
.- . 

APPENDIX 3 

MEASUREMENTS OF GRANULAR FLOW DYNAMICS 
WITH HIGH SPEED DIGITAL IMAGES 

JINGEOL LEE 

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL 
OF THE UNIWRSITY OF FLORIDA IN PARTIAL FULmLLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 
DOCTOR OF PHILOSOPHY 

. 
UNIVERSITY OF FLORIDA 

1994 



Appendix 3: Lee (1994) Ph.D. Thesis 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, proccss, or service by trade name, trademark, manufac- 
turer, or otherwise dots not necessarily constitute or imply its endorsement, ream-  
mendation. or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect t h w  of the United States Government or any agency thereof. 



ACKNOWLEDGMENTS 

The author would like to gratefully acknowledge his advisor and supervisory com- 

mittee chairman, Dr. Jose C. Principe, for his advice and encouragement during the course 

of graduate studies. 

The author would like to express his deep appreciation to Dr. Daniel M. Hanes for 

his guidance and support in the course of this work. He is also grateful to Dr. John M. M. 

Anderson for helpful discussions and suggestions. 

The author is also greatly indebted to the other members of his supervisory com- 

mittee, Dr. Fred J. Taylor and Dr. Robert J. Thieke. 

The author would like to thank all the members who have worked together in 

Granular Flow Laboratory. In particular, thanks are due to a good friend, David Larocca, 

for his help in laboratory experiments. He also thanks John Fisher for helpful discussion 

about MACE filter. 

Finally, the author would like to thank his wife for her support and patience 

throughout these difficult years. 

ii 



TABLE OF CONTENTS 

1 

2 

3 

4 

5 

DaRe 

ACKNOWLEDGMENTS ............................................... ii 

ABSTRACT ........................................................... v 

CHAPTERS 

INTRODUCTION ............................................... 1 

VELOCITY MEASUREMENT OF FLOWING GLASS PARTICLES ...... 7 

Review of Major Current Approaches to Image Motion .................. 7 
Variance Normalized Correlation ................................... 13 

22 Validations of the Correlation for Velocity Measurement ................ 
VELOCITY MEASUREMENT OF FLOWING ACRYLIC PARTICLES ... 29 

Locating Particles in Images ....................................... 30 
PointCorrespondence ............................................ 53 

59 Experiments of Point Correspondence using the Hopfield Network ........ 

APPLICATION TO FLOW DOWN AN INCLINED CWTE ............. 69 

Experimental Results ............................................ 69 
Theoretical Model of Granular Flow down Bumpy Inclines .............. 84 
Discussion ..................................................... 89 

CONCLUSIONS ............................................... 92 

iii 



APPENDICES 

A DESCRIPTION OF IMAGING SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

B DESCRIPTION OF DEVELOPED PROGRAMS . . . . . . . . . . . . . . . . . . . .  97 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i00 

BIOGRAPHICALSKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103 



Abstract of Dissertation Presented to the Graduate School 
of the University of Florida in Partial Fulfillment of the 
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WITH HIGH SPEED DIGITAL IMAGES 

BY 

JINGEOL LEE 

December, 1994 

Chairman: Dr. Jose C. Principe 
Major Department: Electrical Engineering 

The flow of granular materials is common to many industrial processes. This dis- 

sertation suggests and validates image processing algorithms applied to high speed digital 

images to measure the dynamics (velocity, temperature and volume fraction) of dry granu- 

lar solids flowing down an inclined chute under the action of gravity. Glass and acrylic 

particles have been used as granular solids in our experiment. 

One technique utilizes block matching for spatially averaged velocity measure- 

ments of the glass particles. This technique is compared with the velocity measurement 

using a optic probe which is a conventional granular flow velocity measurement device. 

The other technique for measuring the velocities of individual acrylic particles is 

developed with correspondence using a Hopfield network. This technique first locates the 

positions of particles with pattern recognition techniques, followed by a clustering tech- 

nique, which produces point patterns. Then, correspondence between successive point pat- 

V 



terns is solved by a Hopfield network for the velocity measurements of individual 

particles. The velocity measurements are refined to the subpixel resolution by the variance 

normalized correlation with interpolation in both glass and acrylic particles. Also, several 

techniques are compared for particle recognition: synthetic discriminant function (SDF), 

minimum average correlation energy (MACE) filter, modified minimum average correla- 

tion energy (MMACE) filter and variance normalized correlation. We propose an 

MMACE filter which improves generalization of the MACE filter by adjusting the amount 

of averaged spectrum of training images in the spectrum whitening stages of the MACE 

filter. 

Variance normalized correlation is applied to measure the velocity and temperature 

of flowing glass particles down the inclined chute. The measurements are taken for the 

steady and wavy flow and qualitatively compared with a theoretical model of granular 

flow. Also, the volume fraction measurement of flowing acrylic particles is taken and 

methodologically compared with the Drake’s manual measurement. 
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CHAPTER 1 
INTRODUCTION 

‘A granular material is a collection of a large number of discrete solid particles’ 

(Campbell 1990 p. 57). Gravity driven granular flows down inclined surfaces occur in geo- 

physical flows such as snow avalanches and rock landslides and in various industrial situa- 

tions such as coal and mineral processing and many chemical and pharmaceutical 

industries. The interstices between the particles in the granular materials are filled with a 

fluid such as air or water, which means that a granular flow is multiphase process. How- 

ever, if the particles are closely packed, the particles alone will play dominant role in 

momentum transport within the material, in which interstitial fluid effects are negligible. 

A granular material may behave as either an elastic solid or a fluid depending on 

the local stress conditions. A granular material can support the large loads of building 

foundations with its elastic solid behavior, in which much of the load is supported across 

frictional bonds between particles. A granular material begins to flow when enough of 

bonds have been overcome. The initial faiIure will show many-particle blocks moving rel- 

ative to one another along shear bands that roughly follow stress characteristics through 

the material. Particles will stay in contact and interact frictionally with their neighbors 

over long periods of time if the motion occurs slowly. This is the quasi-static regime of the 

granular flow. 
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The other extreme is the rapid-flow regime, which, as the name implies, is high- 

speed flows far beyond the initial failure. Each particle moves freely and independently of 

even its nearest neighbors instead of moving in many-particle blocks. This rapid-flow 

regime evolves naturally from the quasi-static regime if the motion is rapid enough to 

transfer enough energy to the particles that neighbor the slip lines to break them free of 

their parent blocks; in this way the slip regions grow until every particle in the granular 

material is moving independently. In the rapid-flow regime, the velocity of each particle 

may be composed of the mean velocity of the bulk material and an apparently random 

component to describe the motion of the particle relative to the mean. Due to the strong 

analogy between the random motion of the granular particles and the thermal motion of 

molecules in the kinetic-theory picture of gas, the mean square value of the random veloc- 

ity is commonly referred to as the granular temperature or simply temperature. The granu- 

lar temperature is defined as T = - ( ( u t 2 ) +  (v t2 )+  ( w ' ~ ) )  where u', v', w' are 

instantaneous velocity fluctuations, and ( } represents an appropriate average. Thus, T 

represents the energy per unit mass contained in the random motions of the particles. 

1 
3 

The generation of the granular temperature can be attributed to the two mecha- 

nisms. The first mechanism is described by interparticle collisions. When two particles 

collide, their resultant velocities will depend on their initial velocities, the angle at which 

two particles collide, the surface friction at the point of contact, and other factors that may 

affect the geometry of collision impulse. Thus, even though the particles initially move 

with the mean velocities according to their positions within the velocity field, their result- 

ant velocities will contain apparently random velocity components. It is noticeable that the 

magnitude of the random velocities generated in this mode will be proportional to the rel- 
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ative velocities of the particles at the time of impact and hence must, in an averaged sense, 

be proportional to the mean velocity gradient within the material. The second mechanism 

is described by the random particle velocities. A particle moving parallel to the local 

velocity gradient will pick up an apparently random velocity that is roughly equal to the 

difference in the mean velocity between its present location and the point of its last colli- 

sion. The magnitude of the random velocities generated in this mode will also be propor- 

tional to the local velocity gradient. However, unlike the collisional temperature 

generation, this streaming mechanism can only generate one component of random veloc- 

ity which lies in the direction perpendicular to the mean velocity gradient. Consequently, 

the temperature generated in this mode will be anisotropic with its largest component in 

the direction of mean motion. Collisional temperature generation will dominate at dense 

particle packings when particles can not move far between collisions, and streaming tem- 

perature generation will dominate at loose particle packings when collisions are infre- 

quent. The granular temperature is perhaps the single most important characteristic for 

understanding the behavior of rapid granular flows. 

The source of all the energy is the work done on the granular material from the 

outside, either by body forces such as gravity or through the motion of the system bound- 

aries. Shear work (the product of the shear stress and the velocity gradient) performed on 

the granular material converts some of the kinetic energy of the mean motion into granular 

temperature. On the other hand, the granular temperatureis dissipated into real thermody- 

namic heat by the inelastic collisions. Thus, the balance between the temperature genera- 

tion by shear work and its dissipation by collisional inelasticity determines the magnitude 

of the granular temperature. 
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, While the above describes the global energy path through the granular system, the 

magnitude of the granular temperature in neighboring area may affect the local value. This 

is a conduction-like process and analogous to the thermodynamic conduction in a gas. As 

a particle follows its random path through the material, it carries its random kinetic energy 

with it. When two particles collide, they exchange some of their random kinetic energy, 

which results in a diffusion of granular temperature through the material. As its thermody- 

namic counterpart, granular temperature will be conducted along its gradients. 

The capability to predict the flow behavior of dry granular solids and multiphase 

flow with solid components would provide a basis for the improvement of solids process- 

ing plant efficiency. Theoretical and experimental studies of flowing granular material 

behaviors were performed in the last two decades (Savage 1979; Jenkins and Savage 1983; 

Hanes and Inman 1985; Johnson et al. 1990; Drake 1991). The studies addressed are the 

flow depth, the profiles of volume fraction, the velocity and the fluctuating velocity (tem- 

perature) versus inclination, flow rate, and position along the chute. One of the challenges 

in experimental studies is that there are no standard means of measuring the local velocity 

of granular materials. Savage (1979) used fiber optic probes to measure the local time 

averaged velocity of flowing spherical polystyrene beads. Patrose and Caram (1982) and 

McCardle (1993) also used fiber optic probes to measure the local time averaged velocity 

and local concentration of flowing glass particles. Drake (1991) manually analyzed 

images on film to measure the velocities and spins of individual cellulose acetate spheres. 

Xie et al. (1989) employed a charge transducer to measure the velocity and a capacitance 

transducer to measure the volumetric concentration of flowing fine silicate sand and 

polypropylene plastic granules. 
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The objective of this dissertation is to suggest and validate image processing algo- 

rithms applied to high speed digital images to measure the dynamics (velocity, tempera- 

ture and volume fraction) of dry granular solids flowing down an inclined chute under the 

action of gravity. Measurement of either local average velocities, or individual particle 

velocities would represent a major advance in understanding the dynamics of flowing 

granular materials. We have taken advantage of an ongoing research project studying the 

flow of nearly elastic glass spheres. The choice of these particles is made as an approxima- 

tion of the behavior of an ideal granular material. Glass spheres provide an excellent 

model of a nearly elastic, frictionless, granular material. However, the optical characteris- 

tics of glass lead to very poor image quality: since glass particles are highly reflective and 

somewhat transparent, the brightness pattern of glass particles in a dense flow changes in 

time depending on the relative position of neighboring particles and light sources. Accord- 

ingly, it is difficult to recognize glass particles by visual inspection or image processing. 

Therefore, we are faced with the particularly challenging task of extracting information 

from low quality images. 

Laboratory tests are conducted in a flow simulation system which consists of a 

inclined chute with transparent side walls, a conveyer for particle recirculation, an upper 

hopper for granular storage and a lower hopper for guiding the discharge to the conveyer. 

The chute is 4 rn long, 0.46 m tall, and the width is adjustable from 0 to 25 cm in 2.5 cm 

increments. The angular range which the chute is to be operable in is 0 to 35 degree. Mass 

flow rate is controlled by an adjustable gate located between the upper hopper and the 

entrance of the chute. 
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We have used glass and acrylic particles of 3 mm in diameter as granular solids for 

our experiment. The acrylic particles are used to develop a method for measuring the 

velocities of flowing particles with higher quality images: the image quality improves to 

the extent that visual particle recognition becomes relatively easier and brightness patterns 

among particles are consistent. 

Images have been obtained on a system which takes digital video images up to 

1000 frames/ sec with 192 by 239 resolution. The images have been taken from the side 

wall about 0.8 m upstream and from the top of the chute about 1.7 m upstream of the chute 

outlet. 

Chapter 2 contains a review of major current approaches to image motion, and 

averaged velocity measurement of flowing glass particles with variance normalized corre- 

lation is discussed. Chapter 3 introduces velocity measurements of individual acrylic par- 

ticles, which locates particles and makes particle correspondence between two successive 

images using a Hopfield network. Chapter 4 qualitatively compares the experimental 

velocity and temperature profile measurements of flowing glass particles with a theoretical 

model (Richman and Marciniec 1990) of granular flow. Also, the volume fraction mea- 

surement of flowing acrylic particles is discussed. Chapter 5 concludes this dissertation 

with results of dynamics measurement of glass and acrylic particles flowing down the 

inclined chute. Appendices summarize the imaging system, and developed programs are 

listed functionally. 



CHAPTER 2 
VELOCITY MEASUREMENT OF FLOWING GLASS PARTICLES 

Review of Maior Current ADuroaches to Image Motion 

Most of the current approaches for the measurement of image motion deal with 2- 

dimensional motions in the image plane and can be classified depending on the choice of a 

measurement: (1) use of brightness variations over space and time to measure instanta- 

neous image velocities, Le., gradient-based techniques (Horn and Schunck 1981; Schunck 

1989); (2) measurement of displacement of local image pattern or primitive image tokens 

between successive frames of a sequence, Le., correlation - based matching techniques 

(Burt et al. 1982; Glazer et al. 1983) and symbolic-token based matching techniques 

(Prager and &bib 1983); (3 )  measurement of the spatio-temporal energy of the image 

brightness function in a local area to determine image motion, i.e., spatio-temporal energy 

model (Adelson and Bergen 1985; Watson and Ahumada 1985; Heeger 1987; Daugman 

1989; Tsao and Chen 1991); and (4) update of displacements based on gradient search, 

Le., recursive displacement estimation (Musmann et al. 1985). 

Gradient - Based Techniaues 

This approach is based on the assumption that a patch of uniform brightness in the 

image does not change with time. This can be mathematically stated as 

7 
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i ( x , y , t )  = i ( x + u 6 t 9 y + v 6 t ,  t+6t )  

where i ( x ,  y, t )  is the brightness at time t for image location (x ,  y) , u (x ,  y) and 

Y (x, y) are the x and y component of velocity, and 6 t  is length of time interval. Optical 

flow is the velocity field in the image plane that arises due to the projection of moving pat- 

terns in the scene onto the image plane. The optical flow is modeled by the optical flow 

constraint equation which is derived from above equation taking the limit as 6t -+ 0 

ai ai ai  
- u + - V f -  = 0 ax ay at 

which models the interaction between the velocity field, (u ,  v) and the local changes in 

space and time of the image brightness i (x ,  y ,  t )  . 

Matching Technisues 

The measurement of motion from a discrete image sequence is usually based on 

identifying corresponding image events from successive frames. This is called the corre- 

spondence problem and leads to a matching approach, i. e., one in which image events 

from successive frames are matched with each other. There are two kinds of matching 

techniques that are commonly used: correlation based techniques and symbolic token 

matching techniques. 
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A general statement of the local correlation between images is 

where w (x ,  y) is the mask and f ( x ,  y )  is the image region coincident with w ( x ,  y) . In 

order to estimate the displacement in the location x, y ,  a block of image indexed by x, y is 

taken from preceding frame and correlated with current kame in a search area to find the 

best match. 

The symbolic token matching technique uses symbolic representation of geometric 

structure in the image as the basis for matching such as points or edges. This structure may 

be easily distinguishable and is likely to be stable over several image frames. With appro- 

priate representation, it is possible to find match even for rotational or scale change. Also, 

increasing reliability and reducing computational complexity can be accomplish by suit- 

able representation. 

Suatio-Temooral Energy Model 

The spatio-temporal energy models for motion analysis are based on the fact that 

the visual signal is a function of (x ,  y ,  t )  . Let i (x ,  y ,  t )  be a continuous image in space 

and time and I ( ax, my, at) be its 3-D spatio-temporal Fourier transform taken over the 

spatio-temporal aperture [X, Y, 17 : 
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Let V = (u ,  u )  is the local image velocity. Uniform motion V implies that for all time 

intervals 6 t ,  

i (x,  y, t )  = i ( x  + u6t, y + u6t, t + 6t )  (2.5) 

Taking the 3-D spatio-temporal Fourier transform of both sides, and applying the shift 

property, gives 

The above equation is true only if I (a o at) = 0 for o x u  + ayv + at # 0. This means 

that I (a,, my, cot) is non-zero only on the inclined spectral plane defined by 

x‘ Y’ 

o x u + o  V + O ,  = 0 (2.7) Y 

If the motion of a small region of an image may be approximated by translation in the 

image plane, the velocity of the region may be computed in the frequency domain by find- 

ing the plane in which all the power resides using Gabor filters. The Gabor filter is a sine 

wave multiplied by a Gaussian window, by which it is localized in the space and frequency 

domain. 
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Recursive Disdacement Estimation Algorithm 

In recursive estimation algorithm, it is assumed that an initial estimate of displace- 

ment vector q. is used to produce a new improved estimate Di+ according to 

where Ui is the so-called update term of iteration i. Knowing Di as a function of the dis- 

placed frame difference (DFD) 

DFD (x, y ,  Di) = i, (x, y) - i,- (x- d x ,  y - dyi) (2.9) 

can be used as a criterion for calculating the estimate Di+ 1. This algorithm attempts to 

minimize the squared value of the displaced fiame difference recursively using the gradi- 

ent search. 

Dit 1 = Di - -EV- 1 [DFD (x,  y ,  Di)]  2 2 Di 
(2.10) 

where V- is the gradient operator with respect to 2. and E is a positive constant. The 
Di 

choice of E requires a compromise between convergence speed and misalignment. This 

algorithm converges to the solution for displacement after several iteration. 
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Applicability of the Maior Current Approaches to Velocity Measurement of Granular 
- n o w  

As discussed earlier, glass particles are highly reflective and somewhat transparent. 

The brightness pattern of glass particles changes abruptly in some locations between suc- 

cessive frames due to reflections from neighboring particles, whereas all the approaches 

described above require the maintenance of brightness pattern across frames. 

In the gradient model, temporal sampling must be shorter than the scale of time 

over which the velocity field changes, which conflicts with the fact that the image bright- 

ness pattern in the image sequence must evidence a sufficient phase shift to be measured 

accurately. Another drawback of the gradient model with real images3 that the brightness 

pattern has to be smooth to the extent that its gradient must be well defined. For these rea- 

sons, it is difficult to apply the gradient model to red images. On the other hand, the high 

speed images are noisy due to the image intensifier multiplication process in the camera. 

Gradient estimate is sensitive to the noise because it is approximated by the difference of 

brightness values of two neighboring pixels in the horizontal and vertical directions. 

Moreover, the typical particle image size of 12 pixels in diameter is relatively small, and 

some particles show bright spots due to the reflections, which makes it difficult to define 

the gradients in glass particle images. The experiments with the gradient model showed 

that the model is not applicable to our problem due to the aforementioned reasons. 

The spatiotemporal model estimates motion using a family of Gabor-energy filters. 

In order to apply this model to images, the image motion must be steady in direction dur- 

ing the analysis time. However, the direction of particle motion in a granular flow changes 

in time due to collisional interactions. Thus, the spatiotemporal model is not applicable to 

our problem. 
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The recursive displacement estimation algorithm uses a gradient search to get the 

image motion by minimizing the displaced frame difference (DFD). It is expected that this 

method will provide a valid solution to our problem if the DFD is modified to handle 

image blocks as in the correlation technique. However, this method has not been tested. 

In addition to the problems the gradient model poses for our images that are men- 

tioned above, the gradient model produces the velocity measurements at every pixel. How- 

ever, velocity measurement with a resolution equal to the particle size is sufficient for our 

application. Accordingly, we are proposing the matching techniques for velocity measure- 

ment of granular flow; i.e., the correlation-based technique for glass particles to cope with 

the image problem and the symbolic-token based matching technique for acrylic particles 

taking points associated with locations of each particle as the symbolic representation for 

the matching. 

Variance Normalized Correlation 

As mentioned earlier, the brightness pattern of glass particles changes abruptly in 

some locations between successive frames due to inter-particle reflections. Methods that 

use image data globally to cope with such problems have to be applied, which leads to the 

application of the block matching technique. There are different methods to evaluate a 

match between two images (Rosenfeld and Kak 1976). Among them, correlation is a well 
I 

known technique which is robust in noisy environment. The basic idea to estimate dis- 

placements in two successive images with the correlation is to subdivide the images into 

small blocks (masks) and to take a mask from a preceding frame, which contains a tem- 

plate and to find the best match in a search area of the current frame. There are some vari- 
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ations of this technique such as direct correlation, mean normalized correlation, variance 

normalized correlation, Laplace filtered correlation and binary correlation. Burt et al. 

(1982) did a comparative study and showed that the best performance was obtained with 

the variance normalized correlation even though it is the most expensive in computation 

time. The variance normalized correlation is defined as 

where W is the average intensity of the mask, f (x ,  y) is the average value off ( x ,  y) in the 

region coincident with w (x ,  y) , and the summations are taken over the coordinates com- 

mon to both f and w. The r (m, n) ranges from -1 and 1, independent of scale changes in 

the amplitude of f ( x ,  y) and w ( x ,  y) . The mask size and shape strongly influence the 

success of correlation matching. The pattern within the mask may not be distinctive and 

multiple false matches would result with too small a mask. Alternatively, differences in 

motion within neighboring image regions may not be resolved with too large a mask. 

The two successive images of flowing glass particles in Fig. 2-1 are used to illus- 

trate the applicability of variance normalized correlation. The image on the left hand side 

precedes the image on the right hand side by a sampling time of 1 msec. The image size is 

96 by 119 pixels. The camera is tilted such that the chute base is parallel to the horizontal 

edge of images. Particles move leftward in this setup. Since particles have the same spher- 

ical shapes and are densely packed, the resultant somewhat periodic brightness pattern 
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may cause ambiguities in the correlation. Thus, the images are taken fast enough to guar- 

antee that the maximum displacement is within a particle diameter, and the search area of 

each mask on the order of a particle diameter is restricted within the particle size. Fig. 2-2 

shows the brightness pattern in the image area from 50 to 69 pixels vertically and from 80 

to 99 pixels horizontally with upper left origin in the two successive frames, which are dis- 

placed 1 or 2 pixels to left with respect to the top image with visual inspection. Correlation 

is applied to the center area of the image in Fig. 2-2 using a mask of 13 by 13 pixels con- 

sidering that the typical particle diameter is 12 pixels. The result is plotted in Fig. 2-3, in 

which the mask is shifted from where it was in the preceding frame 4 pixels to the left and 

5 pixels up and down, respectively. The viewpoint in Fig. 2-3 is 37.5 degrees from hori- 

zontal and 30 degree in elevation. The right most vertical line corresponds to no horizontal 

shift of the mask and the center horizontal line corresponds to no vertical shift. The loca- 

tion of the peak in Fig. 2-3, which corresponds to the displacement at the center area of 

Fig. 2-2, is consistent with the visual inspection. 

The above mentioned method is applied to the total image in Fig. 2-1. The image 

area is subdivided into masks of 13 by 13 pixels and each mask from the image on the left 

hand side is matched with the image on the right hand side in the search area using the 

aforementioned method. Fig. 2-4 shows the resultant displacement field over the total 

image area. A correlation threshold of 0.75 is used to get valid estimates, which means 

that only displacement measurements with the corresponding correlation value greater 

than the threshold are considered as the valid measurements. The same threshold will be 

used later for the comparison of correlation values with a sample rate decreased. The dis- 

placements at three locations in lower left are 1 pixel/ frame and rest are 2 pixels/ frame 
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horizontally. Since a particle whose physical diameter is 3 mm occupies 12 pixels in the 

image and the images are taken with the sampling time of 1 msec, one pixel displacement 

corresponds to the velocity of 

3rnrn/12pixeZs x lpixel x 1/0.001 sec = 25crn/sec. 

Accordingly, the horizontal velocities at the 3 lower left locations are 25 c d  sec and the 

rest are 50 cm/ sec. In other words, velocity measurement resolution is 25 c d  sec, which 

is quite large considering typical velocities of glass particles flowing down the inclined 

chute. 

As means of improving the resolution, a lower sampling rate and interpolation of 

the correlation are tried. The sampling rate can be decreased to the extent that the displace- 

ment is within one particle diameter. Otherwise, ambiguities occur due to the somewhat 

periodic pattern. Another way to increase resolution is to decrease the scale factor between 

the physical size of a particle and the image size occupied by the particle. However, 

3mrn/12pixeZs was the minimum scale factor with the lenses we had at the time the 

images were taken and available distance between the camera and particles in our experi- 

ment setup. 

In order to test the resolution improvement with sample rate decreased, the pair of 

images in Fig. 2-5 are used. The image on the left hand side in Fig. 2-5 is the same as one 

on the left hand side in Fig. 2-1, whereas the image on the right hand side in Fig. 2-5 is the 

second successive image. The sampling rate is decreased by half effectively (500 frames/ 

sec). The result is presented in Fig. 2-6 with the same correlation threshold of 0.75 as one 



Fig. 2-1 Two successive images 

Fig. 2-2 Brightness pattern (50:69,80:99) 
top: image on the left hand side 

bottom: image on the right hand side in Fig. 2-1 
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Fig. 2-3 Correlation at the center areas in Fig. 2-2 
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Fig. 2-4 Displacement field and values 
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in the previous result for comparison. The resolution has been improved twice to 12.5 cm/ 

sec, which is obvious by comparison of displacement values with those of the previous 

result. However, it turns out that the correlation has been reduced between two frames 

with the sampling rate decreased. The blanks in the displacement values correspond to 

lower correlation values than the threshold due to the abrupt changes of brightness pattern. 

Fig. 2-5 Two successive images 
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Fig. 2-6 -- continued 

The resolution of displacement measurement with correlation is limited by pixel 

spacing and the size of a window. Since equally spaced sampled data are used to get the 

correlation between two successive frames, the resolution is limited by pixel spacing. 

However, real displacement can take any value between neighboring pixels. The measure- 

ment can be made closer to the real displacement by subpixel resolution that is provided 

by interpolation in the correlation plane. Beyer showed that an estimate accuracy of 1/10 

pixel can be obtained with correlation techniques using a practical mask size of 7 by 7 

under a 30 dB signal-to-noise ratio (Musmann et al. 1985). Since the mask size for our 

analysis is 13 by 13, we expect to obtain at least the 1/10 pixel resolution with the interpo- 

lation. Polynomial interpolation by 10 is applied to 3 by 3 points around maximum corre- 

lation value; After applying the interpolation, a maximum value is searched in the 

interpolated plane to find the subpixel resolution displacement. Fig. 2-7 shows the dis- 

placement field with the interpolation for the images as shown in Fig. 2-1. The same corre- 

lation threshold of 0.75 is used. It seems that the displacements in Fig. 2-4 are rounded off 
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values of the interpolated displacements due to the resolution limited by pixel spacing. 

With the interpolation, velocity measurement resolution is improved by a factor of 10. The 

resolution improvement of velocity measurements allows the displacement field in Fig. 2- 

7 to show a displacement gradient along the height of the flow, which is expected behavior. 
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Fig. 2-7 Displacement field and values 
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Validations of the Correlation for Velocity Measurement 

Correlation for velocity measurement is validated in three different ways. Firstly, 

correlation is tested with an artificial image pair, in which displacement between the pair 

can be adjusted arbitrarily. Secondly, velocity measurements with correlation are com- 

pared with manual measurements for the same image pair. Lastly, averaged velocity pro- 

file along height of flow is compared with that using an optic probe. 

Validation of the Correlation with an Artificial Image 

The first validation is performed with an artificial image generated by a 2-D Gaus- 

sian function with standard deviation of 2.0 to simulate the brightness pattern of a particle 

in images. As the pattern is displaced at subpixel resolution, the results of correlation with 

and without the interpolation are monitored. Either of the horizontal or vertical displace- 

ments are fixed at 1.5 pixels, and the other displacements are changed from 2.0 to 2.7 in 

0.1 pixel increment to evaluate the result for the horizontal and vertical displacement sep- 

arately. The result is summarized in the following table. 

Table 2-1 Comparison between the correlation with and without the interpolation 

vertical 

Real displacement Correlation Correlation 
without interpolation with interpolation 

horizontal horizontal vertical horizontal vertical 

1.5 2.0 1 2 1.5 2 .o 
1.5 2.1 1 2 1.5 2.1 

1.5 2.2 1 2 1.5 2.2 

1.5 2.3 1 2 1.5 2.3 

1.5 2.4 1 2 1.5 2.4 
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Table 2-1 -- continued 

Real displacement Correlation Correlation 
without interpolation with interpolation 

horizontal vertical horizontal vertical horizontal vertical 

1.5 2.5 1 2 1.5 2.5 

1.5 2.6 1 3 1.5 2.6 
~ ~-~ ~~ 

1.5 2.7 1 3 1.5 2.7 

2.0 1.5 2 1 2.0 1.5 

2.2 1.5 2 1 2.2 1.5 

2.3 1.5 2 1 2.3 1.5 

~ ~ ~ _ _ ~  ~ ~ ~ ~~ ~ 

2.5 1.5 2 1 2.5 1.5 

2.6 1.5 3 1 2.6 1.5 

1 2.7 1 1.5 2.7 1 1.5 I 3 1 1 

It turns out that the result of the correlation without the interpolation is a rounded 

off version of the real displacement, and the correlation with the interpolation produces 

perfect solution with the artificial image. Also, this result demonstrates that the estimate 

accuracy of 1/10 pixel can be obtained with the interpolation. 

Comparison of the Correlation with Manual Displacement Measurement 

As another way to validate the correlation for velocity measurement, the velocity 

measurements with correlation are compared with manual displacement measurement for 

the same image set as shown in Fig. 2-8, in which the top image precedes the bottom 

image by a sampling time of 1 msec. Locations of 32 recognizable glass particles in both 

images are measured manually and the correlation outputs from masks (without the inter- 
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polation), which each particle overlaps, are compared in the following table. Locations are 

presented ‘horizontal, vertical’ position with respect to upper left origin of the images 

Fig. 2-8 Two successive images 

The differences between the manual displacement measurement and the correla- 

tion in term of root mean square in both directions turn out to be within one pixel, which 

has to take into account errors involved in the manual measurement and the way the two 

methods are compared. 
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Table 2-2 Comparison of the correlation with manual displacement measurement 

part- I Locationin Locationin 
icle the preced- the current 
No. 1 ingimage image 

Correlation Displace- 
ment 

Correlation - 
Displacement 

I I 

1 1  18,52 I 11,52 -7,o 1 -6,O 
2 29,51 22,51 -7,o -5,0 

3 51,56 45,57 -6, l  (-6,0), (-6 0) 
~ ~ ~ 

4 61,59 55,59 -6,O (-6,0>, (-590) 

5 70,SO 64,50 -6,O -6,O 

I 6 1 73,41 I 68,40 1 -5, -1 1 (-6,0), (-5,O) 
1 I I 

7 1  85,37 79,36 -6, -1 I -5,1 

I 8 I 96,45 I 90,44 I -6, -1 I -6, 1 

10 110,37 104,36 -6, -1 -5,0 

11 119,44 113,44 -6,O (-6, 01, ( -5,O),  
(-5, -I), (-590) 

12 125,49 121,48 -4, -1 -5,o 

13 146,57 142,57 -4,o (-501, (-590) 

14 148,45 143,45 -5,o -5,o 

15 174,40 168,40 -6,O (-6,O), (-5, 0) 

16 183,37 177,37 -6,O (-5, O), (-5, 1) 

17 181,47 176,47 -5,0 (-6, 01, (-6, 0) 

I 18 1 193,48 I 187,48 I - 6 0  I - 6 0  

0, -1 19 206,37 200,38 -6, 1 -6, 0 

20 47,65 42,65 -5,o (-6,0), (-4,O) 

21 74,70 70,70 -4,o (-6,2), (-4,O) 

22 164,53 158,54 -6, 1 ( -5,O>, (-570) 

23 162,66 156,65 -6, -1 (-5,O>, (-5, -1) 

24 181,61 177,61 -4,o (-5,0), (-590) 

25 195,61 188,62 -7, 1 (-5,O>, ( - 5 9  0)  
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Table 2-2 -- continued 

Displace- Correlation - 
ment Displacement 

Part- Location in Location in 
icle the preced- the current Correlation 
No. ingimage image 

26 224,54 218,53 -6, -1 (-6,O), (-6, O>, (0, 11, (0,1>, 
(0, I>, (030) 

27 33,133 32,133 -1,o -2, -1 -1, -1 

25 44,141 44,141 090 (- 1, O), (090) (- 1, O), (090) 

29 63,158 63,158 090 0,o 090 

30 76,163 75,164 -1, 1 090 1, -1 

31 86,172 86,171 0, -1 090 0,1 

33 111,171 112,171 190 090 -1,o 

( 4 0 1 ,  (-6, -1) 

rrl 0.92,0.78 

CornDarison of the Correlation with Measurement using. Optical Probes 

The average velocity profile using correlation is compared with that using an optic 

probe. The optic probe is a conventional granular flow velocity measuring device which 

consists of a pair of optic sensors separated by the distance on the order of the particle 

size, The optic probe is installed in the same plane, generally parallel to particles primary 

flow direction. Each sensor has optic transmitter and receiver. As a particle travels along 

the line connecting two sensors, the particle is detected by both sensors. The signal from 

one sensor is shifted in time with respect to that from the other sensor, Thus, the velocity 

of a particle can be measured by estimating the time delay between two sensors. 

We make a comparison of velocity measurements obtained under the following 

conditions: chute width, 15 cm; angle, 23 degree; entrance gate height, 5 cm; and bumpy 
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base. These conditions produce very steady flow. The bumpy base refers to one type of 

chute base used in OUT experiments. 3 mm glass particles are epoxied to perforated alumi- 

num plate in a densely packed hexagonal pattern as shown in Fig. 2-9. The reference of 

' flow height is upper surface of smooth aluminum base plate. 

Perforated aluminum plate 4 rn 

nnnnnnnnnnn nnnnnn' 
T - '  

Reference 
Aluminum base plate 

Fig. 2-9 Bumpy base and reference of flow height 

The comparison is presented in Fig. 2-10, in which measurements using correla- 

tion (circles) and measurements using optic probe (crosses) are compared. The images are 

taken with record rate of 1000 frames/ sec, among which 8 pairs of images with 0.1 sec 

separated between the pairs are used for the velocity measurement (total elapse time: 0.7 

sec). Correlation with the interpolation is taken for each pair of the images, then the hori- 

zontal velocity measurements for 8 pairs are averaged to produce the velocity profile. 

Optic probe data are taken for 1 minute with a sampling rate of 20, 000 sampled 

sec per measuring height (1, 200, 000 samples). Then, the data are divided into 240 sec- 

tions (5, 000 samples/ section), and the velocity is measured for every section using the 

variance normalized correlation. Average of measurements over 240 sections are taken. 
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0: velocity measurements with images 
x: velocity measurements with optical probe 
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Fig. 2-10 Comparison of measurements using images and optic probe 

The two methods are consistent with each other, particularly considering that two 

data sets were not taken at the same time. From the comparison, we have found that the 

image based method has some clear advantages over the optic probes. The image method 

can obtain synoptic measurements at many positions whereas the optic probes only mea- 

sure at one location. The image method produces instantaneous velocity measurement as 

well as averaged velocity measurement whereas optic probes produce only averaged 

velocity measurement. 



CHAPTER 3 
VELOCITY MEASUREMENT OF FLOWING ACRYLIC PARTICLES 

We presented variance normalized correlation for the velocity measurement of 

glass particles in the previous chapter, which is strictly an average process. It is analogous 

to evenly positioned matched filters from which averaged velocity measurements within 

each image mask are derived. 

Another way to measure velocity of granular flow is to find particle locations and 

to determine the particle correspondence between successive fraines. It is expected that 

errors may occur in finding the locations and the correspondence of particles across 

frames. However, the method will provide velocity measurements for individual particles 

between frames and tracking of particles in space at the same time. Accordingly, it is fun- 

damentally a more powerful measurement technique than correlation techniques (block 

matching). As mentioned earlier, it is easier to obtain high quality images and to recognize 

individual acrylic particles than glass particles. So, acrylic particles are used to develop 

this method. In order to locate particles in images, several techniques are compared: syn- 

thetic discriminant function (SDF), minimum average correlation energy (MACE) filter, 

modified minimum average correlation energy (MMACE) filter and variance normalized 

correlation. Then, points representing the locations of particles are generated using a clus- 

tering technique. Finally, a Hopfield netwo3Ac is employed to solve the correspondence 

between two successive point patterns. 

29 
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Locating Particles in Images 

Synthetic Discriminant Function 

It is well known that correlation with a matched spatial fiIter (MSF) is an optimal 

pattern recognition technique in the presence of white Gaussian noise. Objects of interest 

are searched with a template in the MSF. Thus, poor performance can be expected with the 

MSF for geometrical distortions of the input from the template. The synthetic discriminant 

function (SDF) was proposed to cope with the problem associated with the distortions 

(Casasent 1984). 

The SDF is synthesized with N training image set. These N images are chosen 

such that they represent different distorted versions of the objects. Given the image set 

{ x n  ( n l ,  n2) } of different distorted images of one object x (ar, n2)  , the filter function 

h (al, n2) which produces a constant correlation output between h (n l ,  n2) and all 

images ( x n  ( n l ,  n2) } is appropriate for the recognition of any distorted version of object 

using a single filter function, i.e., 

where unity is chosen arbitrarily for the constant. 

Each training image is represented as a linear combination of a basis function set 

om (np n2) Y i.e.9 

(3.2) 
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The desired SDF is represented as another linear combination of the same basis function 

set, i.e., 

By substituting equation (3.2) and (3.3) into the equation (3.1) and assuming an orthonor- 

mal set of basis functions, equation (3.1) becomes 

x, (nl, n,) C3 h (nl, n,) = x,. h = x a n m b m  = 1 
m 

(3.4) 

where the vectors x, and h are obtained by concatenating rows or columns of the image 

(both are concatenated in the same manner, i.e., rowwise or columnwise) and x, . h is the 

vector inner product. From equation (3.2), the basis function set Qm (n l ,  n2) can be writ- 

ten as a linear combination of the training set of images x, ( n  n2)  as 

Substituting equation (3.5) into equation (3.3), we obtain 
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In the equation (3.6), all coefficients of xn are grouped into e,. The h (nl, n2) are written 

as a linear sum of input training set of image {xn (n,, n,) } . 

In order to determine en in equation (3.6) whiIe satisfying the SDF condition of 

equation (3.4), equation (3.6) is substituted into equation (3.4). 

xn  - h = x, [ x e m x m ]  = z e ,  (x, exrn) = z e m r n m  = 1 
m m m 

Equation (3.7) can be written in matrix-vector form as 

Re = u 

(3.7) 

(3.8) 

where u denotes the vector whose element is the desired filter output for the correspond- 

ing training image and the elements of the vector e are the em in equation (3.8). The soh- 

tion for the SDF h (nl, n2)  is thus given by deriving e from equation (3.8), i.e., 



e = R%. 
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(3.9) 

Substituting equation (3.9) into the equation (3.6), we finally obtain the SDF solution, 

h = xR-'u 

where matrix x ,  whose column is xi, is defined as 

(3.10) 

(3.1 1) 

N is the number of training images.Thus, synthesis of an SDF involves forming the corre- 

lation matrix of the training set of images, inverting it, and multiplying the resultant matrix 

by the appropriate vector u . The synthesis and test of SDF is described in Fig. 3-1 

Equation (3.10) can be represented in frequency domain, Le., 

w = x(x'x>-'* (3.12) 

where the matrix X, whose column is X i  derived from the DFT of the image x i ,  is defined 

as 

(3.13) 
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. The superscript + denotes the conjugate transpose of a complex matrix. Equation (3.12) is 

derived using the linearity property and the fact that correlation at zero lag corresponds to 

the sum of products of Fourier transforms of the signals being correlated. 

Training Set 4 E E r  I 
I I Synthesis 

Target 
Location 

Input Image 

Fig. 3-1 Block diagram of SDF 

Minimum Average Correlation Enerw Filter 

The SDF was developed to recognize geometrically distorted versions of images. 

However, it controls the filter output only or in the vicinity of the peak by presenting 

shifted versions of each training set image. For the MSF, the output of the correlator is the 

autocorrelation with a true target. The peaks of the autocorrelation locate true targets. 

However, the linear combination of correlation filters as in the SDF lacks a sharp correla- 

tion peak. 

The minimum average correlation energy filter (MACE) was developed to produce 

sharp correlation peaks while allowing constraint on the correlation peak values, which 

makes easy detection of true targets in the full correlation plane (Mahalanobis et al. 1987). 

The ith training image is described as a 1-D discrete sequence obtained by concatenating 
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rows or columns of the image as in SDF. Thus, the discrete image sequence is described as 

a column vector xi  of dimensionality d equal to number of pixels in the image xi (n) , i.e., 

xi = [ X i ( l ) , X J 2 ) ,  ..., x i @ ) ]  (3.14) 

The column vector Xi is derived from the DFT of the image xi. The matrix X,whose col- 

umn is X i ,  is defined in equation (3.13). 

The correlation g, (n) between the ith image sequence xi (n) and the filter sequence 

h ( n )  is 

g i ( n )  = x i ( n )  @h((n)*  

The energy of the ith correlation plane is 

d d 

n = l  k =  1 
d 

(3.15) 

(3.16) 

The energy function is described in terms of frequency representation using Parseval’s the- 

orem. Equation (3.16) can be written using the matrix-vector form 

Ei = H+DiH (3.17) 



where the superscript + denotes the conjugate transpose of a complex vector, and Di is a 

diagonal matrix of size d x d whose diagonal elements are the magnitude square of the 

associated element of Xi, i.e., 

(3.18) 

Equation (3.18) shows that Di is power spectrum of xi (n) . 

In order to achieve good detection, it is desirable to reduce correlation output levels 

at the entire correlation plane except at the origin, where the imposed constraint on the 

peak value must be met. This is equivalent to minimizing the energy of the correlation 

function while satisfying constraints. In vector form, the constraint value at the origin of 

training image is 

g i (0 )  = X;'H = ui (3.19) 

for all i = 1,2, . .., N ,  where ui is the constraint values and is also the ith element of the 

constraint vector u .  Thus in matrix-vector form, the problem is to find the frequency 

domain vector H that minimize E j  = H+D,H for all i, while satisfying the constraints in 

equation (3.19), which is written for all training images as 

F H = u  (3.20) 
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The solution to this problem does not exist because the simultaneous constrained minimi- 

zation of all Ei ( i  = 1,2, . . ., N )  is not possible. Instead, minimizing the average value of 

Ej  while meeting the constraints is attempted as the name of filter (MACE) implies. 

The average correlation plane energy is 

D is defined as 

N 
D = C a p j  

i = l  

where ai is a constant. If all ai = 1, equation (3.21) can be written as 

Ea,, = ( ~ / N ) H + D H  

(3.21) 

(3.22) 

(3.23) 

The solution to the minimization of H+DH subject to the constraints X+H = u can be 

found using the method of Lagrange multipliers. 

(3.24) 
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The closed form of the MACE filter is derived. Now, the property of the MACE will be 

investigated in conjunction with the SDF. 

Let Daa5 = P, i.e., P is a diagonal matrix whose diagonal element is the recipro- 

cal square roots of the diagonal elements of D. Then, 

H = P ( P X )  (X+PPX)- 'u .  

Let PX = E, then H can be rewritten as 

H = P x ( m ) - ' u .  

If we denote (rz'rr> -'u as B, H becomes 

H = PB. 

(3.25) 

(3.26) 

(3.27) 

The vector @ is the SDF based on the transformed data x. Thus, the frequency response 

H can be interpreted as the cascade of the matrix P (spectrum whitening filter) and SDF 

(based on transformed data x). Equation (3.27) can be described by the block diagram in 

Fig. 3-2. 
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Input Target 
Location 

t P t H b 
Image - 

Fig. 3-2 Block diagram of MACE filter 

Modification to the MACE filter 

The MACE filter was developed to produce sharp peaks at locations of true targets 

while satisfying the constraints of peak values using the filter structure of the spectrum 

whitening filter followed by the SDF. However, the spectrum whitening filter induces poor 

generalization to distorted images from training set. On the other hand, the SDF shows 

good generalization at the expense of sharp peaks since it is a linear sum of correlation 

between each training image and an input image. Based on these properties, we propose a 

filter that compromises the sharp peak with good generalization by modifying the spec- 

trum whitening stage of the MACE filter, i.e., 

I P =  
(1 - a) + alloe5 

Olall (3.28) 

where I is an identity matrix whose dimension is the same as that of P. For example, in 

the case of a = 0, P = I, which means that no transform is taken in the spectrum whit- 

ening stage (P). As a result, the frequency response H becomes the SDF. In the other 

extreme case of a = 1 ,  P = D-0*5 which is the same as the MACE formulation. There- 
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fore, we can design the filter which produces good generalization at the small expense of 

the sharp peak by adjusting the a value. 

Locating Particles with Variance Normalized Correlation 

Variance normalized correlation, used for the velocity measurement of glass parti- 

cles, is also proposed to recognize acrylic particles in images. This process identifies parti- 

cle locations. Variance normalized correlation is modified in order to extract the image 

data of a particle centered at the mask and to attenuate the image data between the bound- 

ary of the particle and that of the mask, i.e., 

(3.29) x y  r' (m, n )  = 
r 

where 2 is the average intensity of the mask, f ' ( x ,  y )  is the average value of f ' ( x ,  y) in 

the region coincident with w' (x ,  y) . The kernel g ( x ,  y) is a 2-D Gaussian function with 

appropriately chosen standard deviation such that it's distribution is the same order of the 

diameter of a particle in our images. 
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Experiment for Performance Comparison 

The modified MACE filter (MMACE) is evaluated with two pairs of images; One 

pair is glass particles in free fall, and the other comprises acrylic particles flowing down 

the inclined chute. Fig. 3-3 shows two successive images, which are taken while particles 

are dropped in front of the camera. The image on the left hand side precedes the image on 

the right hand side. The image size is one fourth of total image (96 by 119). Particle image 

size is typically 20 pixels in diameter. It is noticeable that the brightness pattern of the 

lower particle is somewhat different from that of two upper particles, and the brightness of 

the background is not uniform. Two upper particles in the preceding image are used as 

training images of size, 21 by 21 pixels. Desired output amplitude of 1.0 is arbitrarily 

specified for these training images. 

We have found that performance of the MMACE filter depends on the way it is 

implemented. Thus, we introduce three different implementations of the MMACE and 

will compare the performance of the MMACE with that of SDF, MACE and variance nor- 

malized correlation. 

Implementation 1; 

1) Take 2-D FFT of the training images with a EFT size on the order of the training 

images (e.g., 32 by 32 F'FT for a training image size of 21 by 21 pixels). 

2) Synthesize the filter in the frequency domain. 

3) Take inverse FFT and truncate the fiIter coefficients to the size of the training image 

(21 by21). 

4) Calculate filter outputs for the input images. 
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Implementation 2; 

1) Take 2-D FFT of the training images with the same FFT size as filter output 

(e.g., 116 by 139 FFT for an input image size of 96 by 119 pixels and the training 

image size of 2 1 by 2 1 pixels). 

2)  Synthesize the filter in the frequency domain. 

3) Calculate filter outputs for the input images. 

Implementation 3; 

1) Take 2-D FFT of the training images with the same m;T size as the filter output (as in 

the implementation 2). 

2) Calculate the P matrix. 

3) Whiten the input images with the P matrix. 

4) Synthesize the SDF in the spatial domain. 

5) Calculate filter outputs for the input images. 

Fig 3-3 Two successive images 
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Now, we are going to compare the results from each implementation for the same 

free fall glass particle images. Fig 3-4 shows the filter outputs taken under the implemen- 

tation 1 with a = lo-? The filter output on the left side corresponds to the left image, 

and that on the right hand side corresponds to the right image. We will use this convention 

throughout this experiment. Even though the constrained peak values are met by the two 

top particles for the left image, the peak corresponding to the bottom particle is not dis- 

tinctive, and background noise level is mostly high in all correlation plane. The filter out- 

put for the right image is even worse. These poor results are attributed to the small FFT 

size of the training images. The frequency contents of the training images are not well rep- 

resented due to the small size of FTT. Also, some signals are discarded by taking the filter 

coefficient of the training image size (21 by 21 pixels) from the filter representation of size 

(32 by 32 pixels), which is another reason for these poor results. 

80 

0 0  

Fig. 3-4 M A C E  filter output (implementation 1, a = 
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Fig 3-5 shows the filter outputs taken under the implementation 2 with a = 

The filter output for the left image has one peak that is smaller than the constrained value; 

there are no distinctive peaks at both filter outputs. However, it is obvious that the noise 

level in this implementation is much lower than the previous results. The discrepancy 

between peak values in the filter output and the constrained value is caused by the differ- 

ence of frequency resolution in the F?T. That is, the training image of size 21 by 21 pixels 

is used for 116 by 139 FIT in the synthesis whereas the input image of size 96 by 119 pix- 

els is used for the same size FFT in the test (The FFTs are taken with zero padding in both 

the synthesis and the test). 

02- 

0.1 - 
0- 

-0.1 - 
-02- 

-0.3 m 
m 

Fig. 3-5 MMACE filter output (implementation 2, a = 

In order to cope with the problem associated with the frequency resolution, we 

implement the filter based on the interpretation of the MACE filter in conjunction with 

SDF. As discussed before, the MACE filter is equivalent to the cascade of the spectrum 

whitening filter and SDF based on transformed data by the spectrum whitening filter. 

Thus, we prewhiten the input images with the P matrix, then the SDF based on the trans- 
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formed data is applied (implementation 3). Since the SDF is implemented in the spatial 

domain, the problem associated with the frequency resolution does not exist. Fig. 3-6 

shows the filter outputs taken under the implementation 3 with a = lo-? The con- 

strained peak value at the two top locations is met, and another peak value corresponding 

to the bottom particle is almost the same as the constrained value for the left image. The 

filter output for the right image demonstrates good generalization with this implementa- 

tion. 

0.4 

0 9  

0 

-02 

-0.4 

-0.6 
83 

la, 

Fig. 3-6 MMACE filter output (implementation 3, a = 

Now, in order to compare performances of SDF, MACE and MMACE, we try to 

change 01 value to 0 (SDF) and to 1 (MACE). Fig. 3-7 and 3-8 show the filter outputs 

taken under implementation 3 with a = 0 and a = 1, respectively. As expected, the fil- 

ter outputs with a = 0 (SDF) show broad peaks and are dominantly affected by the bright 

spots inside particles rather than the particle pattern. The filter outputs with a = 1 

(MACE) show very sharp peaks (one pixel width) that meet the constrained value and 

higher noise level than those with a = (MMACE). However, the other peak corre- 



46 

sponding to the bottom particle is not distinctive enough in the filter output for the left 

image and the filter output for the right image shows no distinctive peaks. Increasing the 

number of training images may produce comparable generalization to the previous result 

(a = 

t.5. 

1M 100 

0 0  0 0  

Fig. 3-7 MMACE filter output (implementation 3, a = 0) 
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Fig. 3-8 MMACE filter output (implementation 3, ct = 1 ) 

We have demonstrated that the performance of MACE filter is very sensitive to the 

implementations, and the implementation 3 produces the best performance in terms of 
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sharpness of peaks and generalization. Also, we compared the performance of MMACE 

filter with SDF and MACE filter and showed that the small value of a ( made a sig- 

nificant difference in the particle recognition performance. 

We also evaluate variance normalized correlation with the same test images. The 

left upper particle in the left image in Fig. 3-3 is taken as a template, and a 2-D Gaussian 

function with the standard deviation of 4 is applied to take image data of the particle. Fig 

3-9 shows the results, in which correlation is dominated by the two bright spots inside 

each particle and correlation values at the background are much higher than those of the 

MMACE filter. However, one peak is higher than the other between two peaks belonging 

to each particle and the peaks are distinctive enough to be discriminated against the back- 

ground. By choosing an appropriate threshold, the particles can be located. Thus, these 

results show that variance normalized correlation is applicable to recognize objects where 

the brightness patterns of the objects are consistent or the distortion of input images is not 

considerable. 

tm 1M 

0 0  0 0  

Fig. 3-9 Correlation output 
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Another pair of flowing acrylic particle images in Fig. 3-10 is evaluated with the 

MMACE filter and the variance normalized correlation. The image on the left hand side 

precedes the image on the right hand side by a sampling time of 1 msec. The image size is 

one fourth of total image (96 by 119). Nine particles in the preceding image are numbered 

for reference. The brighter particles like 6, 7 and 9 have white color and others have 

orange color, which causes brightness difference. The MMACE filter with a = is 

synthesized with four particles labelled 1,2,3 and 9 as true-class objects and image area at 

upper left comer, Le., background as false-class object. The filter output amplitudes of 1 .O 

and 0.0 are arbitrarily specified for the true and false-class target, respectively. The image 

size of these five training images is typically 13 by 13 pixels. Since most of particles are 

darker, three darker particles 1,2, 3 and one brighter particle 9 are used as the true-class 

objects. The filter outputs are presented in Fig. 3-1 1. A threshold of 0.5 is used to get dis- 

tinctive peaks. Every contour corresponds to the filter output greater than 0.5. 

Fig. 3-10 Two successive images 
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Q 
0 

Fig. 3-1 1 MMACE filter output 

Using a receiver operating characteristic (ROC), the detection performance of 

MACE filter is compared with that of MMACE filter for acrylic particle images. Also, the 

detection performance of each filter is evaluated with different number of training images. 

The MACE (a = 1) and MMACE filter (a = are synthesized with 2 sets of train- 

ing images in Fig. 3-10. One set of training images is the same as the previous case (4 par- 

ticles labelled 1, 2, 3 and 9 as true-class objects and image area at upper left corner, Le., 

background as false-class object). The other set of training images includes nine particles 

labelled 1 through 9 and image area at upper left corner. The number of detection and false 

alarm is counted in the filter output for 6 test images (192 by 239) as the threshold is 

changed from 0.3 to 0.9 in 0.1 increment. The resultant ROC is presented in Fig. 3-12, 

which shows that the detection performance of MMACE filter outperforms that of MACE 

filter for both training image sets. The detection performance of MACE filter is improved 

with increased number of training images, however the detection performance of 

M A C E  filter is a little worsened with increased number of training images. 
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Fig. 3-12 ROC curves for MACE and MMACE filters 

For the performance comparison, variance normalized correlation is applied to the 

two successive images in Fig. 3-13 which are the same as those in Fig. 3.10. The particle 

labelled ‘t’ in the preceding image is used as a template, and a Gaussian function with a 

standard deviation of 2.5 is used for extraction of the image data of the particle. Fig 3-14 

shows the correlation output using a threshold of 0.985. Each contour corresponds to a 

correlation output greater than 0.985. Since variance normalized Correlation is indepen- 

dent of scale changes in the brightness pattern of both the template and the image area 

coincident with the template, it produces valid outputs for brighter particles. Fig 3-14 

shows that variance normalized correlation recognizes particles that can be perceived by 

the human eye with just one template containing the typical brightness pattern of the parti- 

cles. 
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In order to be comparable to variance normalized correlation, the MMACE may 

need to be synthesized with larger number of training images. Throughout this experi- 

ment, we have found that variance normalized correlation produces very good generation 

in the images that have consistent brightness patterns: since the particles have the same 

spherical shapes, they do not cause distortions in the images involved in rotation. The 

MMACE filter is expected to work fairly well in the images that have inconsistent bright- 

ness patterns such as irregularly shaped particles if the filter is synthesized with consider- 

able number of training images. 

Fig. 3- 13 Two successive images 
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Fig. 3-14 Correlation output 
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Generation of Point Patterns 

We are going to generate point patterns from the Correlation plane, in which each 

point represents the location of the corresponding particle in images. Since variance nor- 

malized correlation produces good generalization in the recognition of acrylic particles, 

the correlation outputs as shown in Fig. 3-14 are used for generation of point patterns. 

With the correlation output, a point that has maximum correlation value among the 

points inside each contour is searched and assigned as the location of the particle. In other 

words, the locations of the maximum correlation provide the coordinates of the particle 

centers in the image. A clustering technique (Pa0 1989) is applied to group points of high 

correlation such that the distance between a point and its corresponding clustering center 

is less than a cluster distance of 5 pixels because one particle diameter is typically 12 pix- 

els, and particles are densely packed. Then, the locations that have maximum value of cor- 

relation output in every group are searched for. Fig. 3-15 shows the resultant point patterns 

for the preceding image (circles) and the current image (crosses). Most of particles in one 

image have their correspondence in the other image, however some particles are not 

detected. These missed detections are caused by image edges, noise in the images and 

occlusions of particles. We will discuss now how to make the correspondence between 

two point patterns that do not have perfect correspondence. 
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Fig. 3-15 Point patterns 

Point Correspondence 

There have been many approaches for solving the correspondence problem such as 

graph matching (Tsai and Fu 1979), or relaxation techniques (Ranade and Rosenfeld 

1980; Kahl et al. 1980), in which the compatibility between matched features is measured 

to obtain the best solution. The problems associated with these methods are that conven- 

tional graph matching techniques are computationally complex, and the relaxation tech- 

nique is inherently a local optimization method. It is sometimes difficult to determine a 

suitable update rule for the relaxation technique. However, a neural network can be 

employed for the correspondence problem by formulating it as a constrained optimization 

where all the constraints on the solution can explicitly be included in the cost function. 

Minimization of the cost function can then be achieved by a recurrent network such as the 

Hopfield network. 
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Houfield Network 

The Hopfield network is a highly parallel neural system (Hopfield 1982; Hopfield 

1984; Hopfield and Tank 1985; Hopfield and Tank 1986; Bruck and Goodman 1988). 

Since we are dealing with a correspondence problem, processing elements are arranged in 

a matrix form (M x N )  whose elements are identified by a set of double indices x and i 

indicating rows and columns, respectively. The input-output relation of a processing ele- 

ment on row x and column i is governed by Vxi = g ( Uxi)  , where g is the sigmoid func- 

tion as shown in Fig. 3-16. Connection between processing elements, i.e., synapse, Txj,yj  

connects the output of processing element y j  to the input of processing element xi. The 

network also has an externally supplied input Zxi to each processing element. The net- 

work, represented with lexicographic ordering the rows of the processing neurons, is 

shown in Fig. 3-17. The ordinary differential equation describing dynamics of the process- 

ing elements in the Hopfield network is 

M N  
''xi - ux i - - - - + Txi,yjVyj + Ixi d t  z 

y = l j = l  
(3.30) 

where z is a time constant. For an initial-value problem, all the initial values of processing 

elements Uxi at time t = 0 are given, and the time evolution of processing elements is 

described by this equation. Hopfield showed that the network with symmetric connections 

- - Tyj ,x j )  always leads to convergence to stable states, i.e., the output of all pro- 
( 'xi, y j  

cessing elements approach constant values. Also, when the width of the transition of the 
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sigmoid function is narrow, Le., the high gain limit, the stable states of a network com- 

prised of M x N neurons, are the local minima of the energy function for the Hopfield net- 

work defined as 

* M N M N  M N  
(3.31) 

" 
-5 -4 -3 -2 -1 0 1 2 3 4 5  

U 

Fig. 3- 16 Input-output relation of a processing element 
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Fig. 3-17 Hopfield network 

Point Corresuondence using the Houfield Network 

The point correspondence problem can be formulated as a constrained optimiza- 

tion where the cost function (i.e., the energy function in the Hopfield network) represent- 

ing the constraints on the point correspondence problem, is minimized (Barnard and 

Casasent 1989; Nasrabadi and Choo 1992). To solve the correspondence problem, we con- 

struct the energy function in the form of equation (3.31), whose local minima correspond 

to solutions for the point correspondence. 

It is assumed that the 2-dimensional coordinates of points from two successive 

images have been obtained and denoted by A = Ca,,a2, . * 4, 
B = {b,, b,, - - , b,) . Processing elements arranged in a matrix form converge to 

the stable state corresponding to the best point matching. The output states of a M x N  

permutation matrix V, whose rows refer to point pattern B ,  columns refer to point pattern 

A ,  is interpreted as 
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vxi = 1 

0 

if point x in pattern B matches point i in pattern A 

otherwise 

(3.32) 

For example, for correspondence between 5 points from one image, 

A = {al, a,, a,, a4, as> and 4 points from the other image, B = { b,,  b,, b,, b4) using 

total 20 processing elements, the processing element states 

bl 0 

b2 0 

b3 0 

b4 0 

shown in the table indicate that b ,  has correspondence to as, b2 to a2, no correspondence 

of b, and b4 to a3. This means that there can be at most one “1” output in each row and 

column. If there is no correspondence for a given point in one image to the other image, 

the corresponding row or column will have only zero entries. Calculating all distances 

among points between two patterns produces a M x N  distance matrix 

dAB = { d A B  (x ,  i) ] . Likewise, calculating all distances among points within each pat- 

tern produces a N x N distance matrix d A  = { dA (i, j )  } and M x M distance matrix 

dB = { dB (x ,  y )  } . Since images are taken fast enough to guarantee that the displace- 

ments are less than the diameter of a particle, the point correspondence is found under the 

constraint that the sum of displacements between matched points is minimized. We also 
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impose a rigidity constraint which requires that the distance dA ( i , j )  between points i 

and j of pattern A should equals the distance dB (x ,  y) between matched points x and y 

of pattern B ,  respectively. This constraint may seem to conflict with the motion of individ- 

ual particles, however we expect that the rigidity is maintained between successive frames 

to some extent due to the high speed images and the flowing particle behavior. Besides, the 

correspondence is evaluated in local image neighborhoods that have small variation in dis- 

placements, as will be shown in the experiments. Based on the above discussion, we 

construct the following energy function, 

N M  M B M N  N 

E = 4 c v x i v x j +  3 c c v x i v y i  
x =  l i =  l j # i , j =  1 i = I x  = l y # x , y  = 1 

2 

M N  M N  c VxidAB (x ,  i) 
x = l i = l  x =  l i =  1 

(3.33) 

the minimum of which corresponds to the best match. The first term equals zero if and 

only if there is no more than one “1” at each row of V ,  which means that one point in pat- 

tern B is not allowed to be matched to more than one point in pattern A .  The second term 

equals zero if and only if there is no more than one “1” at each column of V .  The third 

term equals zero if and only if there are N ,  entries of “1” in the matrix V .  The fourth term 

refers to the minimization of sum of displacements between corresponding points, and the 

fifth term refers to the rigidity constraint. Comparing equation (3.33) with (3.31), the con- 

nection matrix turns out to be 
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where 6, = 1 if i = j and 0 otherwise 

The external input is 

Ixi = CN, - DdAB (x ,  i) 

(3.34) 

(3.35) 

The outputs of the stable state of the above system, that corresponds to a minimum of the 

energy function, give the best solution for the correspondence problem. 

ExDeriments of Point CorresDondence using the HoDfield Network 

Point correspondence is tested with artificial point patterns in the experiment 1 and 

with real point patterns in the experiment 2. In the experiment 1, grid point patterns are 

used to test translational and rotational motion. In the experiment 2, point patterns from a 

rotating bumpy base sample and flowing acrylic particles down the inclined chute are 

used. 

Experiment 1: Point CorresDondence with Grid Point Patterns 

Equally spaced grid point patterns are used to test the performance of the point 

correspondence. These patterns may produce the most ambiguous motions in some cases 

if the motion is analyzed at a local area. For example, if a large rectangular grid is dis- 
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placed by one interpoint distance, the evaluation at the local area of the interior grid shows 

no motion at all. The motion can be realized by noting that points do not match up at the 

boundary. Therefore, the interaction among the matching points is required to have a glo- 

bal solution for this problem, which is provided by the interconnected processing elements 

of the Hopfield network. In the following experiments, we will show the performance of 

the point correspondence for the translational (ambiguous) and rotational motion. Also, 

the performance will be evaluated for the case of mainly translational motion with smaller 

random motion of each point and a missing point, which is closer to real patterns derived 

from images due to image edges, nose, occlusions, and collisions of particles as discussed 

earlier. 

A 3 x 3 grid point pattern (circles), the same grid displaced to the left by one inter- 

point distance of 15 pixels (crosses), and the resultant displacement field is shown in Fig. 

3-18. A routine employing Runge-Kutta fourth and fifth order pairs is used to solve the 

differential equation sets. The initial values of processing elements are selected with a ran- 

dom number generator in the range of 0. to 0.5, in the 3 diagonals with the main diagonal 

centered and -.5 to 0. elsewhere. This is taken considering that “1”s in the final states of 

processing elements would show up in the 3 diagonals as long as there is a missing point 

or no missing points at all, and points are numbered in the same manner in both patterns. 

By doing this, the initial states, taking the sigmoid function into account, are placed closer 

to the desired final states than ones with the assignment of initial values by random num- 

bers in the whole range (-0.5 to 0.5). The following values of weights for each constraint 

and parameters are found experimentally to be appropriate throughout the experiments 

with grid point patterns. 



A = B = 500 

c = 800 

D = 66 
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E = 25 

N ,  = rnin(M,N) + 2  

p = 10 

The results for two cases of rotational motion are presented in Fig. 3-19 and Fig. 3- 

20, respectively. In Fig. 3-19, the pattern is rotated 20 degree counterclockwise with 

respect to the lower left point. In Fig. 3-20, the pattern is rotated 40 degree counterclock- 

wise with respect to the center point. It is noticeable that all three patterns are generated 

such that they may produce the ambiguous motions if the motion are analyzed at a local 

area. 
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Fig. 3-18 Point patterns and resultant displacement field 
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Fig. 3-19 Point patterns and resultant displacement field 
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Fig. 3-20 Point patterns and resultant displacement field 

In addition to the test for translational and rotational motion, the test result for the 

grid patterns with 10 pixels displacements to the left, random displacements up to 3 pixels 

in the horizontal and vertical direction for each point, and a missing point to simulate real 

patterns from flowing particle images is presented in Fig. 3-2 1. 
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Fig. 3-21 Point patterns and resultant displacement field 

The above results demonstrate that the Hopfield network makes the correspon- 

dence to the ambiguous motion by obtaining global solutions, and this method is applica- 

ble to real patterns. Also, these results show the validity of the rigidity constraint for the 

correspondence problem even for considerable random motions. We have monitored the 

performances of the point correspondence for the grid patterns with and without the rigid- 

ity constraint along with the initial value assignment scheme. These showed that the per- 

formance with the rigidity constraint and the initial value assignment scheme is better than 

that without the rigidity constraint or the initial value assignment scheme. Without the 

rigidity constraint or the initial value assignment scheme, states of processing elements do 

not converge to stable states for the case of displacement more than half interpoint dis- 

tance whereas with the rigidity constraint and the initial value assignment scheme, the per- 

formance is improved to the extent that the solution is available for one interpoint 

displacement or even more as shown in the previous experiments. 
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ExDeriment 2: Point CorresDondence with Real Patterns 

Real point patterns from the rotating bumpy base sample and flowing acrylic parti- 

cles down the inclined chute are used for this experiment. Fig. 3-22 shows two successive 

images, which are taken while the bumpy base is rotating clockwise on a rotating disk. 

The image on the left hand side precedes the image on the right hand side by a sampling 

time of 2 msec. The image size is 192 by 239. The point pattern in Fig. 3-23 is generated 

using variance normalized correlation with a threshold of 0.55 (circles for the preceding 

image and crosses for the current image) because brightness patterns of particles are con- 

sistent enough. There are some points in the patterns that have no correspondence due to 

the image edges, noise in the images. Since we have lots of points in both patterns, it 

would take tremendous amount of time to obtain a final solution if we compute the corre- 

spondence with the total number of points. In order to speed up the computation, we try a 

windowing scheme over the total area of the patterns. The total area of the patterns is 

divided into rectangular areas of size, 40 by 40 pixels such that neighboring areas overlap 

each other by 10 pixels. This scheme provides correspondences for the missing points 

caused by the partition of the total image because the correspondences are updated as the 

rectangular area is shifted with the overlap. The initial values are selected with a random 

number generator in the range of - 0.5 to 0.5, which is shown to produce the best match all 

the time. The following values of weights for each constraint and parameters are found 

experimentally to be appropriate for this problem. 
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A = B = 500 

C = 800 

D = 270 

E = 40 

N ,  = rnin(h4,N) 4-2 

p = 10 

The weight values of C and D are chosen differently from the previous experiment. It is 

found that the initial values of processing elements and the weight values of constraints 

have to be decided depending on specific problems. 

The displacement field is presented in Fig. 3-24. Except one point near the top 

right corner, the correspondence is solved as supposed to be. 

Fig. 3-22 Twc 3 su ccessive images 
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Fig. 3-23 Point patterns 
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Now, we are going to apply the point correspondence to the real point pattern 

derived from flowing acrylic particles down the inclined chute. The point patterns in Fig. 

3-15 obtained with the preprocessing are used for this experiment. There are four points in 

the patterns (one marked by circles and three marked by crosses) that have no correspon- 

dence due to the image edges, noise in the images and occlusions of particles. The number 

of circles is 39, and the number of crosses is 41. Using the windowing scheme described 

in the previous experiment, the total area of the patterns is divided into four rectangular 

areas such that neighboring areas overlap each other by 10 pixels. The diameter of a parti- 

cle image is typically 12 pixels. The images are taken with sufficient speed to ensure that 

particles move less than one diameter between successive images, The initial values are 

selected with a random number generator in the range of - 0.5 to 0.5, as in the previous 

experiment. The following values of weights for each constraint and parameters are found 

experimentally to be appropriate for this problem. 

A = B = 500 

C = 800 

D = 160 

E = 73 

N ,  = min ( M ,  iV) + 2  

p = 10 

Fig. 3-25 shows that the correspondence is solved for all points including missing 

points, as expected, and the velocity field for each particle is derived at subpixel resolu- 

tion. Since the point correspondence is solved by the Hopfield network, the image areas 

corresponding to preceding points are correlated with the image areas corresponding to 

current points. The image data of the areas are weighted by a Gaussian window to extract 
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the,image data of a particle as discussed earlier. Polynomial interpolation by 10 is applied 

to 3 by 3 points with the current points centered. Then, displacements corresponding to 

maximum values in the interpolated planes are searched for. The velocity field in Fig. 3-25 

shows the subpixel resolution velocities even where two points in successive frames coin- 

cide. 
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CHAPTER 4 
APPLICATION TO FLOW DOWN AN INCLINED CHUTE 

We have observed a variety of flow regimes in the chute, with remarkable differ- 

ences in their nature. Examples of these flows include highly energetic flows in which the 

concentration is low and collisions are dominant. Other flows include quasi-static sliding 

at high concentrations, rapid sliding at intermediate concentrations, and saltation at low 

concentrations. The steady, fully developed flows and some waves at the free surface also 

have been observed as inclination is changed with the same entrance gate height. More 

than one type of flow can be obtained at the same angle of inclination, depending upon the 

entrance conditions and the material characteristic of the base. 

The steady and wavy flows of glass particles down the bumpy base are studied in 

this chapter. The velocities and temperatures of both steady and wavy flows are measured 

and compared using the correlation introduced in chapter 2. The measurements are quali- 

tatively compared with Richman and Marciniec’s theoretical model. Also, the volume 

fraction of flowing acrylic particles is measured. 

ExDerimental Results 

Experiments are conducted in a flow simulation system which consists of a 

inclined chute, a conveyer for particle recirculation, an upper hopper for granular storage 

and a lower hopper for guiding the discharge to the conveyer. The flow region of the 

69 
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experimental apparatus consists of a rectangular aluminum chute with transparent side 

walls. The interior of the chute is 4 m long, 45 cm tall, and the width is adjustable from 0 

to 25 cm in 2.5 cm increments. The base of the chute is designed to be covered with inter- 

changeable inserts, allowing different base roughness conditions to be studied; in these 

experiments the base consists of 3 mm glass particles fixed in a closely spaced hexagonal 

pattern (bumpy base). The inclination angle of the chute is adjustable between 0 and 35 

degree. An adjustable gate apparatus at the entrance of the chute controls the entering 

flow. A series of flow-trapping gates are developed to measure the mass hold-up in six sec- 

tions along the chute. These gates fall under the influence of gravity when holding pins are 

simultaneously removed by a solenoid driven piston. The particles used in these experi- 

ments are glass spheres with diameters of approximately 3 mm. 

A series of experiments showed that the steady (angle, 23 degree) and wavy flow 

(angle, 21.5 degree) were generated under the following conditions: chute width, 15 cm; 

entrance gate height, 5 cm. Thus, we investigate the behavior of the flows for these cases. 

We measure the flow rate, flow thickness and mass hold-up. The flow rate is mea- 

sured by weighing the mass in marked sections of the conveyor belts that delivers the par- 

ticles from the exit to the entrance of the chute. The mass hold-up is a measurement of the 

amount of flow in the chute at any instant. This is performed by dropping the gates in the 

chute simultaneously, trapping the flow in six sections. The mass hold-up can be combined 

with flow thickness and flow rate measurements in order to calculate the average volume 

fraction and velocity in each of the six sections. The volume fraction is a measure of the 

fraction of flow occupied by particles. Table 4-1, Fig. 4-1, Fig. 4-2, Fig. 4-3 and Fig. 4-4 

show the flow rate, flow thickness, mass hold-up, volume fraction and velocity measure- 
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ments for the steady and wavy flow, respectively. Section number 2 refers to flow area 

closest to the entrance, and section number 7 refers to the flow area next to the exit. The 

rest of sections are numbered in order. The flow rate, mass hold-up and velocity measure- 

ments are dimensionless using the factors of pdw&f, pd and @, respectively where d 

is the particle diameter of 0.3 cm , and p is the particle density of 2.5 e - 3 kg/cm3, and w 

is the chute width of 15 cm, and g is the gravity of 981 cdsec2 .  

Table 4- 1 Flow rate measurement 

Steady flow Wavy flow 
(angle, 23 degree) (angle, 21.5 degree) 

How rate 
(dimensionless) 16.46 15.06 

Velocity and Temperature Measurements of flowing; Glass Particles 

Variance normalized correlation is applied to the images of flowing glass particles 

to measure the velocity and temperature. The mean square value of the random velocity is 
1 
3 commonly referred to as temperature defined as T = - ( (u t2 )  + (v'~) + (wt2)) where 

ut ,  V I ,  w' are instantaneous velocity fluctuations. Since the correlation produces 2-dimen- 

sional velocity measurements in the image plane, the temperature is derived from 2 veloc- 

ity components (T = - ( (u t2> -i- (vt2>) 1. 1 
2 

The images are taken from the side wall and the top of the chute. The side and top- 

view images have been taken about 0.8 m (section 6) and 1.7 m (between section 4 and 5 )  

upstream of the chute outlet, respectively. The camera is operated to take a pair of images 



72 

4 I , I 1 

3.5 - 
23 

._.......... ~ . . . . _ . . . , , ,  ,__..,....... .............. " .. - 3 u 

22.5} \ 21.5 

Y 

0.5 

' ! 
-2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 

chute section 

Fig. 4-1 Flow thickness 

o.:l, , , , , , I , , , 
0 
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 

chute section 

Fig. 4-2 Mass hold-up 



73 

I I I I I t I I 

0.5 - 
:... 21.5 

t 0 - - 
0 23 2 
0.3 - 

- 5 
0 > 

0.2 - 

0.1 - 

0. I t I I I I 
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 

chute sectlon 

Fig. 4-3 Volume fraction 

5 I , 

4.5 - 23 

J -  
4 -  

- w 0 - 
( 3  u 

................. ...... x I: ....x. 'X ............... ........................... ...... .................. z 3. - 
- I 215 - s 3- 
v) K a 
E 2.5 
E 

- 

2- 

1.5- 

1 -  

0.5 - 

0 

- 8 
a > 

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 
chute section 

Fig. 4-4 Velocity 



74 

every 0.25 second for total 272 pairs of images, by which the images are taken for 67.75 

second. The sampling time of 0.25 second is decided in consideration of the range of 

observed wave period (order of second or more). The images are taken with the sampling 

rate of 1000 frames/ sec, by which the time lag between images in a pair is 1 msec. We 

first illustrate instantaneous velocity measurement using a pair of images, then present 

average velocity and temperature measurement using the total 272 pairs of images for the 

steady (angle, 23 degree) and wavy flow (angle, 21.5 degree), respectively. 

Fig. 4-5 shows a pair of successive images taken from the side wall for the steady 

flow (angle, 23 degree). The image on the left hand side precedes the image on the right 

hand side by the sampling time of 1 msec. The image areas occupying the ruler are not 

used for the velocity measurements. The ruler (cm scale) in the images provides the flow 

thickness measurement from the reference of the flow height described in chapter 2. The 

dark strip at the bottom of the images is the perforated aluminum plate, and the particles 

on the top of the plate are fixed ones (boundary particles). The distance between the refer- 

ence of the flow height and the top of fixed particles is 4 mm. 

The velocity field and velocity profile are presented in Fig. 4-6. The measurements 

use the correlation with the interpolation. Also, a threshold of 0.65, decided experimen- 

tally, is applied to the correlation to get consistent measurements. The velocity profile is 

derived from the average velocity field of each row. The missing vectors in the velocity 

field are caused by abrupt change of the brightness pattern at some locations, where corre- 

lation values are less than the threshold. The values in the velocity profile refer to the hor- 

izontal average velocities, the vertical average velocities and number of data used for the 

average from each row of the velocity field, respectively. The velocity measurements are 
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Fig. 4-5 Two successive Images 

vekcily tddalL  
( d - 4  

---os . 3  12 
<- -04 . -1 10 
-4 . 2  11 
P -76 , -2 11 
P -50 , -2 12 

--FA . 3  12 
- 4 4 . 4  10 
- a .  1 11 
-33 . - a  I 1  

- - - 2 8 . 1  12 - -23 , -2 11 
-4 . - 0  12 
. -1 , -1 12 

-0 , -0 I2 
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presented such that rightward and upward motions produce positive horizontal and verti- 

cal velocities, respectively. 

The correlation method is used next with another pair of successive images in Fig. 

4-7, takm from the top of the chute for the steady flow (angle, 23 degree). The images are 

taken such that the top and the bottom edge coincide with the interface between the flow 

and the side walls. The distance between the flow and camera lens is greater than the pre- 
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vious case in order to contain the whole width of the chute. This leads to smaller particle 

image size. The velocity field and the velocity profile along width of the chute are pre- 

sented in Fig. 4-8. The correlation is taken with the interpolation. Also, the threshold of 

0.65 is applied to get valid measurements. The velocity profile is derived in the same man- 

ner as the previous case. 

The gradient in both results are caused by the friction at the chute base and at the 

side walls, respectively. The characteristics of these profiles are similar to those found for 

fluids. 

Fig. 4-7 Two successive Images 
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The instantaneous velocity measurements described above are averaged for total 

pairs of images (67.75 sec) for the steady and wavy flow. The average is taken for the 

velocity fields of each row using the same threshold. Fig. 4-9 and Fig. 4-10 show the aver- 

age velocity profile from the side-view images for the steady and wavy flow, respectively. 

In the velocity profile for the wavy flow as shown in Fig. 4-10, the number of data at the 

top of the flow is much less than the numbers of data below whereas in the steady flow as 

shown in Fig. 4-9, the number of data at the top of the flow is comparable to the numbers 

of data below. The less number of data at the top of the flow demonstrates the existence of 

the wave in the flow. Fig. 4-11 and Fig. 4-12 show the average velocity profile from the 

top-view images for the steady and wavy flow, respectively. 

The temperature measurements from side-view images and top-view images are 

produced by calculating sample variances as shown in Fig. 4-13 and Fig. 4-14, respec- 

tively. The horizontal and vertical velocity measurements are used in the temperature pro- 

files. 

In order to quantify the wave in the flow in terms of the velocity measurement, the 

velocity variation over total 272 top-view image pairs is monitored by averaging velocity 

measurements at the center of the images (7 and 8 rows of the velocity fields). Fig. 4-15 

and Fig. 4-16 show the velocity variation and its FFT for the steady flow (angle, 23 

degree). Fig. 4-17 and Fig. 4-18 show the velocity variation and its FFT for the wavy flow 

(angle, 21.5 degree). The means of the velocity variations are subtracted from the velocity 

variations in order to eliminate DC components, by which the low frequency content can 

be clearly represented. Then, 512 FFT is taken for the representation of the velocity varia- 

tions in the frequency domain. The frequency representation of the velocity variation for 
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the steady flow shows wide band, whereas that for the wavy flow shows narrow band rela- 

tively. This means that the velocity variation in the steady flow occurs randomly, however 

the velocity variation in the wavy flow occurs periodically. From the frequency representa- 

tion of the velocity variation for the wavy flow as shown in Fig. 4-1 8, the period of wave in 

the flow turns out to be about 2.5 second. 

Volume Fraction Measurement of Flowing: Acrylic Particles 

We generated the point patterns (Fig. 3-14) from acrylic particle images in chapter 

3. Counting the number of particles in a point pattern may produce a basis for volume 

fraction measurement. Thus, the image area is divided into particle size (12 pixels) verti- 

cally, and the number of particles for every vertically divided area are counted for the vol- 

ume fraction measurement. Since the images are taken from the side wall for this 

measurement, the measurement produces the volume fraction only for flow region occu- 

pied particles right next to the side wall. The point pattern from the left image in Fig. 3-13 

is used for this measurement, and the resultant volume fraction are presented in Fig. 4-19. 

The volume fraction measurement turns out to be similar to the theoretical volume fraction 

profile as will show later even though the acrylic particles are not so elastic as particles in  

the theoretical model. 

The method of volume fraction measurement is stimulated by Drake’s method 

(Drake 1991). Drake divided the images into bed-parallel layers or bins two particle diam- 

eters thick, and manual measurements such as the mean velocities and bulk density were 

taken for each bin. Manually counting particles for the density measurement would be 

tedious, time-consuming, and inaccurate. However, variance normalized correlation can 
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recognize every acrylic particle in the images as demonstrated in chapter 3. It is very 

straightforward to count particles using a computer in a well defined point pattern. Thus, 

the newly developed method produces more reliable and accurate volume fraction mea- 

surement automatically. Moreover, it is expected that the fluctuating velocity (tempera- 

ture) can be measured in the same manner if large number of images are used. 
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Fig. 4-19 Point pattern and volume fraction measurement 

Theoretical Model of Granular Flow down Bumpy Inclines 

Richman and Marciniec (1990) developed a theoretical model of gravity driven 

granular flows down bumpy inclines with an inclination angle $ as shown in Fig. 4-20. 

The particles are characterized by mass m; diameter o; and coefficient of restitution 

between flow particles, e .  The mean fields of interest are the volume fraction, v ; the mean 

velocity, u , about which the particles fluctuate; the granular temperature, T. 
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Fig. 4-20 Sketch of granular flow down an incline 

The model is based on the balance equations for mass, momentum, and the fluctu- 

ating energy: 

p + p v . u  = 0 (4.1) 

where an dot indicates a time derivative following the mean motion; 

pzi = -V.P+pg (4.2) 

where P is the pressure tensor and g is the body force unit mass; and 

(4.3) 
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where Q is the flux of fluctuating energy, y is the collisional rate per unit voIume of 

energy dissipation, and D is the symmetric part of the velocity gradient V u . 

The bumpy boundary is a flat surface to which particles of diameter d are ran- 

domly attached as shown Fig. 4-21. When a flow particle collides with a boundary parti- 

cle, the distance between their centers is 0 = ( CT + d )  /2. Dimensionless measures of 

boundary geometry are r = o / d  and A = s /d .  The bumpiness of the boundary is char- 

acterized by an angle, 8 = asin ( ( 1 + A) / ( 1 + r )  ) . The boundary coefficient of restitu- 

tion is e, that characterizes the energy dissipated in the boundary -flow particle collision. 

t "  

S I- 
d 

Fig. 4-21 Geometry of the bumpy boundary 

Steady, fully developed, gravity driven granular flows down bumpy inclined sur- 

faces are investigated. The gravity is g, the angle between the incline and the horizontal is 

@, and the perpendicular distance from the incline to the free surface is L as shown in Fig. 

4-20. An x1 - x 2  - x 3  Cartesian coordinate system is introduced, in which x I  measures 

parallel distances along the incline and x2 measures perpendicular distances above the 
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incline. By adopting the dimensionless coordinate, y = ( L  - x2) /o measured from the 

free surface and assuming that the flows are infinitely extended in the x3-direction, the 

volume fraction, v; the dimensionless velocity, u = u l /  (og) 1’2; and the dimensionless 

temperature, w = (T/og) ’’* depend on y only. The typical mean fields of interest 

based on this model are closely reproduced to show the variation of the volume fraction, 

temperature, and velocity with the height of the flow in Fig. 4-22, Fig. 4-23, and Fig. 4-24, 

respectively. These reproductions are made for V = 0.27, $ = 20 degree, e = 0.8, 

e ,  = 0.95, A = 50, r = 1/2 and A = - 1 +&. 
The i7 is depth-averaged solid fraction, 

P 
V = (l/p)p dy 

0 
(4.4) 

where p is the dimensionless depth at the base (p  = L/o), and A is the mass flow rate 

defined by 

P 
m = b u  dy. 

0 
(4.5) 
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Discussion 

It is found that the temperature profiles based on the theoretical model are different 

from the experimental measurements: the theory shows that the temperature decreases as 

the flow height goes up, whereas the experimental measurements show the opposite. In 

other words, the theory says that the temperature is generated at the bumpy boundary, 

whereas the experimental measurements say that the temperature is dissipated at the 

boundary. It is observed with visual inspection that particles at the around bottom interact 

frictionally with neighbors over long periods of time (quasi-static regime) whereas parti- 

cles interact more collisionaliy with neighbors as particles are at higher location (rapid- 

flow regime). Also, particles which interact with the bumpy base tend to be trapped in the 

dents formed by fixed particles to the base (boundary particles), and particles at the top of 
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flows move in a saltation mode. According to the mechanisms of temperature generation 

mentioned earlier, the high temperature at the top of flows is expected behavior: based on 

the visual inspection, the temperature generation due to the collisions and streaming is 

more probable as particles are at higher location. 

In the temperature measurements from top-view images, the high temperatures 

occur at about 3 and 13 cm from the reference of the chute width for both steady and wavy 

flow. It is noticeable that the velocity gradients at the same locations are steeper than other 

locations. Accordingly, the high temperatures may be explained by the fact that the magni- 

tude of temperature is proportional to the local velocity gradient. 

Since the side and top-view images are not taken for the same flow region as 

described earlier, it is not appropriate to compare the measurements from both images in 

general. However, the steady flow (angle, 23 degree) appears to be fully developed based 

on the flow thickness (Fig. 4-1), mass hold-up (Fig. 4-2), volume fraction (Fig. 4-3) and 

velocity measurement (Fig. 4-4) from the flow region between the section 4 and 5 (top- 

view images) to the section 6 (side-view images). Thus, it is comparable for the steady 

flow. The comparison between averaged velocities measured from side and top-view 

images shows discrepancy of velocity at the wall for the steady flow. The velocity at the 

bottom of the velocity profile from top-view images has to be compared with that at the 

top of the corresponding velocity profile from side-view images according to the imaging 

setup. As a possible reason for the discrepancy, particles at the top of the flow in the side- 

view images may locate away from the wall, which causes errors in velocity measure- 

ments due to the different scale factor between the physical size of a particle and the image 

size occupied by the particle. 
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As mentioned earlier, the overall trend of the temperature profile in the theoretical 

model is different from that in the experimental measurements. Since the velocity profile 

is derived from an integration of the temperature profile in the theoretical model (Richman 

and Marciniec 1990), it is not appropriate to compare the experimental measurements with 

the theoretical model directly. Besides, it is found that there are differences between the 

assumptions of the theoretical model and the experimental setup. In the theoretical model, 

it is assumed that the flows are infinitely extended in depth (x3direction), however in the 

experimental setup, the flows are confined by the two walls. In other words, the theory 

simplified the flows by modeling the flows ?-dimensionally, however the experimental 

flows are 3-dimensional flows as demonstrated by the velocity gradients in the top-view 

images. On the other hand, the theory models the boundary 2-dimensionally with the ran- 

domly attached boundary particles, which should be modelled 3-dimensionally and take 

regularity of boundary particles into account for direct comparison. 



CHAPTER 5 
CONCLUSION 

We propose techniques utilizing digital images to estimate the dynamics of flowing 

grains down an inclined chute under the action of gravity. Variance normalized correlation 

as a block matching technique is employed to evaluate the spatially averaged velocities of 

glass particles. The resolution of this method is improved to 1/10 pixel by interpolation. 

This method is evaluated with three test cases. The first case is an artificial image 

displaced at the subpixel resolution arbitrarily. The image consists of a 2-D Gaussian func- 

tion to simulate the brightness pattern of a particle in images. It turns out that the result of 

the correlation without interpolation is a rounded off version of the real displacement, and 

correlation with interpolation produces the measurements with the accuracy of 1/10 pixel. 

The second and third case are images of glass particles flowing down the inclined chute. 

The estimated velocities compare within 1 pixel with manual particle tracking and are 

consistent with the measurement made by a optic probe. 

We also present a symbolic token matching technique for the measurements of 

individual acrylic particle velocities, in which the points corresponding to the locations of 

particles are taken as the symbolic representation. In order to locate particles in images, 

several techniques are compared: synthetic discriminant function (SDF), minimum aver- 

age correlation energy (MACE) filter, modified minimum average correlation energy 

(MMACE) filter and variance normalized correlation. We propose the MMACE filter, 
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which adjusts the amount of averaged spectrum of training images in the spectrum whiten- 

ing stage of the MACE filter such that good generalization is achieved at the little expense 

of sharpness of peaks. We demonstrate that the performance of MMACE filter is very sen- 

sitive to the implementations and propose the best implementation from the viewpoint of 

good generalization and sharpness of peaks. M A C E  fiiter is expected to work fairly well 

with images that have inconsistent brightness patterns of objects such as irregularly 

shaped particles if it is synthesized with considerable number of training images. Since the 

acrylic particles have the same spherical shapes, they do not cause distortions in the 

images involved in rotation. Thus, the acrylic particles are located with variance normal- 

ized correlation using a 2-D Gaussian function to extract the image data of a particle, fol- 

lowed by the clustering technique, which produces the point patterns. Then, the 

correspondence between point patterns is solved by the Hopfield network which is formu- 

lated as a constrained optimization. Five constraints in the energy function provide valid 

solutions to the correspondence problems; those are the constraints to legitimate solution 

for the permutation matrices (3 constraints), the minimization of sum of displacements for 

corresponding points and the rigidity constraint. The velocity measurements of acrylic 

particles are refined to the subpixel resolution by the correlation with the interpolation 

between image areas corresponding to matched points. Also, this method is evaluated with 

grid point patterns under ambiguous motions and with a rotating bumpy base sample. 

Variance normalized correlation is applied to the images of flowing glass particles 

to measure the velocity and temperature for the steady and wavy flow. From the velocity 

variation monitored at the top of the flows, we find that the velocity in the steady flow 

changes randomly, whereas that in the wavy flow changes periodically. The qualitative 
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comparison of the experimental measurements with the theoretical model (Richman and 

Marciniec 1990) shows that the overall trend of the temperature profile in the theoretical 

model is different from that in the experimental measurements: the theory says that the 

temperature is generated at the bumpy boundary, whereas the experimental measurements 

say that the temperature is dissipated at the boundary. Also, we point out differences 

between the assumptions of the theoreticaI model and the experimental setup such as the 

dimension of the flows and the definition of the bumpiness. Thus, in order to quantitatively 

compare the experimental measurements with a theoretical model, the development of the 

model that conforms to the experimental setup is required. 

We propose a method for the volume fraction measurement of acrylic particles, 

which is produced by counting particles in a well defined point pattern. Comparing with 

Drake’s manual method, this method produces more reliable and accurate volume fraction 

measurement automatically. 



APPENDIX A 
DESCRIPTION OF IMAGING SYSTEM 

We have used a KODAK EKTAPRO EM Motion Analyzer, Model 1012 which is 

composed of a imager, controller and processor. The imager has an image intensifier 

assembly. This increases the imager’s ability to capture events in low light or to reduce the 

blurring of objects moving very rapidly. The intensified imager sends its video output to 

the processor and is connected to the controller. The controller provides power and control 

signals to the image intensifier assembly. 

Main system features are summarized as follows: 

* Sensor: 

* Gray Scale: 256 levels 

* Record Rates: 50, 125,250,500 and 1,000 full frames/ second 

* Exposure: 1/ 50 to 1/ 12,000 of a second 

* Gate Limits: 10 microseconds to 5 milliseconds 

* Gain Limits: 1 to 100 

* Frame Storage: From 400 to 4,800 full frame images (Our system: 818 frames) 

* Play back Rates: NTSC: 0, 1,2,3,3.8,5,6,7.5, 10, 15,30,60,90,120,240,480, 

960 frames/ second plus single step, freeze frame forward or reverse 

TRIGGER, EXT SYNC, ROC 

System can be configured for either NTSC or PAL compatible output 

192 by 239 pixels NMOS array 

* Signal Inputs: 

* Video Output: 

95 
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The KODAK EKTAPRO Transfer Utility (EMUTILS) program provides a graphi- 

cal user interface with the KODAK EKTAPRO EM Motion Analyzer. Using the program, 

a personal computer can control the Motion Analyzer. The program also imports digital 

video images in TIFF format from the Motion Analyzer and displays the images along 

with the DATA-FRAME Border infomation such as date, time and record rate at which 

the images are taken. 

I 



APPENDIX B 
DESCRIPTION OF DEVELOPED PROGRAMS 

As described in appendix A, the image file format from the camera is TIFF. Thus, 

the TIFF files are converted to RAW files (binary files). Then, C programs are developed 

for highly computational tasks and MATLAB programs are developed for mostly graphi- 

cal representation of results from the C programs. 

The developed program ate classified according to context of this dissertation: the 

velocity and temperature measurement of flowing glass particles and the velocity and con- 

centration measurement of flowing acrylic particles. 

Velocity and TemDerature Measurement of Flowing Glass Particles 

Match3l.c. This program provides the velocity measurement using the variance 

normalized correlation for side-view images. The images are divided into 14 by 17 blocks 

whose size is 13 by 13 pixels. Then, the best match for each block is found in a search area 

(1 1 by 11 pixels, up/ down 5 pixels and left 9/ right 1 pixel). Interpolation is applied to 

obtain the measurements with subpixel resolution of 1/ 10 pixel. The program requires to 

specify two successive image and output file names in order, in which the first image pre- 

cedes the second image in time. The output file contains the 14 by 17 velocity measure- 

ments and correlation values. 
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Match32.c. This program is a counterpart of the Match3l.c for top-view images. 

Its search area is 5 by 5 pixels (up/ down 2 pixels and left 3/ right 1 pixel). 

Vector4.m. This program produces the velocity field from the output file of the 

Match3 1.c. A user-specified threshold checks the correlation values. If a correlation vahe 

exceeds the threshold, corresponding velocity is presented in the velocity field. Otherwise, 

velocities are set to zeros, which turn out to be points in the velocity field. The program 

also requires two scale factors and the location of the chute base in images. One scale fac- 

tor is a ratio of the displacement (pixels/ frame) to the velocity (cml sec). The other scale 

factor is a ratio of the real size (cm) to the image size (pixels), The location of the chute 

base is referenced with respect to upper left corner of images, which leads to the flow 

height reference in the velocity field. 

Vector41 .m. This program is a counterpart of the Vector4.c for top-view images. 

The threshold and the two scale factors are required as in the Vector4.m. 

Avelprl 1 .m. This program produces the velocity profile from the output file of the 

Match3 1 .c. The velocity measurements are averaged for each row of corresponding veloc- 

ity field. The velocity measurements whose correlation values are lower the user-specified 

threshold are not used in the average. The program also requires two scale factors and the 

location of the chute base in images as in the Vector4.m. 

Avel~rl2.m. This program produces the averaged velocity profile from 8 pairs of 

side-view images (8 output files of the Match3l.c). The average is accomplished in the 

same manner as in the Avelprl 1 .m. Also, the temperature is measured by calculating sam- 

ple variance of velocity measurements whose correlation values exceed the user-specified 

threshold. The program also requires two scale factors and the location of the chute base, 



99 

Avelorl4.m. This program is a counterpart of the Avelprl 1 .m for top-view images. 

The threshold and the two scale factors are required as in the Avelprl1.m. 

Avebrl5.m. This program is a counterpart of the Avelpr12.m for top-view images. 

The threshold and the two scale factors are required as in the Avelpr12.m. 

Velocity and Concentration Measurement of Flowing Acrvlic Particles 

Mmace33.m. This program produces the MMACE filter output for the acrylic par- 

ticles as shown in chapter 3. The program can also produce either MACE filter output or 

SDF output depending on the value of a, 

Vancorr21 .c. This program locates acrylic particles using the variance normalized 

correlation and a clustering technique. The program produces a output file that contains 

particle coordinates (point pattern). 

Pocor3l.m. This program solves correspondence between point patterns using a 

Hopfield network. The point patterns are divided into blocks of 30 by 30 pixels with 10 

pixels overlapped. The correspondence is updated as each block is evaluated. 

C0ncent.m. This program produces the concentration measurement from a point 

pattern. The measurement provides the number of particles at each vertically divided 

image area by the particle size. 
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