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ABSTRACT: 
Chaotic systems are known for their unpredictability due to their 
sensitive dependence on initial conditions. When only time series 
measurements from such systems are available, neural network 
based models are preferred due to their simplicity, availability, and 
robustness. However, the type of neural network used should be 
capable of modeling the highly non-linear behavior and the multi- 
attractor nature of such systems. In this paper we use a special type 
of recurrent neural network called the "Dynamic System' Imitator 
(DSI)", that has been proven to be capable of modeling very 
complex dynamic behaviors. The DSI is a fully recurrent neural 
network that is specially designed to model a wide variety of 
dynamic systems. The prediction method presented in this paper is 
based upon predicting one step ahead in the time series, and using 
that predicted value to iteratively predict the following steps. This 
method was applied to chaotic time series generated from the 
logistic, Henon, and the cubic equations, in addition to 
experimental pressure drop time series measured from a Fluidized 
Bed Reactor (FBR), which is known to exhibit chaotic behavior. 
The time behavior and state space attractor of the actual and 
network synthetic chaotic time series were analyzed and compared. 
The correlation dimension and the Kolmogorov entropy for both 
the original and network synthetic data were computed. They were 
found to resemble each other, confirming the success of the DSI 
based chaotic system modeling. 
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INTRODUCTION 

Chaotic systems are known for their unpredictability, due to their sensitive 
dependence on initial conditions which is measured by positive Lyapunov 
exponents. In other words, even when the exact model of a chaotic system is 
available, it is impossible to predict a chaotic system behavior for a long period of 
time. 2*3 The reason is that our measurements and calculations are never perfect and 
are susceptible to errors. Similar errors contribute to the non-exact determination of 
initial conditions. Any minute error in the initial conditions for a chaotic system will 
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turn, with time, into great differences in the results, However, short term predictions 
of chaotic systems are still possible. 2*4 How short the time duration is for valid 
prediction depends on the system average loss of information represented by its 
Lyapunov exponents and Kolmogorov entropy. Some systems are less predictable 
than others due to faster loss of information with time, represented by larger positive 
Lyapunov exponents and larger positive Kolmogorov entropy. Since exact 
predictions are not possible for such systems, approximate models may produce 
results as satisfactory as those produced by exact models. This makes neural 
network based models very good candidates for such applications. Neural network 
based models are known not to be exact models, but they are easy to implement, 
robust, fast and data driven. Dynamic neural network models are preferable for such 
applications, due to their ability to capture time behaviors. 

In this work we used a special type of dynamic neural network called the 
Dynamic System Imitator (DSI). We developed the DSI a few years ago and have 
used it for several modeling and control applications. 6,7*8 The DSI is biologically 
motivated and is specially designed to model a wide variety of dynamic systems. It 
has both short term and long term memory mechanisms that enable the modeling of 
a system's transient and steady state behavior. In addition, the DSI behavior depends 
on its initial conditions the same as any differential equation model does, even 
though no explicit differential equation solving is incorporated in this case. What we 
know of the DSI characteristics encourages us to recommend it for modeling non- 
linear systems in general and chaotic systems in particular. More details about the 
DSI will be discussed below. Since the dynamics of most real systems are accessed 
via time series measurements, the focus in this paper will be on modeling chaotic 
time series. The way the chaotic time series model is implemented in this paper is 
through a one step predictor model. The dynamics of a chaotic time series are 

J modeled through training the DSI to perform a one step prediction. However, at any 
point of time, the DSI response depends on the initial conditions at time zero, the 
history of inputs and network state variables, and the current network input. 
Assuming the network was able to capture the dynamics in the time series, we can 
start the trained network with any set of initial conditions, use a number of initial 
data points to put the network on track, and iteratively feed the output of the network 
back to compute next predicted values. Even though we applied this methodology to 
several theoretical systems, the current motive is to use it in a strategy to identify 
certain chaotic behavior modes encountered in a Fluidized Bed Reactor (FBR) 
system. This identification can be achieved by comparing the actual measurement 
from the chaotic system with the time series predicted by the DSI iterative predictor 
model, starting from a short time history of the actual data. In this paper, results 
from the DSI iterative predictor are discussed for chaotic time series generated using 
the logistic, Henon and the cubic equations, in addition to one experimental time 
series measured from the FBR experiment at the Morgantown Energy Technology 
Center. The DSI network model was evaluated based on comparison made on the 
time series, phase space trajectories, and chaotic parameters computed from these 
trajectories. However, in this case, time series similarities are not as important as 
similar phase space trajectories and similar chaotic parameters. ' The actual 
combination of DSI iterative predictor and FBR system is published in other 
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THE DYNAMIC SYSTEM IMITATOR (DSI) NEURAL NETWORK 

.. J 

The neural network used for the chaotic time series prediction in this paper is a 
dynamic neural network called Dynamic System Imitator (DSI). The DSI is a fully 
recurrent neural network that is specially designed to model a wide variety of 
dynamic systems. 637 As shown in Figure.1, the DSI has a three layer structure: input, 
hidden, and output layer. Connections have both weights and integrators in parallel 
to model short term and long term memory mechanisms that handle modeling of 
time behaviors and time lags in real systems. Every node in the input layer has one 
input, xk(t), and two outputs defined by: 

The input layer is fully connected to the hidden and output layers. Every node in the 
hidden layer is connected to every other node in the hidden and output layers and to 
itself. The two outputs of every neuron are computed according to the relationship: 

m n 

= A j ~ j ( B r * [ C ( w , ~ ~ o l k ( t )  + W2ik0?;k(t)) + x(W1jkolk(t)+ hh h W2jko2k(t))l  h h h  ) 
k=O k=O 

t 

oZjh(t) = Cjlj(DJ' joljh(t)  dt) 
0 

where is a nonlinear transformation function, and Aj, Bj, Cj, and Dj are adjustable 
weights associated with the hidden neuron j, which are used to shape the transfer 
function for every node. B and D are used to adjust the steepness of the function, 
while A and C are used to adjust its min-max value. Also m and n are the number of 
processing nodes in the input and hidden layers respectively; w1 and w2 refer to 
weights associated with direct and delayed outputs, respectively. The superscript h 
refers to the hidden layer, i refers to the input layer, hi refers to weights from the 
input to hidden layer, and hh refers to weights from the hidden to hidden layer. The 
integrators and feedback connections promote enough asynchrony and interaction in 
the network to model several system state variables as a function of time. When 
enough intermediate state variables are generated, the network output can be a 
function of those state variables. The output layer has only one output per node, 
which is computed according to the following equation: 
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Figure 1: Schematic diagram of the Dynamic System imitator (DSI) Network. 

- J where m and n are the number of nodes in the input and hidden layers respectively, 
and Ej and Fj are two constants associated with each node in the output layer to 
shape its own transfer function when needed. The superscript o refers to the output 
layer, i refers to the input layer, h refers to the hidden layer, oi refers to weights from 
the input to output layer, and oh refers to weights from the hidden to output layer. 

By looking at the complete DSI network design, it is easy to observe that the 
node interaction, information feedback, and action transfer time lags generate an 
activity in the network that is similar to the internal activity in real dynamic systems. 
Even with a simple configuration, the DSI has a complex structure, which makes it 
very difficult to train, A multi-dimensional optimization technique that adopts the 
simplex method is used to train the DSI. There are two other difficulties in the 
training of such a network. One is that a very long time series cannot be introduced 
to the network at one time and must be divided into reasonably sized sections. The 
other is that the behavior of the network is dependent on the initial conditions of its 
state variables, and a certain set of initial conditions has to be found in conjunction 
with every network design. In other words, whenever the network is updated, a new 
set of initial conditions must be found. The first problem was overcome by using a 
moving time window that cascades the introduction of the time series segments to 
the network during training. The network final conditions at the final training step of 
every segment is taken as the initial conditions for the next segment, to keep the 
physical association between the consequent segments of the time series. The second 



problem was overcome by adding initial conditions search method that runs after 
every training iterate to find updated initial conditions for every modified version of 
the network. An arbitrary set of initial conditions can be used at the start of the 
training process. 

FLUIDIZED BED REACTOR (FBR) PRESSURE DATA COLLECTION 

Morgantown Energy Technology Center has built and operated a cold flow model to 
emulate fluid dynamics in a Fluidized Bed Reactor (FBR). The cold flow 
verification test facility consists of a ten foot high jetting fluidized bed made of clear 
acrylic and configured as a half cylinder vessel to facilitate jet observation. A central 
nozzle, made up of concentric pipes, continuously fed solids at 0 to 8 psig pressures. 
Separate flow loops controlled the conveyance of solids (inner pipe), the make-up 
air flow (middle pipe), sparger flow (outer pipe), and six air jets on the sloping 
conical grid. The half round fluid bed model provided useful information to study 
fluidization and design issues including jet penetration, chaotic pressure 
fluctuations, and mass flow rates of particles in various regions of the jetting fluid 
bed. The fluid bed tests were conducted using cork particles to simulate the relative 
density of gases to scale for a high pressure coal conversion reactor. As expected, 
the test generated chaotic pressure fluctuations. The differential pressures were 
measured at two location with each location consisting of two pressure taps spaced 
four inches apart. The lower pair of pressure taps were placed at a height just above 
the nozzle and the upper pair of pressure taps were placed at a height where the jet 
becomes evenly distributed across the diameter of the reactor. Differential pressure 
data collected at the higher sensor served as the primary data for the investigation of 
chaos. It clearly indicated the fluidization regime of the bed supported by visual 
observations. Data were collected on a data acquisition card at a rate of 50 Hz. 

USING THE DSI FOR ITERATIVE PREDICTION OF CHAOTIC TIME 
SERIES 

J 

A simple configuration of the DSI neural network was used for the iterative 
prediction of a chaotic time series. This configuration has one node in the input 
layer, three nodes in the hidden layer, and one node in the output layer. The network 
was trained to predict one point ahead of the time series, using a set of previous 
values. These values are not explicitly used for prediction, but are implicitly used by 
adjusting the state of the network from which the prediction is performed. The 
prediction method is based upon the idea that once the network is trained to predict 
one point ahead with good accuracy, this same point can be used as an input to the 
network to predict the next point. This process can be repeated iteratively to predict 
many points in the time series. Naturally, the accuracy of prediction will deteriorate 
over time. During training, a time window of 200 points was used to cascade the 
time series to the network. The algorithm was applied to three types of simulated 
chaotic time series generated from the logistic, Henon, and cubic equations, in 
addition to one experimental time series measurement taken from a Fluidized Bed 
Reactor (FBR). FBR systems are known for their chaotic behavior, as discussed in 

The network was able to learn simple one step prediction several references. 
in a reasonable number of training iterations. After training, the output of the DSI 
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was used iteratively to generate the time series. However, the training initial 
conditions together with the first actual 25 points of the training time series should 
be used to start the DSI, in case the time behavior of the training time series must be 
generated. If not, any network initial conditions and any starting points can be used 
to generate the state space behavior of the system to which the training time series 
belongs. 

Comparing the predicted time series to the actual time series, we found that the 
DSI was able to track the training time series time behavior for a short period of 
time (around 30 points), when started from the training initial conditions , and 
activated by the first 25 points of the training time series. However, it was able to 
trzck the state space attractor to which the training time series belongs, starting from 
any initial conditions, activated by any arbitrary set of starting points. The only case 
that fails is zero initial conditions together with zero starting points, which leads to 
zero solution The actual and predicted time series for all cases are shown in Figures 
2-9, while the actual and predicted state space attractors are shown in Figures 10-17. 
To quantitatively compare these attractors, the correlation dimension and 
Kolmogorov entropy for the actual and predicted attractors were computed. The 
results of the correlation dimension and Kolmogorov entropy of the different cases 
are summarized in Table. 1. The correlation dimension is computed, according to the 
box-counting method, from the slope of the lines representing the correlation 
integral versus E (the size of a computing box) on log-log curves for different 
embedding dimensions. The correlation integral was computed according to the 
following equation: l 3  

- J  
where 6(x)=1 for x>O and 6(x)=O for x<O. The Kolmogorov entropy was computed 
according to the equation: l4 

0 200 400 600 800 1000 

TIME 
Figure 2: Actual logistic time series. 
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Figure 3: Synthetic logistic time series. 
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Figure 5: Synthetic Henon time series. 
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Figure 7: Synthetic cubic time series. 
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Figure IO: Actual logistic attractor. 
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Figure 12: Actual Henon time attractor. 
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Figure 14: Actual cubic attractor. 
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Figure 11 : Synthetic logistic attractor. 
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Figure 13: Synthetic Henon attractor. 
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Figure 15: Synthetic cubic attractor. 
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Figure 16: Actual normal FBC 
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TABLE 1: COMPARISON OF THE ACTUAL AND DS1 SYNTHETIC 
ATTRACTORS PARAMETERS 

Time Series Correlation Dimension Kolmogorov Entropy 
Logistic Map (actual) 1.0457M.0057 0.687W.0198 
Logistic map (synthetic) 1.231 6k0.0374 0.601 3H.0435 
Henon Map (actual) 1.2607kO.0331 0.326fH.0135 
Henon map (synthetic) 1.3171M.0725 0.296239.0239 
Cubic Map (actual) 1.2248kO.0090 0.424533.01 83 
Cubic Map (synthetic) 1.8171M.01365 0.534WO.0134 
FBC normal (actual) 2.9345.065 5.0345.095 
FBC normal (synthetic) 2.12.07 6.3764f1.26 

i 
CONCLUSION 

In this paper a dynamic neural network based model for chaotic time series has been 
developed. A one step predictor model was used to iteratively generate chaotic time 
series. A dynamic neural network called the Dynamic system Imitator @SI) was 
utilized. The DSI has distinguishable dynamic features due to its special 
architecture. The DSI time behavior depends on its initial conditions. After training, 
the DSI was able to generate the chaotic time series in all test cases. For a short 
period of time, it was able to generate the same time behavior of the training time 
series if started with the same initial conditions and the first initial points of the time 
series. Furthermore, it was able to track the system attractor to which the training 
time series belongs, for any period of time, for any initial conditions and any initial 
points, in all test cases. The only case that fails is the zero initial conditions together 
with zero starting points, which leads to a zero solution. This methodology was 
applied to three known chaotic models, the logistic, Henon and cubic maps, in 
addition to one experimental time series taken from differential pressure 
measurement of a Fluidized Bed Reactor (FBR). The correlation dimension and the 
Kolmogorov entropy for the actual and DSI network synthetic data were computed 
and compared. There is a very good match between the actual and synthetic time 
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series parameters in all cases which indicates that the DSI was able to learn the 
dynamics in those chaotic time series to a very good extent. 
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