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Summary of tutorial

In the first part of the tutorial, we will briefly review what is known about protein structure.
Due to advances in sequencing methods, the number of proteins for which the amino acid
sequence is know is currently over 40,000 and rapidly increasing. In principle, the tertiary
structure of proteins is determined by the amino acid sequence. Currently, the relationship
between sequence and structure is unknown: we cannot in general predict structure from
sequence. However, from the growing database of experimentally-determined protein
structures, some rules are emerging. First: the number of unique protein folds is quite
limited. Second: there are many proteins with the same fold, but no similarity of sequence.
Third: ‘neutral' mutations not altering the protein structure are relatively unlikely. Hence
naturally evolved proteins are a record of the unlikely, since most neutral mutations are
probably realised. These rules suggest that a key to understanding protein structure lies in
the patterns of neutral amino acid exchanges.

Experimentally determining the tertiary structure of a protein is still far more difficult than
sequencing; however, the situation has improved greatly in the last few years, and over 2,000

-atomic-resolution tertiary structures are now known. Part of this improvement is due to the

recent development of computational methods for the determination, and the availability of
computers powerful enough to run them. An understanding of the philosophies and
assumptions behind these methods is needed in order to assess the accuracy and limitations
of experimentally-determined structures. We will briefly cover the basic experimental
methodology behind the two main techniques for atomic-resolution structure determination -
nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography (XRC). For
NMR, structures are calculated from a set of short (<5A) distances using either distance-
geometry (DG) or dynamical simulated annealing (DSA). We will focus on several NMR
methods which have also been applied to tertiary structure prediction. For XRC, the initial
problem is determining the phase of the reflections in the diffraction pattern. We will discuss
briefly several computational approaches: direct methods, maximum entropy, density
modification, and molecular replacement. Once the phases are determined, structure
refinement is normally done using DSA methods. Due to the rapid pace at which the NMR
and XRC computational methods have been developed, most have been proposed based on
prototype, single-case studies; there are currently no adequate measures for comparing
methods.

How far can theory bridge the growing gap between the data bases of sequence and
structure? For a sequence with significant similarity to a protein of known structure,
homology modelling can be used to construct a 3D model with correct fold, but inaccurate
loop regions. Homology modelling effectively raises the number of known' 3D structures to
about 10,000. In absence of significant sequence identity, threading techniques can
potentially detect.remote homologies. For most proteins neither homology modelling nor
threading is applicable: the prediction problem has to be simplified. We will discuss generic
methods for prediction at three different levels of simplification, namely one, two, and three
dimensions. We will emphasis the importance of measuring the accuracy of the methods.
Prediction in 1D (secondary structure, solvent accessibility and transmembrane helices) can
be improved significantly through the use of evolutionary information. Prediction in 2D
(inter-residue contacts, inter-strand contacts, disulphide bonds) can also, to a certain extent,
profit from evolutionary information, but so far, is of only limited accuracy. Some progress
in 3D prediction has been made: incorrect structures can now be detected with remarkable
accuracy (mean-force potentials) and technical improvements and data base growth have
made alignments, threading, and homology modelling increasingly powerful.
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Duration:
Audience:
Goals: [

Notes about the tutorial (duration, audience, goals, time schedule)

half day = 4 hours
The tutorial will be addressed to both computer scientists and biologists.

We intend to review the state of the art in the experimental determination of
protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical
prediction of protein function and of protein structure in 1D, 2D and 3D from
sequence (focus on methods that are being applied by biologists).

All the atomic resolution structures determined so far have been derived from
either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance
(NMR) Spectroscopy (becoming increasingly more important). We shall briefly
describe the physical methods behind both of these techniques; the major
computational methods involved will be covered in some detail. We shall
highlight parallels and differences between the methods, and also the current
limitations. Special emphasis will be given to techniques which have application
to ab initio structure prediction.

Large scale sequencing techniques increase the gap between the number of
known proteins sequences and that of known protein structures. We shall
describe the scope and principles of methods that contribute successfully to
closing that gap. Emphasis will be given on the specification of adequate testing
procedures to validate such methods.

Time schedule:

Introduction: proteins the complex machinery of life 20 min

Experimental determination of protein structure 90 min

Prediction of protein structure 90 min
Overview; Evaluation of prediction methods 10
Prediction of protein structure in 1D 40
Prediction of protein structurein 2D - . 20
Prediction of protein structure in 3D 20
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Notes about the handouts (contents, materials, structure)

> .
Introduction: proteins the complex machinery of life
Experimental determination of protein structure
Prediction of protein structure

r >
Abbreviations used
Sources of Figures
References

Structure of handouts:
For each of the three main parts (Introduction; Determination; Prediction) we
shortly summarise the main points touched (pages labelled, e.g., 1S-n ) and
collect all transperencies used (pages labelled, e.g., IT-n ). At the end of each
summary, we list some of the relevant literature. The appendix (pages labelled
Appendix-n ) contains some of the abbreviations used, lists titles and sources of
all figures and all references.
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Summary

The basic principles of protein structures are
shortly introduced. Protein structure is determined
by sequence. However, there are many proteins
which have strong structural similarity, but no
similarity of sequence. In other words, structure is
more conserved than is sequence. Naturally
evolved proteins are a record of the unlikely in that
all mutations not altering the structure are probably
realised, although the likelibood to find a neutral
mutation is small. The patterns of amino acid
exchanges not changing structure are highly
informative about a given structure. It is
commonly assumed that the number of umique
protein folds is quite limited.

What is a protein?

Building blocks: amino acids. Proteins are built
up from 20 different types of amino acids that are
joined by peptide bonds to form a linear chain.
The information is coded in the DNA and
translated into protein sequences. The basic
information about life is coded in a sequence of
four different nucleotide bases in the genes. There
are two types of nucleic acids: the permanent
storage system of the more stable deoxyribonucleic
acid (DNA), and the intermediate blueprint tool of
the less stable ribonucleic acid (RNA). The
information is translated from the genes into the
sequences of macromolecules which are involved
in every process that keeps life going in an
organism, the proteins. Proteins are build up by
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sequences of amino acids. Xnown protein
sequences contain from some 30 to 10,000 amino
acids.

Formation of peptide bonds. In general, there
are some one hundred different natural amino
acids, but only 20 are usually found in proteins.
They all have in common the same basic tetragonal
structure (Fig. 1.1). The amino acids differ in their
side chains (Fig. 1.2). Transcribing the four base
alphabet of the RNA on the ribosomes into the 20
letter alphabet of amino acids, the protein
sequences are build up residue by residue by
joining the amino acids with peptide bonds (Fig.

1.3). The atoms along the line connecting the c*
atoms are referred to as the main chain of the
protein or as its backbone.

‘What determines protein structure?

Hierarchy of protein structure terminology.
The following hierarchy is often used: primary
structure = amino acid sequence; secondary
structure = regular patterns of the main chain
atoms, like a-helices or B-strands; tertiary structure
= the arrangement of all atoms in a protein chain in
three dimensions; quaternary structure = the
arrangement of all atoms of the whole protein
possibly consisting of multiple chains.

Sequence determines structure. A fully
unfolded amino acid sequence diluted in the
appropriate solvent (under proper conditions in
terms of pH value and temperature) folds into a
unique tertiary (3D) structure (Anfinsen, et al.
1961, Epstein, et al. 1963, Anfinsen 1973,
Anfinsen & Scheraga 1975). The process is
reversible (Creighton 1984, Creighton 1991).
Consequently, it is assumed that folding is
determined exclusively by the information
contained in the amino acid sequence (Ewbank &
Creighton 1992). Recent experiments suggest that
the formation of some secondary structure
precedes tertiary organisation (Ewbank 1992). A
possible exception to the Anfinsen-hypothesis
constitute molecular chaperones, i.e., proteins
which assist or hinder folding (Fig. 1.6) (Hubbard
& Sander 1991, Hart], et al. 1994).

Secondary structure facilitates dense packing.
The main driving force for folding water-soluble
globular protein molecules is the need to pack
hydrophobic side chains into the interior of the
molecule, thus creating a hydrophobic core and a
hydrophilic surface. But how can that be realised
with the main chain being highly polar (with NH as
hydrogen donor and C'=0 as hydrogen acceptor,
Fig. 1.1)? The simple trick is to neutralise the NH
and C'O groups by a formation of hydrogen bonds
(Ptitsyn 1992). These bonds effect the formation
of the regular patterns of secondary structure like
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o-helix (Fig. 1.7) and B-strand (Fig. 1.68). Any
region of the protein that is not in either helix or
strand will be termed 'loop’ in this work (some
authors use the term ‘random coil' based on the
helix-coil model (Zimm & Bragg 1959)). Helices
and strands form dipoles (Hol, et al. 1981). The
existence of secondary structure elements was first
proposed by Pauling and Corey on theoretical
grounds prior to their discovery in protein
structures (Pauling & Corey 1951, Pauling, et al.
1951, Pauling & Corey 19533, Pauling & Corey
1953b).

Function-specific motifs of secondary structure.
Combinations of a few secondary structure
segments with a specific geometric arrangement
occur frequently in protein structures (3D
structure). Such combinations are termed super-
secondary structure or motifs. Some of these
motifs are associated with particular functions.
Examples are the helix-loop-helix DNA binding
motif (Gibson, et al. 1993), the calcium binding
motif (Fig. 1.9), or the Greek key or B-meander
motif (Fig. 1.10) (Hutchinson & Thoraton 1993)

Classification of proteins into structural classes.
Motifs can be used to classify proteins (Richardson
1981, Richardson 1985, Richardson & Richardson
1989, Murzin & Chothia 1992, Orengo, et al. 1993,
Wodak & Rooman 1993, Murzin 1994, Murzin, et
al, 1995), a more simple classification is based
purely on the content of secondary structure
(Chothia 1976, Richardson 1981). A protein can
be classified as, €.g., all-c, if it contains almost no
strand structure and a high content of helix (Fig.
1.11).

Protein folding: a problem solved only by
nature?

Variety of protein structures. Protein structures
show a fascinating variety. Structure is more
conserved by evolution than sequence. This is
mainly explained by the fact that the 3D structure
is closely related to the function of the protein.
Although the mutation of a few residues in a
protein are likely to destabilise the fold (Dao-pin,
et al, 1990, Dao-pin, et al. 1991a, Dao-pin, et al.
1991b), evolution has created a record of sequence
variation not changing the 3D structure. Two
natural protein sequences can differ by 75% of
their residues and, yet, have the same 3D structure
(Sander & Schneider 1991).

"When the first structures of proteins were
solved by X-ray crystallography biochemists
were struck by the beautiful topologies of their
backbone folds and soon researchers in the
Jield became eager to collect structures, and
much like zoologists and botanists in past
centuries they developed systematic schemes
and looked for common features among the
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various families of folds hoping to unravel the
underlying theme responsible for their bizarre
structures.” (Wu, et al. 1992)

Cracking the code. Solving the protein folding
problem means deciphering the code according to
which the 3D structure is encrypted in the amino
acid sequence. Can we crack the code, i.e., can we
unboil the egg (Perutz 1940)? Many researchers
successfully fail in doing the neat trick (which is
why the issue of predicting protein structure is so
interesting...). Prediction methods can be
distinguished according to the principle they start
from: physics or statistics. The prediction success
of methods based on physical principles is still
very limited.

Marginal entropy differences determine protein
stability. What determines protein stability? The
hypothesis of Anfinsen is that the folded state of a
globular protein is characterised by a minimum in
free energy (Anfinsen 1973). The folding
transition is largely a two-state process: unfolded
non-native chain (U) -> folded native structure (N).
As a first approximation, intermediate states can be
neglected (though recent exceptions have been
found (Ewbank & Creighton 1991, Ewbank, et al.
1995)), and the difference in free energy between
unfolded and native state (A G) can be
approximated by (Lattman & Rose 1993)

AGysne<-RTIhK

with R being the gas constant, T the absolute
temperature, and the equilibrium constant K =
number of chains in U / number of chains in N.
Typical values for AG are -5 to -15 kcal/mol
(Lattman & Rose 1993).

Hydrophobic forces drive folding stability.
Why do proteins fold? The driving force for
folding has been established to be the reduction of
solvent accessible surface (Kauzmann 1959).
Folding is driven by the attempt for dense packing
(Jaennicke 1987, Stigter, et al. 1991, Pickett &
Sternberg 1993). Globular proteins are known to
have mean packing densities reminiscent of solids
(Lattman & Rose 1993). This density can possibly
be explained by the complementarity between
interior side chains, fitting together like pieces of a
jigsaw puzzle (Fig. 1.12) (Taylor 1992).

Dense packing determines the conformational
specificity? What determines the specific
conformation of a fold? One explanation could
again be the density of packing, i.e. only very
specific conformations allow the residues to pack
into the jigsaw puzzle. However, there is evidence
that such a grouping can readily be done, i.e. does
not require one particular conformation (Lattman
& Rose 1993). This suggests that dense packing is
not the primary source of conformational
specificity. What then determines the fold? One
attractive candidate is the stereo-chemical code: "It
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is plausible that conformational specificity is
imposed through a redundant stereo-chemical code
that arises from the interplay between the shape
angd polarity of residue side chains and secondary
structure conformation.” (Lattman & Rose 1993).

Evolution creates a record of the unlikely!

A single mutation can destabilise a protein, The
mutation of a single residue typically causes an
approximate reduction of the free energy
difference between native and unfolded state of
about 1 kcal/mol (Lattman & Rose 1993). Thus,
the exchange of a few residues can already
destabilise a protein of more than 100 residues
(Dao-pin, et al. 1990, Dao-pin, et al. 1991a, Dao-
pin, et al. 1991b, Zabin, et al. 1991). Does this
imply that two proteins with some different
residues have a different 3D structure? And if, are
all potential 3D structures realised in nature, i.e.
are there some 20N different folds for proteins with
N residues realised in nature? The fact that a
single mutation can destabilise a protein implies
only that the majority of the 20N possible
sequences adopt different structures. But, has
evolution created such an immense variety?

Only mutations not altering the structure
survive. Random errors in the DNA lead to the
wrong translation of the information coded in the
genes into sequences of amino acids. These errors
are the basis for evolution (Darwin 1859, Monod
1970). Are all such errors carved into fossils, or do
only the fittest survive? The function is
determined by the structure and the environment of
the protein. Mutations resulting in a structural
change are not likely, since the protein cannot
perform its task. Thus, only those errors are likely
to be accepted which do not alter the structure. Of
course, this is only one side of the coin, would it
not be possible to accept changes of the structure
and consequently of the function, there would not
be much room for evolution. Indeed, one of the
evolving pictures is that proteins consists of
functional modules, which are combined in various
ways to yield different properties for the proteins
(Bork 1992, Bork, et al. 1992¢, Doolittle & Bork
1993, Green, et al. 1993).

How much variation in sequence is possible?
Mutations of amino acids survive if they do not
change the 3D structure of the folded protein. The
known proteins are a record of exploration for
variation of sequence with no effect to structure.
Structure is more conserved than sequence
(Chothia & Lesk 1986). But, how much variation
of the sequence can exactly be accepted without
changing the structure? The surprising result is
quite some (Fig. 1.13). Evolution has realised
pairs of proteins which have the same 3D structure,
although they have only 25 of their 100 residues
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alike. Of course not any two residues can be
exchanged anywhere in the sequence. Instead, the
possible exchanges depend on the details of the
structure and on the physico-chemical properties of
the amino acids involved. Thus, the pattern of
residue substitution - the record of the unlikely -
carries information rather specific for a particular
protein structure (Zuckerkand! & Pauling 1965).

How many different protein folds exist?

Speculations are that the number of different
protein folds realised by nature is fairly limited
(Chothia 1992, Finkelstein & Reva 1992,
Finkelstein, et al. 1993). However, the concept of
'similarity’ between folds is not clear-cut (Sippl
1982). The number of unique chains is > 300
(Hobohm & Sander 1994). Based on this number
and recent analyses of entire chromosomes (Bork,
et al. 1992b, Bork, et al. 1992a, Bork, et al. 1994)
the estimate for the number of folds appears to
confirm the notion of 1,000 folds (factor of 3
possible).

Literature on protein structure

Introductions to protein structure and folding
(books): (Schulz & Schirmer 1979, Fasman
19890, Brindén & Tooze 1991, Lesk 1991, Rees,
etal. 1992)

Introductions to protein structure and folding
(reviews):  (Richardson 1985, van Gunsteren
1988, Fasman 1989a, Richardson & Richardson
1989, Briinger & Nilges 1993, Dill 1993, van
Gunsteren 1993, Murzin 1994) ‘
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- _..Whatis a protein?.. =t

e DProteins are the machinery of life
— Rosetta stone

storage: DNA (stablg) | blueprint: RNA (ur@a)>

— 30 - 10,000 amino acids
— alphabet = 20 letters of amino acids
— common: basic tetrahedron

» Fig 1.1
» Fig 1.2
— biosynthesis of amino-acids into polypeptides
» Fig 1.3
— flexibility of chain: the dihedral angles
» Fig 1.4
Séan O’ Donoghte & Burkhard Rost: Computationsl tools for experimental determination and theoretical prediction of protein structore: ISMB® 95; Cambridee; Jul 16,1995 1T-3
Fig. 1.1: Basic tetrahedron of all amino acids
(a) ' (b)
side
chain IiIa
H N /ia\c/OH Nco
, N
C cB
H 0o

(@) The atoms around the C* atom all amino acids have in common. The convention is to
label the carbon atoms in the side chains with Greek letters starting from the central C*
(IUPAC-IUB, 1970). (b) In nature generally only the left-handed L-configuration of an
amino acid is found. The reason for the symmetry breaking is eventually a random initial
event (Schulz & Schirmer, 1979).

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental d ination and th ical prediction of protein ISMB* 95: Cambridge: Jul 16, 1995 1T-4
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Fig. 1.4: The dihedral angles

The peptide bond (CO-NH) has a partial double bond character. As a conscquence, the
surrounding 4 atoms lie in a plan (indicated by quadrangles). Rotation along the polypeptide
chain is possible around the angles ¢ and y on both sides of the C* atoms.
Figure taken from (Rost, 1993)
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What determines protein structure?:

* Hierarchy:
» primary structure amino acid sequence
» secondary structure e.g.: o-helix; B-strand;
» tertiary structue arrangement in 3D
'» quaternary structure grouping protein chains

* 3D structure is determined uniquely by sequence

— unfolded sequence folds into unique 3D structure
(Epstein et al., 1963, Anfinsen & Scheraga, 1975)

— folding reversible
(Creighton, 1992)

— thus, information contained in sequence
(Ewbank & Creighton, 1992)

~ formation of secondary structure first
(Ewbank, 1992)

» Fig. 1.5
* Exception: chaperones
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(Hubbard & Sander, 1991, Saibil & Wood, 1993, Hartl et al., 1994)

(Hartl et al., 1994)
— prevent aggregation of newly synthesized polypeptides
» Hsp60 / GroEL

» Hsp70 (heat shock prote
» Fig. 1.6

— folding to the nat
— further literature

e “the art of avo




Fig. 1.6: Chaperone mediated protein folding

orrrotir Ty ooty
S Ty | pryy ik indces
g n i tesnxy complex containing DnaX, o i
zw&Mmmﬁun Ornaf and unlolded protein is formed. Dna) umwmmmﬁ
ribasome, sumuhxeslheATPas? activity of Dk pactially-folded polnvepweis;e(eascdard
and stabifizes Dnak in the ADP-state, trarulcmdloaCochcfozs:orwia with
GroEL having hound ADP tightly,

Tully foldest

& <

(00rxelol§cd.lhcs«bstaepro(6nhs {¢) During muttiple counds of substrat Binding folding intermediat
msﬁnn&ﬁvhdwpemnud ptoieinnkiseandrebirﬁng(}o!se gﬁdavh‘;‘:l‘eoo&kodsbﬁsoé:i::
cavity. unmlebﬁgvmlbem«\dsof of ADP and GrokS. As 3 consequence of ATP
the GroEt cylinder. rebinding and subsequent ATP hydrolysis,
the subrrate protein is released into the
GrokL cavity for folding,

Figure taken from (Martin & Hartl, 1993)
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condary structure facilitates dense packing¥&

iiSe

e driving force for folding globular water-soluble proteins:
hydrophibic side chains into the interior =>
hydrophobic core, hydrophilic surface
(Kauzmann, 1959, Lesk, 1991, Creighton, 1992, Lattman & Rose, 1993)
¢ but, main chain highly polar (NH donor, C’=0 acceptor)

o trick: neutralise polarity by forming hydrogen bonds
(Ptitsyn, 1992)
» Fig. 1.7/1.8
e H: o-helices and E: B-strands form dipoles
(Hol et al., 1981)
e third class: termed L: loop (often called: random coild, based

on helix-coil model)
(Zimm & Bragg, 1959)

e secondary structure formation proposed before first X-ray

structures were solved
(Pauling & Corey, 1951, Pauling et al., 1951, Pauling & Corey, 1953a,

Pauling & Corey, 1953b)

jon and theoretical prediction of protein < ISMB" 95: Cambridge; Jul 16, 1995 17T-1:
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Fig. 1.7: Hydrogen bond pattern of helix

Helices of polypeptide chains with intcrnal hydrogen bonds (dashed). Hydrogen bonds are
between the amide and carbonyl groups of residues i and i+3. Thus one helix turn covers 3.6
residues extending over some 1.5A per residue. The side chains point outwards (circles
marked with R). Figure taken from Schulz & Schirmer (1979).

Jul 16, 1995 1T-13
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Fig.. 1.8: Hydrogen bond patterns of strand

Hydrogen bonds are indicated by dashed lines and chain directions by arrows. C% are
marked by dots. (a) antiparallel three-stranded B-sheet, (b) parallel three-stranded B-sheet.
The side chains point alternatively above and below the sheet. The distance between two
neighbouring strands is about 5A. It has been noted recently that often the larger of the two
holes formed in an antiparallel sheet (a) cannot be filled by side chains, thus, effecting a
majority of the defects of close packing in protein globules (Finkelstein & Nakamura, 1993).
Figure taken from Schulz & Schirmer (1979).
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Fig. 1.9: Calcium binding motif: helix-loop-helix

In ribbon diagrams, helices are usually drawn as spirals or cylinders, and strands as arrows.
Calcium binding motif: the two helices (from the muscle protein parvalbumin) give the
scaffold for binding and releasing the calcium ligand (shown as a sphere). Figure taken from
Briindén & Tooze, (1991).
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Fig. 1.10: Greek-key motif: four strands

Greek key (or B-meander) motif: four adjacent antiparallel B-strands are arranged in a pattern
similar to omamental patterns used in ancient Greece. The structure is that of staphylococcus
nuclease, an enzyme that degrades DNA. Figure taken from Briindén & Tooze, (1991).
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o classification based on motifs

(Richardson, 1981, Richardson, 1985, Richardson & Richardson, 1989,
Johnson, 1991, Murzin & Chothia, 1992, Orengo et al.,, 1993, Wodak &
Rooman, 1993)
e classification based on structural alignments and domains

(Holm et al., 1993, Holm & Sander, 1993, Holm & Sander, 19943, Holm &
Sander, 1994b)

e classification based on content in secondary structure
{Chothia, 1976, Richardson, 1981, Zhang & Chou, 1992)

~ all-o: %o 245% ;% B< 5%
— all-f3: %o < 5% ;%B= 45%
- a/b: % o 230% ;% B =220%
— rest
» Fig. 1.11
Séan O Donoghuc & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein structure; ISMB*® 95; Cambridge: Jul 16, 1995 1T-17

Fig. 1.11: Percentage helix vs. percentage strand in known 3D structures
' Figure 3: Content of helix vs. content of strand
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Figure taken from (Rost & Sander, 1994b)
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““Protein fold'”‘g

e What drives folding?
® What determines conformational specificity?

Séan O'Donoghue & Burkhard Rost: C

putational tools for expert ! determination and theoretical prediction of protein structure; ISMB® 95: Cambridge; Jul 16, 1995
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What dnves foldln

e folding largely two state transition:
~ unfolded nonnative U -> folded native N
— free energy:

A fy.on e« -RTIK

» R, gas constant; T, absolute temperature;
K, equilibrium constant = #U/#N

» typical values -5 to -15 kcal /mol
(Lattman & Rose, 1993)

¢ packing densities reminiscent of solids
(Jaennicke, 1987, Lattman & Rose, 1993, Pickett & Sternberg, 1993)

* possible explanation for density: jigsaw puzzle
(Taylor, 1992)
» Fig. 1.12
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Fig. 1.12 Protein jigsaw puzzle

The protein jigsaw puzzle. At first sight the solution is
easy because there is a known backbone structure
{(green) to copy. But packing the side-chains (small red
and black circles) is difficult, because for each piece
there are a number of aitematives (rotamers) only one of
which will appear in the completed picture at any
position. The approach of Desmet et al. can be ex-
plained. in simplified terms, by considering the options
for the residue (C) at the second position. if there are
three rotamers for C and two rotamers for S, then each C
is tried with each S at the first and third positions. If
there is a rotamer of C that will not fit with any S at
either adjacent position (or with G at the thirteenth
position), then that piece cannot be part of the final
picture and can be thrown away. This test Is applied to
all positions, so reducing the number of pieces that
need to be considered when it comes to the final
(combinatorial) assembly stage.

Figure taken from (Taylor, 1952)
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%;, '}W];l;ai,tgd%etemﬁnes conformational specificity

e one candidate: density of packing:
only very specific conformations fit into the jigsaw

e another: stereochelgif%alNcode:‘>c -RTInK
>

“It is plausible that conformational specificity is imposed
through a redundant stereochemical code that arises
from the interplay between the shape and polarity of
residue side chains and secondary structure
conformation.”

(Lattmann & Rose, 1993)
* Can we model protein folding?

Séan O'Danoghue & Burkhand Rost: Computational tools for experimental detenmination and theeretical presdiction of protein stevetipes IRUR® 03 CanteiToe Tl 16 1008 1T




"When the first structures of proteins were solved by X-
ray crystallography biochemists were struck by the
beautiful topologies of their backbone folds and soon
researchers in the field became eager to collect
structures, and much like zoologists and botanists in
past centuries they developed systematic schemes and
looked for common features among the various families
of folds hoping to unravel the underlying theme
responsible for their bizarre structures.”

(Sippl et al., 1994)

— first structures: myoglobin and hemoglobin (oxygen
binding)
(Kendrew et al., 1960, Perutz et al., 1960)

— today more than 2,000 structures known
(Berstein et al., 1977; Abola et al., 1988)

Séan O'Donoghue & Burkhard Rost: Computational tools for experi 1 ination and th ical prediction of protein structuge: ISMB* 95; Cambridge; Sul 16, 1905 1T-2

e Myohcmerytrhin (2mhr)
four helix bundle with 118 residues. The molecule binds oxygen in muscle cells (source:
sipunculan worm). The helices are shown as spirals, the loop regions as thin lines. The
fifth helix is a 3;¢ helix, spanning only over three residues. The other helices extend over
16-24 residues.

¢ Myoglobin (Imba)
seven helix bundle with 146 residues. This molecule was onc of the two first
experimentally solved structures (Kendrew et al., 1960). It is used for oxygen storage
(source sea hare). The oxygen is stored in form of the heme group shown in the centre
(green with blue centre). The heme is enclosed by the seven helices (shown as cylindres)
like in a pocket. The helices span over 5-16 residues. The 3;¢ helix shown on the left
hand side (red, above the heme) spans over 6 residues.

* Bence-Jones immunoglobulin (1bjl)
dimer (two distinct chains) with 247 residues (source: human). The strands are shown as
arrows with the head pointing towards the end of the protein (C-terminal end). The
hydrogen bonding partners of the residues in a strand are those at the strand nearest by
(bonds not shown). The antiparallel B-sheets extend over 2-10 residues.
Immunoglobulins act as antigen receptors on the surface of B cells in the immune system.
All immunoglobulin domains have similar 3D structure.

= Satellite tobacco necrosis virus coat protein (2stv)
dominantly an & / B structure with 184 residues. The virus RNA is embedded in the
pockets formed by the B-sheets. The structure is typical for most virus coat proteins.

¢ Flavodoxin (4fxn)
mixture of helices and strands with 138 residues (source: clostridium MP). It is involved
inelectron transport (flavin mononucleotide-binding redox protein). The binding of the
ion is illustrated by the aromats at the right hand side (green). The B-sheets form a pocket
in the core of the protein, whereas the helices lie on thesurface. The ion is bound on the
loop regions at the N-terminal ends (arrowheads) of the parmalle] p-strands.

¢ TIM barrel triosc phosphate isomerase (61im)
barrell structure with 249 residues (source: trypanosoma Brucei). It functions as an
enzyme to transform ATP (adenosine tri phosphate) into ADP (adenosine di phosphate).
The molccule is built up from four B-u~B~a motifs that are consccutive both in scquence
and structure. The motifs are arranged such that in the centre a barrel is formed.

Séan O'Donoghue & Burkhard Rost: Computational tools for experi) 13 ination and th 1 prediction of protein structure: ISMB* 95: Cambridge: Jul 16, 1995 1T-2
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" Unboiling the egg?:

* Boiling an egg implies unfolding proteins
(Perutz, 1940; Perutz, 1980)
e Can this procedure be reversed in theory?
Can the Rosetta stone of protein folding be decrypted?

e Two schools: statitics and physics

¢ Obstacles to modelling from first principles:
— marginal free energy difference between folded and unfolded state
— one residue exchange can destabilise a structure
— given complexity -> too much CPU-time
~ inaccuracy in knowledge of physical constants, i.e., potentials
¢ How far do we come with today’s molecular dynamics?
- refining structures
~ modelling the interactions between protein and ligands

— modelling of short (some residues) loop regions
(Abagyan & Totrov, 1994, Abagyan et al., 1994)

¢ BUT not distinction: native fold and grossly misfolded structure
(Novotny et al., 1984, Novotny et al., 1988)

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein :1SMB" 95; Cambridge: Jul 16, 1995 1T-25
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- Evolutrpn creates a record of the unllkely,j;
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¢ A single mutation can destabilise a protein

— free energy marginally different (= 1kcal/mol) (Lattman & Rose,
1993)
— thus single residue exchange can destabilise (Zabin etal., 1991)

- =>20 N different folds of proteins with N residues?
— in principle yes, but are they all realised?
¢ Only mutations not altering structure survive
— random errors in DNA basis for evolution (Darwin, 1859; Monod, 1970)
— all errors carved into fossils of protein structures?
- no, function has to be maintained -> structure
— more complex: evolution by shuffling domains or modules
(Bork, 1992, Doolittle & Bork, 1993, Green et al., 1993) )
* How much variation in sequence is possible?

— structure evolutionarily more conserved than sequence
(Chothia & Lesk, 1986, Schneider & Sander, 1991)

— 75% of the sequence can be exchanged without changing the structure
(Sander & Schncider, 1991)

oo g i 113 .
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Figure 1.13: Relationship between structural homology and sequence identity
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For about 1,000 pairs of fragments from proteins with known 3D structure, alignments are
made. The percentage of identical sequences in this fragment is plotted versus the length of
the fragment (alignment length). The homology threshold divides the graph into a region in
which all pairs are structurally homologous (root mean square deviation of backbone < 2.54),
and a region where homology is unlikely ("don’t know region"), i.e. where some fragment
pairs are structurally similar and some are not. Figure kindly provided by Reinhard
Schneider.
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otein folds’exist?:

* only 1000 folds?
(Chothia, 1992)

* how similar are similar folds?
¢ root-mean square deviation of backbone:

L

. AR
DE,S) =] nll(ln l{NZ (ri_ri.)z

where r; is the vector pointing to residue i of structure S, N the number of
residues, and the minimum is taken over all k possible orientations, i.e. the

optimal solution. A reasonable cut-off to regard two structures as
homologucis D <3 A.

(Sippl, 1982)

* how many folds = where setting the cut-off
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—0— model building by homology (HSSP)
—o&— known 3D structures (PDB)
A unique 3D structures (<25% scquence identity)
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Fig. 1.15 Nuinber of unique protein folds
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Figure taken from (Holm & Sander, 19%42)
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: ;;The number of fold's'~ 1s limited

¢ Given a certain cut-off:
How many folds exist?

¢ Again: not as simple

— secondary structure level? =>3

— level of all residues? => currently >2,000

~ level of domains? => currently > 400

(Holm & Sander, 1994b)
¢ Thus: how many?
human sequences 100,000
now implicitly known 3D 10,000
unique( <25% pairwise seq. ident.ity) <400
unique (most stringent cut-off) <150
=> unique human folds <1,500??
Séan 0'Donoghue & Burkhard Rost: Computational tools for experimental determination and th Jiction of protein ISMB" 95: Cambridge; Jul 16, 1995 1T-31




Calculating protein structures
from experimental data
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Summary -

The experimental determination of protein
structure is blooming. Part of the reason is the
recent development of computational methods for
the determination, and the availability of
computers powerful enough to run them. In spite
of the fundamental role of this methods in
determining the accuracy of the protein structure,
none have been rigorously evaluated.

We will briefly cover the basic experimental
methodology behind the two main techniques for
atomic-resolution structure determination - nuclear
magnetic resonance (NMR) spectroscopy and X-ray
crystallography (XRC). In this tutorial, the NMR
methods will be emphasised. For NMR, structures
are calculated from a set of short (<5A) distances
using either distance-geometry (DG) or dynamical
simulated annealing (DSA). These initial structures
are then refined with a number of methods:
currently, there is no consensus on which methods
are best.

For XRC, the central problem is determining the
phase of the reflections in the diffraction pattern.
We discuss briefly several computational
approaches: direct methods, maximum entropy,
density modification, and molecular replacement.

Introduction

The state of the art. Look in any recent volume
of Nature or Science and you are guaranteed to find
at least one important protein structure which has
recently been solved at atomic-resolution. For
more structures, you could glance at the newly
created Nature Structural Biology, designed to
handle the overflow of structures from Nature, or
several other newly created journals loaded with
protein structures e.g. Proteins, Protein
Engineering, Protein Science, or Structure. Driven
by advances in molecular biology, data acquisition,
and computer power, the experimental
determination of protein structures is blooming.

What is the rle of computational methods?
Which computational method is used is of
fundamental importance to the accuracy and
precision of structures obtained, or even to the
success or failure of the determination. Recent
advances in these methods have increased the scope
of structures which can be determined. However,
due to rapid development, new methods have been
introduced based only on prototype, single-case
studies; there is currently no adequate measures for
comparing methods.

What are the major techniques? Which are the
limitations? For any protein given we want to
know the structure of,- we have two major
approaches. If the protein less than about 250
residues, we can use NMR spectroscopy to
examine the solution structure - this will almost
always work, and the process takes from two
months to two years, sometimes forever. The
NMR technique is still emerging - in the near
future, the current limitations of protein size and
speed of determination will improve; also, NMR
will yield more detailed information on the
dynamics of proteins in solution. Other
breakthroughs are likely, although the direction is
less clear. The other approach to structure
determination, with no theoretical limit on the
protein size, is to try to convince the protein to
crystallise. The crystals must be large and well-
ordered. This is a question of luck and patience, but
the success rate is nowadays very high. However,
not every protein structure can yet be solved. Most
of the extremely large proteins are simply too
irregular to form adequate crystals; here, we have to
be content with breaking the protein into smaller
domains and solve the structures of them. Some
classes of proteins, for example membrane
proteins, still present a challenge that we have no
established metbod for dealing with, although even
here we are making progress.




How to access experimental protein structures?
For convenient browsing through all protein
structures, it is worth looking at the
Macromolecular Structures series published
annually by Current Biology press which covers
all proteins solved in the last year . The central
public computer database is the Brookhaven
protein databank - PDB (http://www.pdb.bnl.gov/).
Currently, there are over 3000 structures; of these,
400 have homologies less than 25%; about 150 are
unique folds. About 20% of the structures in the
database are determined by NMR; this proportion
of NMR structures is increasing,

The current format of a PDB entry is widely
recognised as outdated; note the card number at the
last line - helpful if your stack of paper cards (one
per line) falls on the floor! There are efforts to
come up with a new format, but they are not
expected to come to fruition for at least two years
more.

Structures of proteins in solution:
NMR spectroscopy

Basic experimental methodology

Sample preparation. There are a few important
requirements for studying a protein by NMR
spectroscopy. One is that the sample must be
sufficiently concentrated (around 0.5mg/ml or
more); for many proteins, this is actually close to
physiological concentration, however in vitro
aggregation is often a problem at these
concentrations. This must be prevented as it will
raise the effective molecular weight of each
molecule above what can be studied by NMR.
Another requirement is the production of 2H-, }3C-
, or 15N - labelled protein samples - larger
proteins, labelling is essential, Fortunately, this is
not so difficult with modern cloning techniques.

Collecting spectra. Not a trivial step - first, the
NMR spectrometer: it costs at least $US1/3
million - requires special housing in a building
without iron; the liquid nitrogen cooling the
superconductor coils must be renewed weekly;
most metals must be kept at least 3-4 metres
distant from the spectrometer. Such a valuable
instrument is usually purchased for the use of
several (or many) research groups - unfortunately,
to collect adequate (3D and 4D) spectra to
determine a large protein can take one, two, or
more weeks of uninterrupted measurement time -
this means fighting with other users for exclusive
access,

Then comes the measurement techniques, or
pulse sequences, which determine the type of
spectra obtained; NMR is a rapidly evolving

technique - there is no standard set of techniques;
instead, there are many standard techniques, all
constantly being improved by different groups.
Different proteins require different pulse sequences
to be used, depending on the size, type of labelled
compound that can be made, etc. In addition to a
background in biochemistry or molecular biology,
the protein NMR spectrometrist must have a good
grasp of the mathematics and physics behind
biological NMR.

1D NMR spectra. The sample is placed in a high
intensity magnetic field (7 Tesla or more) - nuclei
with a net magnetic moment tend to align with the
field creating a macroscopic magnetisation
pointing in the same direction as the spectrometer’s
field (up, or usually along the z axis).

In continuous-wave (CW) spectrometry, we
apply radio-frequency waves, and slowly scan
through a range of frequencies. Different nuclei in
the sample have different resonant frequencies;
when the frequency scan passes through a resonant
frequency, a small absorption peak can be detected.

CW spectrometry, although conceptually
simpler, has been superceeded by pulse
spectroscopy pioneered by R. Emst (for an
excellent review, seec his Nobel lecture: Ernst,
1994). Here, the radio frequency is applied as a
pulse, rather than a continuons wave. The pulse is
timed to rotate the magnetisation 90°, from the z
to the x axis. The pulse is then stopped, and the
magnetisation precesses around the z-axis, slowly
decaying towards it. This precession causes a
(much weaker) radio frequency electromagnetic
signal which is detected. The different frequencies
corresponding to the different nuclei all contribute
to the signal. By calculating the Fourier transform
(FT) of the signal, one can then construct the same
spectrum measured by the CW method, however
the entire spectrum is obtained at once. The main
advantage is a tremendous gain in signal-to-noise.

Spectra of two or more dimensions. The NOE
spectrum. The 1D NMR spectra of proteins is not
in itself very useful; it is simply too crowded,
since the dispersion or frequency differences
between nuclei is often smaller than the line width.
But to calculate structures from these spectra, the
first thing we must do is to assign each peak with
a specific atom in the protein (in the future, this
may not always be necessary - see below).
Normally we do proton NMR - we see one or more
peaks for each proton - some protons are easy to
assign. For example, if we have only one tyrosine
in our protein, the protons of the tyrosine will
have a clearly distinguishable chemical shift
(frequency) due to the effect of the ring-current
magnetic field. What we then need to do is to
connect these assigned protons to neighbouring
protons. This is the principle behind 2D spectra.
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The most important 2D spectra are the nuclear
Overhauser effect (NOE) spectra: it consists of
cross-peaks which we can nommally assign as
arising from pairs of protons (a and b). The
volumes of the cross-peaks, Vy,, can be related to
the distances between the protons to a first
approximation (Macura & Emst, 1980):

V,=cd(a,b) S @
where ¢ is a constant determined once for each

spectrum. Thus for each volume we can assign in
the NOE spectra, we obtain a distance restraint Dy, ~

the set of all such restraints for a given protein is
denoted D, Due to the inverse-sixth power of this
relationship, only small distances (<5A) can be
detected. Thus the calculation problem of NMR is
to find the structure given only D.

Structure calculation from interproton distances.
First, we must use ab initio methods, i.e., those
which begin with no prior knowledge of the
structure - hence random starting structures are
used, either random Xx,y, and z coordinates, or
random phi-psi coordinates (i.e. structures with
correct geometry). These methods then generate
'well-defined' structures which have reasonable
geometry and agreement with D, The next step is
to use refinement methods (see section below)
which start from these well-defined structures, and
attempt to improve them.

Major problems
The major open questions with NMR structure
determination are:
Pl How to increase the molecular size
limitation?

P2 How to automate the assignment process?

P3 Which structure calculation procedure to use?

P4 How to handle the dynamic nature of the data?

We will discuss new approaches to P2-P4.

Ab initio structure calculation in
distance space

Distance space is where each interatomic distance
is considered a coordinate: hence we have A'A-1) /z
dimensions for a molecule of A atoms, Methods
which work in this space are called distance
geometry (DG) methods. DG methods were the
first to be used to calculate structures from NMR
data; they are still in wide use, although the

molecular dynamics methods (next section) are
better. We will cover DG in some detail.

Aim. Beginning only with D, search in distance
space to find sets of complete distance matrices
{which correspond to 3D structures) which
simultaneously satisfies (as closely as possible) all
restraints in D, covalent geometry restraints, and
also some non-bonded term to prevent spatial
overlap of the atoms.

Method: From D, construct upper- and lower-
bound distance matrices reflecting the initial
knowledge about all interatomic distances in the
molecule. Most distances in these matrices will
have initial lower bounds of the van der Waals
radius, and initial upper bounds of infinity. These
bound matrices are then smoothed by repeated
application of the triangle inequality - d(a,c) <
d(a,b) + d(b,c). From these smoothed bound
matrices, we then use some procedure (either
random selection, or meterisation (Havel &
Wiithrich, 1984)) to choose unique values for each
interatomic distance, d;. Such a distance matrix is
called embeddable if a 3D structure exists which
is consistent with the matrix. From the distance
matrix, we construct a metric matrix g;; - if the
distance matrix is embeddable, the metric matrix
has exactly three Eigenvalues which give the
coordinates of the structure. Normally, however,
due to inaccuracies in the data, and difficulties with
the method, 4 is not embeddable; hence g has more
than three Eigenvalues. In these cases, the three
largest Eigenvalues are chosen. The resulting
structure is normally quite poor, and require further
refinement.

Variations: (Havel et al., 1983; Kuntz et al.,
1989); DG with meterisation, (Havel & Wiithrich,
1984); substructures, (Havel & Wiithrich, 1984);
linearized embedding, (Crippen, 1989).

Results, Provided D has a sufficient number of
distances, the method works well. When D is
sparse, there are sampling problems (Melzler et al.,,
1989).

Discussion Initially, this approach was used for
all NMR structure calculations. It is still widely
used for the initial ab initio calculations, although
DSA (see below) has better sampling and is more
efficient. The method is sometimes used to
generate substructures of about 1/3 of all the
atoms; these are then refined with other methods.
A major limitation is the requirement that all input
data be expressed as distances: many restraints
derived from NMR spectra cannot be expressed in
terms of distances, e.g. ambiguous constraints,
Hence this method is limited in application.




Ab initio structure calculation in
Cartesian space

In 3D Cartesian space, each atom is desctibed by
three coordinates; hence the total dimension for a
molecule of A atoms is 34 - about A/6 times
fewer dimensions than for distance space. The
method we will discuss in some detail is called
dynamical simulated annealing (DSA) (Griewank,
1981). This method combines the simulated
annealing principal (Metropolis et al., 1953) with
molecular dynamics techniques (Verlet, 1967).

Aim, Beginning from random structures, search
in 3D Cartesian space to find sets of structures
which satisfy D, covalent geometry, and non-
bonded term.

Method: Start with either an extended
polypeptide chain (Briinger et al., 1986; Nilges et
al,, 1988c), a random chain (i.e. random ¢ and y
angles) (Nilges et al., 1991b), or with atoms in the
gas phase (i.e. random Cartesian coordinates)
(Nilges et al., 1988a). Then calculate the dynamic
trajectory of the system using a molecular
dynamics (MD) force field, plus a 'soft’ potential
energy term (Nilges et al., 1988c) which directs the
motion toward structures which satisfy D; the soft
potential switches between flat, square, and
asymptotic behaviour:

0 :D<D,
ENOI?'—kNOE;‘: ©,Dp)°

aD-0) 1+ pD-o)+y D20
where the sum is over each NOE distance restraint
Dy, D, is the corresponding distance in the current
model structure, and the parameters &z and Y are set

by the constraint that the function is continuous
and differentiable at the switching distance o.

In the DSA method, the temperature of the
dynamical system is controlled by coupling to a
heat bath, By setting the initial bath temperature to
1000K, and reducing the temperature gradually
throughout the simulation, ending at or near zero,
we anneal towards low energy structures.
Essentially, we are simulating the condensation of
the molecule from the liquid or gas phase to the
solid phase,

Variations. DSA with DG-generated
substructures (Nilges et al., 1988b); solving
symmetric multimers (Nilges, 1993; O'Donoghue
et al., 1993); PEACS (van Schaik et al, 1992);
RUSH (Li et al., 1992; Byrne et al., 1994); Monte
Carlo approaches have also been tried, however in
MD, motion is restricted to the physically
plausible steps, effectively reduceding the

:6>D,2D,
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dimensionality of the search space. Thus MD is
expected to be more effienient than Monte Carlo
(Griewank, 1981).

Results. The method is faster than DG, and has
better sampling that the DG methods (Briinger er
al., 1987; Nilges et al., 1991b).

Discussion. Currently DSA is the method of
choice for ab initio structure generation. The
method is very general and flexible, and is still
being actively developed. An additional advantage
over the DG method is the possibility of including
ambiguous distance data. The approach is also
potentially applicable to 3D structure prediction,
provided that 2D distance information can be
obtained (see section on 2D structure prediction).

Ab initio structure calculation in
torsion-angle space

In torsion-angle space, each torsion angle is
considered a coordinate: every residue has two free
backbone torsion angles (¢ and ), and an average
of about three side-chain torsion angles (x;); thus,
for a molecule of R residues we have a total
dimension of about SR, nine times less than for
Cartesian space. We will discuss in detail the most
popular implementation of these methods which is
in the program DIANA (Giintert et al., 1991).

Aim. Beginning from random structures,
searches in torsion-angle space to find sets of
structures which satisfy D, covalent geometry, and
anon-bonded term.

Method. Beginning with random chains, a
variable target function is used: in the first stage,
only restraints between sequentially close residues
are used. Later, all distance restraints are used.
Minimisation is done with a gradient decent
algorithm.

Variations. DISMAN, (Braun & Go, 1985);
Monte Carlo methods (Bassolino et al., 1988).

Results. Due to the reduced number of
dimensions, these methods are fast. Some
difficulties handling B-sheets, although work-
around methods have been proposed.

Discussion. Currently shares the equal most
popular position with DSA as a method for the ab
initio structure generation. The high speed makes
it useful for quick testing of distance data. Major
limitation is the use of gradient minimisation -
simulated annealing would probably give better
performance. Not useful for further refinement.
One disadvantage of these methods compared with
DSA is the assumption of perfect geometry - real
structure have occasional violations. So far, no
MD methods have been used in torsion angle space
because of the difficulty in solving Newton's
equations with so many holomonic constraints,
although the technique is being developed.




Distance-based refinement

Aim. These algorithms start with a well-defined
structure - by which we mean a structure with
reasonable geometry, no serious van der Waals
overlap, which also agrees reasonably well with D,
The starting structure could come from any of the
three ab initio techniques discussed above. The aim
is to improve the agreement to the data, also
possibly to fit the structure to 2 more sophisticated
force field.

Method. All these methods use constrained MD
in Cartesian space. Most popular is refinement
with DSA algorithms (Nilges et al., 1988b). A
newer class tries to focus on the dynamic nature of
proteins by generating ensembles of structures
which have average distances that satisfy the NOE
data: time-averaged distances (Torda et al., 1989;
Torda et al., 1990); ensemble-averaging (Sheek ef
al., 1991); exclusion potential (see talk).

Results, It is clear that many of these methods
do improve the structures, and the computational
requirement for these calculations can be easily
met,

Discussion. As yet there is no consensus as to
which is the best method. The most popular is to
use DG-generated initial structures with DSA
distance-refinement, ending the structure-
determination at that point. The success of these
methods is evident in the number of solution
structures now being produced. In many cases,
where similar structures are available from XRC,
the agreement between the two independent
methods is very good (usually better than 1A
RMSD). However, there still remains the question
of the intrinsic dynamic nature of proteins: the
calculation procedures do not sufficiently address
this issue,

Relaxation-matrix refinement

Here we describe a relatively new type of
refinement procedure that promises to improve the
accuracy NMR structures - but at a cost!

Aim. NMR does not measure distances directly -
from the NOE spectra we obtain a set of cross-peak
volumes, V, which we normally interpret as
distances. But this' interpretation has several
assumptions which systematically fail. The main
problem is called spin diffusion - the
magnetisation transfer that we observe between
two protons may have transferred via another
proton, Thus we have some systematic errors in
the distance set D. These algorithms attempt to
address this problem. The algorithms start with
structures already refined against D; the aim is to
refine the structure to fit V.

Method. We calculate the volumes from the
atomic coordinates, we calculate the matrix of

magnetic relaxation rates between all possible
proton pairs - this is called the complete relaxation
matrix (Keepers & James, 1984). We also require
the gradient of this matrix (Yip & Case, 1989).
Unfortunately, both these are O(N3) algorithms,
hence requiring significant computation time.
However, several recent algorithms have been
developed to speed the calculation, and the problem
can be parallelised. As with distance-refinement,
we use a dynamical force field with an annealing
schedule, however we replace the distance potential
Eyop With a potential which measures agreement
to V (Nilges et al, 1991a).

Variations. torsion-angle minimisation (Mertz et
al., 1991); ensemble-averaging (Landis & Allured,
1991; Yang & Havel, 1993; Bonvin et al., 1994;
Forster & Mulloy, 1994).

Results. The method has not been widely used as
yet, however in all cases tried so far, relaxation
matrix refinement has changed the structures by
about 1A from the distance-refined structures, and
has moved closer towards the crystal structure by
about 0.4A.

Discussion. Although computationally
challenging, RMA refinement has been achieved at
least for some small proteins, Probably the biggest
initial barrier is the integration of all the NOE
peaks - in the past, researchers usually just counted
counter lines - the idea of going back and
integrating several thousand peaks manually it not
pleasant. However, new methods of assignment
which increasingly involve computers from the
beginning stages means that peak integration is
increasing automatic. Thus, we are likely to see
more RMA refinements. There is also currently a
feeling of uncertainty about the application of this
method, before the problem of multiple
conformations has been adequately addressed.

New calculation methods for assignment

We will discuss several new computational
methods - all currently in progress - aimed at
helping the assignment problem, which is the
major bottle neck in the structure determination
process. Methods covered include techniques for
making assignments affer the structure calculation
floating assignment (Nilges, 1993; ODonoghue et
al., 1993; Nilges, 1994); structure calculation in
the absence of any initial assignments; also,
attempts to use homologous structure to aid
assignment.




Protein structure in the crystalline
state:
X-ray diffraction

Basic experimental methodology

Crystallisation. Proteins don't form crystals in
vivo; convincing them to do so in vitro is a black
art - but then, so is structure calculation. It is
relatively easy to find conditions for a given
protein to form a crystal, but forming the right
crystal takes at lot of playing around with different
solvents and conditions. Finding the right crystals
can take one week, 15 years (the case of actin), or
forever. Average time: about six months,

The smallest parallelepiped from which the
whole crystal lattice can be constructed is called the
unit cell, From group theory we know that there
are only 65 possible types of crystal lattices in
three-dimensions.

Data collection. Having got the right crystal, the
next step is to put it into the path of a X-ray
(generally 1.5A wavelength) and record the
resulting diffraction pattern, The diffraction results
from scattered of the X-rays by interaction with the
electrons in the structure; hence for each atom,
scattering is proportional to its atomic number.
Due to the crystal lattice, which acts like a grating,
the diffraction pattern is made up of discrete
reflections.

Phasing

Aim. From the diffraction pattern, we can
construct an image of what each unit cell looks
like; we add a sine wave for each reflection, with
frequency determined by its position in the
diffraction pattern. But one thing is missing - we
need to know the phases of these waves - this
information is simply not in the diffraction
pattern! This is the infamous phase problem of
crystallography. We discuss briefly computational
approaches to the problem.

Ab initio methods. The problem is to
reconstruct the molecule from the discretely
sampled FT without phase information. The
problem can be solved for small molecules, using
the additional constraints of atomicity and
positivity. So far, however, this approach breaks
down for more than about 40 atoms. Direct
methods are those which calculate the phases
automatically: these methods work up to about 40
residue (but only using very high quality data). A
more promising approach involves representing the
phase information in probabilities, and using
maximum entropy and likelihood methods (Jaynes,
1978; Bricogne, 1984; Bricogne, 1991).

Molecular replacement methods. Phases can
also be determined if a sufficiently similar (usually
< 1.4A) structure is available using molecular
replacement (Hoppe, 1957; Rossmann & Blow,
1962). It has the theoretical danger that it uses
previously determined structures to determine later
structures, hence potentially adding biases. One
example of this biases is that the number of
structures solved with similar structures will be
artefactually increased. This can affect database
statistics on fold similarities.

Having obtained at least preliminary phase
information, an electron density map can be
constructed: the initial map is usually quite poor
and requires substantial refinement. Substantial
improvements can be made by imposing simple
constraints on the electron-density map consistent
with chemical knowledge about the molecule
(atomicity, positivity, map continuity, etc.).

Model building

Aim. To build an atomic model of the protein
which fits into a given electron density map.

Methods. Hand-building is still very popular.
Computer-assisted methods are available using
fragment databases, however these require expert
knowledge to use correctly. Several attempts have
been made at developing automatic approaches
(Read & Moult, 1992; Lamzin & Wilson, 1993).
This is a problem suited to artificial intelligence
methods (Fortier et al., 1993); neural networks
have also been tried (Torda, personal. comm.).

Refinement

Aim. The initial structures built from the
density maps can be very crude - the aim is to
refine these models in Cartesian space.

Methods. The method of choice is DSA (Briinger
et al., 1987) - the minimisation procedure is
similar to that for NMR DSA - molecular
dynamics force field with an additional term to
constrain the structure to fit the X-ray data.




Structure verification and

assessment

How can we define which structures are
acceptable? How do we measure the quality of
structures? There are two approaches to these
questions: acceptable structures must agree with
the data used to derived them (internal criteria), and
they must also satisfy additional criteria derived
from our knowledge about what correct structures
look like (extemal criteria).

Regarding the internal criteria, the use of 'free’
R-factors has been recently proposed for both XRC
and NMR structure determination (Briinger, 1992;
Briinger, 1993; Briinger et al., 1993). This quantity
is derived analogously to the cross-validation
statistics (see Evaluation of prediction methods,
next chapter). Use of this quantity promises to
avoid over-refining and to recognise errors.

Regarding the external criteria: several packages
are now available for checking protein structures:
Procheck (Thornton, University College, London)
and What if (Vried, EMBL) check covalent
geometry against small molecule databases, as well
as some stereochemistry, and overlap checking.
These groups have combined with several others
and the PDB in a project to provide comprehensive
checking tools - they have a common WWW
server (http://www.embl-heidelberg.de:8400/)
which has a hypertext interface to their programs
and can be used to submit structures for checking,
Unfortunately, at the moment, support for NMR
structures is only limited, A very different type of
checking is done by Prosa (Sippl, University of
Salzburg): it uses mean force potentials derived
from the PDB to assess if the overall fold is
native-like (see next chapter).



http://ww

.“fﬂw NI m"\‘m' @*“ :—A,
e *‘%@om Ttation: "fools*fbr;,% %

SR P "'Fé 3 .w,f

e SRS otmiRT ey “‘“”"2&*@"? T
1menta”1iﬂeterm1ﬁ§t10n and heoretlc

Fa “‘:f.‘\.‘"‘f:r A

"’"f”j")"f(’)”teln s fructure. =

TSR

¢ Introduction to protein structure

2 - g oo .
ATty M,::e-v-_;
< e M OT £

- o2 e TR x A s 3 ”
e e
o % v PEDITIREL

e Prediction of protein structure

Séan O'Danoghuc & B d Rost: tional tools for : 1d. ination and ical predicticn of protein Tutorial ISMB® 95; Cambridge; Jul 16, 1995

(o (3 ¥ 4

271

RN )
AR
a Pl IS “‘ ’

fo Fimernt:
‘.étructure determmatlon,_ =

T =y o W e _
?2:}‘"" ";g;e.\‘ L r{i-n;,bﬁ‘&mv\ﬂ_.‘g,’ t“%‘x‘.. BRI s ~d-..,v W’*’W""‘ VAT Al S AT

ymputational® ‘methods for expe

T sy

¢ Overview
— ‘State of the art
— Importance of the computational methods
~ Comparison of methods

¢ Solution structures: NMR
' — Basic methodology

— Ab initio calculation
— Refinement
— Assignment

e Crystal structures: XRC
~ Methodology
— Phasing
— Model building and refinement

Sén O'Donoghue & Burkhard Rost: Computational tools for experi 1d ination and theozetical prediction of protein structure; Tutorial ISMB® 95; Carbridge; Jul 16, 1995

2T-2




o The State of the art

e Importance of calculation techniques

— unprecidented rate of structure determination - Fig, 2.1
— The PDB format -showing its age

— <250 residues - NMR or XRC

- >250 residues - XRC

— very large complexes, membrane proteins - ?

— Set the scope of what structures can be solved
— Accuracy and precision are interwoven with methods

— How to compare methods?
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ATOM 1 ca ACEA O 105.046 51.546 40.626 1.00 72.72 IATN 263
ATOM 2 C ACEA O 105.314 50.822 41.951 1.00 72.72 1ATN 264
ATOM 3 0 aACEA O 105.220 51.451 43.013 1.00 72.56 1ATN 265
ATOM 4 N aspa 1 105.665 49.507 41.867 1.00 71.64 1ATN 266
ATOM 5 ¢A aAaspa 1 105.992 48.589 42.982 1.00 70.20 1ATN 267
ATOM 6 C aspa 1 107.024 49.191 43.936 1.00 €9.70 1ATN 268
ATOM 7 0 aspa 1 106.927 49.088 45.163 1.00 69.14 1ATN 263
ATOM 8 CB aspa 1 106.533 47.248 42.410 1.00 70.66 1ATN 270
ATOM 9 CG aspa 1 106.801 46.077 43.383 1.00 71.73 1ATN 272
ATOM 10 oniaspa 1 107.722 46.143 44.215 1.00 71.57 1ATN 272
ATOH 11 op2aspa 1 106.092 45.066 43.291 1.00 71.25 1ATN 273
ATOM 12 N GLwa 2 107.976 49.873 43.293 1.00 69.24 1ATN 274
ATOM 13 ca Gva 2 109.054 50.658 43.886 1.00 69.94 1ATN 275
ATOM 14 ¢ GLua 2 108.707 51.166 45.277 1.00 69.71 1ATN 276
ATOM 15 0 GLua 2 109.454 51.029 46.250 1.00 69.74 IATN 277
ATOM 16 CB GLU A 2 109.372 51.861 42.969 1.00 69.58 1ATN 278
ATOM 17 ¢ Gwa 2 110.164 S51.624 41.669 1.00 68.60 1ATN 279
ATOM 18 €D GLU A 2 109.564 50.572 40.753 1.00 68.20 1ATN 280
ATOM 19 OE1 GLUA 2 108.416 50.739 40.320 1.00 67.20 1ATN 281
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Prediction of protein structure
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Summary
Theoretical tools become increasingly

demanded. Suppose one has a protein sequence of
unknown structure, say SOUS. What can be
learned about SOUS before beginning an
experiment? Data banks of protein sequences and
structures are growing rapidly (Bernstein, et al.
1977, Abola, et al. 1988, Bairoch & Boeckmann
1994)as a result of large-scale sequencing projects
(Oliver, et al, 1992, Johnston, et al. 1994) and
improvements in experimental determination of 3D
structure (Holm & Sander 1994c, Lattman 1994)
.Can we profit from the information flood? Does
the data bank teach us how to predict the 3D
structure of SOUS?

Homology modelling allows prediction in 3D.
The most successful tool for prediction of three-
dimensional structure is homology modelling. An
approximate 3D model (which has a correct fold,
but inaccurate loop regions) can be constructed if
SOUS has significant similarity to a protein of
known structure, evaluated in terms of sequence
similarity (i.e. alignment) or sequence-structure
fitness (i.e. threading). Homology modelling
effectively raises the number of ‘known' 3D
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structures from abont 1500 to 10.000 (Sander &
Schneider 1991, Sander & Schneider 1994). But
what if SOUS has no homologue of known 3D
structure? Can 3D structure be predicted directly
from sequence?

For most proteins the prediction task has to be
simplified. 'Without detectable homology we are
still forced to resort to simplifications of the
prediction problem. In the process, we can make
use of the rich diversity of information in current
data bases. For this tutorial we have selected
generic methods for prediction at three different
le f simplification (Fig. 3.2), namely one, two
arn dimensions (for a short review (Rost &
Sander 1994¢). Prediction in 1D (secondary
structure, solvent accessibility and transmembrane
helices) can be improved significantly through the
use of evolutionary information. Prediction in 2D
(inter-residue contacts, inter-strand contacts,
disulphide bonds) can also, to a certain extent,
profit from evolutionary information, but so far, is
of only limited accuracy. Lastly, incorrect 3D
structures can now be detected with remarkable
accuracy (mean-force potentials) and technical
improvements and data base growth have made
alignments, threading and homology modelling
become increasingly powerful.

Overview

What is the state of the art in structure
prediction? We cannot predict 3D structure in
general, yet (Rost & Sander 1994e). The most
successful theoretical tool for the prediction of
structure is homology modelling (Greer 1980,
Greer 1991, Holm, et al. 1994, May & Blundell
1994). Homology detectable by significant
sequence identity (>25%) to a protein of known 3D
structure can be applied to some 25% of all known
proteins (Sander & Schneider 1994). In absence of
significant sequence identity, threading techniques
can be used for remote homology modelling (Sippl
& Weitckus 1992, Sippl & Jaritz 1994). (The lack
of reliability of current threading techniques makes
it difficult to estimate the scope of this technique.
The number of proteins for which 3D structure
could be predicted based on remote homology
would currently probably be some thousands
(Holm & Sander 1994a).) For proteins, for which
neither homology modelling nor threading is
applicable, the prediction problem has to be
simplified (Rost & Sander 1994¢).

How can the prediction problem be simplified?
The most extreme simplification is to project the
full complexity of 3D information onto 1D, i.e.,
secondary structure, or solvent accessibility
assignments for each residue. Less information is
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lost, when projecting 3D co-ordinates onto 2D
maps of inter-residue distances. As explained in
the experimental section, 3D structure can be
generated from 2D maps.

Which prediction is of interest for molecular
biology? Large scale gene-sequencing projects
produce an overwhelming information about
protein sequences (Oliver, et al. 1992, Johnston, et
al. 1994). This information alone is not very useful
for molecular biology. A crucial step is to
associate the sequences to information about
structure or function of the proteins (Bork, et al.
1992b). Given the rapid advance of sequencing
techniques, such association cannot be gathered
exclusively by experiments, Instead, theory has to
contribute to closing the sequence-structure and
sequence-function gaps. Consequently, any
prediction method that contributes to closing these
gaps is of help. However, not all aspects of protein
structure are valuable. For example, the prediction
that a protein belongs to the all-alpha class may be
useful if used as input to a post-processing method
that, e.g., predicts remote homology, but is hardly
of any use per se.

Evaluation of prediction methods

Publishing optimistic results? A sustained
testing of the performance is a precondition for any
prediction to become useful. For example, the
history of secondary structure prediction has gone
through a head-hunting for highest accuracy
scores. Over-optimistic claims by predictors on
the one hand, nourished scepticism of potential
users on the other band. Two points became clear
in the first meeting for the 'State of the art in
structure prediction’ in Asilomar, C.A., Dec., 1994
(Defay & Cohen 1995). First, an inaccurate
prediction is not as bad, as is an over-estimated
one. Second, even a prediction method of limited
accuracy can be useful if the user knows what to
expect. In the following, some criteria will be
summarised which help reducing the likelihood to
fall into the trap of overestimation. As an example
the prediction of secondary structure will be
chosen.

What is the goal and which limits are to be
expected? Say the goal is to predict secondary
structure in three states. Which is the best current
method for the prediction of secondary structure?
If applicable, homology modelling. Which is the
worst method? Random prediction. How accurate
are existing methods for prediction?

How to choose the data set? Proteins used for
deriving a method and for evaluating should have a
pairwise sequence identity < 25%, else homology
modelling can be applied (Sander & Schneider
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1991). For all prediction methods the data set has
to be split into a set used to set free parameters
(training set) and another to estimate the expected
performance on unknown proteins (test set). The
criterion for separating training and test set is
provided by the best altemative method (homology
modelling).

How many proteins to use for the test set? All
available unique proteins should be used for testing
(currently more than 300 (Hobohm & Sander
1994)). Furthermore, results should be compared
to standard sets used for the evaluation of
alternative methods (Rost, et al. 1993, Rost &
Sander 1994b). The reason for taking as many
proteins as possible is simply that proteins have a
wide spread facet of features: some are easy to
predict, others harder. A criterion for a sufficient
size of a test set could be the following. N proteins
are enough, if (and only if) the standard deviation
of a certain measure for accuracy fulfils:

ON = O2N »
in other words, if doubling the test set would not
alter the results,

Optimising free parameter with respect to the
test set? 'The cross-validation described so far is
still not enough. A seemingly trivial - and often
violated - rule is that methods should never be
optimised with respect to the test set. Instead,
parameters should be optimised (if necessary)
based on yet a different set (screening or
optimisation set), and should be kept fixed
BEFORE the final cross-validation experiment is
performed.

How many cross-validation experiments have to
be performed? Say the test set consists of 300
proteins. One extreme a two-fold cross-validation
would mean to split the set into two set with 150
proteins each (A and B) and perform two
experiments: first train on A, test on B, then train
on B, test on A, and finally report the test results
for A+B. The other extreme a 300-fold cross-
validation (jack-knife) implies 300 splits into pairs
of a training sets A with 299 proteins and test sets
B with one protein each such that each protein is in
one of the test sets. After 300 experiments the
results are averaged over all 300 test sets. In
practice the choice is often somewhere between
two and 300. Does the number of splits have an
influence on the correctness of the evaluation?
The simple answer is: no! More splits tend to be
better for the methods, as more proteins can be
used for training. But with respect to the
generality of the result there is no difference
between two- and 300-fold cross-validation (as
long as the previous points had been taken into
account).

Enough of testing? Even if all those points had
been taken into account, the sceptical molecular
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biologist should still not be satisfied. A further
necessary step is to test the method on a new set of
proteins, ideally after the paper had been written,
With the rapid increase in the number of known
structures, it should never be difficult to find say
some 50 proteins which bave no significant
sequence identity to any of the 300 proteins used
so far. This final test helps the reader and the
predictor to assess whether or not the estimated
performance is likely to be correct for new
proteins,

How to measure performance accuracy?
Another rather obvious demand is that to define an
appropriate measure. The measure should reflect
the goal of the method. For example, if the goal is
to predict 3D structure by remote homology
modelling (threading), the results have to be given
in e.g. root-mean square deviation. This example
may appear particularly trivial, nevertheless, the
current practice is the opposite. Another negative
example are alignments, after more than 25 years
of dynamic programming, there is still no measure
for the quality of an alignment published that was
tested on a large enough data set. No matter what
the measure is, the predictor should always provide
an estimate for the standard deviation of the
expected accuracy!

Evaluation of prediction methods: Literature

Evaluation of secondary structure predictions:
(Kabsch & Sander 1983b, Rost, et al. 1993, Rost &
Sander 1994b, Defay & Cohen 1995)

Measures for secondary structure predictions:
(Schulz & Schirmer 1979, Cohen, et al. 1983,
Taylor 1984, Taylor & Thomton 1984, Cohen, et
al. 1986, Cohen & Kuntz 1989, Benner 1992,
Presnell, et al. 1992, Stemmberg 1992, Thomton, et
al, 1992, Benner, et al. 1993, Colloch, et al. 1993,
Rao, et al, 1993, Rost & Sander 1993b, Rost, et al.
1993, Russell & Barton 1993, Rost, et al. 1994c¢)

Prediction of protein structure in 1D

Secondary structure prediction

Prediction methods. Secondary structure
prediction has been attempted even before the first
X-ray structures became known (Szent-Gyorgyi &
Cohen 1957, Kendrew, et al. 1960, Perutz, et al.
1960). Ever since the problem startled many
researchers and served for many physicists,
mathematicians and computer scientists as an
entrance into the world of molecular biology. The
principle idea of most methods is to make use of
the fact that segments of consecutive residues have
preferences for certain secondary structures (Fig.
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3.7). Thus, the prediction problem becomes a
pattern-classification problem tractable by
computer algorithms (3T-18/21). In many respects
secondary structure prediction reflects the principle
difficulties and solutions for many prediction
algorithms. Therefore, we shall cover this topic in
more detail than the others. Three basic algorithms
are described: information theory (3T-23); neural
networks (3T-24-31); and nearest neighbour
classifiers (3T-32/34). Despite improving the
algorithms in detail, the real break-through came
by using evolutionary information (3T-35/38).
Additionally, two specialised versions of the
secondary structure prediction problem will be
discussed: the prediction of secondary structure
content (3T-50/54) and the prediction of secondary
structure in two states, €.g., helix/non-helix (37T-
55).

Necessity of sustained testing.  Useful
computational are urgently demanded by molecular
biologists. However, to make a prediction method
useful three points have to be met. Firstly, the
predicted feature of protein structure or function
has to be suitable for an experiment (or post-
processing prediction methods). Secondly, the
method has to be made available. And thirdly,
most importantly to keep theory in the game,
prediction accuracy has to be estimated at a
sustained level. In the wake of today's flood in
literature, experimental biologists and even
theoreticians from slightly different fields have no
chance to critically assess the claims of predictors.
Thus, the application of prediction methods
requires quite a level of trust. This demands a
significant level of modesty on the side of the
predictors. Levels of expected accuracy should be
conservative and tend to under-estimate rather than
to over-estimate the abilities of tools. Given the
ease of distributing software and services over
current internet resources, the issue of appropriate
evaluation becomes increasingly sensitive. For the
predictor appropriate evaluation implies to spend
much more time on testing than on developing a
tool. Secondary structure predictions can serve as
an example for how to appropriately test methods.
We shall in detail discuss different measures for
prediction accuracy (3T-38/43).

Evaluation of impact. For single sequences
prediction accuracy is about 60%. It raises above
70% if information from multiple alignments is
used (3T-45/47). These levels of expected
accuracy of course are not sharp numbers, but
rather averages of underlying distributions, e.g., for
PHD (neural network prediction) the three-state
overall per-residue accuracy for single proteins
chains is 72+9% (Fig. 3.20). Of practical use is the
definition of a reliability index for the prediction
(Fig. 3.21). For prediction methods, secondary
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structure predictions are a simple example, how
expert knowledge and the wealth of growing data
bases can be carved into improved methods.

Secondary structure prediction: Literature

Reviews: (Kabsch & Sander 1983b, Schulz
1088, Fasman 19892, Garnier & Levin 1991, Rost,
etal. 1993)

Measures: (Schulz & Schirmer 1979, Cohen, et
al. 1983, Taylor 1984, Taylor & Thomnton 1984,
Cohen, et al. 1986, Cohen & Kuntz 1989, Benner
1992, Presnell, et al. 1992, Sternberg 1992,
‘Thornton, et al, 1992, Benner, et al. 1993, Colloc'h,
et al, 1993, Rost & Sander 1993b, Rost, et al. 1993,
Russell & Barton 1993, Rost, et al. 1994¢)

Methods (only basic and new methods listed):
(Pain & Robson 1970, Nagano 1973, Chou &
Fasman 1974, Lim 1974, Nagano & Hasegawa
1975, Maxfield & Scheraga 1976, Nagano 1977,
Garnier, et al. 1978, Maxfield & Scheraga 1979,
Cohen, et al. 1980, Cohen, et al. 1983, Ptitsyn &
Finkelstein 1983, Taylor & Thomton 1983, Gibrat,
et al. 1987, Zvelebil, et al. 1987, Biou, et al. 1988,
Bohr, et al. 1988, Gascuel & Golmard 1988, Qian
& Sejnowski 1988, Holley & Karplus 1989,
McGregor, et al. 1989, Benner & Gerloff 1990,
Fasman 1990, King & Stemberg 1990, Kneller, et
al. 1990, Rooman, et al. 1991, Rooman & Wodak
1991, Benner 1992, Hayward & Collins 1992,
Muggleton, et al. 1992, Presnell, et al. 1992, Rost
& Sander 1992a, Rost & Sander 1992b, Sternberg
1992, Stolorz, et al. 1992, Zhang & Chou 1992,
Zhang, et al. 1992, Asai, et al. 1993, Barton &
Russell 1993, Benner, et al. 1993, Fariselli, et al.
1993, Levin, et al. 1993, Maclin & Shavlik 1993,
Rost & Sander 1993a, Rost & Sander 1993c, Rost
& Sander 1993b, Sasagawa & Tajima 1993, Yi &
Lander 1993, Donnelly, et al. 1994, Livingstone &
Barton 1994, Rost & Sander 1994b, Solovyev &
Salamov 1994, Wako & Blundell 1994b, Salamov
& Solovyev 1995)

Methods (information theory): (Pain & Robson
1970, Robson & Pain 1971, Nagano 1973, Chou &
Fasman 1974, Robson 1974, Robson & Pain
1974a, Robson & Pain 1974c, Robson & Pain
1974b, Nagano & Hasegawa 1975, Robson 1976,
Nagano 1977, Suzuki & Robson 1977, Chou &
Fasman 1978, Gamier, et al. 1978, Levin, et al.
1986, Gibrat, et al. 1987, Biou, et al. 1988, Chou
1989, Zhang, et al. 1992, Levin, et al. 1993)

Methods (neural networks): (Bohr, et al. 1988,
Qian & Sejnowski 1988, Holley & Karplus 1989,
McGregor, et al. 1989, Bossa & Pascarella 1990,
Kneller, et al. 1990, Hayward & Collins 1992,
Muskal & Kim 1992, Pancoska, et al. 1992, Rost &
Sander 1992a, Salzberg & Cost 1992, Stolorz, et
al. 1992, Zhang, et al. 1992, Andrade, et al. 1993,
Fariselli, et al. 1993, Maclin & Shavlik 1993,
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Presnell & Cohen 1993, Rost 1993, Rost & Sander
19932, Rost & Sander 1993c¢, Sasagawa & Tajima
1993, Tchoumatchenko, et al. 1993, Rost & Sander
1994b, Rost, et al. 1994a, Chandonia & Karplus
1995, Rost 1995b)

Methods (nearest neighbour): (Kabsch &
Sander 1983c, Levin, et al. 1986, Schneider 1989,
Zhang, et al, 1992, Yi & Lander 1993, Solovyev &
Salamov 1994, Salamov & Solovyev 1995)

Solvent accessibility prediction

Prediction methods, The principle goal is to
predict to which extent a residue embedded into a
protein structure is accessible to solvent. Various
ways for the description of solvent accessibility are
possible (3T-59). The most simple is a two-state
model that distinguishes whether the residue is
buried or exposed. Solvent accessibility is
evolutionarily conserved (3T-60). Two prediction
methods will be described: neural networks and
information theory-based predictions.

Evaluation of impact. Prediction accuracy is >
70% in a two-state (buried, exposed) description of
relative accessibility. This level is sufficient to use
predictions as a seed for predicting secondary
structure (Benner, et al. 1994, Wako & Blundell
1994b), but it is not accurate enough to make
predictions become as useful as secondary
structure predictions (Rost 1995a). Although
accessibility predictions have to viewed with
scepticism, they contain information that is useful
for many post-processing prediction methods.

Solvent accessibility prediction: Literature

Definitions and hydrophobicity scales: (Lee &
Richards 1971, Chothia 1976, Janin 1976,
Richmond & Richards 1978, Wodak & Janin 1978,
Cohen, et al. 1980, Wodak & Janin 1980, Kyte &
Doolittle 1982, Sweet & Eisenberg 1983,
Eisenberg, et al. 1984a, Eisenberg, et al. 1984b,
Cornette, et al. 1987, Hubbard & Blundell 1987,
Lawrence, et al. 1987, Ponder & Richards 1987,
Flores, et al. 1993, Jackson & Sternberg 1993, Rost
& Sander 1994c¢)

Methods: (Holbrook, et al. 1990, Benner, et al.
1994, Esposito, et al. 1994, Rost & Sander 1994c,
Wako & Blundell 1994a)

Transmembrane segment predictions
Prediction methods. Even in the optimistic
scenario that in the near future most protein
structures will be either experimentally determined
or theoretically predicted, one class of proteins will
certainly be abundant in terms of knowledge about
3D structure: transmembrane proteins. The major
difficulty is that integral membrane proteins 4o not
crystallise and are hardly tractable by NMR
spectroscopy. Consequently, four this class
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predictions will be even more important.
Fortunately, the prediction task for transmembrane
proteins is easier than for globular proteins, as the
lipid bilayer of the membrane reduces the degrees
of freedom to such an extent that 3D structure
formation is almost a 2D problem. Once the
location of transmembrane segments is known for,
e.g., helical transmembrane proteins, 3D structure
can be predicted by exploring all possible
conformations (Taylor, et al. 1994). And even the
prediction of 1D secondary structure, i.c., the
prediction of the locations of the transmembrane
helices is a2 much simpler problem than is the
prediction of secondary structure for globular,
soluble proteins. Some principle ideas of methods
based on expert rules, information theory and
neural networks will be sketched (3T-69/71).

Evaluation of impact. All prediction methods
have a comparably high accuracy of about 95%
(3T-72/74). However, this level is not sustained,
as reliable data for locations of transmembrane
helices exists for only a handful of proteins. Data
used for training, e.g., neural networks stems from
experiments in’cell biology. Different authors
often report different locations for transmembrane
regions. Despite this warning the prediction of
transmembrane helices is a valuable tool to quickly
scan entire chromosomes. The sorting into
membrane/not-membrane proteins has an expected
error rate of less than 5% and can be useful for
some experimental purposes.

Transmembrane helix prediction: Literature

Methods: (von Heijne 1981, Argos, et al, 1982,
Engelman, et al. 1986, von Heijne & Gavel 1988,
Park, et al. 1992, Edelman 1993, Sipos & von
Heijne 1993, Jones, et al. 1994, Persson & Argos
1994, Taylor, et al. 1994, Rost, et al. 1995)

Prediction of protein structure in 2D

Prediction of (long-range) inter-residue contacts

Prediction of contacts. From the knowledge of
all inter-residue contact or distances (Fig. 3.2) one
can, in principle, model a 3D structure using
distance geometry methods (Havel, et al, 1983,
Havel & Wiithrich 1984, Braun & G& 1985,
Briinger, et al. 1986, Havel 1991, Bohr, et al. 1993,
Briinger & Nilges 1993, Nilges 1993, Nilges &
Briinger 1993, Saitoh, et al. 1993). Two questions
surround such methods: first, can contact be
predicted accurately enough; and second, are all
important contact predicted? A trade-off occurs
between the Scylla of predicting enough contacts
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and the Charibdis of predicting only correct ones
(Fig. 3.36).

Prediction methods. In sequence alignments,
some pairs of positions appear to co-vary in a
physico-chemically plausible manner (i.e. a 'loss of
function' point mutation is often rescued by an
additional mutation that compensates for the
change (Altschuh, et al. 1987, Altschuh, et al.
1988). One hypothesis is that compensation would
be most effective in maintaining a structural motif
if the mutated residues were spatial neighbours. A
method that uses correlated mutations for
prediction of inter-residue contacts will be
described, along with a neural network method
predicting medium-ranged distances.

Evaluation of impact. Applying a stringent
significance cut-off in the prediction of contacts by
correlated mutations, a small number of residue
contacts can be predicted with reasonable
accuracy. Correlated mutations may provide
sufficient information to distinguish between
alternative models of 3D structure, but not enough
information to predict conformations ab initio (Fig.
3.37/8). The success of the neural network
predictions of contacts are difficult to assess. The
general conclusion is that prediction of inter-
residue contacts of tremendous potential value, but
so far of rather limited accuracy.

Prediction of inter-residue contacts: Literature

Correlated mutations: (Altschuh, et al. 1987,
Altschuh, et al. 1988, Finkelstein, et al. 1993,
Finkelstein & Nakamura 1993, Gerstein, et al.
1994, Goebel, et al. 1994, Neher 1994, Shindyalov,
et al. 1994, Taylor & Hatrick 1994)

Other methods: (Galaktionov & Rodionov
1980, Bohr, et al. 1993, Saitoh, et al. 1993,
Galaktionov & Marshall 1994)

Prediction of contacts between beta-strands

Prediction methods. One simplification of the
problem to predict inter-residue contacts is to
specifically predict the contacts between residues
in beta-strands, i.e., to predict the conformations of
sheets. The only method applied to do so is based
on data based derived potentials.

Evaluation of impact. Prediction of inter-strand
contacts is possible if the locations of the strands
are known. Given the error of current prediction
methods, the accuracy in predicting inter-strand
contacts drops, but in some cases is still high
enough to be useful for modelling 3D structure.

Prediction of inter-strand contacts: Literature
(Hubbard 1994, Hubbard & Park 1995)
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Prediction of disulphide bonds

Prediction methods. @ A more extreme
simplification of the problem to predict inter-
residue contacts is to only predict disulphide-
contacts. These give the most dominant signal for
methods predicting inter-residue contacts based on
mean-force potentials (Valencia et al.,
unpublished). Thus, a prediction of disulphide
bonds may be useful for other contact prediction
methods. Here, we sketch the prediction of
contacts between two cysteines and cysteines and
other residues by a neural network.

Evaluation of impact. Prediction accuracy is
claimed to be in the range of 80% which appears to
be rather high. However, the evaluation of the
usefulness of the tool is made difficult by the too
small test set used.

Prediction of disulphide bonds: Literature
(Muskal, et al. 1990)

Prediction of protein structure in 3D

Sequence alignment THE prediction tool

Reason for success. At the level of protein
molecules, selective pressure results from the need
to maintain function, which in turn requires
maintenance of the specific 3D structure (Doolittle
1986, Farber & Petsko 1990, Pastore & Lesk 1990,
Doolittle 1994) This is the base for attempts to
align protein sequences, i.e., to optimally
superpose 1D strings of amino-acid letters.
Accordingly, conservation and mutation patterns
observed in alignments contain very specific
information about 3D structure. How much
variation is tolerated? Two naturally evolved
proteins with more than 25% identical residues
(length > 80 residues) are extremely likely to be
similar in 3D structure (Fig. 1.11). Even so,
structure may be conserved in spite of much higher
divergence (Holm & Sander 1994a). Do we have
enough data to detect structure-specific sequence
motifs (Rooman & Wodak 1988) and to correctly
align very remote homologues?

Methods. The basic procedure of dynamic
programming is rather straightforward. Although,
the principle tool requires fine-tuning of
parameters such as gap-open penalty, the tool is
rather robust under the variation of free
parameters. For more sensitive searches,
biological knowledge has to be included by basing
the alignment on profiles for residue exchange
probabilities,
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Evaluation of impact. When sequence similarity
is sufficient, alignment procedures are (more or
less) straightforward (Sander & Schneider 1991,
Jones, et al. 1992b, Flores, et al. 1993). For less
similar protein sequences, however, alignments
may fail (Bordo 1993, Henikoff & Henikoff 1993,
Bordo, et al. 1994, Vingron & Waterman 1994).
The art of sequence alignment is to accurately
align related sequence segments and to avoid
aligning unrelated sequence stretches (Higgins &
Sharp 1988, Higgins & Sharp 1989, Altschul 1991,
Sander & Schneider 1991, Deperieux & Feytmans
1992, Higgins, et al. 1992, Russell & Barton 1992,
Altschul 1993, Haussler, et al. 1993, Henikoff &
Henikoff 1993, Heringa & Argos 1993, Johnson, et
al. 1993, Lawrence, et al. 1993, Livingstone &
Barton 1993, Henikoff & Henikoff 1994, Krogh, et
al. 1994, Thompson, et al. 1994). Alignment
techniques can easily be improved by
incorporating information derived from 3D
structures (Henikoff & Henikoff 1993). )

Seguence alignment: Literature

Methods (only basic and recent methods listed):
(Needlman & Wunsch 1970, McLachlan 1971,
Smith & Waterman 1981, Waterman 1983,
Gribskov, et al. 1987, Pearson & Lipman 1988,
Taylor 1988, Higgins & Sharp 1989, Vingron &
Argos 1989, Altschul, et al. 1990, Bacon &
Anderson 1990, Smith, et al. 1990, Smith & Smith
1990, Henikoff 1991, Sander & Schneider 1991,
Vingron & Argos 1991, Alexandrov 1992,
Deperieux & Feytmans 1992, Higgins, et al. 1992,
Altschul 1993, Henikoff & Henikoff 1993, Heringa
& Argos 1993, Johnson, et al. 1993, Lawrence, et
al. 1993, Livingstone & Barton 1993, Krogh, et al.
1994, Thompson, et al. 1994, Vingron &
‘Waterman 1994)

Methods (hashing): (Dumas & Ninio 1982,
Wilbur & Lipman 1983, Lipman & Pearson 1985,
Pearson & Lipman 1988, Altschul, et al. 1990,
Karlin & Altschul 1990, Karlin, et al. 1990,
Altschul 1991, Altschul 1993)

Methods (profile based): (Higgins & Sharp
1988, Higgins & Sharp 1989, Altschul 1991,
Sander & Schueider 1991, Deperieux & Feytmans
1992, Higgins, et al. 1992, Russell & Barton 1992,
Altschul 1993, Haussler, et al. 1993, Henikoff &
Henikoff 1993, Heringa & Argos 1993, Johnson, et
al. 1993, Lawrence, et al. 1993, Livingstone &
Barton 1993, Henikoff & Henikoff 1994, Krogh, et
al, 1994, Schneider 1994, Thompson, et al. 1994)

Homology modelling

Prediction methods. The principle idea is to
model the structure for SOUS (protein of unknown
structure) based on the template of a known
homologue, say KNOWN. To make this possible,
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first one has to find a known structure in the data
base that has a significant level of pairwise
sequence identity to SOUS. The basic assumption
is that KNOWN and SOUS have identical
backbones (Fig. 1.3). The task is to correctly place
the side chains of SOUS into the backbone given
by KNOWN, Here, we shall briefly describe
methods that make use of rotamer libraries (Fig.
3.54).

Evaluation of impact. ‘The accuracy of
homology modelling depends on the level of
pairwise sequence identity between SOUS and
KNOWN (Fig. 3.53). For higher levels, homology
modelling is as accurate as is experimental
determination of structure. However, even down
to levels of some 25-30% sequence identity,
homology modelling produces relatively accurate
models about the fold of proteins of unknown
structure,

Homology modelling: Literature

Methods: (Greer 1980, Jones & Thirup 1986,
Blundell, et al. 1988, Summers & Karplus 1989,
Overington, et al. 1990, Sali, et al. 1990, Greer
1991, Johnson 1991, Vriend & Sander 1991, Holm
& Sander 1992b, Lesk & Boswell 1992, Levitt
1992, Overington, et al. 1992, Overington 1992,
Jobnson, et al. 1993, Vriend & Eijsink 1993,
Abagyan & Totrov 1994, Abagyan, et al. 1994,
Holm, et al. 1994, May & Blundell 1994, May &
Johnson 1994, Sali & Blundell 1994, Totrov &
Abagyan 1994)

Quick data base scan: (Bryant 1989, Islam &
Stemberg 1989, Vriend 1990)

Rotamer libraries: (Ponder & Richards 1987,
Summers & Karplus 1989, Karplus & Petsko 1990,
Summers & Karplus 1990, Berendsen 1991,
Comell, et al. 1991, Holm & Sander 19922, Levitt
1992, Eisenmenger, et al. 1993, Vriend & Sander
1993, De Filippis, et al. 1994)

Reviews: (Johnson 1991, Lesk & Boswell 1992,
Overington 1992, May & Blundell 1994)

Potentials of mean-force

Prediction methods. A sufficiently valid
working hypothesis is that protein sequence
determines protein structure. Thus, in principle
structure could be determined based on quantum
mechanical principles. The problem is made
hopelessly difficult by the size of the search space.
One way around the limitations of inductive force-
fields is a deductive approach, i.e., to derive an
energy from knowledge contained in the data base.
Here, one such potential of mean-force will be
described in detail,

Evaluation of impact. Mean-force based
potentials were successfully applied to predict
errors in experimentally determined 3D structures.
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The sensitivity of such potentials is far beyond the
mere statement that a certain structure contains
errors: stresses in certain regions can be spotted
and different models derived from refinement
procedures can be distinguished.

Potential of mean-force: Literature

Methods (basics): (Sippl 1990, Sippl &
Lackner 1992, Sippl 19933, Sippl 1993b)

Methods (further): (Hendlich, et al. 1990,
Casari & Sippl 1992, Sippl, et al. 1992, Sippl &
Weitckus 1992, Sippl & Jaritz 1994, Sippl, et al.
1994, Sippl, et al. 1994, Flockner, et al. 1995)

Other knowledge-based potentials for quality
control: (Holm & Sander 1992a, Laskowski, et al.
1993, Vriend & Sander 1993)

Semi-empirical potentials: (Momany, et al.
1975, Briinger, et al. 1986, Brooks, et al. 1988, van
Gunsteren 1988, Karplus & Petsko 1990, van
Gunsteren 1993) d

Remote homology modelling (threading)

Remote homology. All naturally evolved
sequences with more than 30% pairwise sequence
identity are homologous. However, not all with
less than 25% are non-homologous. Instead, there
are some thousands of pairs of structurally
homologous pairs of proteins with less than 25%
sequence identity (remote homologues) known
(Holm & Sander 1994a). The principle objective
of threading techniques is to detect such pairs and
to generate alignments accurate enough to model
3D structure based on a profile to a remote
homologue of known structure.

Methods:  The principle concept of most
threading method is to derive potentials that
describe the fitness of a sequence for a given
structure. Some potentials will be sketched.

Evaluation of impact. One problem with
evaluating threading techniques is that their
accuracy has often been over-estimated.
Furthermore, hardly any method had been tested
on a larger data set. Instead, so far all methods
have been evaluated on a small set of favourable
cases. What makes the situation even worse, is the
confusion of 'fold recognition’ and '3D prediction'.
The conclusion from a ‘prediction experiment’
summarised in a meeting in Asilomar, C.A., Dec.,
1994 was that threading techniques do recognise
the correct fold in less than 50% of the cases and
do result in correct alignments (that could be used
for 3D modelling) in some cases (Shortle 1995).
As frustrating as this result may sound, threading
techniques may still become one of the most
successful tools in structure prediction.
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Remote homology modelling: Literature

Methods (intra-molecular potentials):
(Novotny, et al, 1984, Novotny, et al. 1988)

Methods (volume computation): (Gregoret &
Cohen 1990, Gregoret & Cohen 1991)

Methods (empirical solvent accessibility terms):
(Eisenberg & McLachlan 1986, Baumann, et al.
1989, Chiche, et al. 1990, Holm & Sander 19923)

Methods (contact energies);: (Tanaka &
Scheraga 1975, Crippen 1977, Lifson & Sander
1979, Galaktionov & Rodionov 1981, Miyazawa &
Jernigan 1985, Miyazawa & Jernigan 1993)

Methods (contact potentials optimised to place
native structure in global minimum): (Crippen
1991, Maiorov & Crippen 1992, Crippen &
Maiorov 1994, Maiorov & Crippen 1994)

Methods (self-consistent hydrophobic force-
field): (Finkelstein & Reva 1991, Finkelstein &
Reva 1992)

Methods (environment specific preferences):
(Bowie, et al. 1990, Overington, et al. 1990,
Bowie, et al, 1991, Eisenberg, et al, 1991, Liithy, et
al, 1991, Liithy, et al. 1992, Overington, et al.
1992, Blundell & Johnson 1993, Ouzounis, et al.
1993, Taylor 1993, Wilmanns & Eisenberg 1993)

Methods (mean-force (or Sippl) potentials):
(Hendlich, et al. 1990, Sippl 1990, Casari & Sippl
1992, Jones, et al. 1992a, Sipp! & Weitckus 1992,
Bryant & Lawrence 1993, Nishikawa & Matsuo
1993, Bauer & Beyer 1994, Sippl & Jaritz 1994,
Sippl, et al. 1994, Flickner, et al. 1995, Koehl &
Delarue 1995)

Methods (other);: (Taylor & Orengo 1989,
Taylor 1991, Godzik, et al. 1992, Godzik &
Skolnick 1992, Goldstein, et al. 1992, Rost &
Sander 1992b, Stultz, et al. 1993, Topham, et al.
1993, Abagyan, et al. 1994, Goldstein, et al. 1994,
Lathrop & Smith 1994, Rost 1995a, Rost 1995¢)

Reviews:; (Wodak & Rooman 1993, Shortle
1995)

(Bork & Grundwald 1990, Hirst & Sternberg 1991,
Nayal & Di Cera 1994, Villar & Kauvar
1994)

(Bork, et al. 1992b, Bork, et al. 1992a, Bork, et al.
1994, Johnston, et al. 1994)

38-8

TTranfontiale nfF moanr Farrnos thrvrandireer




e e o o e g e e~ e i o = el g A 1

o
TR

L : Computatlonal tools'for
3 experlme tal determination and theoretical pred

.Of. prot nstructuress:.

o Introduction: proteins the complex machinery of life

 Experimental determination of protein structure

. Predlctlon Qf protem structure.

Séan O'Donoghue & Burkhard Rost: Computational tools for experimentat d ination and th ical prediction of protein structure: ISMB' 95; Cambridge: Jul 16, 1995

e Overview:
— Prediction of structure and function, where are we now?

e Evaluation of prediction methods
— How to choose the data set? Why cross-validation?

* Prediction of protein structure in 1D

— secondary structure; solvent exposure; transmembrane
helices

* Prediction of protein structure in 2D
— inter-residue contacts; inter-strand contacts; disulphide

bonds

e Prediction of protein structure in 3D

- multiple sequence alignments; homology modelling;
potentials of mean force; threading

* Prediction of protein function
~ sequence motifs; binding sites
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Overview
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¢ What is the state of the art in structure prediction?
Fig. 3.1

¢ How can the prediction problem be simplified?
Fig.3.2

¢ Which prediction is of interest for molecular biology?
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Goal of predicé(.);:

¢ Epstein, Anfinsen 1961:
sequence uniquely determines structure
=>
¢ Input: protein sequence
® Output:
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**Evaluation of prediction method:

* Publishing optimistic results?

* What is the goal and which limits are to be expected?
* How to choose the data set?

* How many proteins to use for the test set?

* Optimising free parameter with respect to the test set?

e How many cross-validation experiments have to be
performed?

e Enough of testing?
* How to measure performance accuracy?

Séan O’ Donoghue & Burkhard Rost: Computational tuols for experi 1 o ination and t ical prediction of protein ISMB”® 95; Cambridge: Jul 16, (995 3T-7
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* Evaluation of pr'edicti‘o‘l{

rot)

methods

.
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e Publishing optimistic results?
— An inaccurate prediction is not as bad, as an over-estimated one.

— Even a prediction method of limited accuracy can be useful if
the user knows what to expect.

e What is the goal and which limits are to be expected?
» best alternative prediction?
» worst prediction (random)?
» how accurate are existing prediction methods?
Fig.3.3
* How to choose the data set?

» in general, to be decided with respect to ‘best alternative’
secondary structure: pairwise sequence identity < 25%
Fig.34
» cross-validation
Fig. 3.5

Séan 0" Nonnghue & Burkhard Rost: Computational tools for experimental determination and theorctical prediction of protein structure: ISMB® 95: Cambridge: Jul 16, 1995 3T-8




' How gooci is the best prediction? |

atm 9 ememe———— rhe greeemes s 30 g e o ey e e
» [ P x e

2h e e e
L ol H° % :‘?:Eﬁ_

Se

Séan O’Donoghue & Burkhard Rost: Computationat tools for experit 1 & ination and th ical prediction of protein ISMB* 95; Cambri

dge:Jul16.1995s  3T-9

5 f "H5 oY - 3 R R S S R

Fig. 3.3: Best/worst prediction scale ,

. 35% 7% 88%
single

residue W single residue prediction m

LT random PHD 3D pairs

37% 72% 90%

z%%tgllae;l' NN segment prediction ALY

random PHD 3D pairs

100% } 100%
$8% /ﬂpm’rs/‘

normalised accuracy

33% ndom

0% Y 0%

S EF Danesfine & g Bt Root Connmtotionst teds fosr coperinmental dh-terenin i sl i TR Btteien oof mregotesion overs TUNTIT 02 12 geaehael Tooge Td ey 203K '{T-" n




oy - R

ig. 5.4: Significant sequence Wentity. i

100 IS TSN T SO SO TN S SN SRV SO SN NN NN NN SN NN SUUT SHNC SN S Y W

—
(o)
(=)

sequence identity implies
3D homology !

]
W

W
o

pairwise sequence identity

don't know region

0“‘l"‘l"'l"'l"‘l"'0
0 20 40 60 80 100 120

length of pairwise alignment

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein :1SMB® 95; Cambridge; Ju1 16,1995 3T-11

¥

)
)
!
o

A See mpe s s s oe e oam s

~' £ ":Fig."3.5: Cross-validation

Pool of proteins with known 3D structure

extract rules hide under table

4 fold cross validation

2
P

Sém O'Donnghie & Burkhard Rost: Computational tools for experi 1 detenminaten and theoretical prediction of protein structure: ISMB® 95: Cambridge: Jul 16. 1995 3T-12




'.':'lr".‘,?:.'-.- PR v, - e WS, SXCES
- —:;._.i
3

eauation of prediction methods

g

¢ How many proteins to use for the test set?
» as many as possible, but...
» features of proteins are distributions, i.e., vary between
different proteins
Fig. 3.6
» => at least as many to mirror this variance
» rule of thumb; choose number of proteins N such that:
On = Oon i.e. doubling test set => same result
* Optimising free parameter with respect to test set?
» optimise free parameters BEFORE cross-validation
experiment is performed
* How many cross-validation experiments have to be
performed?
» 2 x 150:150 7
»300x 299: 1 . ?
— No difference with respect to generality of results
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% "Bvaluation of prediction methods*

* Enough of testing?

» ‘pre-release test’
ideally after manuscript has been written

» How to measure performance accuracy?
» what is the goal of the method?

e.g. prediction of secondary structure
» which measure best to describe goal?
per-residue:  information; accuracy for helix, strand (%obs,%pred)
» which measure best to reflect biological reality of goal?
per-segment: optimise by structural comparisons
» which standard deviation is to be expected?
variance of accuracy with protein chain

— NOTE: the expected variation may not necessarily follow
from statistics based on the test set!

prediction helix/non-helix, based on test set of 10 proteins may result in
an estimate of * 3% for the standard deviation, however from three-state
predictions, it is known that the correct value is rather in the order of &
10%
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¢ Secondary structure prediction

¢ Solvent accessibility prediction

¢ Transmembrane helix prediction
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* Goal and concept
e Methods

— Statistics

— Neural networks

— Nearest neighbour algorithms

— Break-through by using evolutionary information
¢ Results

» Measures for accuracy
» three-state accuracy > 72%

e Further methods

— Prediction of secondary structure content

— Prediction of secondary structure in two states
e Applications

» Post-processing prediction methods; chain tracing;
-mutational experiments; speculations about binding sites
and function
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' 1D secondary structure

¢ Basic idea:

classification by similarity to known cases
Fig. 3.7

» pentapeptides not unique, ...
» but, longer peptides are!

* screening secondary structure of central residue in a
window of w adjacent residues

" — typical values for w = 1-21
Fig.3.8
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Secondary structure prediction as a pattern recognition problem: Certain oligopeplides
have high preference to be in a particular secondary structure.  Circles: upper left (dark
shading): helix, upper right (light shading): strand, centre (no shading): loop. The 3
pentapeptides between the helix and strand circles are observed in both structures.
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. S,econdarj structure prediction metliodé ’:

P i 3

* Information theory
» principles
» application to secondary structure prediction
* Neural network
» principles
* Neural network
» simple solution for secondary structure prediction
* Neural network
» problem specific adaptation
* Nearest neighbour algorithm
» principles
» application to secondary structure prediction
* Break-through by using evolutionary information

» information contained in evolutionary exchange patterns
» implementation of information into NN
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iz Secondary str. prediction by informationtheorys

¥

* principle:
(Robson & Paine, 1971; Garnier et al., 1978; Gibrat et al., 1987)

state S, one residue R:
IR S.R
1(S;R) = log {3%1%7@1)] pSIR) "Lxg('lﬁ)

I(S,R), information of residue R in state S; p(S.R), probability of observing residue R in state S;
p(R), probability of finding residue R; p(S), probability of finding state S

slates S, S', once residuc R:

I(S;R) - I(S";R) = I(S:S";R) = log [L——p((ss. II 1;))] +log {BP%SS—Z’

I(S:S"R) information difference of residue R in states S and S

states S, S', (2m+1) residues R:

S| R - ;
I(S:S"RpRy)  =log H,)((s- 1 Rm...llzzn;,) } +log [%((852)}

e S| R;. !
=IS:S5R) + X log[ggs'le§}+'°g[g((§))}

j=-m,j=0

prediction = min (I(S:S%;R)
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¢

: ural networks: input ->:outp;

.

:4.Principles of ne

. o0, é s h
g

tputiy

. I R S b

T

» two steps:
1. linear: sum over all input X connection
2. non-linear: sigmoid trigger, i.e., project sum onto 0-1

A—>
C
C
8 step b Zconnecﬁonij*inputj g /':
] s 8 s
¥ e £ =] y sl '
&g slep - &g g §? L
= - = N ¢ 1
g g = g = £ g =
g & °& § 5 decision line
= 8 83 sum —
n e ne —_—
-8 - &
a" 2 result: < decision line <&
=
- input to unit 3

(=sum)
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— output:

Nin+l
outj = Z Jjj iny
i=1

in; value of input unit j ; out; value of output unit i3
Jij connection between input unitj and output unit i

- error:
Noul

E = Z (out; - desi)2
i=1

out; value of output uniti ; des; secondary structure state
observed for central amino acid for output uniti (e.g. for
a helix: des =1, desy=0, des3=0)

— free variables: connections{J }
— goal:
» representation of set of examples (training set) for which
the mapping input->output is known, i.e., the secondary

structure state of the central residue has been observed by
the network

Séan O Danoghue & Burkhard Rost: Compatational tools for experi 1 detenmination and theoretival prediction of protein stenctire: ISMR® 95 Cambridecs Tol 16, 1098 3T-26
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e training = change of connections {J} such that E decreases

e simplest procedure:
— gradient descent

{1}

JE(t)
Jj5(t)

where JE/JJ is the derivative of the error with respect to
the network connection; ¢ is the algorithmic time given by
the presentation of one example; £ determines the step
width of the change (learning strength, typically some
0.01); & gives the contribution of the momentum term
(AJ(1-1} , typically some 0.2), which permits uphill moves

AJj(t+l)=-¢ + o AJ;(t-1)

Jiction of protein ISMB" 95; Cambridge; Jul 16, 1995
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o inputloutput coding
Fig. 39
¢ adapting the tool to the problem
— balanced training
— second level of networks

3 . Ll
— jury decision
Fig. 3.10
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Nearest nelghb ouralgonthmspnnclpl“

R

¢ principle idea: similarity to known structures

(Kabsch & Sander, 1983b; Levin ct al., 1986; Schneider, 1989; Zhang ct
al,, 1992; Yi & Lander, 1993; Solovyev & Salamov, 1995)

STNKD unknown structure
KSNPDWW

EHQGEWW known structures
RSTGDWW

D (R;..R3,R;...RY) = 21 D R,R})

D (R?,R?), is the distance (or similarity) between the residues at position i for the two strings a and b

Séan O'Donoghuc & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein structure: ISMB"9S: Cambridge: Jut 16,1905 3T-32
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o problem: what is similar?

¢ solutions
— Hamming distance:
» equal residues: D(R,R) =1
» different residues: D(R,R’) 0

— Dayhoff matrix
(Zhang et al., 1992)

< b.
D (RﬁR?):év—j; | p(S; IRD) - p(S; IR |

w

w 20
52 & 2 1P IRExD - p(S; IRV |

WW2 =1 k=1

x'; denotes amino acid x® at window position & 3

1SMB* 95; Camb

! ife,qfest nelghbour algonthms' dlstapces%j :
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(Solovyev & Salamov, 1995)

* compute distances based on ‘fitness-of-sequence-for-
structure’ potentials
(Bowie et al., 1990; Bowie et al., 1991; Ouzounis et al., 1993)

¢ distinguish between helix core, helix N- and C-term

* restrict list of possible similar segments by information
theory

e balance statistics
¢ include evolutionary information
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e Problem:
different algorithms yield only marginal
differences in prediction accuracy

¢ Reason:
only local information processed, but secondary
structure formation is strongly determined by non-
local interactions

e Way out:
» increase window size
not possible, ultimately as not enough patterns in database

» then, what?
¢ Evolution has it!

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theosctical prediction of protein structure: ISMB* 95; Cambridge; Jul 16,1995 3T-35
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» full table

A;; = number of residues predicted to be in structure type j
and observed to be in type i

» The sums over the columns of A

give the number of residues pre- & = ; Aji,fori=e,p, L
dicted to be in structurei : s

» The sums over the rows give the b = A fori=o.8.L
number of residues observed to ' 2 Ay, fori=e,p,
be in structurei:

» The sum over all elements of A 3
is the number of residues in the b = 21' by = zl- e
data bank used, abbreviated by b : g e

» The percentages of residues correctly Q; = Q,%obs = A, 100

predicted to bein classi from all re- T b

sidues predicted tobe ini are given by:

» The percentages of residues correctly A;
predicted to be in class i from all re- Q;%pred ==~ *100
sidues predicted to be in i are given by: '

Séan 0" Donoghuc&.Burkh'udRos( Computational tools for experimental determination and thenretical prediction of protein structure: ISMR® 05: Cambridoes Tnb 16 1903 3T-38
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» Overall three-state accuracy Y Ay
(correctly predicted residues/all residues): Qs = i=lb 100

» Matthews correlation: Cc = PiDj - U;-0;
b (- (prro)-(npuy)-(nko)

with p; being the number of properly predicted sesidues in conformation i, n; the number of those
correctly not assigned to structure i, u; the number of underestimated, and o; that of

overestimated conformations.
» Information content: Z a:#Ina; - Z A“ InA;;
I = 1- w—
b*Inb - 7_‘,1 b;*Inb;
J=

This information is related to the probability of deviation of

table A from a random distribution:
I1=0,if: A=1/9,fori,j=1,2,3
I=1,if: Ag=0, for i#j and A;=b;, 1,j =1, 2, 3

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein :1SMB’ 95; Cambridge; Jul 16,1995 3 T-39
Go e nt Fig. 3.15: Accuracy table
Foem———— Fom———— e fmm————— +
] | net H | net E lnet c lsum DS |
e ———— fo————— N B el +

1634 | 5421 l 24462 |
| DSSP E | 1242 | 10197 | 4793 | 16232 |
| DSSP C I 3623 4033 l 26551 l 34207 |

| DSSP H | 17407 1|
|
|
e et S it Attt +
|
+

| sum Netl 22272 15864 l 36765 I 74901 |
e B T S fm—m——— R +
R B . +
| %obs | $pred |

Rt e e LU TS RS
{HIEICIHIEI|CI
e e e Attt T e s
I 711 61 221 78] 10} 14i
171 621 291 5] 64 13|
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. Per-segment measures for prediction accuracy;

SR

e e e o mmm e - s s =z peemmn e =y

» average segment length:

sum of the lengths over all segments of structure i
number of all segments of structure i

<L>=

» distribution of segments

» loose overlap between segments

oviose = L @loose (s, 5,) * len (s;)
S

© =1 if helices or strands overlap by one half, and loops
by at least 2 residues

»

» optimised measure for segment overlap

1, < _min{ e(sn); e(s2) } - max{ b(s); b(s;) }+1+5
Sov=N 2 max{ e(s;); e(sz) } - min{ b(s); b(sp) }+1 =g

S
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Fig. 3.16: Per-segment measures
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Fig.3.17: Criterion for best segment measur
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; Results of secondary str prediction

¢ Basicidea:

classification by similarity to known samples
¢ Not as simple:

accuracy in 3 states: helix, strand, rest = 60%
e Improvement by:

— new algorithms?
— increase in number of known 3D structures?
~ more insight into protein folding?

¢ Projection from 3D onto 1D reduces information
- in search for more information
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Results of secondary str prediction

¢ Basic idea:

classification by similarity to known samples
¢ Not as simple:

accuracy in 3 states: helix, strand, rest = 60%
¢ Improvement by:

— new algorithms?
~ increase in number of known 3D structures?
— more insight into protein folding?

¢ Projection from 3D onto 1D reduces information

-> in search for more information
* Evolutionary information pushes to > 70%
Séan (" Dunoghue & Burkhard Rost: Computational tools fur experimental determination and thearetical prediction of protcin ISMB®95; Cambridge: Jul 16,1995 3T-45
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Fig. 3.18: Accuracy for various methods
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overall three-state per-residue accuracy
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of protein

number of protein chains
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¢ definition of structural content
¢ neural network specialists

¢ usual network (PHD)

o CD measurements
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i 23: Tandem network to predict sec str conte 3

reat 7o T FN S
e A < .,'_\.’.:_.:~ et AN .\, wj“!

NET 2

Generalization Helix? Strand ?

NET !

% Helix % Strand

Equation 13

{b)

1 from Muskal & Kim, 1992

e o e
A CDE mol. wl, Heme
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- F1g322 Distinction of structural class:g
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E_;g 3 Content predlchon' expenment Vs.ttliéc;l:;(&l"; e
Pearson correlation: Nprot helix strand quote from:
HM 130 097 097 Rost et al., 1994b
PHD 124 091 0.73 Rost & Sander, 1994b
COMBINE 124 083 0.51 Rost & Sander, 1994b
CD (Perczel et al., 1992) 22 0.88 <0.5 Rost & Sander, 1993b
PHD 22 0.86 0.88 Rost & Sander, 1993b
Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein ISMB® 95; Cambridge: Jul 16,1995  3T-53

RS o‘

method®  set® Nprot* | Aheli®  Astrand® |Alla® Al-° owp® Resf Qgps

HM:SeqAli setl 80 2.843.8 27432 | 941 867 1000 89.7 900
RAN set 1 80 |32.1£20.8 21.3%145] 0.0 0.0 00 712 447

PHD set2 126 8.5%8.0 75481 | 8.7 500 500 741 746
PHD set3 124 7.8£6.8 7.3%79 | 94.1 00 556 745 758

PHD set2-6 337 8.1+79 7.1¥76 | 850 556 455 756 742

See caption of Table L.

Error in predicting the content of helix or strand averaged over all protein
chains in the data set. The error is computed as the difference between the
percentage of helix (Ahelix) or strand (Astrand) between observed and
predicted. ("#' values refer to one standard deviation).

Percentage of protein chains correctly predicted in either of the four
classes: all- «, all-B, wp and all others. Qa5 gives the percentage of protein

chains correctly predicted in any of the four classes.
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e gain by specialising on one class

(Maxfield & Scheraga, 1976; Taylor & Thornton, 1984; King & Sternberg,
1990; Kneller et al., 1992; Muggleton et al., 1992; Rost & Sander, 1993c)

* problem of most publications: too few examples

« results about 80% accuracy for helix/non-helix spec1ahsed
prediction methods
MKS (Muggleton ét al., 1992): 80.5%
Helix network (Rost & Sander, 1993c): 82.7%

e marginally better than methods predicting 3 states
PHD (Rost & Sander, 1993c): 81.2%

e BUT: inaccuracy in determining the class results in that
specialists (two-state predictors) have on average lower
prediction accuracy than, e.g., three-state predictors!

e MIND: two-state number not comparable to three-state

numbers :
RAN (two states; Rost & Sander, 1993c): 54.5%
RAN (three states; Rost et al., 1994b): 35.4%

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental detesmination and th ical prediction of protein ISMB’ 95: Cambridge: Jul 16,1995 3T-55
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Resume

* Evolution improves secondary structure prediction by 6-10
percentage points

* Neural networks are easy to be adapted to specific features
of problems

* Prediction not perfect, but reasonably accurate
— for 40% as good as homology modelling
— well balanced
— segments
¢ But:
Goal is to predict 3D structure

* Evolution helpful to continue?
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Apphca’aons L

e Post-processing prediction methods
» 3D modelling
» threading
» contact-predictions

¢ Chain tracing

e Mutational experiments

» change of secondary structure by exchange of residues,
e.g., for finding (de) stabilising mutations

o Speculations about binding sites and function
» e.g. specific patterns, such as helix-turn-helix

$éan O"Donoghue & Burkhard Rost: Computational tools for experimental determination and thearctical prediction of protein 1SMB* 95; Cambridge: Ju1 16,1905 3T-57
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® Goal and concept
* Methods
— Neural networks
— Statistics
¢ Results
» Measures for accuracy
» Three-state accuracy < 60%
¢ Evaluation
» Accurate enough to seed predictions of secondary structure
» Not accurate enough to be as useful as secondary str. predictions
» Clear improvement by database growth (evolutionary information)
¢ Applications

» Post-processing prediction methods; Speculations about binding sites
and function

Chaw MN'Thauacby,e 6 N v .~




o accessibility (DSSP) = 0-300 A2 Acc
¢ relative accessibility — =0-100 % RelAcc
¢ two-state modell : buried <20%
exposed >20%
o three-state model: buried <5%
intermediate 5-20%
exposed >20%
¢ ten-state model :
RelAcc,, = INTEGER /100 x RelAce
5éan 0" Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein structure: ISMBS 95; Cambridge: Jul 16,1995 3'T=59
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* 10 state description sufficiently detailed

— binary and ternary descriptions lead to a frustrating
ambivalence in choosing the thresholds for state distinctions

* Solvent accessibility is less conserved than is secondary
structure

e Accuracy of homology prediction sharply decreases with
sequence identity

¢ Small residues are conserved best
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generation of network input
from sequence information - neural network
o (=]
rcentage 2 =2 3
of occurrence o S LD« -
of each g 3 25 g 2
amino acid & 3 8B & 3
:'; °3888 - o ()
o SHT. ° {|T=0.50, $=0.25, H=0.250.2 0 0.35 (8)
N N... N=1.00 0.6 0 0.4 w=3 @
K PGG. K=0.25, G=0.50, P=0.250.2 0 0.3 >
D DED. ||p=0.75, E=0.25 0.2 0 0.55 |||sxa @
W WWF  |lw=0.80, F=0.20 0 0 0.75 ||{amns (9
Poras (20 + 1 units) (1+2units) (1 unit) > )
amino acid composition of protein 20 (19
length of protein 4 2
distance of window from N-term 4 (9)
distance of window from C-term 4 )
units o
\/
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(Wako & Blundell, 1994a)
* two states: buried (<20%), exposed (>20%)
¢ information theory on multiple alignments
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<X Xy> —<xX> X<y>

CorAcc =

V<> < x\ <> - <y>?
Correlation of accessibility, with x and y being the relative accessibility a pair of
homologue proteins (for the analysis of accessibility conservation in 3D families), or
fora prediction and the obscrvation (for the analysis of prediction accuracy).

0, = percentage of conserved (or correctly predicted) residues in two states (B, E) defined
by thresholds given above.

0; = percentage of conserved (or correctly predicted) residues in three states (B, I, E)
defined by thresholds given above.

Q.x =fora states: percentage of conserved (or correctly predicted) residues in statc X .

QZ",E”” =same as before, for the prediction of accessibility the percentages are normalised by
the number of residues observed to be in state X .

foc’ *ed = probability for a correct prediction, i.c. the number of residucs predicted correctly
instateX (x 100) divided by the number of all residues predicted to be in state X .

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of proteia ISMB® 95; Cambridge: Jul 16,1995  3T-63

f—

#:- Accuracy of predicting solvent accessibility

2 states 3 states 10 states

1] Q3 Q3B Q31 Q3 CorAce

PREVIOUS METHODS

1 Wako & Blundell (13 families) 76.5
i Holbrook et al. (5 proteins) 72.0 520 51 44 62

HDa r different testing set

* PHDacc 126 = cross-validation set 75.0 579 76 12 81 0.54

* PHDacc 112 = pre-release set 74.7 579 77 12 75 0.54
* PHDacc 99 monomers (of 238) 71.7 605 77 13 81 0.59
* PHDacc 13 from Wako & Blundell 79.2 608 77 12 86 0.61
* PHDacc 5 from Holbrook et al. 759 584 76 10 179 0.55

¢ most accurately predicted:
residues in helices and in buried strands

Séan O'Donoghue & Burkhard Rost: Computational toals for experi | d ination and theoretical prediction of protein ISMB” 95; Cambridge: Jul 16, 1995 3T-64




n; conclusio;"

CCéSSlblllts’ predlcho

e Evaluation
— Accurate enough to seed predictions of secondary structure
(Wako & Blundell, 1994b; Benner et al., 1994)
~ Not accurate enough to be as useful as secondary str.
predictions
— Clear improvement by database growth (evolutionary
information)

e Applications
— Post-processing prediction methods
» prediction of contact maps: upper and lower limits
» threading
— Speculations about binding sites and funchon

Séan O'Donoghue & Burkhord Rost: Computational toots for experimental detemmination and theoretical prediction of protein 11SMB' 95; Cambridge; Jut 16,1995 3T-65

* Goal and concept
* Methods _
— Expert rules based on physico-chemical properties
~ Statistics
— Neural networks
* Results
» Measures for accuracy
» Two-state accuracy about 95%
¢ Evaluation
» Often accurate enough to seed 3D or topology predictions
» Improvement by database growth (evolutionary information)
¢ Further method (B-strand segments)
e Applications

» Design mutation experiments; Speculations about binding sites and
function; Fast mapping of all proteins from entire chromosomes
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et hods for predlctmg TM
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/
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¢ hydrophobicity scales
(Argos et al., 1982; Kyte & Doolittle, 1982; Eisenberg et al., 1934a;
Eisenberg et al., 1984b; Engelman et al., 1986; Cornette et al., 1987;
Degli Exposti et al., 1990; Claverie & Daulnuere, 1991)

e expert rules

~ positive-inside rule:
positively charged amino acids (R, K) are more  abundant in
cytoplasmic than in periplasmic segments

(von Heijne, 1981, 1986, 1991, 1992; von Heijne & Gavel, 1988; von
Heijne & Manoil, 1990;Boyd & Beckwith, 1990; Dalbey, 1990; Sipos &

von Heijne, 1993)

e information theory
(Engelman, 1993; Jones ct al., 1994; Persson & Argos, 1994)

¢ neural networks
(Fariselli et al., 1993; Casadio et al., 1995; Rost et al., 1995)

and th jcal prediction of protein structure; ISMB® 95: Cambridge: Jul 16, 1995
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sequence information ofile derived from multiple alignment
from protein family P\;'ox awindowof w adjacgmresdues
input, local in sequence -
888 ACLIG S VRmKaloms -
Iacalm m 0 0 0 0 0 0 0 O0-117-
ah'gn-M' 0 0 0 0 0 0 033 0 0.4
et LLL 0 010 0 0 0 0 0 33 0.2
13 LIT &} 0 036 06 0 0 0 0 078
adjaccnlMG 6 0 0 03B 0 0 0 0 117
residucs ccs 066 0 0 033 0 0 0 08
GW 2,>¢:oocossossooo.4.s
input, global in sequence
lob
”i;‘,‘;-"., FAA frequency of each amino acid In proteln
whole A Iengthof proteln (560, 5120, <240, >240)
protein ACN-Iammﬂ dlstancecentx-etoN»term(sdo.so,Szo.sm)
distance centre to C-term (40,530,520,<10)
first level: sceond level:
sequence-to-structure  structure-to-structure
network network
" . input: file of 21 inpus: outputof 1
@— position for prediction —@ ICSIdUCSp;ngCmUB Cg:s. gn%u Vi
multiple alignment AN-term, A C-term
for 21 adjacent residues
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Flg 3. 29 Fllter for HTM pred1ct10n

too short helices
if { L <17 n RI>7 (at either end of helix) }—>  elongate helix by one residue
untilL > 17
if { only one helix predicted }
if{L<17} —>  cuthelix
if { at least 2 helices predicted }
if{L<11} —>  cuthelix
too long helices
if(L>351} ->  split helix at position L/2
into two helices of length L/2
if {L>nx22,n=34,.. } -->  split helix into n of length L/n

Séan O'Donoghue & Buskhard Rost: Computational tools for experimental d ination and th ical prediction of protein structure: ISMB*® 95: Cambridge; Jul 16, 1995 37-71
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Accuracy of HTM predlctlon

Overall Helical transmembrane segments only
Per-residue score Segment-based scores
Set® Method® N Q. Info %ObsQryy %PrdQry Corr (L) %ObsSov %Prd Sov Nsegd over Nseg under
Set 1 No profiles 69 90 045 X3 70 071 23 90 81 15 47
6.3% 17%
PHDhtm 69 95 0.64 91 84 0.8¢ 23 96 96 5 10
1.9% 3.8%
Set2 PHDhtm 37 95 91 085 23
Edelman (1993) 37 88 90 0.70 26
Set 3 Jones et al. (1994) 67 15 6
1.5% 1.9%
Set4 PHDhtm 28 3-2° 3
1.6% 2.3%
Persson and Argos (1994) 28 . 2-3° 3
Not cross-validated! 1.6% 2.3%

Séan O NDonoghue & Burkhard Rost: Computatinnal tools for experi 1 determination and th ical prediction of protein structure: ISMRB® 052 Cambridges Jut 16, 1903 3T-72
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.Fig. 3 30 Rehablhty of HTM predlctlon

LR »f"_--

—=e— PHDhtm (input multiple alignment) . R —aA— 7 of observed
- -=-%=-- no profiles (input single sequences) g» compiled as percentage L o predicted
~ = N
S ESueRRE :
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% 98_ ‘\\'\:\: - gg 955 RI=9 O~ d - :
s ] 3, F 5 E 3 3 7 \ 0
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percentage of residues predicted = percentage of residues predicted
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¢ Evaluation

» Often accurate enough to seed 3D or topology predictions

» Improvement by database growth (evolutionary information)
¢ Further method (B-strand segments)

» prediction methods for globular proteins (secondary
structure prediction) often accurate enough, but...

» no general method available.
e Applications
» Design mutation experiments
» Speculations about binding sites and function

» Fast mapping of all proteins from entire chromosomes
Fig. 3.31

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theotetical prediction of protein structure: ISMB® 95: Cambridge: Jul 16, 1005 3T-74




Table 5. Prediction of transmembrane helices for yeast chromosome VIII*

Identifier Nrest - Nali® Locations of predicted segments Nhimb
YHLO40c 627 s 75-88 116-127 141-157 173-150

208-216 231-252 285-308 326-332

363-387 404-418 429-441 358477

568-581 13
YHLO047¢ 637 s 70-83 111-122 136-152 168-185

200-211 236-247 280-303 321-337

358-382 300413 425436 153473

$63-576 13
YHR092¢ 560 2 70-87 124-139 152-171 179-196

215-226 247-261 369-385 400-413

435-459 374492 500-518 11
YHRO96¢ 592 18 85-101 138-154 167-186 194-212

230-241 262-276 385-400 415-428

450-475 489-507 $15-533 1
YHR094c 510 17 64-80 118-133 146-165 173-191

209-220 241-255 363-379 394407

429-453 158-486 494-512
YHRO26w 213 18 20-37 £6-30 94-122 145-168

180205 s
YHRO02w 387 8 37-53 102-115 141-153 201-227

271-281 s
YHLO048w 381 4 39-62 30-93 233-252 260-277 4
YHR150w a4 4 272-283 295-310 425-440 3
YHR129¢ 38 258 137-153 349-360 2
YHR00Sc 472 153 337-347 377-387 2
YHRI83w 489 39 360-371 418-329 2
YHRO46c 295 7 103-117 201-216 2
YHRI76w 373 6 262-272 338-351 2
YHRO039% 644 5 49-66 247-264 2
YHLOI1c 320 2 73-92 1
YHRO028c 318 3 26-44 1
YHRO007¢ 530 7 25-47 1
YHRO37w 575 4 209-227 1

Séan O’Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein :ISMB® 95; Cambridges Jul 16,1995 3T-75
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iéi:iiin_ of proteln structure 1n

¢ Prediction of (long-range) inter-residue contacts
¢ Prediction of contacts between beta-strands

¢ Prediction of disulphide bonds

§ d ination and theoretical prediction of protein structure: ISMB® 95: Cambridze: Jul 16, 1995
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¢ Goal and concept

¢ Methods
— Statistics (correlated mutatlons)
— Neural networks

o Results

» Predictions based on correlated mutations:
between 1.4 and 5.1 times better than random predictions

» For others, results difficult to assess
¢ Evaluation
» Distinction between alternative models for 3D structure?
» No prediction of conformations ab initio
¢ Applications
» Possibly many, none so far

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein ISMB® 95; Cambridge: Jul 16,1995  3T-77
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¢ evolutionary constraints on protein sequences
~ selective pressure from need to maintain protein function

~ consequently, conservation and mutation patterns evidence
of functional or structural constraints plus mutational drift

» functional constraints: surface residues

» mutational drift: loop regions
» structural constraints: core

~ simplifying assumption:
residues in contact show correlated mutational behaviour,
i.e., if one residue mutates, its contact partners also tend to

mutatate ,
¢ Do correlated mutations imply spatial proximity?
— sometimes

(Altshuh et al., 1987; Altshuh et al., 1988; Neher, 1994; Taylor &
Hatrick, 1994; Shindyalov et al., 1994; jGoebel et al., 1994)

Séan O'Donoghue & Burkbard Rost: C
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e starting point: multiple alignment derived mutation matrix
Fig. 334

_ _1_2 Wia (Siig - <8>) (i = <8>)
= N2
N G; O
rij distance between residues at position i and j ; sk mutation
matrix for residue at position i ,k, [ = 1, ..., Nali , where Nali is

the number of sequences in the alignment; <si> is the average
overall k and !, and i the respective standard deviation

e contact predicted, if r(i,j) > threshold
— exclude positions with >10% gaps
— exclude completely conserved positions
— define clusters of correlated residues:

cluster of rank n:
residue part of cluster n, if it is correlated with at least n other
residues in the cluster

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental d ination and th ical prediction of protein ISMB® 95; Cambridge: Jul 16, 1995
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‘ ;~Distance matnx pred1ct10n by neiital
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(Figure 1 from Bohr et al., 1990)

Y

Séan O"Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protcin structure: ISMB® 95: Cambridge: Jul 16,1995 3T-83

® Accuracy:

How many of the predicted contacts are observed?

® Coverage: . Covpred _ Ceorrectly predicted

observed .

How many of the observed contacts are predicted?

* Improvement over random: Accrred

Rxmprovc Accrandom

random predlctlon' contact density

-> dependent on size, e.g.:
trypsin inhibitor (56) => random =0.39
trypsin (223) random = 0.13

Séan O'Donoghue & Burkhard Rost: Comnutational tonls for experimental detennination and thenretieal nembintton of nratsie treie s T80 08 #oan1a0s o 1 6 00 sunee 2T o1
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r-res1due predlctlon° conplusm

* Results
» problem is a hard one (at least for non-local contacts)
» improvement of 1.4 - 5.1 times over random predictions
* Evaluation
— ab initio prediction of conformations not possible, ...
— ... but, distinction between alternative models may be

possible
— open: combine information from correlated mutations with:
» conservation of residues (Taylor & Hatrick, 1994)

» statistical predictions
(Galaktionov & Rodionov, 1980; Galaktionov & Marshall, 1994)
» other...
* Applications
~ post-processing prediction methods
— speculations about function

— HOWEVER, none so far ...
Séan O'Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein ISMB®95; Cambridge: Jul 16,1995  3T-89
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] Predlctlon of contacts between [3-5’crau}_c_l§,,,;::§j1
¢ Goal and concept
* Methods
— Statistics (potentials of mean force)
* Results

¢ Evaluation
» Less accurate for predicted strands,

» But used successfully for predicting higher aspects of 3D
structure

» Applications
» Post-processing prediction methods
» Speculations about binding sites and function

Séan O'Nonoghue & Burkhard Rost: Computational toals for experimental d ination and theoretical prediction of protein 1SMB* 95; Cambridge: Jul 16,1905 3T-90
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TR : '3:'5
propensity tablesz

| |
twotables  ARG—ALA ARG— ALA
b4 .
punlld antiprrellel

/ \ Figure1 Subdivisions of B-strand residue pairs by

parallel/antiparailel; hydrogen-bonding pattern and with

= ' f = l = tespect 10 N and C termini. Some subdivisions have been
four tables A;G: Ai-A T ARG MI*‘: omitted from the figure for clarity.
/ ﬂw\ o Hobanied
N c _¢ N
cighthalt AL,-_— AL— —/u'zc: AL.—
=t 1= =i L =
antiperaile] amti

(Figure 1 from Hubbard, 1994)

Séan O Donoghue & Burkhing | Reva Computational teels fior experimentad detenmination and thewrelical prrediction of prolein vren e, ISNIRT O Cavdui tee Tol tr 13103 IT-9?




VS St

Contact propensities

p(a,b) = - log

Séan O'Donoghuc & Burkhard Rost: Comp I tools for experimental determination and th
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B-strand 1

Figure2 For each B-strand residue pair Ij, the
occurrences of pairs 1j-2, ij-1, Ij, 1j+1, i§+2 are
counted in separate tables.

(Figure 2 from Hubbard, 1994)

Séan O’ Nonoghue & Burkhard Rost: Computational tools for exg

ination and theoretical prediction of prutcin ISMB® 95; Cambridge: Iul 16,1095 3T-94




e definition of pseudo-potential:
sum of propensities from relevant tables for all pair
interactions (Fig. 3.42),
divided by total number of interactions summed
(four different for tables in F1g 3.41)

e selective for:

— parallel / antiparallel
~ correct / incorrect hydrogen-bonding
— correct / incorrect strand order
¢ ability to identify correct strand alignments

(without knowing length of strand-strand interaction)
Fig. 3.43

¢ accuracy about 35-45%

Séan O Donoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein ISMB® 95; CambridgezJul 16,1995  3T-95

R e WS Ut rd et a gl P SR Y P ..,,\M:»‘

Figure 5 Method for searching local alignment space
around a B-strand pair (KIVYW and LILGC) which interact to
form a parallel B~sheet. Arrows following the sequences
point towards the C-terminus of the protein. Each box
indicates an f alignment between corresponding residues on
each axis. (1) indicates the correct alignment. (2) indicates
an misalignment of the strands by 3 residues. (3) indicates
an alignment of the wrong sheet type. (4) indicates an
alignment which aligns the correct residues, but which is 2
different length and overlap.

TrnparHCHom

~—

MASIKI VY WS GT—
(1) observed (DSSP) alignment (parallel)

(2) incorrect alignment (paralief)

. (3) incorrect alignment (anti-parallel)

u (4) highest scoring alignment (parallel) (Figure 5 from Hubbard, 1994)
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Weighted Links

CCOB0 ORXCD CCOR0 OOCCO8 OO0 OO nput

Cow ] Con ] [ooe ] [asn ] [ ] [}

-3 2 -1 1 2 3

0
Amino Acld Sequence Around Cysteine

Fig. LA G of k archil For clarity, only six window
posmons(duneammoamdswmeN«mmdandmmammwdsmme
C: inal side of an ine) and six nodes per window

position are illustrated, Withmawmdowposmou.ananunoacudxs
represented by giving a valve of 1.0 to its node while setting all other nodes
mduzwmdowposxummoo Input values are propagated through

ighted links to p ities at the two output nodes, S—S 2nd
S-H.Tbcoulpulnodcmmlheblghcs!acuvnylsmeuaworksdeaswn. .
(Figure 1 from Muskal et al., 1990)
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8: a

1 3

Correct Prodictlons (%)
Predictions Made (%)

~—@— %Correct Predictions
—{0— %Predictions Made

Significance Filter

Fig. 2, Dependence of predictive accura
cy on the strength of output node activitics. The significance filt placed nodes
activities greater than the filter can Pass through for prediction. Data were average from d\gcmscven lszlm::u in Ta!,ol:"nlﬁ.‘c e o tht only

(Figure 2 from Muskal et al., 1990)
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® Results

-8S 81%

- SX 80%
¢ Evaluation

— extremely small testing set 7 x 20
¢ Applications

» filtering contact predictions
» post-processing prediction methods
» BUT, non so far published

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental d ination and th ical prediction of protein structurc: ISMB* 95; Cambridge: Jul 16, 1995

¢ Sequence alignment THE prediction tool

* Homology modelling
e Potentials of mean force

* Remote homology modelling (threading)

Séan O'Donoghue & Burkhard Rost: Computational tools for experi 1d ination and tk ical prediction of protein structare: ISMB® 95 Cambridec: Tul 16, 1998
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Sequence ahgnment THE predlctlon |

® Goal and concept
e Methods
~ Hashing
— Dynamic programming
* Results
'» Straightforward for high levels of pairwise sequence identity
» Tricky below about 30% pairwise sequence identity
e Evaluation
» Power of dynamic programming grows with databases
» Sensitive and fast enough as first step for sequence analysis
» Drawback: few methods provide cut-off criteria
» Applications
» Post-processing prediction methods
» Prediction of function or binding sites

Séan O'Dx

ghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein structure; Tutorial ISMB® 95: Cambridge; Jul 16. 1995 3-107

. FASTA:

— 1. search identical ‘words’ (e.g. pairs)

- 2. widen range of identity (profile based)

(Dumas & Ninio, 1982; Wilbur & Lipman, 1983; Lipman & Pearson,
1985; Pearson & Lipman, 1988)

* BLAST

— 1. list of high scoring words,

typically words of length four with high information
— 2. search database for identical words
— 3. expand words to segments

(Altschul et al., 1990; Karlin & Altschul, 1990; Karlin et al., 1990;
Altschul, 1991, 1993)

Séan O'Nonoghue & Burkhard Rost: Computational tools for experi Id ination and th ical prediction of protein structure: Tutorial 1SAMR® 08 Cambsidee: Jul 14 {003 1R
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¢ exchange matrices

— PAM: accepted point mutations (Dayhoff, 1978)
(percent accepted mutations; point accepted mutations per
100 residues)

merely counts of occurrences
— mutation matrix: probability of amino acid exchanges
— log-0dds matrices: logarithm of exchange probabilities

d companson of various matrices: (Henikoff & Henikoff,
1993)
¢ dynamic programming (optimal alignment)

— gaps originally length independent (Needleman & Wunsch,
1970)

— length dependent: {Sellers,
1974)
glk) =gy +g.k
g, gap open penalty; g, gap elongation penalty; k length of
&ap
typically g, / g, = 1/10
— problem: global al1gnment i.e., full length of aligned
Séan O’ namghuc&nurkmmiﬁ‘squ.mﬁﬁoﬂpxum}ﬁ&d heoretical prediction of protein s Tutorial ISMB" 95: Cambeidge: Jul 16, 1005

— alternative: align sxmllantles {Smith & Watcrman, 1981)

o o - o T

A BCNJROCLCRTZPM
Ale. 7 6 6 5 4 4 3 3 2 1 00
J7\766644332100
C66\6544433100
166%544_332100
Nsssss\44'3321oo
R4444\4*S4332200
C334333\3‘433100
K33333333\3\2100
cl2 2 3 2 2 2 2 3 2 1 00
R2111121111\200
gl1 2 1+ 1 1 1 1 1 1 1 1\0 O
plo o 0 0 0 0 00O OO 0 1 0

Fi16. 2. Contributors to tho maximum match in the completed array.
Tho alternative pathways that could form tho moximwn match arsillustrated. The meximum
match terminates at the largest number in the first row or first column, 8 in this case.

(Figure 2 from Needleman & Wunsch, 1970)
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syissAlignment methods: multiple alignment=ig

e optimal alignment practicable for Nali <=3
(Murata et al., 1985; Murata, 1990)

e pairwise alignment -> multiple alignment

(Barton & Sternberg, 1987; Feng & Doolittle, 1987; Taylor, 1987;
Corpet, 1988; Higgins & Sharp, 1988; Vingron & Argos, 1987; Sander
& Schneider, 1991; Higgins et al., 1992; Schneider, 1994)

o profile-based alignment

e.g. MaxHom
1994)

— position dependent conservation weight

— 1. pairwise alignment of homologous sequences based on
conservation weight of previously aligned sequences
— 2. fix conservation weights

~ 3. repeat pairwise alignments with fixed conservation
weights

(Sander & Schneider, 1991; Schneider,

Séan O’Donoghuc & Burkhard Rost: Computational tools for experi 1 d, ination and th

| prediction of protein Tutorisl ISMB* 95: Cambridge: Jul 16, 195 3-111

position

(Figure 12 from Schneider, 1994)
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similarity

weighted

Séan O'Donoghue & Burkhard Rost: C

+4: Fig 3:52:

;_ R 5 S TINT T T T SRR A e S R R WS T T R e o -3:‘3-2
Ei -Profile-based alignment algorithm: MaxHoin
S e s e e s T RETREREER

gap elongation
profile penalty

profile sequence 1
sequence 2

gap open

conservation weights

position dependent
exchange metric

(Figure 13 from Schneider, 1994)

putational tools {or experi 1d ination and tt ical prediction of protein Tutorial ISMB" 95: Cambridge: Jul 16, 1995

Profile-based ahgn ment algonthmP21 S’
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Nali

Wi Sim (1
kZ’l g1 SImy(1)

ew() =g with v =( 1 7 %idenity)
kl=1 Wi

cw(i) conservation weight at position i ; Nali number of sequence in alignment;
k, I indices for sequences in multiple alignment; w, weighting factor to balance

uneven distribution in sequence space; sim(i) similarity between amino acids at
position i of sequences k and I ; %identity,, percent identity between sequences &
and /

— normalised such that <cw>=1
— include only sequences above threshold for homology

Séan O'Donoghue & Burkhard Rost: Computational tools for experil 1d ination and th ical prediction of protein Tutorial ISMB" 95; Cambridge; Jul 16, 1995

e e seure o

* Results
» Straightforward for high pairwise sequence identity
» Tricky below 30% pairwise sequence identity

e Evaluation
» Power of dynamic programming grows with databases
» Sensitive and fast enough as first step for any sequence
analysis
» Drawback 1: few methods provide cut-off criteria
» Drawback 2: lack of thourough tests on performance
accuracy
* Applications
» Post-processing prediction methods
prediction in 1D, 2D, 3D
» Prediction of function or binding sites

SAan N Nnnpebis £ Regihard Rnct Comnniatianal tnnk for evpersmental determination and th irnd nnedinting of paatein ertetiens Tutiarial [SATR® 03 Canheideee tnl 148 1003
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Séan O'D:

" Homlogy modeing

* Goal and concept
e Methods
— Rotamer libraries
* Results
» Accuracy depends on level of pairwise sequence identity

o Evaluation

» Sufficiently accurate to predict 3D structure
* Applications

» Site-directed mutations

» Prediction of function and binding sites

e & Durkhazd Rost: jonal tools for experimental determination and theoretical prediction of protein structure: Tutorial ISMB' 95; Cambridge: Jul 16, 1995 3-117
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Homology modell_ingﬁ ‘goal' - .

e protein structure is more conserved than is sequence

(Chothia & Lesk, 1986; Pastore & Lesk, 1990; Lesk, 1991; Lesk &
Boswell, 1992; Holm et al., 1993; Holm & Sander, 1993; Holm &
Sander, 1994a)

e single point mutations can be fatal to protein structure
and function, but ...
(Dao-pin et al., 1990; 1991a-c; Grenzin et al., 1992)
* most often, proteins within a sequence family have
homologous 3D structure
(Chothia & Lesk, 1986; Sander & Schneider, 1991)

» given a protein of unknown structure (SOUS), try to
model its 3D structure by using the C®-backbone of a
known structure as template

early work: (Dickerson, 1976; Greer, 1980, 1981, 1990, 1991)

* limiting steps: function of pairwise sequence identity
Fig.
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Figure 1. The main limiting steps for model building by homology as function of the percentage sequenc
identity between the structure and the model.

(Figure 1 from Holm et al.,, 1994)

Jiction of protcin Tutorial ISMB* 95: Cambridge: Jul 16, 1995
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Séan O"Donoghuc & Burkhard Rost: Computational tools for experi 14 ination and

e o Homology modelling: limitations:

* High homology: placing new side chains in the structure

— side chains can be ‘grown’ during molecular dynamcis
(Karplus & Petsko, 1990; Cornell et al., 1991; Berendsen, 1991)

» problem: time (useful for difference of one residue)

- similar environment in database of known structures

(Ponder et al., 1987; Summers & Karplus, 1989; Summers & Karplus,
1990; Holm & Sander, 1992; Levit, 1992; Eisenmenger et al., 1993;
Vriend & Sander, 1993; Vriend & Eijsink, 1993; De Fillippis et al.,
1994; Vriend et al., 1994)

» problem 1: what is similar?

» problem 2: quick scan, i.e.,
database systems that allow for fast, easy and flexible
retrieval of specific information
(Bryant, 1989; Islam & Sternberg, 1989; Vriend, 1990)

¢ Intermediate homology:
— building loops if there is an insertion in the model
— verification of quality of models

¢ Low homology: improving the alignment

[ XITY o 4 AR APV AN - FELRES B B o T
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.:fHomology modelhng rotamer llbranes;?e

»--~.

e position-specific rotamer analysis
(Jones & Thirup, 1986; Vriend & Eijsink, 1993; Vriend et al., 1994)

— start: database of non-redundant sequences
(Hobohm et al., 1992; Hobohm & Sander, 1994)

- extract rotamer distribution

— fragment lengths:
» helix and strand: seven residues
» loop: five residues

— accepted fragments:
» identical amino acid in centre

» local backbone similar to that around evaluated position
(<0.5 A r.m.s.d.)

Séan O'Donoghue & Burkhard Rost: Caomputational tools for experi 1 di ination and th ical prediction of protein structure; Tutorial ISMB® 95; Cambridge; Jul 16, 1995
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| Flg 3 54 Rotamer dlstnbutlons
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(Figure 2 from De Filippis et al, 1994)
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¢ Results

» Accuracy depends on level of pairwise sequence identity
» for high homology > 60% correct (De Filippis et al., 1994)

» for intermediate homology: sometimes loops correct
(Abagyan & Totrov, 1993; Abagyan et al., 1994; Totrov & Abagyan, 1994)

» for low homology: rough estimate, not sufficient in general
to design experiments
e Evaluation
» Sufficiently accurate to predict 3D structure
¢ Applications
» Site-directed mutations
» Drug design
» Prediction of function and binding sites

Séan O'Dornoghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protcin : Tutorial ISMB® 95; Cambridge: Jul 16, 1995 3-123
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Mean-force potentlals

* Goal and concept

* Methods
— Sippl potentials
¢ Results ,
» Accurate enough to spot incorrect structures
¢ Applications
» Post-processing prediction methods (e.g. threading)
» Site-directed mutations

» Selection of the best among an ensemble of possible
structures

» Spot stresses in structures

Séan O'Donaghue & Burkhard Rost: Computational tols for experi ! deterimination and theoretical prediction of profein stricture: “Tutorial ISMR® 05: Cambridec: Tul 16, 100§ 3-124
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Mean-force potentials goal ::g

p SRR

e inductive approach: quantum-mechanics

» semi-empirical force fields

(Momany et al., 1975; Brooks et al., 1988; van Gunsteren, 1988, 1993;
Briinger et al., 1986; Karplus & Petsko, 1990)

¢ deductive: knowledge-based potentials of mean force

» Boltzmann'’s principle :
(Sippl, 1990; Sipp! et al., 1992; Hendlich et al., 1992; Sippl, 1993a)

Séan O'D

& Buskhard Rost: Computational tools for experi 1d ination and th ical prediction of prutein structure; Tutorial ISMB® 95; Canbridge: Jul 36, 1995 3-125

o rer—— e 4 & e Yo e o =
. A . N = P T =z T
7

% 71 Fig.3.55: Mean-force app;:oach

data-base-derived force ficld
data base of known structures
mean field
(A i/] é
— L
native structure cakulated
sequence of unknown structure from knowledge-based
force ficld

ol i [ proteins is used to
ean field approach to pratein folding. The set of available 3D structures of P! ed 10

g L O e force field. {f this attempt 15 successful the force field can be employed in the comp

extract a data-basc-derived
Jetermination of protein structuses.

(Figure 1 from Sippl, 1993a)
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¢ Boltzmann law:

1
Pijk = "Z‘ eXp kT

i, j, k variables of system; k Boltzmann constant;
T temperature; Z partition function:

E..
=ik
7=, exp KT

ijk

* general goal in statistical mechanics:
given energy E ->
compute partition function Z and probabilities p
— problem 1: accurate energy function
~ problem 2: analytical or numerical computation of Z

Séan O'Donoghue & Burkhard Rost: Computational twols for experi 1 J ination and th jcal prediction of protein Tutonal ISMB® 95: Cambridge. Jul 16, 1995 3-127

Bl ;,s( . -« Boltzmann: inverse law

Eijk =-kTln [fijk] +kTlnZ

E: potential of mean force; f: relative frequencies
obtained from measurements

note: limn__)w fl.lk = pijk 5 i.e.,
relative frequencies equal probability densities

— Z is constant, thus, no effect on energy differences
- consequently, here the following choice is made:

Z=1

which is consistent with definition of partition function

Séan O'Nonnghue & Burkhard Rost: Computational teels for expert 1d ination and theoretical prediction of prutein structure; Tutorial ISMB® 95; Cambridze: Jul 16, 1908

27

3-128




S 2 o ;-,“7 g.-..i’-".r-'{"’:;

Boltzmann- reference system

1.1

=B - <B> —-len[

system described by four variables: i, j, k, I;
subset of variables: k, I; AE: net potential of
mean force;

note: net mean force energy contains only those
components which are particular to the
subsystem labelled i and j

Forces = partial derivatives of energies:

ij
ij JdAEj .
m =55 withm=1k
Séan O'Donoghue & Burkhard Rost: Computational tools for experi 1d ination and th ical prediction of protein structure; Tutorial ISMB" 95; Cambridge: Jul 16, 1995

Bz pary

: ',Mean-force potenhals for pa1r mteractl

e Variables

— amino acids: ab
— atom types: ¢, d
— sequence separation: k
— spatial distance: r

o thus, compilation of f,, ;,_ straightforward
* next: choice of subsystems and reference frame

abcdk abedk dk abcdk
AE; =E; T -<ET> —-len[Z 2bedk |

r
ab

bedk _ QAER
B = or

— problem: sparse data

Séan O'Donoghue & Burkhard Rost: Computational tools for exper | determination and theoretical prediction of protein structure; Tutorial ISMB' 95: Cambridge: Jul 16, 1995
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potential of mean force *
Jassnniin e iians
Ef 1)
7
NN i
? N7
- >
- (Figure 2 from Sippl, 1993a)
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Flg 3. 57 Mean-force' potentlals
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Fig. 3. Examples of C*-C* mean force potentials for separation k = 4 along the amino acid sequence. Energies are scaled
in the form E/kT. For small values of k particular values of'r correlate strongly with local structures. The deep minimum
of Leu-Leu at r =6 A reflects the strong preference for a-helical structures. In contrast. a-helical conformations are
energetically unfavourable for Thr-Thr. The mixed pairs are intermediate. Thr-Leu, for example. has two minima of
comparable depth at a-helical and extended contormations.

(Figure 3 from Sippl, 1993a)
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fac
o _kTin|——
> Ps

a

s number of atoms in a sphere of radius R around
atom a;

AS(S,C) = Z AE2®*

AS(S,C) total surface energy of sequence S in
conformation C;

AE(S,C) = wpAP(S,C) + wsAS(S,C)

dAE
FS.0) =350

total energy and total molecular force field
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Fig. 5. Outline of the computation of the total pair interaction energy of proteins. The distances between atoms are
calculated., The residue types a and b. atom types ¢ and d. the separation k along the sequence determine the type of
potential used to evaluate the energy at distance 1. The total pair interaction energy is obtained by summing over all atom

pairs i the molccule. (Figure 5 from Sippl, 1993a)
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e reference system:
— polyprotein
e goal:
— evaluate likelihood of background, i.e., find system with
lowest energy

e compute z-scores:

AE(S,Co) - % AE(S,Co)

Z, =
q o
C, conformation q along the polyprotein; ¢

standard deviation of the average energy over all
conformations q;
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Fig. 1. Residue profiles for several protein structures determined by X-ray analysis. The energies were calcutated from C*
interactions only. In the plastocyanin (1PAZ). myoglobin (1 MBA). and a-lactalbumin ¢ IALC) profiles the energy remains
mostly below zero. Only occasionally we encounter small positive pcaks. In contrast. the residue profile of 2GNS5 contains
Iarge positse peaks. The conformation appears to be ¢ ly ined. It is thy that this strain is not a
consequence of steric overlap. The energies for all distances r less than 5 A were excluded from the calculation The
window used for gliding averages amounts to 10 residues.

(Figure 11 from Sippl, 1993a)
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(Figure 4 from Rost & Sander, 1994)

of protein structiee; Tutorial ISMR® 95, Cambridee ful 16 1905

3-137

3-138

)




*?a;f,-uzx--g;:;:,a,mw:..—-_'v.. - .-:x_-.j‘;:-;‘c ] «t\ e *\_-—4..
A o

* Results
» Accurate enough to spot incorrect structures

e Applications
» Post-processing prediction methods (e.g. threading)
» Site-directed mutations

. » Selection of the best among an ensemble of possible
structures

» Spot stresses in structures

SéanO'I)'anoghuc&Burklwd Rost: Computational tools for experi 1 determination and theoretical prediction of protein structure: Tutorial ISMB" 95; Cambridge; Jul 16, 1995 3-139
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;Remote homology modellmg (thread.i_:f ;

e Goal and concept

* Methods
— Sippl potentials
— Fosfos potentials
e Improvement by evolutionary information

* Results

» Potentials can retrieve the original structure

» Correct remote homologue often found

» Prediction of 3D structure seems to work sometimes
¢ Evaluation

» Evaluation of tools a shame!

» Prediction accuracy overemphasised in the past, ...

» but, methods will probably become increasingly important
¢ Applications

» If successful, same as for homology modelling

Séan O'Donoghue & Burkhard Rost: Computational tools for experimental d ination and th ical prediction of protein structure; Tutorial ISMB® 9S: Cambridee: Ju? 16, 1905 3-140
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e ‘simple’ program:
» given sequence of unknown structure SOUS
» generate all possible conformations

» select best

* not so simple:
» semi-empirical force-fields cannot even distinguish the
correct from a grossly misfolded structure, in general
(Novotny et al., 1984; Novotny et al., 1988)

* alternative simplify potentials
» base distinction on inter-residue contacts
or averages over contacts

* goal:
fitness of sequence for structure (fosfos)
S6n0'D ghue & Burkhard Rost: Computational tools for experimental determination and theoretical prediction of protein structure; Tutoriat ISMB” 95: Cambridge: Jut 16, 1995 3-141
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> ] -
= - sequence identity implies | |
5 757 3D homology ’p ] 75
g8 :
g 50 50
O E 5
g ] i
'é‘ 25- _25
= 1 don't know region -

(. 4 )
M

20 40 60 80 160 ‘ 120

length of pairwise alignment

current PDB (3.000 structures):
some 5.000 pairs in
“don’t know” = “remote homology” region

(Figure from Sander & Schneider, 1991)
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;:Threadihg fosfos potentlais

* 3D - 1D potentials

- simpiest:
hydrophobicity matching accessibility
(Bowie et al., 1990)

— more elaborated description:

18 classes (accessibility, polarity, secondary str.)
(Bowie et al., 1991; Liithy et al., 1991) ~

— contact interface potentials:
29 classes

» helix, strand, turn, rest
» buried, intermediate, exposed
» residue, solvent

» + core weights: conserved and not exposed
(Ouzounis et al., 1993)
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® 18 classes:

Area buried (A2?)
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and polarity Pa
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(Figure 4 from Bowie et al., 1991)

0.80

0.40

Fraction polar

0.00

3-147

2.14%




Environment
o wirlylrlilvimlalelrlcitisialinlelpluikinr
Bia 1.00 | 1.22{018)1.27 | 1.17 | 0.88 { 128 |-0.68{-253-1.18|-0.73]-1.29]-2.73]-1.08|-1.93}-1.74}-1.97 [-0.34| .1 .82]-1.67
B8P 1.37 | 0.85{ 007 | 1.13} 1,471 1.09 | 055 |-0.79{-2.02]-0.94 |-022]-1.12]-2.81-1.67|-1.42|-1.53|-2.58|-1.91 | -289-1.18
By 1.0511.45]0.17]1.10{ 1.1 1.02 | 0.98 }-0.91]-1.92| 028 |-1.22]-1.53{-2.81|-1.17{-242|-252|-1.78]-1.12{-259 |-2.16
B2a 050{0.90{025]1.01 |0.83)0.88(1.12}.0.69|-1.49]-221]-0.10[-1.50]-1.47{-023]-0.81]-0.73|-1.82]| 03 {-0.78]| 0.08
B28 001(1.18{1.08107811.3311.061084)-3.551-228]-0.49]-0.87}-2271-1.72]-1.22|-2.07 | -1.07 }-1.41}-0.77 | -1.14|-0.20
B2 1.0211.08]1.92]|0.84 {0.81 {060 |0.50-0.881-1.65]| 0.19 [-0.05]|-0.76]-1.17]-0.78{-0.68|-1.35}-1.28] 0.46 }-234(-0.50
Bia 092 [-0.03] 058015 | 0.04 |-0.02] 0.89 |-0.57|-1.85|-0.59(-1.561.0.57]{-0.98| 0.22 | -0.08] 0.03 {-0.50§ 0.73 } 043 | 0.93
Bsp 0751 0.8111.301{0.18 | 0.54 | 0.58 |-0.57|-0.53|-1.83}-0.34-0.54|-0.44 | -0.74] 021 |-0.24|-0.14[-0.88] 0.82{-05310.13
B 1.07 10.70 | 1.13 ] 0.351-0.17]-0.03] 0.23 | -0.96]-0.98}-0.13]-1.20| -0.53 ]| -0.54 § 0.05 | 0.04 {038 |-1.05] 1.01 | 0.10 | 0.68
Pia 1.35]-0.82]-0.59]-0.52]-024{ 0.10 [-0.03| 0.73 |-040{-025] 0.95 | 0.3 [ 0.34 |-0.14|-0.54{-0.17 [-0.25]| 0.52|-0.21 {028
Pip 038 |-049}0.17 |-1.031 020 { 0.48 |-0.27] 0.64 |-0.82{-0.55] 149 | 0.53 | 0.33 {-227]-1.32|-0.73|-1.07 | -0.42|-121{-0.77
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Flg. 5. The 31D sconsg table, The wores te paeing 3 reedue t with an
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otﬂvumcperposxmﬁxcamphudmemmnpmandom treated as zero,
(Figure 5 from Bowie et al., 1991)
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(Figure 1 from Flockner et al., 1995)
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Threadlng copclusmn

¢ Results

» Potentials can retrieve the original structure
» Correct remote homologue often found
» Prediction of 3D structure seems to work sometimes

¢ Evaluation

» Evaluation of tools a shame!

» Prediction accuracy overemphasised in the past, ...

» but, methods will probably become increasingly important
¢ Applications

» If successful, same as for homology modelling
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FSsp

GOR

HSSP

NOE
PDB

PHD
PHDacc
PHDhtm
PHDsec

RMSD
SOous

Abbreviations used

one-dimensional

two-dimensional

three-dimensional

four-dimensional

Adenosine Di-Phospate/Adenosine
Tri-Phospate, the reaction:
ATP->ADP releases = 7kcal/mol.
Continuous wave

Distance geometry

Dynamical simulated annealing

data base containing the secondary
structure and solvent accessibility
for proteins of known 3D structure
(Kabsch & Sander 1983a)

data base of remote homologues of
known 3D structure (Holm, et al.
1993, Holm & Sander 1993, Holm
& Sander 1994a)

Fourier transform

prediction of secondary structure
based on statistics (Garnier, et al.
1978, Gibrat, et al. 1987, Biou, et al.
1988)

Homology Modelling: modelling the
3D structure of a protein based on a
significant level of pairwise
sequence identity to a protein of
known 3D structure

data base containing for each PDB
protein of known 3D structure the
alignments of all SWISSPROT
sequences homologue to the known
structure (Sander & Schneider 1991,
Sander & Schueider 1994).
Trans-Membrane-helix, helix
crossing the lipid bilayer of integral
transmembrane proteins

Molecular dynamics

Nuclear Magnetic Resonance
Nuclear Overhauser effect

Protein Data Bank of experimentally
determined 3D structures of proteins
(Bernstein, et al. 1977, Abola, et al.
1988).

Profile based neural network
prediction of

solvent accessibility (PHDacc; (Rost
& Sander 1994c¢, Rost 1995b)), and
transmembrane helices (PHDhtm;
(Rost 1995b, Rost, et al. 1995)).
secondary structure (PHDsec; (Rost
& Sander 1994b, Rost 1995b)),
Root-mean-square deviation
Sequence Of Unknown Structure.

App-1

SWISSPROT
data base of protein sequences
(Bairoch & Boeckmann 1994).

™ Trans-Membrane, region bound to
lipid bilayer of integral trans-
membrane proteins.

XRC X-ray crystallography

Sources of Figures

Introduction

Fig. 1.1 Basic tetrahedron of all amino acids
(Rost 1993)
Fig. 12 The 20 amino acids  (Rost 1993)

Fig. 1.3 Biosynthesis of amino acids to poly-
peptides (Rost 1993)
Fig. 14 The dibedral angles  (Rost 1993)
Fig. 15 Simplified view of protein folding
(Sander, et al. 1992)

Fig.1.6 Chaperone mediated protein folding

(Martin & Hartl 1993)
Fig. 1.7 Hydrogen bond pattern of helix
(Schulz & Schirmer 1979)
Fig. 1.8 Hydrogen bond patterns of strand
(Schulz & Schirmer 1979)

Fig. 1.9 Calcium binding motif: helix-loop-
helix  (Brindén & Tooze 1991)
Fig. 1.10 Greek-key motif: four strands
(Brindén & Tooze 1991)
Fig. 1.11 Relationship between structural
homolo-gy and sequence identity
(Rost & Sander 1994b)
Fig. 1.12 Protein jigsaw puzzle
(Taylor 1992)
Fig. 1.13Relation between structural
homology and sequence identity
(Sander & Schneider 1991)

Determination methods
Fig.2.1 The growth of the protein data bank
Fig.22 The PDB format - showing its age
Fig. 2.3 Chemical shifts for different
hyrdogen atoms in peptides
(Creighton, 1993)
Fig. 2.4 Continuous wave vs Fourier
transform spectroscopy
(Ernst, 1994)
Fig.2.5 Pulse sequences - a black art
(Emst, 1994)
Fig. 2.6 Schematic representations of 2D
spectra (Ernst, 1994)
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Fig 2.7 2D NMR spectraum of a small
protein(Wagner & Wiithrich et al,,
1990)
Fig.2.8 Sequential assignment:
(Wuthrich, 1986)
Fig.29 Tetrangle and pentangle inequalities
(Havel et al., 1983)
Fig.2.10 Distance geometry algorithm
(Kuntz et al., 1989)
Fig. 2.11 Problems with DG-generated
structures with full meterisation:
(Briinger & Nilges, 1993)
Fig.2.12 The soft potential fuction
(Nilges et al., 1988b)
Fig. 2.13  Annealing a protein structure from
liquid to solid phase
(Briinger & Nilges,1993)
Fig.2.14 Annealing from the gas phase
(Nilges et al., 1988a)
Fig. 2.15  Comparision of CPU times for DG
vs DSA  (Kuszewski et al., 1992)
Fig2.16 Torsion-angles in a protein - torsion-
angle space
Fig. 2.17 Methods which consider protein
dynamics - time-average constraints
(Torda et al., 1990)
Fig.2.18 Effect of motion on relaxation rate
(Bruschweiler & Case, 1994)
Fig.2.19 A protein in the crystalline state: the
unit cell of an immunoglobulin Fab
fragment, (Satow et al., 1986)
Fig.2.20 Example diffraction pattern
(Creighton, 1993)
Fig.221 Fitting a protein model into a refined
electron density map.
(Blundell et al., 1981)
Fig. 2.22: Molecular replacement search
strategy (Briinger & Nilges, 1993)
Prediction methods
Fig. 3.1 State of prediction art
(Rost 19952)
Fig.32 Protein structure in 3D, 2D, 1D
(Rost & Sander 199%4e)
Fig.3.3 Best/worst prediction scale
(Rost, et al. 1994c)
Fig.34 Significant sequence identity
(Sander & Schneider 1991)
Fig.3.5 Cross-validation
(Rost & Sander 1994a)
Fig.3.6 Variance between proteins
(Rost, et al. 1994c)
Fig.3.7 Classification by residue pattern
(Rost & Sander 1994a)

App-2

Fig.3.8 Central -residue screening
(Rost & Sander 1993b)
Fig.39 Pattern classification by NN
(Rost & Vriend 1993)
Fig.3.10 The effect of overtraining
(Rost & Sander 1993b)
Fig.3.11 Simple NN for sec str pred
(Rost & Sander 1993b)
Fig. 3.12 Adapting neural networks to
problem  (Rost & Sander 1994a)
Fig. 3.13 Evolution has it!
(Rost & Sander 1994a)
Fig.3.14 Processing alignment information
(Rost & Sander 1994a)
Fig.3.15 Accuracy table (Rost 1993)
Fig.3.16 Per-segment measures (Rost 1993)
Fig.3.17 Criterion for best segment measure
(Rost, et al. 199%4c)
Fig. 3.18 Accuracy for various methods
(Rost & Sander 1994b)
Fig. 3.19 Normalised accuracy for various
methods (Rost & Sander 1994b)
Fig.3.20 Distribution of prediction accruacy
(Rost 1995b)
Fig.3.21 Reliability of prediction
(Rost 1995b)
Fig.322 Distinction of structural classes
(Rost & Sander 1994b)
Fig. 3.23 Tandem network for content
prediction (Muskal & Kim 1992)
Fig. 3.24  Content prediction: experiment vs.
theory compile for tutorial
Fig. 3.25 Accuracy in predicting sec str
content (Rost 1995b)
Fig. 3.26 Neural network for accessibility
prediction (Rost & Sander 1994¢)
Fig.3.27 Locations of transmembrane helices
(Rost, et al. 1995)
Fig.3.28 HTM prediction by neural network
(Rost, et al. 1995)
Fig.3.29 -  Filter for HTM prediction
(Rost, et al. 1995)
Fig.3.30 Reliability of HTM prediction
(Rost, et al. 1995)
Fig. 3.31HTM regions for entire
chromosome: yeast VIII
(Rost, et al. 1995)
Fig.3.32 Contact-map
(Rost & Sander 1994¢)
Fig.3.33 Mutations correlated to distance
(Goebel, et al. 1994)
Fig.334 Correlated mutations
(Goebel, et al. 1994)
Fig.3.35 Distance matrix prediction by neural
network (Bohr, et al. 1990)
Fig. 3.36 Pay-off between accuracy and
coverage (Goebel, et al. 1994)
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Fig. 3.37
Fig. 3.38
Fig. 3.39

Fig.3.40
Fig.341

Fig.342
Fig. 3.43
Fig.3.44
Fig. 345
Fig. 3.46
Fig. 347
Fig. 3.48
Fig.3.49
Fig. 3.50
Fig. 3.51
Fig.3.52
Fig. 3.53
Fig. 3.54

Fig.3.55
Fig. 3.56

Fig. 3.57
Fig. 3.58
Fig. 3.59
Fig. 3.60
Fig. 3.61
Fig. 3.62
Fig. 3.63
Fig. 3.64
Fig. 3.65

Accuracy of contact prediction
(CortMut)  (Goebel, et al. 1994)
Predicted contact map (CorMut)
(Goebel, et al. 1994)
Predicted contact map (Neural
Network) (Bohr, et al. 1990)
Contacts between strands
Generation of propensity tables
(Hubbard 1994)
Distingnishing 5 classes
(Hubbard 1994)
Identifying the correct strand
alignment (Hubbard 1994)
SH3: observed contacts
(Hubbard 1994)
SH3: all contacts predicted
(Hubbard 1994)
SH3: contacts predicted from
alignments (Hubbard 1994)
Neural network for disulphide bond
prediction  (Muskal, et al. 1950)
Pay-off betweem accuracy and
coverage (Muskal, et al. 1990)
Dynamic programming
(Needlman & Wunsch 1970)
Evolution of conservation weights
(Schneider 1994)
Profile-based alignments; MaxHom
(Schneider 1994)

- Profile-based alignments: p21 ras

(Schneider 1994)
Limiting steps of homology
modelling (Holm, et al. 1994)
Rotamer distributions
(De Filippis, et al. 1994)
Mean-force approach (Sippl 19932)
Mean-force: pair interactions
(Sippl 1993a)
Mean-force: potentials
(Sippl 1993a)
Mean-force: total energy
(Sippl 1993a)
Potentials for known structures
(Sippl 1993a)
Mean-force energy z-scores for
known structures  (Sippl 1993b)
Potentials for 2GN5 and 1BGH
(Rost & Sander 1994¢)
Remote homology
(Sander & Schneider 1991)
Fosfos potentials - principle idea
(Ouzounis, et al. 1993)
Aligning accessibility potentials
(Bowie, et al. 1990)
Separating positives and false
positives (Bowie, et al. 1990)

App-3

Fig. 3.66 Separating positives and false

Fig. 3.67
Fig. 3.68
Fig. 3.69
Fig. 3.70
Fig.3.71
Fig.3.72

positives - more cases
(Rost 19953)
Bowie & Eisenberg potentials:
classes (Bowie, et al. 1991)
Bowie & Eisenberg potentials
(Bowie, et al. 1991)
Fosfos potentials
(Ouzounis, et al. 1993)
Sippl potentials
(Sippl 19932)
Threading: a non-trivial problem
(Sippl 1993a)
One successful 3D prediction
(Flckner, et al. 1995)
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