: essentially zero outside of some range. One such 
example would be 

c a  i f x < b  

(5.6.4) 

with nonnegative parameters (a,b,c,d). These parameters all have a clear physical 
meaning. First the function is nonincreasing as long as c2a and if we choose c=a, then the 
function f is also continuous on [0, %I). If a is much greater than c then the probability of 
points lying within a distance b of one another is small. When x>>d,f(x) will be close to 
zero which corresponds to an everit with a relatively high probability. Figure 5.6.2 
contains a graph of f using typical values of (a,b,c,d). Since we are using a covariance 
matrix C, it is natural to define Ilxlli’=x C x. With this choice, the statistical model is 
independent of changes in scale. 

T -1 

2 

~ 1 

0.2 0.4 0.6 0.8 1 

Fig. 5.6.2 -- Graph off using a=5, b=.07, c=l and d=b. 

The main difficulty with this approach is that there is an edge effect. When a point is 
on the edge, it has fewer neighbors, and hence the probability of putting a point on the 
edge is larger than the probability of having a point fall in an equal size area away from 
the edge. But for the applications that we are working with, the area or volume of rocks 
that we are looking at is an arbitrary slice of some larger area or volume. So the edge has 
no physical meaning and should certainly not have any effect on the simulation. 

We propose a method for fixing this problem. We first observe that points on the edge 
have about one half as many neighbors as points in the interior,-while points in the 
comers have about one fourth as many neighbors. So we might consider defining a 
weight function of the form 



2 - x l b  i f x l b ;  
i f b < x < b - l ;  

2 - ( 1 - ~ ) l b  g x 2 1 - b .  
(5.6.5) 

A more general model is a weight knction of the form 

a(1- x I b)+ x / b i f x x l b ;  
1 i f b < x < b - l ;  (5.6.6) 

a(1-(1-x)lb)+(l-x)lb i f x 2 l - b  
h(x) = 

that simplifies to the formula above when a=2. This fimction gives a weight of a on the 
edges and a2 in the corners. In the horizontal direction, points which are within &=b ox 
(where 0: is the variance in the horizontal direction) are strongly penalized (at least 
when a is large). In the vertical direction, points which are within h=b &y (where G,? is 
the variance in the vertical direction) are strongly penalized. So the edge has a strong 
effect when you are within b, units from the left or right edges and when you are within 
bh units fiom the top and bottom boundary. Since the function is defined on a unit square 
we define a weight function g(xj) = h(x/wyb)h(y/h,bh). A graph of this function is shown 
in Figure 5.6.3. 

* "  1 

1 

Fig. 5.6.3 - A graph of the correction function with a=3 and b=.07. 

We now m o d e  the way we express the probability function fiom Eq. 5.6.3 in order to 
include the weight function. So we write 

For each point p we should adjust the weight associated with the distance to each of the 
other points by multiplying by g(pi) which leads to 



But if we calculate the density this Wiiy, then we would compute each distance twice, so 
we rewrite the expression as 

We now show how we can use an MCMC method to sample from this distribution even 
though the normalizing constant C is unknown. The scheme is based on proposing new 
values from the sample and accepting them or rejecting them bases on the test 

(5.6.10) 

Specifically, at each step of the algorithm, we choose a random index k and propose to 
exchange pk with some random point p'k. After generating a random point u between 0 
and 1, the new point p'k is accepted if Eq. 5.6.10 is satisfied and otherwise the new point 
is rejected and the old point is retained. This sampling scheme asymptotically samples 
the probability density function p(p1, ...,pm). Of course, most of the terms cancel in Eq. 
5.6.10 leaving us with 

(5.6.1 1) 

When points are on the edge, then there are only about one half as many nearby 
points, so it is natural to try a weight of a=2. Numerical experiments with Mathematica 
seem to imply that the choice of the value of a=2 is too small. We can compute the 
expected number of points which arc: within b, or bh of a horizontal or vertical edge 
respectively and compare that with the results of simulations. These limited simulations 
appear to show that a value closer to ~3 in Eq. 5.6.6 gives better results in some cases. 
A simulation generating 100 random point in a unit rectangle is contained in Figure 5.6.4. 
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Fig. 5.6.4 - A picture of 100 well spaced points generated using the MCMC method. 
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The MCMC method is implemented in a standard way except for one slight change. 
Since the value of the exponent in Eq. 5.6.1 1 can be a large negative number, we choose 
to not evaluate the exponential function at this point. So in place of the acceptance rule 
in Eq. 5.6.10 (using U as a uniformly distributed random variate) we compare In U to the 
exponent of Eq. 5.6.1 1. 

The deconvolution data problem 

As we work with these problems we need statistical descriptions for the model 
parameters. Unfortunately, in the case of channel thickness, we are not able to measure 
the maximum thickness from well data, but instead what we have are the results of 
measuring thickness of channels at random locations. Let's suppose that we have a single 
channel geometry for which the thickness is the only varying parameter. E n )  denotes 
the distribution of maximum thickness of channels and g(tlb) denotes the distribution of 
random thickness given a choice of parameter b, then 

(5.6.12) 

is the distribution of thickness which would be observed by measuring a random 
thickness of a random channel. What we can measure is the resulting thickness and so 
we have data on the density function g(t). Given a fixed geometry we can also determine 
the conditional density function g(tlb). What we want to know, of course, is the 
distributionj@). This is then some sort of deconvolution problem. 

Let's discuss the conditional density function g(tlb) first. Suppose that we are given 
channels which look like the bottom half of the ellipse x2/a2+ y2/b2=1 so that the 
maximum depth is b. If we take a random vertical slice through this region, what is that 
distribution of values? First observe that if you take a slice through the region with a 
positive x value, then by symmetry, this gives you the same distribution as you would get 
from a random x value between -a and a. We obtain the distribution by thinking of this 
process as a change of variables y=-b\I{ 1-x2/a2}. The original density for X is 

and the Jacobian of this transformation is 
- dx = --Jb2 d a  - 

This gives us a density for g(tlb) which is 
dY d Y b  

(5.6.13) 

(5.6.14) 

(5.6.15) 
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which is fortunately independent of it. This brings us to the deconvolution type problem 
of determining f(b) given g(t) and g(tlb). The procedure that we develop will be based on 
the type of information that we have on g(t). Most likely, we have only a nonparametric 
density estimate of the function g(t) imd want to use this to construct an estimate of fib) 
of the same type. Consider, for example, the case that we have a histogram estimate for 
g(t) with bin boundaries at the points ( ~ , a l , . . . , ~ ) .  We construct an estimate offib) with 
the same structure. SO we assume thaI;fix)=ci for aiG<ai+l and that f is zero outside of the 
interval [a, an]. We then have that 

(5.6.1 6)  

for i=O,l,. . .,n-1 . This provided us with a system of n equations in n unknowns. Of course 
we have, in addition to these equations, the constraints that the constants satisfy 

n-1 ._ - 
c j (a j+l  - a j ) = l  and c .  >Oforj=0,1, ..., n-1 .  1 -  

j=O 
The values of the integrals 

(5.6.1 7) 

(5.6.18) 

can be computed. First we note that g(tlb)=0 for t>b. This implies that when i>j that aj I 
b I aj+lI I t I ai+l so that g(tlb)=O except perhaps at one point. So the value of Eq. 
5.6.18 is zero in this case. To evaluate the integral in the other cases we will need to use 

and 

jsec-1 X ~ X  = xsec-1 - JiK-7 + c . 
t X 

So in the case that i=j, then 

, Since for 00, 
a1 a1 

lim ~ e c - ~ 5 = 7 ~ / 2  then J g ( t I b ) d t = a l .  
ai +O+ ai 0 0  

In the case that icj, then 
ai+l a j+l j g( t  I b) dt = &;+1 -a; - ai sec-1- ai+l 
ai a j  ai 

where we use 

(5.6.19) 

(5.6.20) 

(5.6.21) 

(5.6.22) 

(5.6.23) 
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‘-1 b lim tsec -=O. 
t t+o+ 

to handle the case that i=O and a=O. 

(5.6.24) 

The linear system in Eq. 5.6.16 can be written as Ac=d, where c=(co,c~, ...,cn-~)~ and 

d=(&,dl,. . - ,dn-l)T. The ij-th element of A is 

(5.6.25) 

and is zero when bj. Hence A is upper triangular. Furthermore, if we assume that %=O, 
then since g(tlb) is a probability density function, then we have that the value of the sum 
of the jth column of A is 

n-Iai+l a j+l  aj+l a, a j + l  

I 
i=O ai 

jg(t I b) db dt = Jg(t I b) dt db = I1 db = ~ j + l  - ~ j .  (5.6.26) 
ai a j  a0 ai 

This implies that 
n-1 n-ln-1 n-1 n-1 n-1 

i=O j = O j = O  J=O j=O j = O  
C d i  = C C A i j c j  = C A i j ~ j  = C ( ~ j + l  - ~ j ) c j .  (5.6.27) 

And this implies that, if d is a vector of percentages which sums to 1, then the constants c 
will define a probability density function and so this extra constraint is automatically 
satisfied. Unfortunately, we must also satisfy q20 for each i and this is not automatically 
satisfied. Furthermore the process of deconvolution increases the level of noise in the 
data and smoothing may be required. To handle the first problem we might naturally 
consider the following optimization problem 

Mini Ac-dl I 
Subject to qa,i=O,l, ... n-1 and 

n-1 
(5.6.28) 

whose solution should provide an excellent solution to our problem. 

Another procedure for the construction of a density function f which satisfies these 
constraints is the following. 

1. Use the standard backsolve algorithm to solve the equation Ac=d with the 

modification that ci is set to zero if the calculated value from the backsolve step is 

less than zero. 

2. Upon completion of step 1, renormalize cj to satisfy 
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(5.6.29) 
n-1 
C c j (a j+l  - a  a )  = 1. 
j=O 

J 

3. If smoothing is required apply a linear filter which has the property that it preserves 

the sum of the values and preserves nonnegativity. 

In particular we define 

ci = 

for i=n- 1 ,n-2.. . ,O. Then for 
n-1 .- - 

okdnum = 2 cj(aj+l  - a j ) .  
j = O  

(5.6.30) 

(5.6.3 1 ) 

set Ci =ci/oldsum for i d ,  1 ,. . . ,n- 1. Finally we define our filtered estimate by 
- 2co + c1 - .  

3 cfo ? 

(5.6.32) 

Nonparametric density estimation 

For the distribution of cluster channel centers we were able to use a multivariate 
normal density function. The mean and covariance matrix for random variables, that are 
normally distributed, completely determines the function. The mean and covariance 
matrices are the only parameters in this model. Unfortunately, in many cases random 
variables come from density funcfions whose form is unknown and so we use 
nonparametric density estimation techniques. 

The histogram (normalized to integrate to 1) is the most familiar example of a 
nonparametric density estimate. Recently B-Spline density estimators (see Ref. 44) have 
been studied for use in computer graphics and other applications. It has been discovered 
that these nonparametric density estimates are efficient to use since they are defined in 
terms of splines and that B-Spline nonparametric density estimates -converge rapidly to 
the true density function as the sample size increases. 

Let Nm(x) be the m-th order normalized uniform B-Spline associated with the evenly 
spaced knots O , l , .  . .,m, Le., 
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where 

(5.6.3 3) 

2, if z > 0; 
0, otherwise. (5.6.34) 

Given evenly spaced data point (xi> with h=xi+l-xi we define 

(5.6.35) 

Give data XI, Xz, ..., XN the B-Spline nonparametric density estimate on the interval [a,b] 
is 

(5.6.36) 

where 
b N 

a k =1 
bi = JBT(x)dx and ai = C B Y ( X k ) ,  (5.6.37) 

for each integer i. This estimator can be used to estimate density functions over bounded, 
semi-infinite and unbounded intervals. 

Estimation of parameters for the Oligocene Frio Sandstone of South Texas 

Working in close collaboration with other members of the research team we have been 
able to gather data on the Oligocene Frio Sandstone of South Texas (Refs. 34,59). It has 
been determined by observation that this geological interval contains two subintervals 
which have different characteristics. In the top portion of this interval we find channels 
which tend to cluster together, while in the lower portion, channels are randomly 
scattered throughout the rock volume with no apparent clustering. In the top lay we have 
statistics on the location of 59 channel centers, grouped into 10 clusters. Using this data 
we have estimated the pooled covariance matrix for this data to be 

14624790 - 10175 
- 10175 123.68 

(5.6.38) 

The correlation for this data in quite small and since data is measured from a marker 
bed it should probably be almost zero. So we will use a covariance matrix for the 
simulation of the form 
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(5.6.39) 

where 0,=3824.24 and or1 1.12. The: number of clusters in three different cross sections 
is 2, 2 and 4 respectively. We currently use a random integer between 2 and 6 for OUT 
simulations. The number of channels in these 8 clusters ranges from 2 to 14 and we 
currently use a random integer between 2 and 14 for our simulations. 

We have data on channel thickness from well information (see Ref. 34). In Figure 
5.6.5 we have a histogram of the original thickness data and the deconvolved thickness 
data. The deconvolved thickness data is represented by the right most histogram. 

r -- - 
I 

I 
40 I 

- -  - - I  - - -  
I 
I 
I 
I 

I 

1 
I 
I 
I 

30 . 

20 I . 

i-- L - -  
I I 
I 
I I 

10 I I 
L _ _  

’ 

L -  - - _  
5 10 15 20 25 30 35 

Fig. 5.6.5 - Distribution of channel thickness 

We have made the observation that the width of channels varies with thickness and so 
we have determined the distribution of the width to thickness ratio. After discussion with 
geologists it was determined that a minimum ratio of 50 to 1 was reasonable and so the 
nonparametric density estimate of the ratio of width to thickness was determined on the 
interval [50,00). The values for the weights are (-1252, .6674, .1681, .03926) using linear 
splines with 4 basis function on the interval [50,250]. A graph of the nonparametric 
density estimate is given in Figure 5.6.6. 

100 150 200 250 
Fig. 5.6.6 - Distribution of width to thickness ratio. 

220 



The final distribution that we determined is the angle which the channels make with 
the primary direction of the river flow. We assume that the rock volume for the 
simulation is aligned in the primary direction of drainage for the river system. Under the 
assumption that the sign of the angle is random, we have determined a nonparametric 
density estimate of the magnitude of the angle on the interval [0,90]. The estimate is 
contained in Figure 5.6.7. The estimated alpha values are (.3088, .5053, .1544, .0316) 
using linear B-Splines with 4 basis function on the interval [0,90]. 

0.03- 
0 . E  

40 
Fig. 5.6.7 - Distribution of angle magnitudes. 

We have now described all of the distributions that we will use in the simulations. We 
will generate random channels over a three dimensional volume. The first simulation is 
of the upper top section of the interval and has dimensions 60,000 ft by 80 ft by 16,000 ft. 

The simulation is performed by sampling the distribution of channel cluster centers in 
a vertical slice of the reservoir using the MCMC method. Next the bivariate normal 
density function is sampled to provide the centers of individual channels in this vertical 
slice. For each channel we sample the thickness distribution and the ratio of width to 
thickness distribution to determine the maximum thickness and width of the channel at 
the top of the channel. The angle distribution is then sampled and given a random sign to 
determine the angle that the three-dimensional channel makes with the vertical slice. 
Again, it is assumed the general direction of the drainage is perpendicular to the vertical 
slice. We then create channels of length 1 mile using the values generated above. 
Additional sections of the channel can easily be generated. In the simulation below we 
have assumed that each channel section for an individual channel has the same width and 
thickness, but this could easily be modified so that width and thickness of the channel 
change along its length. To determine the angle of each of the additional sections of the 
channel we sample the angle distribution and give the angles of connecting section 
opposite sign. 

This sampling procedure provides one realization for the top interval where clustering 
is found. However, on the geologic interval immediately below the first layer, no 
clustering is found. The same software used to generate clusters of channels can also be 
used to generate a sample of channels that are randomly located within a slice of the rock 
volume and then extended to create three-dimensional channels. The final simulation 
composed of the two geologic intervals combined is shown in Figs. 5.6.8a, 5.6.8b and 
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5.6.8~ at the end of this section. These images have been created using Mathernatica and 
a description of the software is located in Appendix 5B. We note that sheetsplay sands 
could easily be added to the model but that statistics that determine the frequency and 
dimensions of the sheetsplay sands have not been compiled. 

Closing Remarks 

This section of the report describes a preliminary attempt to model a fluvial system 
using a combination of MCMC methods, and parametric and nonparametric density 
estimation. We have used MCMC methods to sample the distribution of channel centers. 
The bivariate normal distribution has been sampled to determine the location of 
individual channels within each c1,uster. Deconvolution of well data to obtain the 
distribution of maximum thickness values has also been described and implemented. 
Finally nonparametric density estimates of channel thickness, the width to thickness ratio 
and the channel angles have been obtained and sampled. 

It should be noted that the statistical model is nonstationary due to several distinct 
factors. It is nonstationary due to the fact that we have identified two distinct layers in 
the Frio interval which have distinct statistical characteristics. In the top layer channels 
tend to cluster while in the lower layer they do not and are instead simply randomly 
distributed in the volume. The use of Boolean models in general provides a 
nonstationary model. Even if the distribution of object is constant over a region or 
volume the physical properties of thle rock within an object are distinct from the rock 
outside of the object. 

Future work will more fully integrate measured data from wells, seismic data and 
geological interpretation to make a model which more accurately reflects reality. 
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Fig. 5.6.8a - An oblique view of the simulated reservoir. 
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Fig. 5.6.82, - A side view of the simulated reservoir. 
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Fig. 5.6% - A top View of the simulated reservoir. 

225 





Bibliography 

1.  

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Beseg, J. (1975): “Statistical Analysis of Non-Lattice Data,” The Statistician, Vol. 24, 

p 179-1 95. 

Beseg, J. (1974): “Spatial Interaction and the Statistical Analysis of Lattice System,” 

J. Royal Statist. SOC., Series B, Vol. 36, p192-236. 

Beseg, J. and Green, P. J.(1993): “Spatial Statistics and Bayesian Computation,” J. 
Royal Statist. SOC., Series B, Vol. 55, No. 1, p25-37. 

Beseg, J. (1986): “On the Statistical Analysis of Dirty Pictures,” Journal of Royal 

Statistical Society, Series B, Vol. 48, No. 3, p259-302. 
Bonet-Cunha, L., Oliver, D. S., Redner, R. A. and Reynolds, A. C. (1996): “A Hybrid 

Markov Chain Monte Carlo Method for Generating Permeability Fields Conditioned 

to Multiwell Pressure Data and Prior Information,” SPE 36566, presented at the 1996 

SPE Annual Technical Condference and Exhibition, Denver, Oct. 6-9. 
Bonet-Cunha, L., Oliver, D. S. ,  and Reynolds, A. C. (1995): “Simulated Annealing 

and Markov chain Monte Carlo Methods for Generating Permeability Fields 
Conditioned to The Prior Mean, the Varigram and Multiwell Pressure Data,” 

TUPREP Research Report 12 (May, 1995)134-216 
Chen, C. C. (1988): “Markov Random Field Models for Image Analysis,” PhD thesis, 

East lansing, Michigan State University. 

Comets, F. and Gidas B. (1992): “Parameter Estimation for Gibbs Distribution from 

Partially Observed Data,’’ The Annals of Applied Probability, Vol. 2, No. 1 p142-170. 

Cressie, Noel A. C. (1993): “Statistics for Spatial Data,” Wiley-Interscience 
Publication. 

10. Cressie, N. and Lele S. (1992): “New Models for Markov Random Fields,” Journal of 

Applied Probability, Vol. 29, p877-884. 

Transactions on PAMI, Vol. PAMI-5, No. 1, Jan. 
11. Cross, G. R. and Jain A. K. (1983): “Markov Random Field Texture Models,” IEEE 

12. Damsleth, E., Tjolsen, C. B., Ornre, H. and Holden, H. H. (1992): “A Two-Stage 

Stochastic Model Applied to a North Sea Reservoir,” JPT, p402-408. 

13. Damsleth, E. and Holden, L. (1994): “Mixed Reservoir Characterization Methods,” 

SPE 27969 presented at the SPEKJniversity of Tulsa Symposium, Tulsa, Aug. 29-3 1. 



14. Derin, H., Elliott, H. (1987): “Modeling and Segmentation of Noisy and Textured 

Images Using Gibbs Random Fields,” IEEE Trans., Vol. PAMI-9, No. 1, Jan. 

15. Derin, H. and Kelly, P. A. (1989): “Discrete-Index Markov-Type Random 

Processes,” Proceedings of the IEIZE, Vol. 77, No. 10, Oct. 

16. Dobrushin R. L.(1965): “Existence of A Phase Transition in Two-Dimensional and 

Three-Dimensional Ising Models,” Theory of Probability and Its Applications, Vol. 

X, NO. 2, ~193-213. 

17. Dubes, R. C. and Jain, A. K. (1B89): “Random Field Models in Image Analysis,” 

Journal of Applied Statistics, Vol. 16, No. 2. 

18. Duda, R. and Hart, P. (1973): ‘‘Pattern Classification and Scene Analysis,” Wiley 

Interscience, John Wiley and Sons, New York. 

19. Egeland, T., Geogsen, F., Knarud, R. and Omre, H. (1993): “Multifacies Modeling of 
Fluvial Reservoirs,” SPE 26502 presented at the 1993 SPE Annual Technical 

Conference and Exhibition, Houston, Oct. 3-6. 
20. Gelfand A. E. and Carlin B. 1’. (1993): “Maximum-Likelihood Estimation for 

Constrained or Missing Data Models,” The Canadian Journal of Statistics, Vol. 21, 

NO. 3, ~303-311. 

21. Geman, S. and Geman, D. (1984): “Stochastic Relaxation, Gibbs Distributions and 
the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and 

Machine Intellegence, PAMI-6, No. 6, p72 1-74 1. 
22. Geogsen, F. and Omre, H. (1992): “Combining Fibre Pocesses and Gaussian Random 

Functions for Modeling Fluvial IXeservoirs.” Geostatistical Troia 92 edited by A. 

Soares, p 425-439. 
23. Geyer, C. J. and Thompson E. .A. (1992): “Constrained Monte Carlo Maximum 

Likelihood for Dependent Data,” Journal of Royal Statistical Society, Series B, Vol. 

54, NO. 3, ~657-699. 
24. Geyer, C. J. (1993): “Estimating Normalizing Constants and Reweighting in Markov 

Chain Monte Carlo,” Technical R.eport No. 568, School of Statistics, University of 

Minnesota. 

25. Geyer, C. J. (1991): “Reweighting Monte Carlo Mixtures,” Technical Report No. 
568, School of Statistics, University of Minnesota. 

228 



26. Gilks, W. R., Richardson, S .  and Spiegelhalter, D. H. (1997): “Markov Chain Monte 

Carlo in practice,” Chapman & Hall, New York. 

27. Griffith D. A. and Amhein C. G. (1983): “An Evaluation of Correction Techniques 

for Boundary Effects in Spatial Statistical Analysis: Traditional Methods,” 

Geographical Analysis, Vol. 15, No. 4, Oct. 

28. Haldorsen, H. H. and Damsleth, E. (1990): “Stochastic Modeling,” JPT (April), p404- 

412. 

29. Haldorsen, H. H. and Lake, L. W. (1984): “A New Approach to Shale Management in 

Field Scale Models,” SOC. Pet. Eng. J. p 447-457. 

30. Hastings, W. K. (1 970): “ Monte Carlo Sampling Methods Using Markov Chains and 
Their Applications,” Biometrica, Vol. 57, No. 1. P97-109. 

31. Hoiberg, J., Omre, H. and Tjelmeland, H. (1990): “Large-Scale Barriers in 
Extensively Drilled Reservoirs,” Proceeding of 2nd European Conferencr on the 

Mathematics of Oil Recovery, D. Guerillot and 0. Guillon(eds.) Editions Technip, 
Paris, p3 1-41. 

32. Hoiberg, J., Omre, H. and Tjelmeland, H. (1992): “A Stochastic Model for Shale 
Distribution in Petroleum Reservoir,” 2nd CODATA Conference on Geomathematics 
and Geostatistics, P. A. Dund and J. J. Royer, Navvy, p135-153. 

33. Jensen, S .  T. and Johansen, S. (1997): ‘‘ Globally Convergent Algorithms for 

Maximizing a Likelihood Function,” Biometrika, Vol. 78, No. 4, p867-877. 

34. Ken, D, Epili, D. Kelkar, M., Redner, R. and Reynolds, A. C. (1996): “Reservoir 

Architecture Modeling: Nonstationary Models for Quantitive Geological 

Characterization,” Second Quartly Report, BDM-OWDOE, Contract #0047. 

35. Kinderman, R. and Snell, J. S. (1980): “Markov Ramdon Fields and their 

Applications,” h e r .  Math. SOC. 

36.MackeyY S. D. and Bridge, J. S .  (1995): “Three Dimensional Model of Alluvial 

Stratigraphy,” Journal of Sedimentary Research, B65, p7-3 1. 

37. Metropolis, N., Rosenbluth, A. and Teller, E. (1953): “Equation of State calculations 

by Fast Computing Machines,” Journal of Chemica Physics, Vol. 21, p1087-1092. 

229 



38. Munthe, K. L., Holden, L. and Tswnsend, C. (1994) “Modeling Sunseismic Faults by 

a Marked Point Process,” presented at Fourth European Conference on the 

Mathematics of Oil Recovery, Roros, Norway. 

39. Omre, H. (1991): “Stochastic Models for Reservoir Characterization,” in Recent 

Advances in Improved Oil Recovery Methods for North Sea Sandstone Reservoirs, 

Kleppe, J. and Skjaeveland, SI. M. (eds.), Norwegian Petroleum Directorate, 

Stavanger, Norway. 

40. Picard W. R., Elfadel, I. M. and  Pentland A. P. (1991): “MarkodGibbs Texture 

Modeling: Aura Matrices and Temperature Effects,” Proceedings of IEEE Conference 

on Computer Vision and Pattern Fkcognition, p371-377, June. 

41. Potaminanos, G. G. and Goutsias, J. K. (1995): “ Partition Function Estimation of 

Gibbs Random Field Images Using Monte Carlo Simulations,” IEEE Transactions on 
Information Theory, Vol. 39, No. 4, July. 

42. Qian, W. and Titterington, D. M. (1989): “On the Use of Gibbs Markov chain Models 
in the Analysis of Images Based on Second-order Pairwise Interactive Distributions,” 

Journal of Applied Statistics, Vol. 16, No. 2. 

43. Raydan, M. (1997): “The Barzilai and Borwein Gradient Method for Large Scale 

Unconstrained Minimization Problem,” SLAM J. on Optimization, Vol. 7, No. 1, p26- 
33, Feb. 

44. Redner, R. A.: “Convergence Rates for Uniform B-spline Density Estimators-Part I 
One-Dimension,” Accepted for publication in SIAM Journal on Scientific 

Computing. 

45. Ripley, D. D. (1987): “Stochastic Simulation,” John Wiley and Sons Inc., 1987. 

46. Rudkiewicz, J. L., Guerillot and Galli A. (1990): “An Integrated Software for 
Stochastic Modeling of Reservoir Lithology and Property with an Example from the 

Yorkshire Middle Jurassic,” North Sea Oil and Gas Reservoirs -II, edited by A. T. 

Buller et al, Graham&Trotman, p399-406. 

47. Stoyan, D. Kendall, W. S .  and Mecke, J. (1987): “Stochastic Geometry and its 

Applications,” John Wiley and Sons Inc. 

48. Strauss, D. (1986): “On a General Class of Models for Interaction,” SIAM Review, 
Vol. 28, No. 4, Dec. 

230 



49. Syversveen, A. R. and Omre, H. (1994): “Marked Point Models with Complex 

Conditioning Used for Modeling of Shales,” Unpublished Manuscript. 

50. Syversveen, A. R. and Ome, H. (1994): “Marked Point Models for Facies Units 

Conditioned on Well Data,” Unpublished Manuscript. 

51. Taylor, H. M. and Karlin, S. (1994): “An Introduction to Stochastic Modeling,” 

Academic Press, San Diego. 
52. Tjelmeland, H. (1996): “Modeling of the Spatial Facies Distribution by Markov 

Random Fields,” presented at the Fifth International Geostatistics Congress, 

Wollongong, Australia, Sept. 22-27. 

53. Tjelmland, H. (1996): “Stochastic Models in Reservoir Characterization and Markov 

Random Fields for Compact Objects,” Dr. ing. thesis, Norwegian University of 
Science and Technology, Trondheim, Norway. 

54. Tjelmeland, H. and Holden, L. (1992): “Semi-Markov Random Fields,” Geostatistics 

Troia, A. Soares (ed.) Kluver Academic Publishers, Dordrecht, Vol. 1, p479-492. 
55. Tjelmeland, H. (1996): “Modeling of the Spatial Facies Distribution by Markov 

Random Fields,” Unpublished Manuscripts. 
56. Tyler, K. J., Svanes, T. and Henriques, A. (1994): “Heterogeneity Modeling Used for 

Production Simulation of a Fluvial Reservoir,” SPE Formation Evaluation, p85-92. 

57. Weber, K. J. (1982): “Influence of Common Sedimentary Structures on Fluid Flow in 

Reservoir Models,” JFT, p665-672. 
58. Weber, K. J. and vanGeuns, L. C. (1990): “Framework for Constructing Classic 

Reservoir Simulation Models,” JPT (Oct.), p1248-1257. 

59. Yang, K. (1998): “3D Fluvial Facies Architecture Simulation of Middle Frio 

Formation, Stratton Field, South Texas,” Master thesis at the University of Tulsa. 
60. Younes, L. (1988): “Estimation and Annealing for Gibbsian Fields,” Ann. Inst. Henri 

Poincare Probab. Statist, Vol24, p269-294. 

23 1 





APPENDIX A 

DESCRIPTION AND USE OF THE FORTRAN CODE FOR A 3D, 
SECOND-ORDER MARKOV RANDOM FIELD MODEL 

In this appendix, we explain the implementation of a 3D, second-order MRF model, 
using FORTRAN. This model is used to generate facies distributions in three dimensions. 
The corresponding FORTRAN code can be compiled and built on any machine with a 
FORTRAN 77 compiler. But in order to visualize the realizations of the model by 
SPYGLASS SLICER, the output of the program, Le., the realization of the MRF model, 
is written in SPYGLASS SLICER format. 

The driver for the program is MRF-2D2N2C with the corresponding executable file. 
Both source code with a sample data file and include file are given on disk. An 
executable file with sample input file is given on the same disk. 

In this model, the second-order neighborhood system and 2-pixel cliques are used. As 
described in section 5.4, there are nine types of cliques. We use 9 two-dimensional 
arrays, beta1 through beta9 to represent the potential values (parameters of the model) of 
the corresponding clique configurations in the corresponding directions. The dimensions 
of the arrays are all KxK, K is the number of facies considered. With our notation, the 
physical meaning of the parameters is very clear. For example, if three facies labeled 1, 2 
and 3 are considered, betal( 1,l) simply represents the potential value for a 2-pixel clique 
along the x-direction in the x-y plane, with both pixels in the clique occupied by facies 1; 
beta5(2,3) is the potential value for the vertical (z-direction) two-pixel clique with facies 
2 in the “ t ~ p ”  pixel and facies 3 in the “bottom” pixel. Therefore, betal(1,l) controls the 
continuity of facies 1 in the x direction of the x-y plane and beta5(2,3) controls the 
transition between facies 2 and facies 3 in the vertical direction. 

In this model, the free boundary treatment is applied. This means that the values of all 
the missing pixels of the boundary pixel are simply set to be zero and only the remaining 
clique potentials are considered. The total potential in a neighborhood of a pixel is 
calculated in subroutine POTENTIAL which calls the subroutine C-POTENTIAL to 
calculate the potential values of the two cliques in each direction. 

All the input data are read by subroutine READ-DATA and transmitted by several 
COMMON BLOCKS to other routines. 

Subroutine SET-FACIES is used to initialize the whole lattice by assigning a facies 
value randomly from K facies. The random number generator used in this routine is 
function RAN2 from Numerical Recipes in FORTRAN, the art of Scientific Computing 
by W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Hannery, Second edition, 
Cambridge University Press, 1992. However, any reliable random number generator can 
be substituted for this small subroutine. 

The routine SIMULATION carries out the MCMC sampling procedure based on the 
initial distribution created by SET-FACIES and finally the OUTPUT subroutine writes a 
realization into a datafile which is named “imagexx”. XX here is a two-digital number 
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from 01 to 10. This is designed to output multiple realizations from a long run of MCMC 
procedure. The maximum number of realizations is limited to 10 in the program and the 
iteration interval between realization is controlled by a parmeter called “LAG’. If more 
than 10 realizations are expected from the sampling procedure, the user can just modify 
the dimension of the array “FILENAMES” and the corresponding data statement. 

In the code, the origin of the lattice: is at the lower-left comer of the three-dimensional 
volume. The first index of the lattice (PIXEL) is for the x direction and from 1 to N,, the 
second index for the y direction and varies from 1 to Ny, and the third index pertains to 
the z direction and varies from 1 to N,. 

The dimension of the 3D lattice as we11 as the number of facies are defined in 
“parameter.inc” which is included in the routines. The user can easily change the 
dimensions in this file and then rebuild the code conveniently. 

Input Data of the Program 

All the required information is set jn a parameter file which is named by user with less 
than 40 characters. Each parameter in the file can be put in free format (separated by 
commas). A sample of the parameters is listed below with explanations. 

Parameter for the 3D, MRF model I* title of the parameter file *I 

64,64,64 

500,200,100 

-0.3,-0.5,0.5 
0.5 ,-0.3 ,-OS 
-0.5,0.5,-0.3 

-0.5,0.5,0.5 
0.5,-0.5,0.5 
0.5,0.5,-0.5 

-0.3,-0.5,0.5 
0.5,-0.3,-0.5 
-0.5,0.5,-0.3 

-0.3,-0.5,0.5 
0.5,-0.3,-0.5 
-0.5,0.5,-0.3 

-0.3 ,-0. 1 , O S  
0.5,-0.3,-0. I 
-0.1 ,OS,-0.3 

-0.6,0.5,0.5 

I* the number of pixels in x, y and z directions: nx, ny, nz *I 

I* the number of iterations, iterations for convergence 

I* two-pixel clique potentials for direction 1 *I 
and lag for multiple realizations *I 

I* two-pixel clique potentials for direction 2 */ 

I* two-pixel clique potentials for direction 3 *I 

I* two-pixel clique potentials for direction 4 *I 

I* two-pixel clique potentials for direction 5 *I  

I* two-pixel clique potentials for direction 6 */ 
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0.5,-0.6,0.5 
0.5,0.5,-0.6 

-0.2,-0.5,0.5 
0.5,-0.2,-0.5 
-0.5,0.5,-0.2 

-0.5 ,OS ,OS 
0.5,-0.5,0.5 
0.5,0.5,-0.5 

/* two-pixel clique potentials for direction 7 */ 

/* two-pixel clique potentials for direction 8 */ 

-0.5,0.5,0.5 /* two-pixel clique potentials for direction 9 */ 
0.5,-0.5,0.5 
0.5,0.5,-0.5 

1.0,2.0,3.0 I* facies values */ 
0.0,0.333334,0.666667,1 .O /* prior probability distribution of the facies*/ 

1 
3”l.O 

/* apply penalty term( 1) or not (0) */ 
/* relaxation factors for the facies */ 

1 .o /* temperature */ 

-45366 /* random seed (No longer than 6-digits) for random number generator */ 

A sample of file “parameter.inc” is listed below. 

C definition of the lattice and the number of facies 

C this is included in the program 
Parameter (nf=3,maxx=64,maxy=6,maxz=64) 

In the above input, the data corresponding to “prior probability distribution of the 
facies” needs explanation. Even though there are only three facies considered, this data 
line contains four entries: 0.0,0.33334,0.66667,1.0. This indicates that according to the 
prior probability distribution, the probability of drawing facies 1 is 0.33334-O.M.33334, 
the probability of drawing facies 2 is 0.66667-0.33334=0.33333 and the probability of 
drawing facies 3 is 1.0-0.666673.33333. Also the parameter labeled “temperature” is set 
to 1.0. If any value other than T=1.0 is used, all input potential values (the beta’s) will be 
divided by the value of T. 

Output of the program 

The output of the program is a realization or multiple realizations. If 
iterationaconverge, then only one realization named image01 is generated, while if 
iteration > nconverge, then multiple realizations with lag “LAG are generated. These 
realizations can be visualized by SPYGLASS SLICER. Each realization is output to a 
separate file. These files are labeled as image01 to 
realizations. Each image file is stored as one-dimensional 
SLICER. Each one-dimensional array is indexed first in 

image10 if we generate 10 
array for input to SPYGLASS 
the x-direction, then in the y- 
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direction and finally in the z-direction. Specifically, the facies occupying each pixel in 
the image files is written out as in the following pseudo code: 

DO 5 k=l,Nz 
Do 5 j=1, Ny 
Do 5 i=l, Nx 

Write( loo,*) pixel(i,j ,k) 
5 Ccntinue. 
6 

In the above example, the program will output 3 realizations with lag=lOO and in 
SLICER. With the potential values given in the above data file, the realizations of the 
model will look like Fig. 5.4.15 in section 5.4. Subroutine READ-DATA will display all 
the input parameters on the screen for the user to check and also subroutine 
SET-FACIES will write the initial fractions of each facies on the screen. 



Appendix B 

The symbolic computation package Mathematica was used to simulate fluvial systems 
and in particular to generate channels in a fluvial reservoir. In support of this project a 
variety of small Mathematica Notebooks were developed. A larger more substantial 
Notebook was constructed for the final Frio reservoir simulation. 

The following Notebooks are included with this report. 

Density Estimation is a Notebook for the estimation of B-Spline nonparametric density 

estimates if there is no assumption of boundary. 

Boundary Estimation is a Notebook for the estimation of B-Spline nonparametric 

density estimates if the data is assume to lie on an interval of the form rap). 

Two-Boundary Estimation is a Notebook for the estimation of B-Spline nonparametric 
density estimates if the data is assumed to be on an interval of the form [a,b]. 

Random Generation is a Notebook that generates multivariate norrnal random variables 
and data from B-Spline density functions for the bounded, semi-infinite and 

unbounded cases. 

Deconvolve is a Notebook which deconvolves the thickness data measured from wells 

and computes the maximum thickness histogram. 

ClusterSim is a Notebook which generates clusters of channels in a fluvial reservoir. 

It is easy to use each of these Mathematica Notebooks. Of course, to use a Mathematica 
Notebook, you must have access to the Mathematica program. Given that this is true, 
then you may begin to use any Mathernatica Notebook by double clicking on the 
Notebook icon. This will open the Mathematica application and give you access to the 
Notebook. Most of these Notebooks have two sections. The first section contains fields 
for the user to enter their data. We will describe the input to each of the particular 
Notebooks later in this Appendix. Given that the input data has been entered, you can 
execute the entire Notebook by using the kernel pulldown menu, and selecting 
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Evaluation and then selecting Evaluate Notebook. The entire Notebook will now be 
evaluated and you may scroll through the Notebook to get the results. However, if just 
want to explore the Notebook, each Notebook has sample data included and is ready to 
execute. You can then enter you own data and rerun the Notebook when you are ready. 

We will now describe the function, input and output of each of the Mathematica 
Notebooks that have been included in this report. Throughout this documentation, file 
names and variable names from Mathematica Notebooks will be in bold face type. We 
will begin our description of the: individual Notebooks by discussing the three 
nonparametric density estimation Notebooks. 

Density Estimation, Boundary Estimation and 

Two-Boundary Estimation Notebooks 
These three Notebooks are used in almost exactly the same way. In each case, the 
nonparametric density estimate is determined by a vector of data and four parameters. 
The specific input is 

data 
m 

A list of data points separated by commas and enclosed is curly braces. 

The order of the spline. A value of m=3 for example would give you quadratic 

splines. 

amin and bmax The density estimate will have support on the interval [amin,bmax]. 
These values should be chosen so that all of the data lies in this interval. 

The number of subintervals into which the interval [arnin,bmax] is subdivided 

into to create the B-Spline density estimate. 

N1 

For example, the following input will generate a piecewise linear nonparametric density 
estimate for the values in the list data on the interval [OJO] and this interval will be 
divided intervals of length 2.5. 

m=2; 

data={ 2,3,4,4,5,6} 

amin=O 
bmax=lO 
N1=4 



The output from the Notebook includes: 

1. 

2. 

3. 

4. 

5. 

6.  

The mean and the standard deviation of the data. 

The mean and standard deviation for the estimated B-Spline density function. 

A graph of the unweighted basis functions B i (x) for each i. 

A graph of the weighted basis functions ai B i ( x ) h  i for each i. 

A graph of the final B-Spline density function. 

Values of ai for each index i and the number of basis functions. 

If you use the Notebook Density Estimation, your estimate will tail off to zero outside of 
the interval [amin,bmax]. If you use the Notebook Boundary Estimation your estimate 
will be truncated at the point amin and tail off to zero to the right of bmax. If you use the 
Notebook Two-Boundary Estimation the estimator will be truncated at amin and bmax. 

Random Generation 
This Mathematica Notebook contains routines for the generation of multivariate normal 
random variables and data fiom B-Spline density functions for the bounded, semi-infinite 
and unbounded cases. There is no input required to use these routines. Simply execute 
the Notebook and you will be able to use the newly defined functions to generate random 
variables. 

In the first half of the Notebook we have the routines associated with the generation of 
multivariate normal random variables. To generate an n-dimensional multivariate 
normally distributed random variable with mean mu and covariance matrix sigma enter 
mu as a list of n values and sigma as a list of lists of the rows of your covariance matrix. 
The following statement will then return a n-dimensional multivariate nomally 
distributed random variable with mean mu and covariance matrix sigma. 

Normalvar [ rnu,sigma] 

This routine will perform the necessary decomposition of the matrix sigma needed to for 
the generation of multivariate data. However, this decomposition take a small amount of 
computing resources and so this function is inefficient if you need to generate many data 
point. Two additional functions have been added to solve this problem. The first 
function generates the Cholesky factor needed in the generation of multivariate normal 
data. The second function uses this factor to efficiently generate data. To determine the 
Cholesky factor of sigma type (you will only need to do this once) 
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rootsigma=root[sigma] 

Then use 

Normalwithroot[ mu,rootsigma] 

each time that you wish to generate a random variable with mean mu and covariance 
matrix sigma. 

For example you could generate a. table of 50 independent multivariate normally 
distributed data points with mean (1,2,,3) and covariance matrix with 1, 10 and 100 down 
the diagonal by executing 

mu={ 1 J 3  
sigma=DiagonalMatrix[{ 1,10,100}] 
data=Table[Normalvar[mu,sigma] ,{ 50}] 

To generate the same data more efficiently use 

rootsigma=root [sigma] 

data=Table[Normalwithroot[mu,roc,tsigma] ,(50}] 

You will find examples within the Notebook and Mathernatica expressions for testing 
that everything is working correctly. 

The second half of this Notebook contains the functions that can be used to generate data 
from a B-Spline nonparametric density function. If you execute the entire Notebook you 
will be able to use all of the functions defined by the Notebook. 

The SplineDistribution function allours to you define a B-Spline distribution by name. 
You may give the distribution any name that you like and then you generate data from 
this distribution by using that name. S o  to define a B-Spline distribution enter 
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SplineDistribution[alpha,xl,h,m,”name”] 

where 

alpha is a list of proportions (a list of number that is nonnegative and sums to 1, 

xl is the minimum value of the support of the density function, 

h is the distance between knots (must be positive), 

m is the order of the spline (integer greater than 0) and 

name is the name of the distribution. 

For example if you enter 

data={ 2/10,3/10,3/10,2/10}; 
SplineDistri bution[data,0,30,Z,”ttestname”] 

you will have defined a B-Spline density function which is linear (order m=2), which 
starts at zero, has a bin width of h=30 and is named testname. This named distribution 
function can be interpreted as B-Spline density functions on an unbounded domain, a 
semi-infmite domain (left truncated estimator) and a bounded domain (truncated 
estimator). To generate a random value from each of these three types of distributions 
by entering 

makeRpoint [L’testname”] 
makeRpointLT[“’testname”] 
makeRpointT[‘’test”] 

The letters LT and T in these names stand for left truncated and truncated respectively. 

Examples are included in the Notebook. 



Deconvolve 

This Notebook can be used to decmvolve thickness data measured from well and to 
compute the maximum thickness histogram. The input to the Mathematica Notebook is a 
description of the histogram. This data consists of the following values. 

Sand 

Sandmin 
SandDelta 

is a list of the sand thickness values from the histogram. 

is the leftmost point on the histogram. 

is the width of the sand thickness histogram bins. 

The 'following data is the input data for the Frio Sands reservoir from this report 

Sand=(2,14,34,46,38,35,13,6,1}; 

Sandmin=O; 
SandDeltad; 

The output from the Notebook is a list of values for the new histogram and a plot of the 
new and old histogram. 

ClusterSim 

This Mathematica Notebook titled ClusterSim generates well separated clusters of 
channels in a reservoir. Cluster centers are generated using an MCMC algorithm to 
insure that the cluster centers are well separated. Each cluster of channels is assumed to 
follow a multivariate normal distribution. The input into the first portion of the Notebook 
is 

thewidth 
theheight 

chlength 
maxnpoints the maximum number of clusters of channels 
clustersize the average size of clusters of channels 
sigma1 the standard deviation of an individual cluster in the horizontal direction. 
sigma2 the standard deviation of an individual cluster in the vertical direction. 

the width of the reservoir 
the height of the reservoir 

the length of each section of the channel 



a 

b 

controls the penalty for having clusters overlap, increasing a make it less 

probable that two cluster center will be close 

controls the separation of cluster centers, increasing b generates points 

which are further apart 

the number of iterations of the MCMC algorithm. One iteration is one pass 

through the data. 

numiter 

The second section of the input portion of the Notebook contains information, which 
specifies the thickness, width to thickness and angle distributions. For each distribution 
you must enter in the proportions which defines the B-Spline density function and initiate 
the SplineDistribution function, which allows you to use a named B-Spline throughout 
the Notebook. For example, to define the angle distribution with proportions (.3, -5, .15, 
.05) starting with a minimum angle of zero with 30 degree intervals and named angle you 
need to enter the following statements. 

angle={.3,.5,.15,.05} 
SplineDis tribution[angle,0,30,2,”angle”] 

The thickness distribution and the width to thickness dis-ibutions are defined in exactly 
the same way. All of these are already in the Notebook and you can easily change the 
values if you have different distribution that you want to use. After you have entered 
your data, simply execute the entire Notebooks and scroll down to see your results at the 
end of the Notebook. 

The outputs of the ClusterSim program are images of the clusters of channels from an 
oblique view, a side view and a top view. Mathernatica allows you to interactively 
rescale the images and to change the view. 
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PART VI 

ESTIMATION OF GEOLOGICAL ARCHITECTURE 
USING BAYESIAN/MAXIMUM ENTROPY APPROACH 

Summary 

This project investigates the use of the Bayesian Maximum Entropy (BME) 
method to generate geological facies as part of the reservoir description. The advantages 
of the proposed method over the conventional approaches are first, the method can 
account for non-stationarity in geological properties and second, it is general enough so 
that various constraints can be accommodated as part of the description. 

During the first year of the project, we developed a generalized procedure, which 
accounts for the presence of seismic data as part of the geological description. These 
functions include variogram, covariances, and cross-covariances among the neighboring 
values. The method can also account for local probability distribution of facies, which 
can be obtained from the seismic information. The results indicate that the use of seismic 
data can improve the facies estimation compared to using simple kriging. 

In the second year, we examined the feasibility of extending the method for 
multipoint connectivity function. Our studies in the second year comprised three main 
investigations. First we modeled higher order moments. We showed that the higher order 
moments bear similar characteristics to that of the second order moments. Second, based 
on a nonlinear regression scheme, we developed an independent means of incorporating 
multi-point connection into reservoir architecture modeling. This proves to be a robust 
procedure and improves our ability to estimate the reservoir architecture. It also provides 
the basis for checking the results obtained by the BME method. In the final phase of the 
study, we applied the BME method to the four-point connectivity case and showed the 
improvements of reservoir architecture modeling and thus the potential of the BME 
method. 

Introduction 

Geological description using quantitative methods is becoming increasingly 
popular. The two approaches commonly used in describing the geological facies are the 
grid based and object based methods. 

By: Ruijian Li, Mohan Kelkar, and Erdal Ozkan 

The grid-based methods generate geological facies on a grid block level so that 
the information can be directly used as input in the reservoir simulation. The two grid 
based methods commonly used are sequential indicator simulation and sequential 
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Gaussian simulation. Both methods essentially follow the same approach in generating 
the geological facies at the grid block location. In the first step, the original data 
(categorical facies data) are transformed into quantitative form. In the second step, 
various continuity measures are estimated in the transformed domain. Typically these 
measures are variogram and co-variances. In the third step, unsampled locations are 
visited in a random sequence, and the value of the transformed variable is estimated using 
the sample values in a search neighborhood as well as prior estimated values in the same 
neighborhood. Once all the unsampled points are visited, the estimated values are back 
transformed into categorical facies data. The main difference between the two methods is 
the type of transform used in transforming the original categorical data into the 
transformed data. Indicator simula.tion transforms the data into indicator variables 
(discrete variables), whereas Gaussian simulation transforms the data into Gaussian 
variables (continuous variables). 

Both these methods have been extensively applied in the literature with varying 
degree of success. The main drawbacks of these methods are: they do not account for 
non-stationarity as a function of spatial locations, they do not account for relationships 
which extend beyond two point connectivity functions, and they do not account for 
geological rules such as physical relationships between facies (e.g., splay is attached to 
the channel) explicitly. We need to develop methods that can overcome some of these 
drawbacks. 

Approach 

The overall approach of this project is to transform the facies data into indicator domain, 
develop various constraints, and develop a procedure that will allow the estimation of 
facies at the unsampled location. Detailed 
derivations regarding the method are included in the Appendix. 

We briefly describe the steps below. 

Indicator Formalism 

We propose to use indicator function to define the facies. The indicator function 
can be defined as: 

1 if K(u)=K, 
0 if K(U)#K, I(u, K ,  ) = 

Where Kt is a threshold facies, K(u:) is the facies at a location u. This definition is 
flexible enough to accommodate both the hard (knowledge with 100 96 certainty) and the 
soft (knowledge with less than 100% confidence) information. For example, by assigning 
an indicator value between 0 and 1, vie can represent the probability that a certain facies 
is present at a particular location. Further, by using indicator variables to describe the 
geological facies, we are able to capture different spatial characteristics for different 
facies. 
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Similar to any other variable, in the case that the information about spatial variability is 
available, we can estimate the connectivity between sample points. For example, 
variogram can be defined as, 

2n (h) 

Cross variogram can be defined as, 

2a(h) 
(6.3) 

Where, PI is the variogram, h is the lag distance, and n(h) is the number of pairs at lag 
distance h. In addition, using the indicator formulation, we can also describe multi-point 
connectivity. For example, 

Where, H I  represents multi-point histogram connecting M neighboring values. This type 
of connectivity can capture geological objects, which have unique shapes. 

Bayesiun/Maximum Entropy (BME) Formalism 

The B E  approach is based on three basic principles. These principles can be 
stated as: 
0 The information is more valuable when the uncertainty prior to obtaining that 

information is bigger. For example, if the probability that event A will occur is 90%, 
the fact that event A has occurred is not as valuable. Compare that with the 
probability that event A will occur is only 5%. If the event A occurs, then that 
information is much more valuable. 
The posterior probability of an event is obtained by using Bayes’ rule. Bayes’ rule 
relates the prior probability to the posterior probability of an event. 
The best estimate of the posterior probability is obtained by maximizing the 
information. 

In applying BME approach, we will assume that we are interested in estimating 

I(uo, K ,  ) at the unsampled location uo given sampled values i(u j , I C t ) ,  j = l,Z, ..., n . 

Let I ( u o , K , )  be the estimator of I ( u o , K f )  at an unsampled location uo where no 
A 
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observation is available. If fi (uo, u1, u 2 ,..., Un ) is the joint probability density function 

of the associated random variables ir(u j , K, ), j = 1,2, ..., It ,. prior to observing the data 

I(u j , K ,  ) = i(u j , K ,  ) , the fundamental probability density constraint needs to be 
satisfied. 

The information contained in the random variables is assumed to be measured by. 

inf[Z(u j , K ,  ), j = 0,1,2 ,..., n)] = - ln[fi (UO , u 1 , u 2 ,..., u n )I (6.6) 

This definition of the information is consistent with the first principle, which states that 
the information is more valuable when the probability of that event occurring is small. 
As the probability increases, the negative log normal value becomes smaller. The 
expected information can be written a!;, 

where ~ ( f , )  is Shannon entropy function . 

The prior physical constraints can be expressed mathematically as 

where gq(uo,u1,u2 ,..., u,),q=1,2 ,..,,., Q, aresuitablefunctionsof I ( u , K t ) .  

For convenience, we define g0(uo,ui,u2, ..., u n ) = l  SO that EEgoI=I defines the 
normalization constraint defined in Eq. 6.5. 

The function g can take various forms. For example, in the presence of observed values, 
we can write, 

where j=0,1,2 ,..., n ; q=l,2 ,..., m+l. 



where i,j=O,l,2 ,..., n; q=n+2,n+3 ,..., (n+l)(n+4)/2. 

The prior probability fi (uo, u1, u2 ,..., u, ) and the posterior probability 

f; (u 0 I u 1, u 2 ,..., u ) are related by Bayes’ Law, 

(6.11) 

We can define BME (Bayesian Maximum Entropy) function as, 

(6.12) 

This function has to be maximized to get the desired benefit. Specifically, in BME 
approach, the estimated value K(u0) is the solution of the equation 

(6.13) 

where the joint probability density function is defined as: 

(6.14) 

and the LaGrange multipliers pq , 4 = O,l, ..., Q can be obtained by solving 

(6.15) 
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where g, are the constraints imposed on the estimation equation. Depending on the types 
of constraints imposed, Eq.15 can be solved analyt~cally. For two-point connectivity case, 
for example, knowing co-variances, analytical solution of Eq. 6.15 is possible. For higher 
order connectivities, on .the other hand, solution procedure must be numerical. 
Appendices 6.A and 6.B provide the details of the analytical and numerical solution 
procedures for two-point and multi-point connectivity cases, respectively. 

An Application Example for Two-Point Connectivity Information 

To illustrate the application of the BME method, here we consider an example of 
generating geological facies in two dimensions (details of the computational 
procedure can be found in Appendix 6.A). Suppose we know the means and 
covariance at points 1 and 2, &d we want to estimate the facies value at the 
point 0 as shown in Fig. 16.1. 

Fig. 6.1 Location of Sampled and Unsampled Points for the Example 

In this example, we assume that we have seismic data, which provides us with local 
probability density function. That is, given a seismic attribute value, we 
assume that the probability of individual facies is known. This is a prior 
probability information, which is location dependent or non-stationary. We 
estimate the posterior probability density function using the spatial 
relationships as an additional information. Following the procedure derived 
in Appendix 6.A, the computational procedure is as follows: 

Let E[K]=O, assume that the covariance is only the function of distance. From Eq. 6.A.37 
of Appendix 6.A, we construct the fol1.owing matrix: 

(6.16) 

Inverting the matrix in Eq. 6.16, we obtain 

250 



X 
1 B =  

[c(0)-c(2a)][2c(a)2 -c(o)2 -c(O)c(2a>] 

c ( 2 ~ ) ~  - c ( O ) ~  c(O)c(a) -c(2a)c(a) c(O)c(a)-c(2a)c(a) (6.17) 
c(O)c(a) -c(2a)c(a) C ( a ) 2  -c(o)2 c(O)c(2a) -c(a)2 
c(O)c(a) - c(2a)c(a) c(O)c(2a) - C(a)2 C(a)2 -c(o)2 

The entries of the matrix in Eq. 6.17 correspond to the negative of the LaGrange 
multipliers (see Eq 6.A. 1 1). Thus, using Eq. 6.A.41, we have 

(6.18) 

Using the procedure as described in Appendix 6.A, we compared the results of facies 
description under different conditions. In this case, we assumed that we had 
seismic data available at each location that provided us with prior 
probability of facies. We also assumed that we had actual facies information 
at limited number of wells. Fig. 6.2 shows the geological facies description 
using simple kriging method. In this figure, we assumed that only well data 
are available. Fig. 6.3 shows the geological description using only seismic 
attribute information. Fig. 6.4 shows the geological facies description using 
the well data as well as the seismic information using the procedure 
described in Appendix 6.A. As can be seen, there is a significant 
improvement in the geological description by incorporating the seismic data. 
Although not obvious, incorporation of both seismic and well data matches 
with the reference data set much better as compared to using only seismic or 
well data. 

25 1 



Fig. 6.2 Facies Distribution Estimated by Well Data 

Fig. 5.3 Facies ~ i s t ~ i ~ i u t i o n  Estimated by Seismic Data 
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Fig. 6.4 Facies Distribution Estimated by Using Both Well and Seismic Data 

High Order Moments 

As we noted before, the advantage of the BME procedure is to consider multi-point 
connectivity information. The use of multi-point connectivity information in the area of 
geostatistics is new and practically no idormation about the modeling of high order 
moments is available. The correct usage of multi-point connectivity fbnctions is restricted 
to computation of probabilities of various configurations based on training or a reference 
image. Since the number of combinations increase very rapidly as the number of points 
increase, the method is typically restricted to 3 or 4 nearest neighbors. This type of 
connectivity, however, is difficult to implement in practice because training image is 
rarely available. Instead, we wanted to develop a procedure that can capture multi-point 
connectivity based on well data or seismic data. Therefore, we devoted some of this study 
to modeling high order moments. 

The basic advantages of multi-point connectivity knctions are the following: 

1) They provide flexibility in defining dis-jointed connectivity 
2) They can be used with limited data using lag tolerance 
3) Direction dependence can be incorporated 
4) Connectivity between different facies can be integrated 

The multi-point connectivity knctions can be defined similar to the conventional 
two-point connectivity functions. The multi-point histogram representing the multi-point 
probability function, for example, is defined as follows: 
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(6.19) 

Similarly, the multivariance is defined by 

(6.20) 

For example, the tri-variance can be d.efined as follows 

(6.2 1) 

We have used these definitions of multi-point connectivity functions for the 
training image shown in Fig. 6.5. This image represents probability of Facies 1 based on 
seismic data. 1 indicates 100% probability that Facies 1 is present. 0 indicates 100% 
probability that Facies 1 is absent. A value in between indicates probability of that facies 
being present. Figs. 6.6 and 6.7 show the tri-variance and quadri-variance functions for 
this image, respectively. As can be seen from these figures, multi-point connectivity 
functions display similar characteristics as two-point connectivity functions at a higher 
dimension. 

The functions are well behaved and are consistent with an intuitive understanding 
of connectivities. For example, at a given lag distance between two points, as the distance 
of the third point increases, the inulti-variance is reduced indicating diminishing 
relationship. Beyond the range of correlation, the multi-variance is zero indicating 
uncorrelated nature. This range is the: same as observed for two-point connectivity. This 
is consistent with the idea that if two points are uncorrelated beyond certain lag distance, 
three points will also be uncorrelated beyond that distance. Also observed is that the 
initial value of multi-variance is smaller as the distance between the first two points 
decreases. This is expected since with increasing distance, the relationship between these 
points should weaken indicating a smaller value of multi-variance. 

In practice, the data usually come from the well information. In this case, it is 
very convenient to have appropriate. models to represent the multi-point connectivity 
functions such as the ones shown i n  Figs. 6.6 and 6.7. We have tried the spherical, 
exponential, and Gaussian models for the quadri-variance functions shown in Fig. 6.7 and 
have presented the results in Figs. 6.8-6.10, respectively. The spherical and exponential 
models match the actual functions fairly well. To be used in practical applications, 
however, both models will require more improvements. 
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Fig. 6.5 The Training Image 
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Fig. 6.6 Example of Tri-Variance 

255 



0.06 

hl=0 N=O \ 

0 2 4 6 8 10 12 14 16 18 20 

Fig. 6.7 Example of Quadri-Variance 
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Fig. 6.8 Spherical Motlei for Quadri-Variance Function 
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Fig. 6.9 Exponential Model for Quadri-Variance Function 
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Fig. 6.10 Gaussian Model for Quadri-Variance Function 

A Nonlinear Estimation Procedure 

In this project, we have concentrated on defining the complex constraints that 
would provide a better description of the reservoir geology. We have investigated the 
high order moment methods and developed a semi-analytical method to incorporate 
multi-point connectivity information as opposed to the conventional two-point 
connectivity information. Here, we present a method that uses the fourth moments in 
describing the reservoir architecture. Although this method is useful in itself, it will also 
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provide the check for the numerical BME method we developed before and will help 
better understand the type, quality, and the quantity of the data required to describe the 
complex constraints based on multi-point connectivity information. 

The Fourth Moment 

The conventional methods use: two-point connectivity information to describe the 
reservoir architecture. Our objective here is to investigate the possibility of incorporating 
multi-point connectivity information. in reservoir architecture modeling. High order 
moments have been used in the literature to incorporate multi-point connectivity 
information (see, for example, Stuart and Ord, 1987). In the general framework of 
moments, two-point connectivity information corresponds to the second moment. Below 
we use the fourth moment. 

The property of the fourth moment can be described by the following expression: 

M4(X - Y ) = M 4 ( X ) + M 4 ( Y ) - 4 M x 3 ,  +6MX2y2 -4Mxy3 (6.22) 
where 

We will use the preceding property of the fourth moments in the estimation of the 
unknown value of XO from the known values of XI 3 2 , .  . . J,,. 

(6.23) 
i=l 

This equation is similar to conventioiial kriging equation. In this equation, we assume 
that the estimated value at the unsampled location is linearly related to nearby samples. 
The fourth moments of the difference between the true value, XO, and the estimated value, 
X ,  is: 

A 



(6.24) 
where 

or 
(6.25) 

(6.26) 

The solution of Eq. 6.26 provides the coefficients hi for i=l ,2,. . . ,n. Then, the estimated 
value of X o  can be obtained from Eq. 6.23. Note that Eq. 6.26 is a nonlinear equation 
and an iterative procedure is required to solve it. We have used Newton’s method to solve 
Eq. 6.26. The details of the iterative solution by Newton’s method are presented in 
Appendix 6.C. It must be emphasized that because we use multi-point connectivity 
information (higher order moments), the results estimated. by this procedure should be 
better then those obtained by the procedures that use two-point connectivity information. 
A manual for the computer program, describing the procedure, is included in Appendix 
6.D. 

A 
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Application Examples for Four-Poinit Connectivity Information 

Here we consider examples of generating geological facies in two dimensions by 
using the nonlinear regression method described above. For the first example, we use the 
training image shown in Fig. 6.5 and rhe four point connectivity hct ions shown in Fig. 
6.7. 
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Fig. 6.11 - Comparison of Nonlinear Regression and Kriging Results; First 
Exaimple, 200 points 
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Fig. 6.12 - Comparison of Nonlinear Regression and Kriging Results; First 
Example, 50 points 

To generate the images shown in Fig. 6.11, we used 200 sample points. Comparison of 
the image obtained by using the nonlinear regression method (Fig. 6.11) 
with the training image (Fig. 6.5) shows the ability of the proposed method 
to determine the reservoir architecture. For comparison, Fig. 6.11 also 
shows the image obtained by using the kriging procedure. The differences 
between the two images shown in Fig. 6.11 are indistinguishable for all 
practical purposes. We have, however, found that as the number of sample 
points decreases, the differences between the nonlinear regression and 
kriging results become noticeable. As an example, in Fig. 6.12, we compare 
the images obtained by nonlinear regression and kriging techniques by using 
50 sample points. Here, the nonlinear regression method creates a better 
image and proves the advantage using higher order estimation methods. 
Especially notice the differences at central-west and northeast parts of the 
reservoir. It should be noted at this point that the nonlinear regression 
procedure suggested here is fast and accurate. Therefore, it can always be 
preferred to the kriging method. 

For the second example, we use the training image shown in Fig. 6.13. Fig. 6.14 shows 
the estimates by using the kriging and nonlinear regression methods. It is 
clear that neither method provides a completely satisfactory image. In Fig. 
6.15, we show the difference between the training image and the estimates 
by the two procedures. Based on the training image, on these figures, we 
have marked the regions with 100% probability of the facies. These figures 
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Fig. 6.13 - Training Image for the Second Example 

Kriging Regression 

. I  , .  . .  
0 10 20 3 4 0 10 2 0  30 40 
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0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0  

Fig. 6.14 - Comparison of Nonlinear Regression and Kriging Results; Second 
Example, 50 points 
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Kriging Regression 

. O  1 0 2 0 3 0 4 0  0 1 0 2 0 3 0 4 0  
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0 . 0 0 . 2 0 . 4  0 . 6 0 . 8 1 . 0  

Fig. 6.15 - Differences Between the Training Image and the Estimates by the Two 
Methods; Second Example, 50 points 

Conclusions 

Based on the work presented in this report, following conclusions can be 
drawn: 

0 To properly capture geological features, it is critical that multi-point connectivity 
fbnctions be properly represented. 

0 BME method has a desired flexibility to incorporate the multi-point connectivity 
functions. However, because the procedure is numerical, it is difficult to use in 
practice. 
A new regression procedure, which incorporates multi-point connectivity functions, is 
introduced. The method is robust and flexible enough to apply in practice. In general, 
it provides as good or better results than conventional kriging procedure. However, 
the method needs to be tested further under different conditions to validate it fbrther. 

0 
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APPENDIX A 

BME Approach 

In BME approach, the estimated value K(u0) is the solution of the equation 

(6.A. 1) 

where the joint probability density function is defined as: 

and the LaGrange multipliers pq q = O,l, ..., Q can be obtained by solving 

or 

(6.A.3) 

where 84 are the constraints imposed on the estimation equation. Depending on the types 
of constraints imposed, Eq. 6.A.3 can be solved analytically. If we know the means 
a K ( u i ) ] = m ( u i )  and the covariance c k ( u i , u i ) ,  we can use following constraint 
conditions to estimate the indicator K value of unknown point m. The constraints are: 

go =1 
g,+1 = K(uJ q = 0,1,2,..-,n 

g,+l = (K(Q)  - m(q))(K(uj) -m(uj)) 4 = IZ + 1, n + 2,. . . ,(IZ + l)(n + 4)/2 -1 
(2n + 2 -i)(i+l)  

i,j=O,1,2 ,... ,n q =  + j  2 

(6.A.4) ’ 
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(6.A.5) 

i,j=o,1,2 ,..., n 

The probability density function is : 

(2n+2-i)(i+l) 
+ j  2 4 =  

n r n  n 

(6.A.6) 

We need to solve the following (n+l)(n+4)/2 integral equations to get the 
LaGrange multipliers pq q = O,l,.. ., (n + l)(n + 4) / 2 

dK(uo)dK(ul) ... dK(u,)  = 1 
(6.A.7) 

dK (UO)dK(Ul). . .dK (u,) = m(uq) 
q = 071,2, ..., n 

(6.A.8) 

I = 071,2, ..., n 
k = 1,1+ l,..,n 

(6.A.9) 
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Eqs. 6.A.7 - 6.A.9 can be solved, analytically to get the LaGrange multipliers 
pq q = OJ,..., (n + l)(n + 4) / 2 . 

We can write the probability density function fk ( K ( u o ) ,  K(u1),..., K ( u n ) )  in a 
matrix form. 

m =  

1 1 
A 

= -exp[-(-;;-(K - m)T B(K - m)) + K * p  + PO)] 
L 

P =  

(6.A. 10) 

-I 

(6.A. 1 1) 

i=O,l ,  ..., n. j = i , i + l ,  ..., n 
Pc = P q  (2n + 1 - i) 

4 =  + j  

Eqs. 6.A.7 - 6.A.9 can be rewritten in matrix form as: 

1 
2 

j[-.. f exp[-(- (K - m)* B(K - m) + K * p + pO)]dK = 1 (6.A. 12) 1 
A 

I, =- 
m+l times 

1 1 
2 

I, = 7 J/ ... / K(u,) exp[-(- (K -m)T B(K -m)+ K T p  +pO)]dK = m(uq)  
m+l times 

q = 0,1,2,..., n 
(6.A.13) 
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1 
2 

exp[-(-(K -m)TB’(K -m) + K T p  + pO)]dK = c(uI,uk) 

I = 0,1,2 ,..., n 
k = l,Z + I.,..,n 

(6.A. 14) 

For the multiple integral equations such as Eqs. 6.A.12 -6.A.14, we have the following 
general analytical solutions 

Let 
symmetric matrix of constants; let B be a positive definite matrix of constants. We get : 

and bo be scalar constants; Let a and b be a vector of constants; let D be an n x n 

(6.A. 15) 

Let X=K-m. From Eq. 6.A.12 , we have 

1 .  
2 

A = [[... exp[-(-((.E( -mfB(K -m) + K T p  +po)JmC 
n+l times 

From Eq. 6.A.13, we have 

1 -  
A 

11 := -11 = rn(uq) 

(6.A. 16) 

(6.A. 17) 

where 

1 - 
11 = jf. .. f K(uq)exp[-(--(K -m)* B(K -m) + K T p  + po)]dK 

m+l times 2 (6.A. 18) 
q = 0,1,2,..., n 

Let X=K-m. From Eq. 6.A.18, we have 
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T 1 - 
I - e-p I[..- 

=Ill +I12 

(Xp + m(u,))exp[-(-XTBX + XTp + po)]dX 
2 (6.A. 19) 

1 -  
m+l times - -  

where 

T 1 - 
= e-p JJ... J X, exp[-(,xTBx + xTp + p o ) ~ x  

m+l times (6.A.20) 

T 1 
2 

- 
I,, = e-p [j. .. m(u,)exp[-(-XTBX + XTp + p0)IdX (6.A.21) 

m+l times 

Note from Eq. 6.A. 16 

(6.A.22) 

We also obtain 

1-1 I 2 

where 
(6.A.23) 

Thus we can write 

T f  1 T 1  
- - -  
II = Il + I,, = -[-p (TB)-'a]A + m(u,)A = [$-p (TB)-la] + m(u,)]A = m(u,)A) 

2 
(6.A.25) 

or 
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From Eq. 6.A.26 , we obtain: 

Pq = o  

(6.A.26) 

Fur q = 1,2, ..., n + 1 
For I2 , we have 

(6.A.27) 

(6.A.28) 

where 

Let X=K-m, we obtain: 

where 

D=[dij=l for k l  and j=k, dij=O otherwise ] 

Thus we have 

(6.A.30) 

(6.A.3 1) 

(6.A.32) 

So we get: 

(6.A.33) 

Assume 

(6.A.34) 

From Eq- 6.A.33, we have 
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tr( DB-')=bkl (6.A.35) 
or 

We obtain: 

bkl=c(u1,ud (6.A.36) 

(6.A.37) 

By inverting the matrix in the Eq. 6.A.37, we can get the value of LaGrange multipliers 
Pij - 

(6.A.38) 

where C is a constant. 

BME method requires 

By combining Equations.A.37 and A.38, we get 

(6.A.40) 

The estimated value of unknown point ~0 is: 
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(6.A.41) 

Multi-Facies Case 

The above set of equations can be generalized for a multi-facies case where we can also 
account for inter relationships among the facies. This is accomplished through cross- 
covariance’s. In the multi-facies case, if we know the mean, covariance and cross 
covariance , we can estimate the facies at the unknown points by a similar procedure. The 
solution is analytical. 

Suppose we have d kinds of facies. Th.e constraints are: 

and 

(2n +2 - i)(i + 2) 
i,j=O,l, 2...p l,k= l,2,...4 q= + j  

L 

(61A.42) 

(2n + 2 - i)(i + 1) 
2 i ,j=07 lJ,...,n 17k= l,2,...d q= + j  

(6.A.43) 

The probability density function is: 

(6.A.44) 

where 
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K l  
K2 

.K d 

rBll B12 - * 

B21 B22 - - B2d 
B =  . . .  

. .  
-Bdl B d 2  - - Bdd 

B ~ = B  

Pl = 

m l  
m2 

md 

1 = 1,2, ..., d 

P =  

- P1 
- P2 

.- P d  

(6.A. 45) 

Jsing similar steps as a single facies case, we c-tain 

(6.A.46) 

where 
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(6.A.48) 

By inverting the Eq. 6.A.48, we can obtain the LaGrange multipliers p&j, l,k=1,2,..,d 
and ij=O,l, .... n 

The probability density function for multi-facies case is given by: 

To estimate the 1 facies Kl (ug) ,1=1,2,. , .,d . we use the equation 

By combining Eqs. 6.A.49 and 6.A.50, we get 
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(6.A.49) 

(6.A.50) 



or 

(6.A.51) 

Thus, the estimated value of facies 1 at the unknown point uo is': 

(6.A.52) 

APPENDIX B 

BME Approach for Multi-Point Connectivity 

For multi-point connectivity case, the analytical solution of Eqs. 6.A.12 - 6.A.14 is not 
possible. Therefore, a numerical algorithm is needed to compute the Lagrange multipliers 
required by the application of Bayesian/Maximum Entropy (BME) procedure. The 
algorithm we have developed includes two crucial elements: i) a convergent and stable 
iterative solution procedure for the Lagrange multipliers and ii) an efficient and accurate 
numerical integration procedure to compute multiple integrals. We have tested the 
Newton-Raphson iteration procedure and determined that this procedure is stable and 
convergent if a sufficient degree of accuracy can be attained in the numerical evaluation 
of multiple integrals. We have also compared various numerical integration procedures 
and convinced ourselves that integration by using Chebyshev polynomials would yield 
accurate results for our applications. Below, we present the specific details of the 
iteration procedure and document some results to demonstrate the validity of our 
numerical approach. 

Numerical Solution Procedure for BME Method 
' Our computational scheme for the LaGrange multipliers involves an iterative solution 

that is accomplished by the Newton-Raphson procedure. The application of the Newton- 
Raphson iterative procedure is summarized below: 

The probability density function is given by, 
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(6.B. 1) 



where pg are the LaGrange mu1tiplie.t-s and A is given by (the normalization constraint), 

To obtain the LaGrange multip:liers, p Y ,  for a given set of covariances, 
c& = c(s[, s k  ) , we need to solve the following set of equations, 

for l , k = 1 , 2  ,... n. (6.B.3) 

Combining Eqs. 6.B.2 and 6.B.4 and rearranging, we can write, 

for l,k=1,2 ,... n.  

The set of equations given in Eq. tj.B.4 can be solved for pG ,i, j = 1,2,. . .n by the 
Newton-Raphson iteration procedure. For convenience, let us define 

i = 1, -..n ~i (P) = [ g i l  (P), tg j2 (PX . - *  9 g i n  b)IT (6.B.5) 

pi = b i l , ~ j 2 , - - - 7 p j n ]  i = ~ . - - n  (6.B .6) 

Then, we can write Eq. 6.B.4 as, 

G ( p ) =  '(p), G 2  (p), 9 Gn b)]= (6.B.8) 

Let, 

(6.B.9) k k  p k + l  = p  +6 

where 6k is the solution of, 

+(pk bk = -G(uk) (6.B. 10) 
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with the matrix 4(p) defined as, 

(6.B.11) 

For a given set of covariances, Clk =C(S~,S~), starting with an initial guess 

p o  = b: ,pz ,  ... ,pf 1, we solve Eq. 6.B.10 for S k  . We update p k  by using Eq. 6.B.9 
until max{S> I TOL , where TOL is a sufficiently small number. 

We have coded the iterative computation algorithm and tested for convergence and 
stability. Our findings can be summarized as follows: 

i) The Newton-Raphson iteration procedure can be used to compute the Lagrange 
multipliers required by the BME approach. 

ii) The algorithm is always convergent for small initial guesses (in the order of 10" or 
less). 

iii) The key to the success of the iteration procedure is the accuracy of the numerical 
evaluation of multiple integrals. 

As explained above, the integrals we need to evaluate have the following form: 

+oo* +co 

I =  j... J f ( x 1 , x 2  ,..., x,)dx, ,  dxp..dX, (6.B. 1 2) 

We have found that the following relation leads to the transformation of the improper 
integral in Eq. 6.B.12 to a computationally efficient form: 

+a, 

I i  = Jf(x1 , x 2  ,... ,xi ,... , x ,  )dxi 
--a3 

dti 1 
= Jcf(x1 , x2 ,.. . , -tn ti,. . . , x,)+ f(x1 , ~ 2 ,  ..- ,--tn t i ,  .. . , x,)]- 

0 ti 

(6.B.13) 

Note that the integral in Eq. 6.B.13 has an integrable singularity at the lower limit and 
can be numerically evaluated by using procedures that avoid the evaluation of the 
integrand at the end points. We have tried Simpson's rule with open formulas, Romberg 
integration, and integration by using Chebyshev polynomials. Our results indicate that 
Chebyshev polynomials are the most efficient numerical integration procedure for our 
purposes. 

. 

To demonstrate the success of our numerical solution algorithm, below we present 
some results. In all the examples, we use bivariate distributions to be able to compare our 
results with those obtained by the analytical procedure. 
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Examples 

We now present some numerical resdts to demonstrate the accuracy of our procedure. In 
each example, for a given set of covariances, Clk = C(Sl , S k  ), we compute the 
LaGrange multipliers, p i j .  The initial guesses for the Lagrange multipliers to start the 
iteration process and the correct values of LaGrange multipliers computed by using the 
analytical (kriging) technique are noted in the examples for comparison purposes. CPU 
times for the computations are also provided. We use TOL = lo4 to terminate the 
iterations in all examples. 

Example I: 2-Data Points 

-0.05 0.03 
0.03 -0.05 

Initial guess for Lagrange multipliers, p: = 

- 0.666648 0.333333 
Estimated values of Lagrange multipliers, pij  

0.333333 -0.666648 

- 0.666667 0.333333 
0.333333 - 0.666667 

Correct values of Lagrange multipliers, pij  = 

Total CPU time: 0 hours, 0 minutes, 6 seconds. 

ExumpZe 2A: 3-Data Points 

1.0 0.8 0.8 
Covariences, c ( s ~ , s ~  )= 

0.5 0.5 1.0 

[;o; 0.2 0.2 ] 
Initial guess for Lagrange multipliers, pij = -0.5 -0.1 

0.2 -0.1 -0.5 

1 -3.40905 1.81817 1.81817 
Estimated values of Lagrange multipliers, p;+' = 1.8 18 17 - 1.63634 - 0.63634 

1.81817 -1.63634 -1.63634 
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- 3.409091 1.8 18 182 1.81 81 82 

1.818182 -0.636364 -1.636364 
Correct values of Lagrange multipliers, 1.8 18 182 - 1.636364 - 0.636364 

Total CPU time: 0 hours, 15 minutes, 2 seconds. 

Example 2B: 3-Data Points 

1.0 0.8 0.8 
Covariences, C(S~,S~ )= 0.8 1.0 0.5 i 0.5 0.5 1.0 I 
Initid guess for Lagrange multipliers, ,uv -1.5 -0.5 

-0.5 -1.5 

1 -3.40905 1.81817 1.81817 
Estimated values of Lagrange multipliers, ,ut+' 1.8 18 17 - 1.63634 - 0.63634 

1.81817 -1.63634 -1.63634 

-3.409091 1.818182 1.818182 
Correct values of Lagrange multipliers, pG 1.8 18 182 - 1.636364 - 0.636364 

1.8 18 182 - 0.636364 - 1.636364 

Total CPU time: 0 hours, 8 minutes, 2 seconds. 

Example 3: 4-Data Points 

(1.0 0.9 0.7 0.8' 
0.9 1.0 0.5 0.6 
0.7 0.5 1.0 0.8 

Covariences, c(sl,sk )= 

(0.8 0.6 0.8 1.0 

(-6.3 4.1 0.8 1.9 ' 

4.1 -3.4 -0.5 -0.8 
0.8 -0.5 -1.5 0.8 

Initial guess for Lagrange multipliers, pG 

( 1.9 -0.8 
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(-6.38842 4.1661 1 0.833329 1.94442 
k+l - 4.1661 1 - 3.49952 - 0.499997 - 0.83332 

0.833329 - 0.499997 - 1.49997 0.83332 
Estimated values of Lagrange multipliers, pij - 

( 1.94442 - 0.833322 0.83332 - 2.2221t 

(-6.388886 4.166664 0.833333 1.944444 1 
4.166664 - 3.499998 - 0.500000 - 0.833333 
0.833333 - 0.5OOOOO - 1.5OOO00 0.833334 

Correct values of Lagrange multipliers, pG = 

( 1.944444 - 0.833333 0.833333 - 2.222222) 

Total CPU time: 4 hours, 57 minutes, 43 seconds. 

The examples presented above clearly show the stability and accuracy of the 
computational algorithm we have developed. The computational time increases as the 
number of data points increases. Examples 2A and 2B indicate, as expected, that the 
closer the initial guesses are to the coirrect values the shorter the computational time. It is 
clear that the computational time is largely owing to the numerical evaluation of multiple 
integrals. 
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APPENDIX C 

Iterative Solution for Nonlinear Regression Procedure 

Here we briefly describe the iterative solution of Eq. 6.26 by using Newton's 
method. Let us, for convenience, define the following: 

where 

j=l k=l I=1 j=l k=l j=1 
for i= 1,2,. . . ,n 

and 

Let, 

where ak is the solution of, 

,Cz"bk=-f&) 
with the matrix @(A) defined as, 

,(A)=[ @5(4] i ,m=l ,  ... n 

The entries of the matrix +(A) are given by 

(6.C. 1 )  

(6.C.2) 

(6.C.3) 

(6.C .4) 

(6.C.5) 

(6.C.6) 

(6.C.7) 

0 0  For a given set of M ijkr values, starting with an initial guess Ao = bl , 4 , . . . , A: 1, we solve 

Eq. 6.C.6 for 6k . We update Ak by using Eq. 6.C.4 until max{J}l TOL, where TOL is 
a sufficiently small number. We have observed that the initial guess of 2''s can be 
obtained either based on kriging estimates or starting with very small values. The 
convergence is always fast. 

28 1 





Appendix .D 
User Manual for forth moments estimate 

1. CalForthMoment 

Calculate the forth moments by input indicator values. 
Input file format, 
X Y Indicator 

For example, 
1 1 0 
1 2 1 
5 10 0.7 

Output file format, 
h l  h2 h3 Forth Moments 

where hl ,  h2 and h3 are the lag distance. 

For example, 
0 1 12 0.00753541 
5 1 13 0.00565549 
0 7 14 0.00403898 

2. ForthEstimate 

This program solve the non linear equations and get the forth moments estimation by 
using Newton method. We use the solution of Kriging estimate as the initial guess of the 
non-linear equations. The input data are forth moments, data point to be estimated, 
sample points and covariance. The output'is estimated values of the forth moments. 

Input data file format, 
Forth Moments 
h l  h2 h3 moments 

data points 
X Y 

sample points 
X Y indicator 

covariance 
h covariance 
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Output file format, 
X Y indicator 

3. KrigingEstimate 

Estimate indicators by using simply Kriging. Input covariance and data points to be 
estimated. Output estimated values. 

Input data format, 
covariance 
h covariance 

data points 
X Y 

Output file format, 
X Y 

4. 

indicator 

Other Programs 

Covariance: calculate covariance. 

Lu: solve linear equations. 
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