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Abstract 

Numerical studies of the nonlinear evolution of MHD-type tearing modes in 

three-dimensional toroidal geometry with neoclassical effects are presented. The 

inclusion of neoclassical physics introduces an additional free-energy source for the 

nonlinear formation of magnetic islands through the effects of a bootstrap current 

in Ohm’s law. The neoclassical tearing mode is demonstrated to be destabilized 

in plasmas which are otherwise A’ stable, albeit once an island width threshold 

is exceeded. The plasma pressure dynamics and neoclassical tearing growth is 

shown to be sensitive to the choice of the ratio of the parallel to perpendicular 

diffusivity (xll /xl) .  The study is completed with a demonstration and theoretical 
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comparison of the threshold for single helicity neoclassical MHD tearing modes, 

which is described based on parameter scans of the local pressure gradient, the 

ratio of perpendicular to parallel pressure diffusivities X L / X I I ,  and the magnitude 

of an initial seed magnetic perturbation. 
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1 Introduction 

The performance gains of the last several years in tokamak fusion plasmas has gener- 

ated a resurgence in the observation of low helicity magnetic oscillations El, 21. Often, the 

onset of such oscillations either cause the plasma to disrupt violently [3,4] or to degrade 

significantly the plasma confinement [l]. Experimental observations indicate that these 

instabilities are associated with magnetic reconnection-an intrepretation based on the 

observation of the slow growth of these instabilities and mode numbers which are reso- 

nant in the plasma. Additionally, the electron cyclotron emission diagnostic indicates the 

presence of flatspots in the electron temperature profile about the resonant surface that 

are characteristic of magnetic island formation associated with the tearing events[& 2,1]. 

One theoretical explanation for such modes is destabilization from the perturbed 

bootstrap current. Bootstrap currents arise from the viscous damping of the poloidd 

electron flow. The portion of the flow produced from the poloidal projection of the dia- 

magnetic current when balanced against electron-ion friction yields a parallel current 

proportional to the cross-field pressure gradient, i.e., the bootstrap current. In the pres- 

ence of a magnetic island, the pressure flattens within the island separatrix when parallel 

transport is fast relative to perpendicular transport. The pressure flattening eliminates 

the neoclassical bootstrap current within the magnetic island, but a cross-field pressure 

gradient remains outside the island separatrix. Since the pressure contours deform due 

to the island formation, a perturbed bootstrap current develops. For an equilibrium with 
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dp/dq < 0,  where p is the equilibrium pressure and q is the inverse rotational transform, 

this perturbation produces a destabilizing effect[5, 6,  71. 

The destabilization mechanism is predicated on the assumption that the pressure 

equilibrates on the modified magnetic surfaces. When the island width is small enough, 

this is no longer a valid approximation as perpendicular transport mechanisms allow 

the pressure to cross magnetic surfaces faster than the pressure can equilibrate on the 

perturbed surfaces. When the magnetic island is smaller than a threshold value, the 

helical perturbation of the pressure profile about the island is insufficient to destabilize 

the island. An analytical model for the island dynamics which incorporates many of 

these features can be developed by using a nonlinear Rutherford theory[8] amended to 

included neoclassical effects[9]. In this particular model, the magnetic island width, W, 

is given by 

P' w 
ss w2+ Wj' - A' + 9.26~:~" d W  I'x - 

where I1 N 0.8227, Wd N 1.8Wc, A' is the stability index from resistive MHD theory[lO], 

0.25 1 0.5 
We =2.83 (2) (-) , 

EaSsn 

e, = ep,, ss = p s q  ' q -1 , P, ' = -PoQ~E, 2 -2 p,. ' Here, XI and X I I  are the perpendicular and 

parallel pressure difisivities respectively, the mode is resonant at p r / a  = ps = r j / a  

where q = m/n, is the pressure gradient evaluated at the resonant surface normalized 

to the pressure on-axis, A' is the tearing mode matching parameter, and Po is the nor- 

malized pressure on axis. (Note that the introduction of &, is strictly for convenience 
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when making comparisons with the later numerical simulations, the real dependency is 

on the unnormalized local pressure gradient.) The last term in Eq. (1) describes the per- 

turbed bootstrap current which is typically destabilizing in tokamaks. The novel aspect 

of neoclassical instabilities is that magnetic islands can occur even in the limit of resistive 

MHD tearing stability, A' < 0. This model is essentially the equivalent-of the Qu and 

Callen model[5] or the model of Carrera et al. [6]in the limit X I I / X L  3 00, i.e., where the 

pressure completely equilibrates on each. flux surface. 

The dynamics of the island evolution model can be summarized in the simple phase 

space diagram of Figure 1 which assumes A' < 0. The diagram shows two fixed points: 

a nonlinear island threshold, below which island formation is suppressed, and a large 

saturated island width. The two fixed points can be determined by setting the growth 

rate of Eq. (1) to zero and solving the resultant quadratic for the island width. For a 

sufficiently well separated threshold and saturation width, the solution to the quadratic 

approximates as 

At small island width the perpendicular pressure transport dominates over the pard- 

le1 transport and the pressure profile is unaffected by the island structure, which then 

produces no perturbed bootstrap current, and no island growth. As the island width 

is increased, the island eventually perturbs the pressure profile and the perturbed boot- 
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strap current is then able to destabilize the island. An increase in the plasma pressure 

gradient shifts the entire phase space curve upward. This then reduces the threshold for 

the mode and also increases the saturated island width. Alternatively, an increase in the 

parallel pressure diffusivity primarily shifts the instability threshold to smaller amplitude, 

but leaves the saturated state at nearly the same value. This simple neoclassical MHD 

model has shown remarkable dynamical agreement with the experimental, observations 

on TFTR[l, 21. 

To further explore the dynamics of the neoclassical MHD tearing mode in a realistic 

toroidal geometry, numerical simulations based on neoclassical reduced MHD equations 

have been conducted. In Section 2, the model equations for neoclassical reduced MHD 

as implemented in the neufar code are presented. In Section 3, the dynamics of pres- 

sure equilibration on magnetic field lines in the presence of an anisotropic diffusivity is 

presented. In Section 4, simulation results based on this neoclassical MHD model are 

presented. The results are summarized in Section 5. 
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2 Model Equations ~ 

In this section, a set of equations for the numerical simulation of resistive instabilities 

in a tokamak are presented which include neoclassical viscous stress effects. The deriva- 

tion of this reduced set of equations is presented elsewhere[ll]. The model is formulated 

based on a geometry defined by an ideal MHD equilibria in an axisymmetric toroidal 

geometry. This equilibrium is solved numerically with the fixed boundary, equilibrium, 

Grad-Shafranov code RSTEQ[12,13,14] and is used to define a nonorthogonal "straight- 

field-line" coordinate system with the associated covariant and contravariant metric ele- 

ments. The full set of two fluid equations are not solved; instead, after a decomposition 

of variables into equilibrium (subscript 0) and fluctuation components (subscript l), a 

set of neoclassical reduced MHD evolution equations for the poloidal flux, the toroidal 

vorticity and the plasma pressure are used that are valid in the limit of small inverse 

aspect ratio (e << 1) and low plasma pressure (p << 1). The equations are implemented 

and solved numerically in the code neofur which is based on the formalism of the initial 

value code FAR [15]. 

In axisymmetric systems the equilibrium magnetic field may be expressed as 

' where I can be shown to be a flux function from axisymmetry. When the radial projection 

'of the ideal MHD equilibrium force balance is combined with Ampere's law and the 
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representation of the magnetic field, the result is the Grad-Shafranov equation 1161, which 

is expressed as 

where the following normalizations have been made [13]. Length scales have been nor- 

malized by the plasma minor radius a = E&, where & is the Shafranov-shifted major 

axis and E is the inverse aspect ratio defined as 

e2 = -1 1 8 V F ,  1 27T v (7) 

but with the exception that the cylindrical coordinate R has been normalized by &. The 

magnetic field has been normalized by the value (in units of Gauss) B* = Iwa1,h-l , where 

I / Iwal l  = 1 at the plasma edge. The flux $ has been normalized by 111' = -e2&IwalI. 

The pressure is normalized to po,  the pressure on axis, which leads to the definition 

At this point it is also convenient to define two timescales which will be relevant 

for the initial value equations. The first is the resistive time TR which is defined as 

TR = ~~I&-'47rc-~, and will be used to normalize all times. The second is the Alfven 

time TA which is defined as rz2 = I&11p51&-4(47r)-1. The ratio of these two time scales, 

S = TR/TA, is defined as the Lundquist or magnetic Reynold's number and for a hot 

tokamak plasma has the property S >> 1; e.g., in TFTR S - 10'. 
The model presented here is a close derivative of the reduced-MHD models of both 

Strauss [17] and also Hazeltine and Meiss[l8], but while these models neglect viscous stress 
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tensor effects, this model includes such effects based on neoclassical closure arguments[l9]. 

This neoclassical reduced MHD model consists of a lowest order in E parallel projection 

of Ohm’s law, which is given by 

where the toroidal projection of the current is 

and the parallel projection of the stress-tensor term is defined in Appendix A. 

The second evolution equation is for the toroidal projection of the vorticity tot, which 

is given by 

where wf is given by Eq. (9) with + replaced by 4. 

The interpretation of each of these terms is a-follows. The first two terms on the 

right-hand-side represent the convection of vorticity, the 4 and .$ are curvature pieces 

and expand as 



10 

The last two terms of Eq. (11) are often referred to as the pressure curvature pieces 

and lead to the Glasser effect [20, 211, which produces a stabilizing effect linearly and 

nonlinearly when the equilibrium has good average curvature. However, the bootstrap 

current dominates over these terms and so they have been dropped in the following 

simulations. The 6 remaining current pieces are the linear and nonlinear portions of 

S-VJC. The find stress tensor term is the ion viscosity which is composed of a Braginski- 

like term given as vA*wC and also a neoclassical term described in Appendix A. The final 

evolution equation is for the perturbed pressure, p l ,  which is given by 

where the equilibrium heat source has been balanced with the equilibrium portion of the 

heat flux (& = -xlV2po) and changes to the resistive heating are deemed to be small. 

The 5 fluctuation is given by 

-# 

Q1 = -xlvPl - (XI1 - X l )  3 (13) 

where 

Le., po = po(p) and 

.Vp, is equal to zero, since the equilibrium pressure profile is a flux function [ 

Vp = 0 1. Also, the diEusivity has been normalized by c 2 g / r ~  

and factors of 1/B2 N 1/Bi. 
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The numerical model implemented in the neofar code is equivalent to that of its parent 

code FAR which is an initial value code that solves the linear portion implicitly with 

a block tridiagonal solver [22] and the nonlinear term explicitly. The explicit portion 

(and especially that nonlinear portion associated with the parallel pressure transport) 

generates the strongest constraints on the numerical implementatation due to stability 

requirements. 
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3 Pressure evolution dynamics 

The model in this paper uses an anisotropic pressure diffusivity which accounts for differ- 

ences in the perpendicular (xl) and parallel ( ~ 1 1 )  heat transport. In a real plasma these 

coefficients, along with the plasma resistivity, would depend on various plasma parameters 

(temperature, density, turbulence levels, etc.). However, the assumption has been made 

that in the vicinity of any particular island the effect of topological changes associated 

with the island are likely to be dominant over these spatial variations. Consequently, 

Xland x11 will be assumed to be constants across the entire extent of the plasma. In 

principle, neofur could be run in a fully nonlinear turbulent mode with dynamic versions 

of XI and XII which could address such effects, but at the expense of more complicated 

nonlinear terms and much longer compute times. 

The particular choice of values for XI and X I I  will reflect three time scales: the parallel 

equilibration time, the energy confinement time, and the resistive time. The ratio of the 

first two time scales is based on the observation that free streaming of electrons along 

the magnetic field lines produces rapid equilibration of pressure along a field line, while 

the pressure transport across the magnetic field lines is constrained. This implies that 

X I I / X L  >> 1. This choice of xi1 also plays a significant role in the determination of a 

short enough time step to avoid numerical instability associated with the explicit time 

advance of the nonlinear portion of the parallel heat flux, yet long enough to simulate 

the island growth over a fraction of the resistive time scale. The ratio of the last two 
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time scales is based on the experimental observation that the energy confinement time 

(W 100 m s  in TFTR) is faster than the resistive timescale (N 10 s in TFTR), which 

implies a dimensionless XI N 100. This choice of XI  is central to insuring that the 

pressure “rapidly” equilibrates while the island evolves, rather than the pressure gradients 

external to the magnetic island steepening during island growth or significantly lagging 

the evolution of the magnetics, i.e., the pressure relaxation has not completely propagated 

to the magnetic axis but requires a finite time of order the energy confinement time to 

equilibrate throughout the plasma. The general criterion required to avoid pressure 

steepening is xl’WdW/dt << 1 [23]. For A’ unstable modes this can sometimes be 

violated during the early linear evolution of the mode, but since this is associated with 

an extremely small magnetic island, this regime is largely irrelevant for experimental 

comparisons and will not be an issue for the choice of parameters used for the bootstrap 

current driven modes of this paper. 

For XI = 100 and XI1 = lo7, the pressure dynamics can be described based on rapid 

parallel transport which effectively “short-circuits” the perpendicular pressure gradient 

across the island region. This flattening of the pressure profile across the island appears 

as a pressure decrease in the 0/0 harmonic of the pressure between the magnetic ax is  and 

the island. A simple estimate of this pressure drop on axis based on the “belt” model of 

Chang and Callen [24] is polo = -Wdpo/dpl,, where W is the island width and dpo/dp 

is the equilibrium pressure gradient evaluated at the rational surface. 
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To test the robustness of the numerical simulations, to assess the helical structure 

of the pressure contours, and to assess the pressure equilibration on the magnetic flux 

surfaces-a feature which is necessary for the threshold destabilization of the neoclassical 

tearing mod- a single large "static" magnetic island is considered but in the absence 

of a pressure convection term. In an ideal situation, where X I I / X L  3 co or where the 

magnetic fluctuations are zero, the pressure contours and field lines would exactly m 

incide. However, in the vicinity of the island X-point even though the perpendicular 

transport is slow, the transit time across the X-point for a small distance 6, is quite 

short: 71 = k i x l  N ~1 / (6 , )~ .  On the other hand, the singular nature of the separatrix 

requires heat to travel an infinite distance in the parallel direction to cross the'X-point: 

q = kixll. If a Taylor expansion of a mode is made about the rational surface, then 

3c11 = 6,(m/q)(dq/dp). A balance between these two time scales generates a scale length 

at which the transport changes form being parallel to perpendicular dominated. The 

scale length is 
0.25 

p=PO 

which for realistic plasmas is very small (- This combination of scale lengths and 

timescales allows the island to support a weak pressure gradient across the X-point rather 

than producing a distinct X-point in the pressure contours. This feature proves to be 

pivotal for the amplitude threshold for generation of the neoclassical MHD instabilities 

of the next section. 
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The degree to which the pressure has equilibrated along a flux surface can be quantified 

by computing the pressure variance (a2) along any particular magnetic field line. In 

Figure 2, this pressure variation is presented for simulations based on a static magnetic 

island of approximately 20% of the minor radius for various levels of X I I / X L  with select 

starting points which cross in the vicinity of an island X-point. This variance should 

be contrasted with a diagnostic-like variance which would sample pressure from different 

magnetic field-lines but at a constant radius. As expected, the pressure variation is largest 

near the resonant rational magnetic surface, and for X I I / X L  = lo6 has a magnitude of 

N 1 - 2%. The variance is largest near the mode rational surface, because the field 

line passes through the vicinity of the island X-point where transport is dominated by 

perpendicular diffusion to regions near the separatrix across the island 0-point where 

transport is dominated by parallel diffusion. This trend is further clarified in Figure 3 

which illustrates that the peak pressure variance decreases as a function of X I I / X ~ .  

The find issue which the pressure evolution afFects is the numerid stability of the 

time advance scheme, especially due to the explicit nature of the nonlinear terms. A 

reasonable choice of timestep during the nonlinear phase of mode growth to insure sta- 

bility for a value of XI! = lo7 is lO- '7 -~  when N 10"'. As $1 increases in value this 

timestep must be further reduced to insure stability. With this timestep and with the 

advantage of larger timesteps in the early linear phase of island growth, a typical run of 15 

modes requires roughly 2 weeks in real time on an IBM/RISC6000 model 370 (25 Mflops, 
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SPEC92Int=70.3, SPEC92FP=121.1, see http://infopad.eecs.berkeley;edu/CIC/summary/). 

This necessity of balancing compute times with numerical stability requirements will limit 

the simulations to unrealistically small values of X I I / X L .  While this solution will not gen- 

erate the pressure equilibration equivalent to experimental conditions, it will be sufficient 

to elucidate the threshold destabilization of the neoclassical MHD tearing mode. 

http://infopad.eecs.berkeley;edu/CIC/summary
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Neoclassical effects arise from the viscous damping of the poloidal electron flow. The 

portion of the flow produced from the poloidal projection of the diamapetic current 

when balanced against electron-ion friction yields a parallel current proportional to the 

cross-field pressure gradient, the bootstrap current. When (dpo/dp)/(dq/dp) < 0, this 

perturbation reinforces the magnetic perturbation of the island and an instability may 

grow in time. [The neoclassical modes are predicted to be stable in reversed shear tokamak 

discharges where (dpo/dp)/(dq/dp) > 0.1 

In the limit X I I / X L  + 00, the pressure exactly equilibrates on the magnetic flux 

surfaces (J?.Vp = 0), and the magnetic island grows from very small amplitude. However, 

the introduction of finite values of X I I  and XI at small island amplitude produce an 

ioSufEcient perturbation of the pressure profile to destabilize the neoclassical magnetic 

island-a threshold in magnetic island width, WLhreshold. As, described in Section 1, when 

the island width is smaller than this width, [W < Wthrwhold, where Whresh& is given by 

Eq. (4)] the island width decays in amplitude; however when the island is larger than 

this width, (W > Wthreshold) the island width grows in amplitude. This dependence on 

the initial perturbation magnitude is illustrated in Figure 4 for an equilibrium q-profile 

of q = 1.01(1+ (p/2.2)'))'/', a p-profile of po = (1 -p2)  with PO = 0.068, and where $1 is 
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initialized to 

The neoclassical MHD threshold is also strongly dependent on the local pressure 

gradient as parameterized by Po since the bootstrap current depends directly on the 

gradient of the plasma pressure. Subsequently, as the pressure gradient is increased, a 

given initial seed magnetic perturbation may cross the threshold and be destabilized, as 

is illustrated in Figure 5. 

Much of the prior analysis can be combined into a threshold curve for a given X I I / X L  

by performing parameter scans over PO and @start. Figures 6, 7, and 8 provide such a 

threshold curve for the 2/1, 3/1, and 3/2 modes, respectively, and compke the numeri- 

cally computed threshold with the analytic predictions of the threshold. In general, the 

numerical simulations show good qualitative agreement with the theoretical predictions 

and confirm that as the pressure gradient is increased, a successively smaller seed per- 

turbation is required for destabilization of the neoclassical MHD tearing mode. These 

figures also illustrate a quantitative difference between the theory and the simulations. 

This difference is not a real defficiency in the model, but rather due to inaccuracies in 

determining the appropriate value of A' to be used in the theoretical prediction. The 

simulations do not compute a value of A'. (In the absence of the bootstrap current the 

tearing modes are stable in the simulations, which indicates that A' < 0.) Instead, the 
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assumption has been made that A' = -2m/p,. However, any negative value of A' would 

have sufficed to generate a similar threshold curve. 

The most important feature which a n  lower the neoclassical tearing mode threshold is 

an increase in the ratio of x l l / x ~ .  Unfortunately, numerical difficulties preclude increasing 

this ratio to a TFTR relevant value of X I I / X L  - 10". However, decreasing this ratio as 

is illustrated in Figure 10 demonstrates the strong stabilizing/destabilizing role this ratio 

plays, since previously unstable initial conditions have now been stabilized. 

Once the island is over the neoclassical threshold and the initial transients have d e  

cayed away, the island width growth rate is proportional to the island width as illustrated 

in Figure 9. In this particular case, the island width has reached over 20% of the plasma 

minor radius. However, the calculation has been terminated at this point because in 

order to maintain the stability of the pressure evolution the time step must be reduced 

below 0 . 0 1 ~ ~ ,  which would then imply much longer compute times. Also, the predicted 

saturation level for the mode is beyond the size of the tokamak, so saturation is not 

likely to be obtained. In either case, the small island assumption of the analytic theory 

is also violated and the theory cannot be accurately applied to explain the simulation. 

Neither the large thresholds nor the large saturation levels presented in the prior simula- 

tions should be construed as a generic part of neoclassical MHD. In order to simulate the 

physics which has been described, rather extreme parameter ranges have been required 

which are in general not realizable in actual machines. However, this was required since 
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the simulations are limited by X L / X I I .  
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5 Summary 

The reduced magnetohydrodynamics (MHD) paradigm has been extended to include vis- 

cous force (V - ;) effects based on neoclassical closures. This neoclassical reduced MHD 

model consists of evolution equations for the perturbed flux, toroidal vorticity, and plasma 

pressure, through a parallel Ohm’s Law, a toroidal vorticity evolution, and a plasma pres- 

sure evolution equation. The plasma pressure evolution includes a n  anisotropic pressure 

diffusivity to account for rapid parallel energy transport. The viscous stress tensor adds 

a bootstrap current contribution to the parallel Ohm’s law [&. (8)] and a neoclassical 

viscosity to the vorticity evolution equation [Eq. (lo)]. The model is principally valid 

only in the large aspect ratio limit due to the assumptions of plasma incompressibility 

and the use of only a single stream function to define the flow velocity (i.e., the velocity 

is an E x @ flow.) Even though the model is strictly valid only in a large aspect ratio 

limit, the equilibrium metric elements, which describe the toroidal geometry, are retained 

to all orders to allow for poloidal mode coupling. 

Single helicity, neoclassical MHD driven tearing modes are demonstrated to exist 

through numerical simulations. The neoclassid tearing mode is driven by the elimina- 

tion of the bootstrap current within the island separatrix due to the rapid relaxation of 

pressure gradients via fast parallel electron heat transport along the closed helical mag- 

netic field lines within the island. However, since the parallel pressure difhsivity is finite, 

the pressure does not completely equilibrate across the island separatrix. A threshold 
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value for the magnetic perturbation at the mode rational surface is then required to 

provide a sufficient flattening of the pressure profile about the island to destabilize the 

island. The scaling of the threshold with the ratio of perpendicular to parallel diffusivities 

and the local pressure gradient is in qualitative agreement with the analytic predictions. 

However, the numerically limited X I I / X ~  = lo5 is much lower than realistic values. 

More recently, the neoclassical enhancement to the ion poloarization current has been 

predicted to provide a nonlinear island threshold for the formation of magnetic islands[25]. 

In this model, the predicted ion polarization induced threshold is on the order of the ion 

banana width in very collisionless plasmas. The effect of this work is not included in the 

present simulations. In order to describe this effect, 2-fluid equations are needed as well 

as a very complicated viscosity which would depend upon the mode frequency, nonlinear 

island width, and the plasma collision frequency. 
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A Neoclassical closure. 

The starting point for the neoclassical stress-tesnor closure used in this model is appro- 

priate in the limit of long collisional mean free path length (or low collision frequency) 

and accounts for the viscosity between trapped and untrapped particles'[l9, 26, 27, 281. 

The stress tensor, 2, is represented in a Chew-Goldberger-Low form 'as 

where 

the subscript alpha indicates electron's or ions. The (@) is a flux surface average of the 

quantity CP. The viscous damping frequencies are approximated by [19,27] 

0 . 6 6 ~ f / ~ ~ i  
pi = 

(1 + 1.03~:[~ + 0.31u,i)(l+ 0.66~,ie;/~)' 

where 

u*, = Vae;312&4v-1 Ta 

in which vu is the collision frequency of plasma species Q and VT, is the thermal velocity 

of species a. Here, e,. E p / R  is the ratio of the local plasma minor radius to the plasma 

major radius. The species velocities which appear are given by 
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and in the case of ions 5. = 5. In both Ohm's law and the momentum balance the 

relevant expression for the viscous force will be 

where f = pll - p ~ .  In the case of electrons, this form can be reduced to a form which 

depends on the pressure gradients[ll, 291, 

An additional approximation is made that the viscosity coefficients are assumed to be 

constant across the plasma extent. In the vicinity of an island this is probably a reasonable 

approximation. 
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The neoclassical contribution to the stress tensor term in the vorticity evolution equa- 

tion is analogously derived from the above expressions. The form which has been used 

in the simulations is given by 
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Threshold for instability 
I \ 

Saturation 

Figure 1: Phase diagram of the neoclassical MHD tearing mode. 
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Figure 2: An increase in X I I / X L  increases the degree to which the plasma pressure equi- 

librates on the flux surface. The pressure variance is computed by following individual 

field lines approximately 3200 times around the torus (200000 iterates at a A[ = 0.1 step 

size) and computing the pressure along the field line. This pressure is used to compute 

the mean pressure on a field line and also the pressure variance. Initial starting points 

cross through an island X-point. 
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Figure 3: An increase in X I I / X L  decreases the peak pressure variance. The peak is located 

at or neaz the mode rational surface. 
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10-l~ - 
10-l6 1 I I 1 1 

Figure 4: Destabilization of the neoclassical tearing mode requires a finite perturbation 

to initiate the mode. Here, !PStatt is the magnitude of the initial perturbation evaluated 

at the mode rational surface. The initial profile shape decays toward zero value at both 

boundaries. The oscillatory behavior of the decaying solutions is a linear effect driven by 

I? * Vq5 causing $1 to oscillate as it decays. 
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Figure 5: For a given initial magnetic perturbation, an increase in plasma pressure causes 

destabilization of the neoclassical MHD tearing mode. 
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Figure 6: Neoclassical MHD tearing threshold for the 2/1 mode based on numerical 

simulations me in rough agreement with the predictions of neoclassical MHD theory. 
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--O- Fitzpatrick threshold 
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Figure 7: Neoclassical MHD tearing threshold for the 3/1 mode based on numerical 

simulations are approximately a factor of 10 larger than the predictions of neoclassical 

MHD theory. 
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Figure 8: Neoclassical MHD tearing threshold for the 3/2 mode based on numerical 

simulations are approximately the same as the predictions of neoclassical MHD theory. 
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Figure 9: After the neoclassical threshold, the island width grow rate is proportional to 

the island width, until nonlinear effects begin to slow the island growth. The simulation 

was terminated at an island width of 20% of the minor radius due to numerical problems. 
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Figure 10: Reduction of x ~ i / x ~  to lo4 increases .the neoclassical threshold. Initial condi- 

tions which were unstable at x , , / x I  = lo5 are now stable. 
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