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Abstract 

In this paper, we explore the feasibility of using the distributed Bragg reflector, grown 
on the substrate for a VCSEL (Vertical Cavity Surface Emitting Laser), to provide 
waveguiding within the substrate. This waveguiding could serve as an interconnection 
among VCSELs in an array. 

Before determining the feasibility of waveguide interconnected VCSELs, two anal- 
ysis methods are presented and evaluated for their applicability to  this problem. The 
implementations in Mathematica of both these methods are included. 

Results of the analysis show that waveguiding in VCSEL structures is feasible. Some 
of the many possible uses of waveguide interconnected VCSELs are also briefly discussed. 
The tools and analysis presented in this report can be used to evaluate such system 
concepts and to do detailed design calculations. 
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1 Introduction 

Recent progress in molecular beam epitaxy (MBE) has resulted in the ability to 
grow a variety of novel devices. One such device that is receiving much attention is 
the Vertical Cavity Surface Emitting Laser (VCSEL). Because of the small cavity 
size, the gain length in a VCSEL is short. This necessitates a mirror with high 
reflectivity in order for the VCSEL to reach threshhold. For ease in processing, the 
high reflectance mirrors in VCSELs are typically semiconductor distributed Bragg 
reflector (DBR) mirrors. While such mirrors are critical to the functioning of the 
VCSEL device, they might also play another role in an interconnected system of 
VCSELs. 

In this paper, we explore the feasibility of using the DBR grown on the substrate 
for a VCSEL to  provide waveguiding within the substrate. This waveguiding could 
serve as an interconnection among VCSELs in an array. 

Before this system concept can be analyzed, the waveguiding properties of a DBR 
grown on a substrate must be studied. There are two approaches which can be 
taken for this analysis. One is a standard thin film analysis of planar multilayer 
waveguides. The other is an analysis employing an understanding of wave prop- 
agation in periodic media. As the DBR is made up of approximately 25 quarter 
wave pairs, it can be considered a periodic medium. Since both these approaches 
appear at first look to be applicable, we will present both of the approaches and 
explain their appropriateness to the problem of interest. 

With the  analysis methods explained, we will then present some results from the 
analysis. These results will be discussed, and some general ideas of how waveguid- 
ing in VCSEL structures can be used in systems will be presented. 

The analysis methods and tools presented and developed here can be used to make 
design calculations for any system concept using waveguiding in VCSEL structures. 
Issues such as epitaxial tolerances, distances and materials can also be addressed. 
This will be the subject of a subsequent report. 

2 Analysis Methods 

To determine which analysis methods are appropriate to find the waveguiding 
properties of VCSEL structures, we must first get a clear understanding of what 
we want to  analyze. 

Consider a typical VCSEL structure. A simplified schematic is shown in Figure 1. 
We are interested in perhaps guiding the emitted laser light within the substrate 
by coupling it into an appropriate mode via a diffractive optical element (DOE) 
on the substrate/air interface. 

For our purposes, there are several things required from an analysis of the air- 
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Figure 1: Simplified VCSEL Structure 

substrate-DBR structure. First, it must be determined whether or not a mode can 
be guided in the substrate. Then, the propagation constant of the  guided modes (if 
any) need to be found. Also, the loss associated with any propagating modes must 
be calculated. Based on these results, the feasibility of interconnecting VCSELs 
using these waveguides can be assessed. 

There are two analysis approaches for this type of structure: (1) the electromag- 
netic analysis of propagation in a periodic media [YY84, Yeh881; and (2) the field 
transfer matrix approach for planar multilayer waveguides IBW7.5, CH84j. In the 
following sections, these two methods will be described. The application and ap- 
propriateness of each method to the problem of interest will also be discussed. 

2.1 
odic Media- the B1och Wave Approach 

Electromagnetic Analysis of Propagat ion' in a Peri- 

This method follows the standard modal analysis of planar waveguides [MarSl], 
with the modification of the field form in the periodic cover layer to  accomodate 
Bloch waves. [YYH77] 

To review, the Bloch wave function is the form a propagating wave in a periodic 
medium takes, according to the Floquet theorem [Blo28]. A Bloch wave propagat- 
ing in the z direction (in a medium periodic in x) is given by 

(1) 
i K x  @z E ( x , z )  = E K ( x ) e  e , 

where I< is a constant, called the Bloch wave number, and EK(z)  is periodic, with 
the same period as the periodic media. The periodic medium is shown in Figure 2. 
Each repeating period is referred to as a unit cell. 

The equations for a Bloch wave are derived using the matrix method and trans- 
lation operator applied to a periodic medium. Details can be found in Refer- 
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Figure 2: Periodic Medium 

ence [YYH77]. 

The following equations are used in describing a TE Bloch wave. 

-1 1 
2 

e - iKA = - ( A  + 0)  f 

IClx = /(y)2 - p2 (7) 

The Bloch wave in the layer with index n1 in the nth unit cell of the periodic 
medium is 

and the Bloch wave number can be written explicitly as 
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a. and bo refer to the magnitude oE an incident and reflected wave on layer nl in  
the first unit cell. 

There are several points to note about Bloch waves. First, the waveform consists 
of a periodic function multiplied by eiKz.. Regions where 

correspond to real I(, and hence propagating Bloch waves. 

Where lvl > 1, Ii' is complex with a value of I( = y+iK;. I(; is the imaginary 
part of IC, and rn is an integer. In these regions, the Bloch wave is evanescent. 
These are considered the forbidden bands of the periodic medium. 

For a waveguide, as in Figure 3, with a low, constant index material as one cladding 

nc< n 
g 

. . .  

Figure 3: Bragg Reflection Waveguide 

and a periodic index medium as the other cladding, the assumed solution for the 
electric field of the  TE mode is: 

eqa(x+t) x < -t 
c1 cos(kg(x + t ) )  + c2 sin(lc,(x + t ) ) ,  
E K (  x)ekKx, 0 2 .  

--t 5 x < 0 (14) 

where 
q a =  /-----yG P 2 - ( - )  

and 

(15) 

Continuity of the field and its derivative on the two interfaces, x = 0 and x = --t 
must be satisfied. This requires the following dispersion relation to be satisfied for 
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TE modes. 

- i I<A - A - B 
Z k l " , - i K A  - A + B (17) 

qa cos kgt  - kg sin kgt  . e  ) = -  
qa sin kgt + kg cos kgt 

For confined propagation in the guide, p,qa and kg are real, and the left-hand 
side of the dispersion equation is real. In general, the right-hand side of the 
dispersion equation is complex. It  is only real when the Bloch wave is evanescent, 
or equivalently when the Bloch propagation constant is in a forbidden band. This 
propagation is lossless, since ,6 is real. 

This type of confined and lossless mode propagation can also be explained in a 
more intuitive manner [YYH77]. In order for guiding, the mode must experience 
complete reflection at both interfaces. The reflection at the guide-periodic medium 
interfaces requires that  the mode correspond t o  a forbidden gap in the periodic 
medium. In order to  ensure that the mode propagates, the round trip phase delay 
in the guiding region must be a multiple of 27r. 

In practice, the periodic medium is finite in extent, hence there will not be 100% 
reflectance at the guide-periodic medium boundary, resulting in loss. The effective 
attenuation can be estimated from the following rationale. [YehSS] 

The reflectivity, R,  of a finite Bragg reflector with N unit cells can be written as 

Let 8 be the angle of incidence of the guided ray in the guide layer. With each 
round trip, t,he ray travels a distance of 2t tan 8 along the direction of propagation. 
Therefore, the number of roundtrips a ray makes while traveling a distance L along 
the  waveguide is 

L 
2t tan 6' 

N =  

The attenuation with each round trip is R, therefore the attenuation with N round 
trips is R'. Using the standard form for an attenuation constant, Q 

then 
- b 

- - -1nR In R 
a = -  

2 t t a n 8  2pt 

dB If t is given in units of meters, then the attenuation in is given by 

2( 4 . 3 4 ) ~  
100 . 
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2.1.1 TM modes 

The equations for T M  modes are the same as the TE mode equations, except for 
A,  B, C, D and the dispersion equation. The appropriate equations are as follows. 

C = B* 
D = A* 

A - B  , - iKA - 
, - i K A  - A + B = -ikix qa cos kgt - kg sin kgt 

kg ($ ( qa sin kgt + kg cos kgt (27) 

2.2 
layer Waveguides 

Field Transfer Matrix Approach for Planar Multi- 

The second method proposed to analyze the waveguiding situation in Figure 1 
is based on having a unimodular field matrix, Mj,  to relate the field amplitudes 
Uj ,V ,  at a distance xj to the corresponding amplitudes at another point, 
rCH841 

The total electric or magnetic field waves are sums of positive and negative-going 
waves, and have the  form 

(29 1 
where 

a = n c o s %  = fi n2 - 2 

p = ns in8  
2n k = - -  x 

z o =  E (33) 

The geometry is illustrated in Figure 4. 

For the TE case, with propagation in the y direction, U refers to  E,, and V refers 
to -Hy. In this case, the unimodular transfer matrix is 
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where 

d j  = kaj(s j  - xj-l)  = phase thickness of the layer t 36) 

For completeness, in the T M  case (propagation in the y direction) U refers to H,, 
and V refers to  Ey. The unimodular transfer matrix is the same as in Equation 34, 
with. 

(37) 

For a stack of J films, the field transfer matrices multiply, 

J 

j=1 
M = r p r j  (38) 

For a waveguide composed of a stack of thin films, as in Figure 4, the fields in the 
cover can be related to those in the substrate by 

where M is the transfer matrix for the stack of films. 

Figure 4: Thin Film Waveguide 

Solutions to this situation fall into three categories: 

e Bound Modes 

e Radiaton Modes 

e Leaky Modes 

7 



2.2.1 Bound Modes 

For bound modes, the fields in the cover and substrate must decay exponentially 
from the stack (Le. Consequently, 
the waves in the cover are negative-going waves, and those in the substrate are 
positive-going. Equation 39 becomes 

the radiation condition must be satisfied). 

[ 5 : ] . : = M [  is].. 
Equivalently, the condition €or a bound mode is 

Only a set of discrete roots (i.e. discrete ,B values) satisfy the modal condition. 

According to the propagation directions and conventions assumed earlier, Equa- 
tion 41 requires (IS and QC to have positive imaginary parts. 

For a lossless dielectric waveguide, P is real, and P > nc,ns. As a result, x(P) is 
imaginary. 

2.2.2 Radiation Modes 

For radiation modes, the field in the cover and substrate is a standing wave. Tech- 
nically, the mode could decay exponentially on one interface and be a standing 
wave on the other. For a full radiation mode (standing wave on both claddings), 
,B < nc,ns. Equation 39 still is valid, but the modal condition, Equation 41, is 
not satisfied. There is a continuum of p values for radiation modes. 

2.2.3 Leaky Modes 

Leaky modes are extensions of the bound modes that occur below the cutoff of 
the standard bound mode. For leaky modes, the modal condition, Equation 41, is 
satisfied, but /3 takes on complex values. Complex /3 values for leaky modes are 
discrete. 

The derivation for x(P) in Equation 41 relied on the choice of positive-going or 
negative-going waves in the bounding media to  satisfy the radiation condition. 
When /3 is complex, it is only the inward-traveling (Le. going toward the stack) 
wave that can satisfy the radiation condition. Therefore, for leaky modes, the 
assumptions for the waves in the cover and substrate are opposite the assumptions 
made for guided modes. Consequently, in order to use Equation 41, as and CYC 

must have negative imaginary parts. Because the real and imaginary parts €or any 
Q in a lossless medium are of opposite sign, the previous condition is equivalent to 
requiring the real parts of as and QC to  be positive. 
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3 
ysis Methods 

Comparison and Appropriateness of the Anal- 

The two methods described above are very similar in their approach of assuming 
general forms of the solutions for the fields, and then choosing appropriate con- 
stants to ensure that Maxwell's equations and boundary conditions are satisfied. 
The key difference, however, is in the assumed wave forms. 

For the case shown in Figure 3, the assumed wave form in the periodic media for 
the first method is given by 

Here, p is real, and IC is complex. 

The assumed wave form in the periodic media for the second method is given by 

E ( x , z )  = (cle i k a x  + C 2 e - i k a x ) e i k p z  

In this case, p is complex. 

(43) 

Comparing Equations 42 and 43, there are some differences. 

In Equation 42, the terms in the square brackets form a periodic function. There- 
fore, the assumed wave form is a periodic function multiplied by a complex expo- 
nential in 2. The propagation constant (in the z direction) is real; hence there is 
no loss with propagation in the z direction. 

In Equation 43, there is no complex exponential in z multiplying the periodic 
terms in parentheses. Also, the propagation constant (in the z direction) in this 
case is complex, so there is loss with propagation in the z direction. 

In the Bloch analysis, the solution is a confined, lossless mode (assuming a periodic 
medium that is semi-infinite in extent). In the thin film analysis, the  mode is 
confined, but it is not lossless. 

This now brings up the question of which method to  use. According to  the Floquet 
theorem, the Bloch wave is the appropriate form for a wave propagating in a 
periodic medium. Therefore, the appropriateness of the two methods depends 
on whether or not the layered medium can be considered a periodic semi-infinite 
medium. 

We refer to  Reference [CYY77], in which the confined propagation was observed 
in a Bragg reflection waveguide. Although the oscillatory behavior in the layered 
Bragg medium could not be resolved in their experimental setup, attenuation 
measurements eliminate the possibility that  the observed mode is a leaky mode. 

Also, calculations show that the K values for such a Bragg reflection waveguide 
are such that the field has severely decayed after a few periods. Consequently, a 

'There is attenuation, because the Bragg reflector has a finite number of periods. 
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finite number of periods can be a good approximation to the semi-infinite layered 
medium, initially assumed for the Bloch waves. 

Parameter 
x 
711 

n2 

n, = n, 
t 
b 
U 

4 Bloch Wave Implementation 

Value 
0.98010-6 
2.984 
3.5235 
1 
to  be determined 
0.069510-6 
0.082 11 0-6 

The electromagnetic analysis of the propagation in a periodic media using Bloch 
waves has been implemented in Mathematica [WolSl]. The code is shown in Ap- 
pendix A. The  structure modeled in this example is shown in Figure 3,  with 
parameter values given in Table 1. Values for A, n l ,  n2, ng, na, t ,  b and a fully de- 
scribe the structure. 

Table 1: Parameter Values for Example 1 

The program has built in functions for the evanescent condition (Equation 13), 
the left hand side and right hand side of Equation 17, the Bloch wave number 
(Equation 12) and the effective attenuation constant (Equation 21). 

Figure 5 is a plot of 191 - 1 vs. kp. When the curve in Figure 5 is greater 
than zero, the Bloch propagation is in the forbidden region. This is required for a 
guided mode. 

Figure 6, which is a plot of A + D vs. ICp, is useful to  check that the correct sign 
for the square root is used in Equation 6. The  sign of the root should be the same 
as the sign of A + D. 

For any value of j? that satisfies the requirement of propagation in the forbidden 
region in Figure 5, the right hand side of Equation 17 is real. This is seen in 
Figure 7, which is a plot of the  right hand side of Equation 17 vs. kp. There exists 
a corresponding confined, lossless mode when Equation 17 is satisfied. Figure 8 
shows a combined plot of the RHS and LHS of Equation 17 as a function of guide 
thickness for IC/? = 3.44. The intersections correspond to phase thicknesses of 
27r for the mode propagating with angle &J = arcsin[-$. For these thicknesses, 
a confined, lossless mode with corresponding p value exists. A similar plot for 
k p  = 3.2 is shown in Figure 9. 
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Figure 5: Plot of 191 - 1 vs. rCp 

Figure 6: A + D vs. IcP 
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Figure 7: Plot of the right hand side of the dispersion equation vs. kp. 

12 



4. 

2 .  

- 2 .  

-4 .  

7 

7 

10 

10 

- 

7 

7 

10 

10 

1 
1 

1011 

Figure 8: Combined plot of the RHS and LHS of the dispersion equation as a function of 
guide thickness for k,L? = 3.44 
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Figure 9: Combined plot of the RHS and LHS of the dispersion equation as a function of 
guide thickness for k,l3 = 3.2 

5 Field Transfer Matrix Approach 

For completeness, code written to implement the unimodular matrix method is 
included in Appendix B. There are two versions, depending on the structure to be 
analyzed. In both cases, the thickness and index of each layer must be specified. 
In one version, each layer is explicitly described. In the other version, which is 
appropriate for the periodic layered structure in Figure 3, the thicknesses and 
indices to describe one unit cell are explicitly given, along with the number of unit 
cells. 

The way these implementations work is to provide a function x[/?], which is a 
complex function of a complex argument. Roots of x [p ]  correspond to bound and 
leaky modes, as described in Sections 2.2.1 and 2.2.3. Roots to this function can 
be found by plotting the function and graphically looking for the roots, or by using 
built-in functions in Mathematica. 

The correctness of the implementation with explicitly described layers has been 
verified by applying it to a conventional, 3-layer, dielectric slab waveguide. Results 
agree with other methods. 
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6 
VCSEL Structures 

Examples of Confined Lossless Modes in a 

In this section we present the results of the Bloch analysis method applied to two 
examples. A schematic for the structure for both cases is given in Figure 3. 

6.1 Example 1 

The parameters for the first example are given in Table 1. 

Five confined, lossless modes of the structure are shown in Table 2. The table shows 
for each mode the Bloch number, ray angle, and attenuation with varying number, 
N ,  of unit cells in the periodic medium. To find the modes, the p values were first 
chosen, making sure that Equation 5 is satisfied. Then values for thicknesses that 
satisfied Equation 17 were found. With this information set, the other values can 
be calculated. 

kP 3.2 3.3 3.4 3.44 3.5 
thickness [m] 0.000099331 7 0.000100015 0.000 1150 19 0.000100275 0.000101343 

Table 2: Propagation Information for Guided Modes from Example 1 

6.2 Example 2 

The parameters for the second example are given in Table 3. 
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Parameter 
x 
721 

n2 
nc = n, 
t 
b 
a 

Value 
0.98010-6 
2.984 
3.4243 
1 
to be determined 
0.0715 
0.082110-6 

~ ~~ 

Table 3: Parameter Values for Example 2 

w 3.2 3.3 3.3 3.4 3.5 
thickness[rn] 0.000100027 0.000100814 0.0000924816 0.000100185 0.000102551 

Table 4: Propagation Information for Guided Modes from Example 2 
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Table 4 shows the same type of information a.s in Table 2. However, instead of 
showing five different kj3 values, the second and third columns refer to the same 
mode, but with a different guide thickness. 

6.3 Discussion 

Tables 2 and 4 show that various confined, “lossless” modes can be supported by 
a structure such as in Figure 3, depending on the guide thickness. 

The imaginary part of the Bloch constant, Ki, gives an indication of how fast the 
Bloch wave is attenuated in the direction of the gradient of the periodic medium. 
The smaller the value of IC;, the  further away from the guide-periodic medium 
boundary the Bloch wave can be seen. Consequently, for smaller IC;, a larger 
number of unit cells in the periodic medium are required to make the Bloch analysis 
valid. 

It is seen that as the number of unit cells, N ,  in the periodic medium increases, 
the effective attenuation decreases. This is to be expected, because as N increases, 
the reflectivity increases, and more energy is reflected back into the guide at the 
guide-periodic medium boundary. 

The effective attenuation is also a function of the thickness of the guide. For an 
imperfect reflector, ( R  < 1), each “bounce” in the guide corresponds to  energy 
going into the periodic medium. For a given mode and a given length along 
the guide, there are fewer bounces in a thicker guide. Therefore, the effective 
attenuation is less for a thicker guide, assuming no scattering in the guide. 

Although it is difficult to make exact comparisons because of different guide thick- 
nesses, the effective attenuations for Example 2 are greater than for Example 1. 
This makes sense, because the distributed Bragg reflector in Example 2 has a 
smaller An between the two layers of a unit cell and, hence, is not as good a 
reflector as the DBR in Example 1. 

7 Waveguide Interconnected VCSELs 

As we have seen in the previous section, various confined, lossless modes can be 
supported by a structure as in Figure 3, depending on the guide thickness. For a 
fixed guide thickness, a discrete number of confined, lossless modes are supported. 
Figure 10 is a plot of the LHS and RHS of Equation 17 as a function of k,B for the 
structure described in Example 1 and a guide thickness of 100 p m .  Intersections 
of the two curves correspond to supported modes. Each of these modes propagates 
with a different propagation constant, and corresponding angle in the guide. 

As in Figure 1, a diffractive optical element (DOE) could be placed on the guide- 
cover interface, to  couple the laser light into one of the confined, lossless modes 
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Figure 10: Solutions to  the dispersion equation for the structure described in Example 1 and 
a guide thickness of 100 pum. 

described above. The DOE could also be designed so that it couples into a number 
of the supporting modes. 

Different lasers with different wavelengths can also be grown on the same sub- 
strate. For each color, there are likely supported confined, lossless modes. This is 
demonstrated in Figure 11, which shows the dispersion equation for the structure 
in Example 1, with X = .98 x X = -99 x and X = 1.3 x 

DOES are sensitive to both incident angle and wavelength. By placing other DOES 
along the cover-guide boundary, the output laser light may be directed in a large 
variety of ways. This could be used to implement broadcast or selective coupling 
among VCSELs on the same substrate. 

In addition, this type of guiding can allow the light from a number of VCSELs 
to be easily coupled out into a single fiber, whose dimecsions are the same as 
the substrate (guide) thickness. This light could be composed of different modes, 
corresponding to  different modes from the same VCSEL and/or from different 
VCSELs. 

There are many possible scenarios in which waveguide interconnected VCSELs 
could be useful. Using the tools presented in the previous sections, system concepts 
incorporating waveguide interconnected VCSELs can be evaluated. The tools are 
also useful in making the design calculations for specific implementations. 
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Figure 11: Solutions to the dispersion equation for a) X = .98 x 
c) X = 1.3 x 

b) X = .99 x and 
for guide thickness of 100prn. 
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8 Conclusion 

In this report the feasibility of using the DBR grown on the substrate for a VCSEL 
to provide waveguiding within the substrate has been shown. The guided modes 
in such a structure are confined, but not strictly lossless, due to the finite extent 
of a manufactured DBR. 

Before determining the feasibility of waveguide interconnected VCSELs, two anal- 
ysis methods were presented and evaluated for their applicability to  this problem. 
Both methods were implemented in Mathernatica. The Bloch wave method was 
shown to be the  appropriate analysis method for the structure under consideration. 

There are many possible uses of waveguide interconnected VCSELs. The tools and 
analysis presented in this report can be used to  evaluate such system concepts and 
to do detailed design calculations. 

A Bloch Wave Method 

lambda = 0.980 10^-6; 
n l  = 2.984;  
n2 = 3.5235;  
ng = 3.5235;  
n a  = 1; 

a = 0.0821 10^-6;  
b = 0.0695 10^-6; 

k := 2 Pi / iambda;  

qa[veta-1 := S q r t  [veta-2 - (k*na)^2] 
kg [veta-]  : = S q r t  [(k*ng) -2- veta-21 
klCveta-1 := S q r t  [ (k*nl)^2-  ve ta -21  
k2 [veta-] := S q r t  [(k*n2) -2- ve ta -21  

capA [veta-] : = Exp [-I k l  [veta]  a] * 
(Cos [k2 [veta]  bl - 1/2*(k2 [veta]  /kl [veta]  + k l  [veta]  /k2 [veta] * 
S i n  [k2 [ve t  a] b l  

capD[veta-1 := Conjugate[capA[vetal1 
capC [ve t  a_] : = Conjugate  [capB [vet  a] 1 

capB[veta-] := ExpCI k l [ v e t a l  a]* 
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(- I /2*  (k2 [veta] / k l  [veta] - k l  [veta]  /k2 [veta])  * 
Sin[k2 [veta]  b] ) 

evancond[veta-l  := Abs[(capA[vetal + capD[vetal) /2]  
emikl  [veta-]  : = (capA [veta] + capD [veta]  ) /2  + 
S q r t  [evancond [veta] -2 - 11 

LHS[veta-,t-l := kg[veta] * 
(qa[vetal*Cos[kg[vetal  t] - kg[ve ta l  *Sin[kg[veta] t ] ) /  
(qa[vetal*Sin[kg[vetal  t l  + kg[veta] *Cos [kgcvetal  t ] )  

RHS [veta-] := - I*kl  [veta] * 
(emikl  [veta]  -capA[vetal -capB [veta] ) / 
(emikl  [veta]  -capA [veta] +capB [veta] ) 

t h e t a [ b e t a e f f - 1  : = ArcSin[betaeff /ng]  
BlochNum [vet  a_] : = 1/ (a + b)  * ArcCosh [ (capA [veta]  +capD [veta]  ) /2] 
R [ve t  a- , N u m C e l l s - 1  : = Abs [capC [veta] 1 ̂ 2/  
(Abs [capC [veta] 1 -2 + 
(Sinh[Im~BlochNum~veta~~*(a+b)~/ Sinh~NumCells*Im~BlochNum[vetall * ( a + b ) l ) ^ 2 )  
a lpha [ th i ckness -  , veta-  ,NumCells-] : = 
- Log [R[veta,NumCellsll *kg[vetal/(2*veta*thickness) 

(* 
P l o t  [evancond[k*x] -1 , Cx,nl ,ng)] 
P l o t  [capA [k*xl +capD [k*x] , (x , evancond>l) ,PlotRange->All] 
g l  = P l o t  [LHS [k*neff ,tl ,{t , 100*10^-6, 110*10^-6)1 
g2 = P l o t  [RHS[k*neff] ,(t ,100*10^-6, 110*10^-6)1 
Show [gl ,g21 

FindRoot [LHS [k*neff , tl -RHS [k*neff I==O, (t , 100*10^-6, 101*10^-6)] 
*I 

input={(3.2,99.3317*10^-6), 

(3.4,115.019*10^-61, 
(3.44, 100.275*10^-63, 
(3.5,101.343*10'-6)); 

(3.3,100.015*10^-63, 

oObeta = TableCNEinput [[ i , l l l l  , ( i y 5 3 1  
oOthick = Tab le  [N [ input  [ [i, 21 11 , {i, 531 
01 = Table[N[BlochNum[k*input [ [ i , l l l l l  ,ci,5)1 
02  = TableCNCthetaCinput [[i, 1111/Degreel , ( iy5) l  
03 = T a b l e  [N[alpha[input [ [i, 21 1 , i npu t  [ [i , 11 1 , 11 1 , (i,531 
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03a = Table [N [2*4.34/100*03 [ [ill 1 , (1,531 
04 = Table [N CalphaCinput [ [i 21 1 , input [i , 11 1,21 1 , (1 531 
04a = Table [N [2*4.34/100*04 [ [ill 1 , (1 , 531 
05 = Table [N [alpha [input [ [i ,211 , input [ [i 11 1 , 31 1 , (1,531 
o5a = Table [N[2*4.34/100*05 [ill 1 , (i , 531 
06 = Table~N[alpha[input[~iy211 ,input[[i,lll,41 1 ,{iy5>1 
06a = Table [N [2*4.34/100*06 [ill 1 , (i , 531 
07 = Table [N [alphacinput [ [i, 21 1 , input [i, 11 1,51 1 , (1 , 531 
o7a = Table [N [2*4.34/100*07 [ [ill 1 , (i , 531 
08 = Table [N CalphaCinput [i , 21 1 input [ [i, 11 1 , 101 1 , (i ;531 
08a = Table [N [2*4.34/100*08 [ [i] 1 1 , (i , 531 

NumberForm[(oObeta,oOthickyRe~oll ,02,03,03a,o4, 
o4a, 05, osa, 06, o6ayo7,o7a, 08 ,N[o8al3 , (6,431 

PutAppend~OutputForm[TableForm~~l1 , "case2table"l 

gl = Plot [RHS[k*x] ,(x,3.2,3.5~,PlotStyle->Thickness~0.01~~ 

g2 = Plot~LHS[k*x,t],(x,3.2,3.5),PlotStyle->Thickness~O.OOl]] 
t = I00 10--6 

B Field Transfer Matrix Approach 

B. l  Explicit Layer Definition 

(* 
nc = the cove r  index 
ns = the substrate index 

theta = incident angle 
z0 is the impedance of free space 

beta0 = n*Sin[theta] 
n = index of incident material = nc 
lambda = wavelength 
kO = wave number in f r ee  space = 2 * Pi /lambda 
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*> 

(* F i r s t  s t e p  i s  t o  r e a d  i n  Data f i l e  *) 

mu0 = 1.2566 10^-6 
epO = 8.8542 10^-12 

n c  = 1 . 0  
ns  = 3.5 

lambda = 1.3 10--6 

(*nl i s  c l o s e s t  t o  cover*) 

n l  = 1.45 
dl = 4 10^-6 

n2 = 3 .50  
d2 = ,1019 10--6 

n3  = 1.45 
d3  = 2.0985 10^-6 

(* 
n5 = 
d5 = 
*> 

(* 
t h e t a  = ArcCos[lambda/(2*nC[lll *d[[111) 
n = nc 
b e t a 0  = n*Sin[ the ta ]  
*> 

zo = Sqrt[muO/epol 
kO = 2*Pi/lambda 

(* 
acs := nc-2 - be ta -2  
argacs := ArgCacsl 
magacs := AbsCacsl 
a l p h a c  : = magacs- (1/2) * (-Cos [argacs/2] - I*Sin  [argacs/21)  

ass := ns -2  - be ta -2  
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argass := ArgLass] 
magass := AbsCass] 
alphas := magass~(l/2)*(-Cos[argass/2] - I*Sin[argass/21) / ;  argass (0 
alphas := magassA(l/2)*(Cos [argass/2] + I*Sin[argass/21) 

gammac = alphac/zO 
gammas = alphas/zO 
*) 

gammac: :usage = "get the appropriate sign for gamma in cover" 
gammac[b-l := ( 
acsq = nc-2 - b-2; 
argacsq = Argtacsql ; 
magacsq = Abs [acsq] ; 
N [magacsq- (1/2) * (-Cos [argacsq/2] - I * Sin [argacsq/21) 1 /zO 
(Re[b] > nc) && (Arg[ncA2-b̂ 2]<0) 
gammac[b-] := ( 
acsq = nc-2 - b-2; 
argacsq = Arg [acsql ; 
magacsq = Abs [acsq] ; 
N[magacsq-(l/2)*(Cos[argacsq/2] + I * Sin[argacsq/2])]/zO ) 

/ ; 

gammas : :usage = 
gammas[b-1 := ( 

gammas[b-] := ( 

alpha1 := Sqrt[(nlA2 - betaA2)1 
phi1 := kO*alphal*dl 
gamma1 : = alphaljz0 (*TE polarization*) 

mla = N[Cos[philll; 
mlb = N[-I*SinCphill /gamma11 ; 
m1c = N[-I*gammal*Sin[phil]1 ; 
mld = NICos [phi111 ; 

"get the appropriate sign for gamma in substrate" 

assq = ns-2 - b-2; 
argassq = ArgCassql ; 
magassq = Abs [assq] ; 
N[magassq~(l/2)*(-Cos~argassq/Z~ - I * Sin[argassq/21 )l/zO /; 

(Re[b]> ns) && (Arg[ns^2-bA21<0) 

assq = ns-2 - b-2; 
argassq = ArgCassq] ; 
magassq = AbsCassq] ; 
N[magassq-(l/2)*(Cos [argassq/21 + I * Sin[argassq/21 )I/zO ) 
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ml = ~~mla,mlb),~mlc,mld)); 

alpha2 := SqrtC(n2-2 - betâ 2)] 
phi2 := kO*alpha2*d2 
gamma2 := alpha2/zO (*TE polarization*) 

m2a = N[Cos[phi2]] ; 
m2b = N [-I*Sin[phi21 /gamma21 ; 
m2c = N [-I*gamma2*Sin[phi21] ; 
m2d = N [Cos [phi211 ; 
m2 = ((m2aYm2b),(m2c,m2d)); 

alpha3 := SqrtL(n3-2 - betâ 2)] 
phi3 := kO*alpha3*d3 
gamma3 : = alpha3/zO (*TE polarization*) 

m3a = N[Cos[phi3]] ; 
m3b = N [-I*Sin[phi3] /gamma31 ; 
m3c = N [-I*gamma3*Sin[phi31 1 ; 
m3d = N[Cos[phi3]] ; 
m3 = ({m3a,m3b),(m3c,m3d)); 

(* 
alpha4 := SqrtE(n4-2 - betâ 2)] 
phi4 := kO*alpha4*d4 
gamma4 := alpha4/zO (*TE polarization*) 

m4a = N [Cos [phi41 1 ; 
m4b = N [-I*Sin [phi41 /gamma41 ; 
m4c = N[-I*gamma4*Sin[phi411 ; 
m4d = N [Cos [phi41 1 ; 
m4 = ((m4a,m4b),(m4c,m4d)); 
*I 

(* MTotal := ml.m2.m3.m4.m5 *> 

MTotal = ml .m2 .m3; 

xi [veta-] := gammac [veta] *MTotal[ [l ,111 + 
gammac [veta] *gammas [veta] *MTotal[ El , 21 1 + 
MTotal[[2,111 + gammas[veta]*MTotal[[2,2]] / .  beta->veta 

Plotxi[x-,y-l := ( z  = x + I y; xiczl 1 
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FindRoot [(Re~P1otxi~x,y~~==0,1m~P1otxi[x,y~~==0~,(x, 1, 1.5),(y,O,0.53, 
Max1 t erat ions-> 1001 

Plot [Re [Plotxi Ex, 01 1 , (x, 1.3, 1.4431 
Plot CIm CPlotxi [x, 01 1 , {x, 1.3, 1.4431 
Plot [Abs [Plotxi [x,Ol1 , (x, 1 3, 1.4411 

B.2 Periodic Layer Definition 

(* 
nc = the cover index 
ns = the substrate index 

theta = incident angle 
z0 is the impedance of free space 

beta0 = n*Sin[thetal 
n = index of incident material = nc 
lambda = wavelength 
kO = wave number in free space = 2 * Pi /lambda 

*> 

mu0 = 1.2566 10^-6 
epO = 8.8542 IO^-12 

nc = 1.0 
ns = 3.5235 

lambda = .980 10A-6 

(*nl is closest to cover*) 

nl = 3.5235 
dl = 100 lo^-6 
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n2 = 2.984 
d2 = .0695 10^-6 

n3 = 3.5235 
d3 = .0821 10^-6 

(* 
n5 = 
d5 = 
*I 

(* 
t h e t a  = ArcCos[lambda/(2*n[[111*d[[l]]) 
n = nc  
be ta0  = n*Sin[theta] 
*> 

z0 = SqrtCmuO/epo] 
kO = 2*Pi/lambda 

gammac: :usage = "get t h e  a p p r o p r i a t e  s i g n  f o r  gamma i n  cover" 
gammac[b-1 := ( 
acsq = nc-2 - b-2; 
argacsq = Arg [acsq] ; 
magacsq = Abs [acsq] ; 
N [magacsq- (1/2) * (-Cos [argacsq/21 - I * S i n  [argacsq/2] ) 1 /zO ) / ; 
(Re[bl> nc)  && (Arg[ncA2-b^2] CO) 
gammacCb-1 := ( 
acsq = nc-2 - b-2; 
argacsq = ArgCacsql ; 
magacsq = Abs [acsq] ; 
N [magacsq- (1/2) * (Cos [argacsq/21 + I * S i n  [argacsq/21 ) I  /zO ) 

gammas: :usage = "get t h e  a p p r o p r i a t e  s i g n  f o r  gamma i n  s u b s t r a t e "  
gammas[b-] := ( 

assq = ns-2 - b-2; 
argassq = Argcassql ; 
magassq = Abs [assq] ; 
N[magassq~(l/2)*(-Cos[argassq/21 - I * Sin[argassq/2l) l /zO ) / 

( R e  [bl> ns) && (Arg Cns-2-b-21 CO) 
garnrnas[b-1 := ( 

assq = ns-2 - b-2; 
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argassq = ArgCassq] ; 
magassq = Abs [assql ; 
N [magassq^ (1/2)  *(Cos [argassq/2] + I * S i n  [argassq/21 ) I  /zO ) 

a lpha1  := S q r t [ ( n l A 2  - beta-211 
p h i 1  := kO*alphal*dl 
gamma1 := alphal/zO (*TE p o l a r i z a t i o n * )  

m l a  = N[Cos [phi111 ; 
mlb = N[-I*Sin[phill  /gamma11 ; 
m l c  = N[-I*gammal*Sin[phil]] ; 
mld = N[Cos[phil!]; 
m l  = ( ( m l a , m l b ) , ( m l c , m l d ) ) ;  

a lpha2  := SqrtL(n2-2 - b e t a A 2 ) ]  
p h i 2  := kO*alpha2*d2 
gamma2 : = a lpha2/z0  (*TE p o l a r i z a t i o n * )  

m2a = NCCos [phi211 ; 
m2b = N [-I*Sin [phi21 /gamma21 ; 
m2c = N[-I*gamma2*Sin[phi211 ; 
m2d = N[Cos[phi21] ; 
m2 = ~ ( m 2 a , m 2 b ~ , ~ m 2 c , m 2 d ~ ) ;  

a l p h a 3  := S q r t  [(n3-2 - b e t a ^ 2 ) 1  
p h i 3  := kO*alpha3*d3 
gamma3 : = a lpha3/z0  (*TE p o l a r i z a t i o n * )  

m 3 a  = N[Cos[phi3]] ; 
m3b = N [-I*Sin [phi31 /gamma31 ; 
m 3 c  = N[-I*gamma3*Sin[phi3]1 ; 
m3d = N[Cos [phi311 ; 
m 3  = ((m3a,m3b),(m3c,m3d)); 

MIntermedia te  = m2.m3; 
numpairs  = 10;  
mpower = MatrixPower[MIntermediate,numpairs] ; 
MTotal = ml.mpower; 

xi [veta-]  : = gammac [veta]  *MTot a1 [ [l ,111 + 
gammac [veta]  *gammas [veta] *MTotal[ [1 , 21 1 + 
MTotalCc2 , 11 1 + gammas [veta] *MTotal C C2,2] 1 / . b e t a - > v e t a  
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Plotxi[x-,y-l := ( z  = x + I y; xi[zl ) 

(* 
Plot3D [Abs [Plotxi [x,ylI , {x, 1, 1.51, {y , 0, 0.11, PlotRange-><O, 1011 
Plot3D[Re[Plotxi[x,y]] ,<x, 1, l.5ly{y, 0 ,  0.111 
Plot3D[Im[Plotxi[x,y]] ,{x, 1, 1.5),<y, 0, 0.111 
FindRoot [{Re [Plotxi [x, y] 1 ==O, Im[Plotxi [x,y]] ==O), (x, 1, 1.51, (y ,O , 0.53, 
Max1 t erat ions- > 10 01 
*I 

Plot[Re[Plotxi[x,Oll ,{x, 1.1, 311 
Plot [Im [Plotxi [x ,011 , {x, 1.1, 331 
Plot [Abs [Plotxi [x ,011 , {x , 1.1 , 311 

References 

[ B K S 1881 

[Blo28] 
[ B W75] 
[CH84] 

[ c Y Y 7 71 

[D E; K8 61 

[ J C F89] 

T. Baba, Y.  Kokubun, T. Sakaki, and K. Iga. Loss reduction of an arrow 
waveguide in shorter wavelength and its stack configuration. Journal 
of Lightwave Technology, 6(9):1440-1445, September 1988. 
F. Bloch. Physics, 52:555, 1928. 
M. Born and E. Wolf. Principles of Optics. Pergamon, 1975. 
John Chilwell and Ian Hodgkinson. Thin-films field-transfer matrix 
theory of planar multilayer waveguides and reflection from prism-loaded 
waveguides. JOSA A,  1(7):742-753, July 1984. 
A. Cho, A. Yariv, and P. Yeh. Observation of confined propagation in 
bragg waveguides. Applied Physics Letters, 30(9):471-472, May 1977. 
M. Duguay, Y .  Kokubun, and T. Koch. Antiresonanat reflecting optical 
waveguides in s i024  multilayer structures. Applied Physics Letters, 

W. Jiang, J. Chrostowski, and M. Fontaine. Analysis of arrow waveg- 
uides. Optics Communications, 72(3,4):180-186, July 1989. 

49( 1):13-15, July 1986. 

[KKB+87] T. Koch, U. Koren, G. Boyd, P. Corvina, and M. Duguay. Antireso- 
nanat reflecting optical waveguides for iii-v integrated optics. Electron- 
ics Letters, 23(5):244-245, February 1987. 

[KUC90] J. Kubica, D. Uttamchandani, and B. Culshaw. Modal propagation 
within arrow waveguides. Optics Communications, 78( 2) : 133-136, Au- 

D. Marcuse. Theory of Dielectric Optical Waveguides. Academic Press, 
second edition, 1991. 

gust 1990. 
[Mar911 

29 



[Tie711 P. K. Tien. Light waves in thin films and integrated optics. Applied 
Optics, 10( 11):2395-2413, November 1971. 

[Wo191] S. Wolfram. Mathernatica: A System for  Doing Mathematics b y  Com- 
puter. Addison-Wesley, 2nd edition, 1991. 

[Ye h 8 81 
[YY76] 

[YY77] 

Pochi Yeh. Optical Waves in Layered Media. J. Wiley and Sons, 1988 

Pochi Yeh and Amnon Yariv. Bragg reflection waveguides. Optics 
Communications, 19(3):427-430, December 1976. 

Amnon Yariv and Pochi Yeh. Electromagnetic propagation in peri- 
odic stratified media. ii. birefringence, phase matching and x-ray lasers. 
Journal of the Optical Society of America, 67(4):438-448, April 1977. 

[YY84] 

[YYH77] 

Amnon Yariv and Pochi Yeh. Optical Waves in Crystals. J. Wiley and 
Sons, 1984. 

Pochi Yeh, Amnon Yariv, and CS Hong. Electromagnetic propagation 
in periodic stratified media. i. general theory. Journal of the Optical 
Society of America, 67(4):423-438, April 1977. 

30 



DISTRIBUTION: 

1 
5 
2 

1 

MS 9018 
MS 0899 Technical Library, 4414 
MS 0619 

MS 0843 

Central Technical Files, 8523-2 

Review and Approval Desk, 12630 
For DOE/OSTI 
I. A. Erteza, 2425 

31 


	1 Introduction
	2 Analysis Methods
	Bloch Wave Approach
	2.1.1 TMmodes

	Field Transfer Matrix Approach for Planar Multilayer Waveguides
	2.2.1 Bound Modes
	2.2.2 Radiation Modes


	3 Comparison and Appropriateness of the Analysis Methods
	4 Bloch Wave Implementation
	5 Field Transfer Matrix Approach
	Examples of Confined Lossless Modes in a VCSEL Structures
	Examplel
	Example2
	6.3 Discussion

	7 Waveguide Interconnected VCSELs
	8 Conclusion
	A Bloch Wave Method
	B Field Transfer Matrix Approach
	Periodic Layer Definition

	1 Simplified VCSEL Structure
	2 PeriodicMedium
	3 Bragg Reflection Waveguide
	4 Thin Film Waveguide
	5 Plot of -1 vs Icp
	6 A+Dvs.kp
	Plot of the right hand side of the dispersion equation vs kp
	function of guide thickness for kp =
	function of guide thickness for kp =
	Example 1 and a guide thickness of 100 pm
	for guide thickness of 100pm



