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Summary of tutorial 

In the first part of the tutorial, we will briefly review what is known about protein structure. 
Due to advances in sequencing methods, the number of proteins for which the amino acid 
sequence is h o w  is currently over 40,000 and rapidly increasing. In principle, the tertiary 
structure of proteins is determined by the amino acid sequence. Currently, the relationship 
between sequence and structure is unknown: we cannot in general predict structure from 
sequence. However, from the growing database of experimentally-determined protein 
structures, some rules are emerging. First: the number of unique protein folds is quite 
limited. Second: there are many proteins with the same fold, but no similarity of sequence. 
Third: 'neutral' mutations not altering the protein structure are relatively unlikely. Hence 
naturally evolved proteins are a record of @e unlikely, since most neutral mutations are 
probably realised. These rules suggest that a key to understanding protein structure lies in 
the patterns of neutral amino acid exchanges. 
Experimentally determining the tertiary structure of a protein is still far more difficult than 
sequencing; however, the situation has improved greatly in the last few years, and over 2,000 

.atomic-resolution tertiary structures are now known. Part of this improvement is due to the 
recent development of computational methods for the determination, and the availability of 
computers powerful enough to run them. An understanding of the philosophies and 
assumptions behind these methods is needed in order to assess the accuracy and limitations 
of experimentally-determined structures. We will briefly cover the basic experimental 
methodology behind the two main techniques for atomic-resolution structure determination - 
nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography (XRC). For 
NMR, structures are calculated from a set of short (<5& distances using either distance- 
geometry @G) or dynamical simulated annealing @SA). We will focus on several NMR 
methods which have also been applied to tertiary structure prediction. For XRC, the initial 
problem is determining the phase of the reflections in the diffraction pattern. We will discuss 
briefly several computational approaches: direct methods, maximum entropy, density 
modification, and molecular replacement. Once the phases are determined, structure 
refinement is normally done using DSA methods. Due to the rapid pace at which the NMR 
and XRC computational methods have been developed, most have been proposed based on 
prototype, single-case studies; there are currently no adequate measures for comparing 
methods. 
How far can theory bridge the growing gap between the data bases of sequence and 
structure? For a sequence with significant similarity to a protein of known structure, 
homology modelling can be used to construct a 3D model with correct fold, but inaccurate 
loop regions. Homology modelling effectively raises the number of 'known' 3D structures to 
about 10,000. In absence of significant sequence identity, threading techniques can 
potentially detectxemote homologies. For most proteins neither homology modelling nor 
threading is applicable: the prediction problem has to be simplified. We will discuss generic 
methods for prediction at three different levels of simplification, namely one, two, and three 
dimensions. We will emphasis the importance of measuring the accuracy of the methods. 
Prediction in 1D (secondary structure, solvent accessibility and transmembrane helices) can 
be improved significantly through the use of evolutionary information. Prediction in 2D 
(inter-residue contacts, inter-strand contacts, disulphide bonds) can also, to a certain extent, 
profit from evolutionary information, but so far, is of only limited accuracy. Some progress 
in 3D prediction has been made: incorrect structures can now be detected with remarkable 
accuracy (mean-force potentials) and technical improvements and data base growth have 
made alignments, threading, and homology modelling increasingly powerful. 
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Notes about the tutorial (duration, audience, goals, time schedule) 

Duratioa: half day = 4 hours 

Audience: The tutorial will be addressed to both computer scientists and biologists. 

Goa&; 7 We intend to review the state of the art in the experimental determination of 
protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical 
prediction of protein function and of protein structure in lD, 2D and 3D from 
sequence (focus on methods that are being applied by biologists). 
All the atomic resolution structures determined so far have been derived from 
either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance 
(NMR) Spectroscopy (becoming increasingly more important). We shall briefly 
describe the physical methods behind both of these techniques; the major 
computational methods involved will be covered in some detail. We shall 
highlight parallels and differences between the methods, and also the current 
limitations. Special emphasis will be given to techniques which have application 
to ab initio structure prediction. 
Large scale sequencing techniques increase the gap between the number of 
known proteins sequences and that of known protein structures. We shall 
describe the scope and principles of methods that contribute successfully to 
closing that gap. Emphasis will be given on the specification of adequate testing 
procedures to validate such methods. 

Time schedule; 
Introduction: proteins the complex machinery of life 
Experimental determination of protein structure 
Prediction of protein structure 

Overview; Evaluation of prediction methods 
Prediction of protein structure in 1D 
Prediction of protein structure in 2D 
Prediction of protein structure in 3D 

20 min 
90 min 
90 min 
10 
40 
20 
20 
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Notes about the handouts (contents, materials, structure) 

$urnma riesfor trttoria& 
Introduction: proteins the complex machinery of life 
Experimental determination of protein structure 
Prediction of protein structure 

Abbreviations used 
Sources of Figures 
References 

terials for handouts: 

Structure of handouts; 
For each of the three main parts (Introduction; Determination; Prediction) we 
shortly summarise the main points touched (pages labelled, e.g., IS-n ) and 
collect all transperencies used (pages labelled, e.g., IT-n ). At the end of each 
summary, we list some of the relevant literature. The appendix (pages labelled 
Appendix-n ) contains some of the abbreviations used, lists titles and sources of 
all figures and all references. 
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Introduction: proteins the 
complex machinery of life 

Contents 

synopsis of talk 
Contents ................................................. IS-1 
summary ............. .. ...................... .. ......... 1s-1 

'what is aprotein? ........................... IS-1 
What determines protein structure? ............................................. .. ......... 1s-1 
Protein folding: a problem solved 
only by nature? ............................... 1s-2 . 
Evolution creates arecord of the 
unlikely! .......................................... IS-2 
How many different protem folds 
exist? ............................................... 1s-3 

Talk 
Transperencies ....................................... 1T-n 

summary 

The basic principles of protein structures are 
shortly introduced. Protein structure is determined 
by sequence. However, there are many proteins 
which have strong structural similarity, but no 
similarity of sequence. In other words, structure is 
more conserved than is sequence. Naturally 
evolved proteins are a record of the unlikely in that 
all mutations not altering the structure are probably 
realised, although the likelihood to find a neutral 
mutation is small. The patterns of amino acid 
exchanges not changing structure are highly 
informative about a given structure. It is 
commonly assumed that the number of unique 
protein folds is quite limited. 

What is a protein? 
Buikiing blocks: amino acids. Proteins are built 

up from 20 different types of amino acids that are 
joined by peptide bonds to form a linear chain. 
The information is' coded in the DNA and 
translated into protein sequences. The basic 
information about life is coded in a sequence of 
four different nucleotide bases m the genes. There 
are two types of nucleic acids: the permanent 
storage system of the more stable deoxyribonucleic 
acid (DNA), and the intemediate bheprint tool of 
the less stable ribonucleic acid (RNA). The 
information is translated from the genes into the 
sequences of macromolecdes which are involved 
in every process that keeps life going in an 
organism, the proteins. Proteins are build up by 

sequences of amino acids. Known protein 
sequences contain from some 30 to 10,000 amino 
acids. 

Formation of peptide bona3. In general, there 
are some one hundred different natural amino 
acids, but only 20 are. usually found in proteins. 
They all have m common the same basic tetragonal 
structure Fig. 1.1). The amino acids differ in their 
side chains Fig. 1.2). Transcribing the four base 
alphabet of the RNA on the niosomes into the 20 
letter alphabet of amino acids, the protein 
sequences are build up residue by residue by 
joining the amino acids with peptide bonds Fig. 
1.3). The atoms along the line connecting the Ca 
atoms are referred to as the main chain of the 
protein or as its backbone. 

What determines protein structure? 
Hierarchy of protein slructure terminology. 

The following hierarchy is often used primary 
structure = amino acid sequence; secondary 
structure = regular patterns of the main chain 
atoms, like a-helices or j3-strands; tertiary structure 
= the arrangement of all atoms in a protein chain in 
three dimensions; quaternary structure = the 
arrangement of a l l  atoms of the whole protein 
possibly consisting of multiple chains. 

Sequence determines structure. A fully 
unfolded amino acid sequence diluted in the 
appropriate solvent (under proper conditions in 
terms of pH value and temperature) folds into a 
unique tertiary (3D) structure (Anfinsen, et al. 
1961, Epstein, et al. 1963, Anfinsen 1973. 
Anfinsen & Scheraga 1975). The process is 
reversible (Creighton 1984, Creighton 1991). 
Consequently, it is assumed that folding is 
determined exclusively by the information 
contained in the amino acid sequence (Ewbank & 
Creighton 1992). Recent experiments suggest that 
the formation of some secondary structure 
precedes tertiary organisation (Ewbank 1992). A 
possible exception to the Anfinsen-hypothesis 
constitute molecular chaperones, Le., proteins 
which assist or hinder folding Fig. 1.6) (Hubbard 
& Sander 1991, Hartl, et al. 1994). 

Secondary stmcture facilitates dense packing. 
The main driving force for folding water-soluble 
globular protein molecules is the need to pack 
hydrophobic side chains into the interior of the 
molecule, thus creating a hydrophobic core and a 
hydrophilic surface. But how can that be realised 
with the main chain being highly p o k  (with NH a i  
hydrogen donor and C'=O as hydrogen acceptor, 
Fig. 1.1)? The simple trick is to neutraIise the NH 
and C'O groups by a formation of hydrogen bonds 
(Ptitsyn 1992). These bonds effect the formation 
of the regular patterns of secondary structure l i e  
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a-helix (Fig. 1.7) and P-strand (Fig. 1.68). Any 
region of the protein that is not in either helix or 
strand will be termed 'loop' in this work (some 
authors use the term 'random coil' based on the 
helix-coil model (2- & Bragg 1959)). Helices 
and strands form dipoles mol, et al. 1981). The 
existence of secondary structure elements was first 
proposed by Pauling and Corey on theoretical 
grounds prior to their discovery in protein 
structures (pauling & Corey 1951, Pauling, et al. 
1951, Pauling & Corey 1953% Pauling & Corey 
1953b). 

Function-specific nwtp of secondaty structure. 
Combinations of a few secondary structure 
segments with a specific geometric arrangement 
occur frequently in protein structures (3D 
structure). Such combinations are termed super- 
secondary structure or motifs. Some of these 
motifs are associated with particular functions. 
Examples are the helix-loop-heliix DNA binding 
motif (Gibson, et al. 1993), the calcium binding 
motif (Fig. 1.9). or the Greek key or P-meander 
motif Fig. 1.10) (Hutchinson & Thornton 1993) 

Class$iiation of proteins into structural clusses. 
Motifs can be used to classify proteins (Richardson 
1981, Richardson 1985, Richardson & Richardson 
1989, Mmin & Chothia 1992, Orengo, et al. 1993, 
Wodak & Rooman 1993, Murzin 1994, Munin, et 
al. 1995), a more simple classification is based 
purely on the content of secondary structure 
(Chothia 1976, Richardson 1981). A protein can 
be classified as, e.g., all-a, if it contains almost no 
strand structure and a high content of helix (Fig. 
1.11). 

Protein folding: a problem solved only by 
nature? 

Variev of protein structures. Protein structures 
show a fascinating variety. Structure is more 
conserved by evolution than sequence. This is 
mainly explained by the fact that the 3D structure 
is closely related to the function of the protein. 
Although the mutation of a few residues in a 
protein are likely to destabiie the fold (Dao-pin, 
et al. 1990, Dao-pin,, et al. 1991a, Dao-pin, et al. 
1991b), evolution has created arecord of sequence 
variation not changing the 3D structure. Two 
natural protein sequences can differ by 75% of 
their residues and, yet, have the same 3D structure 
(Sander & Schneider 1991). 

"When the first structures of proteins were 
solved by X-ray crystallography biochemists 
were struck by the beautiful topologies of their 
backbone foh? and soon researchers in the 
field became eager to collect structures, and 
much like zoologists and botanists in past 
centuries they developed systematic schemes 
and looked for c o m n  features among the 

various families of forcis hoping to unravel the 
underlying theme responsible for their bizarre 
structures." (Wu, et al. I9921 

Cracking the code. Solving the protein folding 
problem means deciphering the code according to 
which the 3D structure is encrypted in the amino 
acid sequence. Can we crack the code, i.e., can we 
unboii the egg (Perutz 1940)? Many researchers 
successfully fail in doing the neat trick (which is 
why the issue of predicting protein structure is so 
interesting...). Prediction methods can be 
distinguished according to the principle they start 
from: physics or statistics. The prediction success 
of methods based on physical principles is st i l l  
very limited. 

Marginal entropy differences determine protein 
stability. What determines protein stability? The 
hypothesis of Anfinsen is that the folded state of a 
globular protein is characterised by a minimum in 
free energy (Anfinsen 1973). The folding 
transition is largely a two-state process: unfolded 
non-native chain 0 -> folded native structure 0. 
As a fnst approximation, intermediate states can be 
neglected (though recent exceptions have been 
found (Ewbank & Creighton 1991, Ewbank, et al. 
1995)), and the difference in free energy between 
unfolded and native state (A G) can be 
approximated by (Lattman & Rose 1993) 

A Gu-,N = - RTln K 
with R being the gas constant, T the absolute 
temperature, and the equilibrium constant K = 
number of chains in U / number of chains in N. 
Typical values for AG are -5 to -15 kcaYmol 
(Lattman & Rose 1993). 

Hydrophobic forces drive folding stability. 
Why do proteins fold? The driving force for 
folding has been established to be the reduction of 
solvent accessible surface (Kauzmann 1959). 
Folding is driven by the attempt for dense packing 
(Jaennicke 1987, Stigter, et al. 1991, Pickett & 
Stemberg 1993). Globular proteins are hown to 
have mean packing densities reminiscent of solids 
(Lattman & Rose 1993). This density can possibly 
be explained by the complementarity between 
interior side chains, fitting together like pieces of a 
jigsaw pnzzle Fig. 1.12) (Taylor 1992). 

Dense packing determines the conformational 
specificity? What determines the specific 
conformation of a fold? One explanation could 
again be the density of packing, Le. only very 
specifk conformations allow the residues to pack 
into the jigsaw pnzzle. However, there is evidence 
that such a grouping can readiIy be done, i.e. does 
not require one particular conformation -man 
& Rose 1993). This suggests that dense packing is 
not the primary source of conformational 
specificity. What then determines the fold? One 
ataactive candidate is the stereo-chemical code: "It 
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is plausible that conformational specificity is 
imposed through a redundant stereo-chemical code 
that arises from the interplay between the shape 
and polarity of residue si& chains and secondary 
structure conformation." (Lattman & Rose 1993). 

Evolution creates a record of the unlikely! 
A single mutation can destabilise a protein The 

mutation of a single residue typically causes an 
approximate reduction of the free energy 
difference between native and unfolded state of 
about 1 k d m o l  (Lauman & Rose 1993). Thus, 
the exchange of a few residues can already 
destabilise a protein of more than 100 residues 
@ao-pin, et al. 1990, Dao-pin, et al. 1991% Dao- 
pin, et aI. 1991b, Zabin, et al. 1991). Does this 
imply that two proteins with some different 
residues have a different 3D structure? And if, are 
all potential 3D structures realised in nature, i.e. 
are there some 20N diffemt folds for proteins with 
N residues realised in nature? The fact that a 
single mutation can destabilise a protein implies 
only that the majority of the 20N possible 
sequences adopt different structures. But, has 
evolution created such an immense variety? 
Only mutations not altering the structure 

survive. Random errors in the DNA lead to the 
wrong translation of the information coded in the 
genes into sequences of amino acids. 'Ihese errors 
are the basis for evolution (Darwin 1859, Monod 
1970). Are all such errors carved into fossils, or do 
only the fittest survive? The function is 
determined by the structure and the environment of 
the protein. Mutations resulting in a structural 
change are not likely, since the protein Cannot 
perform its task Thus, only those errors are likely 
to be accepted which do not alter the structure. Of 
course, this is only one si& of the coin, would it 
not be possible to accept changes of the structure 
and consequently of the function, there would not 
be much room for evolution. Indeed, one of the 
evolving pictures is that proteins consists of 
functional modules, which are combined in various 
ways to yield different properties for the proteins 
@ork 1992, Bork, et al. 1992~. Doolittle & Bork 
1993, Green, et al. 1993). 

How much variation in sequence is possible? 
Mutations of amino acids survive if they do not 
change the 3D structure of the folded protein. The 
known proteins are a record of exploration for 
variation of sequence with no effect to structure. 
Structure is more conserved than sequence 
(Chothh & Lesk 1986). But, how much variation 
of the sequence can exactly be accepted without 
changing the structure? The surprising result is 
quite some (Fig. 1.13). Evolution has realised 
pairs of proteins which have the same 3D structure, 
although they have only 25 of their 100 residues 
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alike. Of course not any two residues can be 
exchanged anywhere in the sequence. Instead, the 
possible exchanges depend on the details of the 
structure and on the physico-chemical properties of 
the amino acids involved. Thus, the pattern of 
residue substitution - the record of the unlikely - 
carries information rather specific for a particular 
protein structure (Zuck&mdl& Pauling 1965). 

How many different protein folds exist? 
Speculations are that the number of different 

protein folds realked by nature is fairly limited 
(Chothia 1992, Finkelstein & Reva 1992, 
Finkelstein, et aI. 1993). However, the concept of 
'similarity' between folds is not clear-cut (Sippl 
1982). The number of unique chains is > 300 
(Hobohm & Sander 1994). Based on this number 
and recent analyses of entire chromosomes (Bork, 
et al. 1992b, Bork. et al. 1992a, Bork, et al. 1994) 
the estimate for the number of folds appears to 
confm the notion of 1,000 folds (factor of 3 
possible). 

Literature on protein structure 
Introductions to protein structure and folding 

(books): (Schulz & Schirmer 1979, Fasman 
1989b, Briinden & Tooze 1991, Lesk 1991, Rees, 
et al. 1992) 

Introductions to protein structure and folding 
(reviews): (Richardson 1985, van Gunsteren 
1988, Fasman 1989% Richardson & Richardson 
1989, Briinger & Nilges 1993, Dill 1993, van 
Gunsteren 1993, Murtin 1994) 
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Proteins are the machinery of life 
- Rosetta stone 

storage: DNA (sfa blueprint: RNA nctional: 

- 30 - l0 ,OOO amino acids 
- alphabet = 20 letters of amino acids 
- common: basic tetrahedron 

>> Fig 1.1 
>> Fig1.2 

>> Fig 1.3 

>> Fig 1.4 

- biosynthesis of amino'acids into polypeptides 

- flexibility of chain: the dihedral angles 

Sfan ODoncghue & Burfchsd Rosl: Computntiond took forexpcrimcnbl deturmirubn and lhcoreticd pmliction of protein rtmcturc:IShlB' 95: h h r i d : c :  Jul16.1995 1T-3 

Fig. 1.1: Basic tetrahedron of all amino acids 
(a) (b) 
side 
chain 
I 

N 

H 0 
C 

Ha 

I 
CP 

(a) The atoms around the Ca atom all amino acids have in common. The convention is to 
lahcl thc carbon atoms in thc side chains with Grcck Ictters starting from thc ccntral Ca 
(IUPAC-IUB, 1970). (b) In nature generally only the left-handed L-configuration of an 
amino acid is found. The reason for the symmetry breaking is eventually a random initial 
event (Schulz & Schirmer, 1979). 
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Fig. 13: Biosynthesis of amino acids to polypeptides 

side chain' side chain2 
I side chain2 I 

side c&in 
I I 

NH 3 + - c ~ c o o  -+ NH~+-c-c&- + N H ~ L C ~ C -  N-C-COO- 

Aa Ra 

+ HZO 

Aiiiino acids are joiiicd aid-to-end during protein synthesis by the forination of pcptide 
bonds. According to the characteristic ends, the first residue of the left hand side in a protein 
is termed the N-terminal end, h e  right hand side as the C-terminal end. 

Figure taken from (Rost, 1993) 
- ~ .  - _I_ -. . - - 



Fig. 1.4: The dihedral angles 

The peptide bond (CO-NH) has a partial double bond charactcr. As a conscquence, the 
surrounding 4 atoms lie in a plan (indicated by quadrangles). Rotation along the polypeptide 
chain is possible around the anglcs cp and y~ on both sides of the Ca atoms. 

Figure taken from (Rost, 1993) 
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Hierarchy: 
>> primary structure 
>> secondary structure 
>> tertiary structue 
>> quaternary structure 

amino acid sequence 
e.g.: a-helix; p-strand; 
arrangement in 3D 
grouping protein chains 

3D structure is determined uniquely by sequence 
- unfolded sequence folds into unique 3D structure 

- folding reversible 

- thus, information contained in sequence 

- formation of secondary structure first 

(Epstein et al., 1963, Anfinsen & Schenga, 1975) 

(Creighton, 1992) 

(Ewbank & Creighton, 1992) 

(Ewbank, 1992) 
D Fig. 1.5 

Exception: chaperones 



Fig. 1.5: Simplified view of protein folding 

Figure takcii from (Snndcr ct nl., 1992) 

, SCyl O’hnoghue & Buikhsd Ron: Cornpulaliond twlr for expaimenwl detcrmimtion and I h e m l i d  prcdiclion of protein ~(ntclure: ISMD’ 95: CYnbfidgr.hl16.199S IT-9 

”the art of avoiding sticky situations” 
(Hartl et al., 1994) 

- prevent aggregation of newly synthesized polypeptides 

- folding to the native state 
,>> Hsp70 (heat shock protein 7OkDa) 

>> Hsp6O / GroEL 
>> Fig. 1.6 

- further literature: 
(Hubbard &Sander, 1991, Saibil &Wood, 1993, Hartl et al., 1994) 

F .  ,\*.( , *, , “ ,, ,,.. . ,. . .. .. ,. . , ... ... .... , , ......._ .:... . . , . I . .  .: .... I: .: .. Cr. .:.. .... ..... ?e..”.*.: .....I.. : I . .  l..* *,. ’.>.*< 1T. 
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Fig. 1.6: Chaperone mediated protein folding 

Figure taken from (Martin & Hartl, 1993) 

SC~ODonoghuc&BurkhsdRo~CompulJriorwltwls forespnimenW dewmination and chcorcticJTpredictionofpmtel,s~~.ISMB'95: CambtidgcJul16.199.5 1T-11 

driving force for folding globular water-soluble proteins: 
hydrophibic side chains into the interior => 
hydrophobic core, hydrophilic surf ace 

(Kauzmnann, 1959, Lesk, 1991, Creighton, 1992, Lattman &Rose, 1993) 

but, main chain highly polar (NH donor, C'=O acceptor) 
trick neutralise polarity by forming hydrogen bonds 

(Ptitsyn, 1992) 
D Fig. 1.7/1.8 

H: a-helices and E P-strands form dipoles 

third class: termed L: loop (often called random co 
(Hol et ai., 1981) 

on helix-coil model) 
(Zimm & Bragg, 1959) 

Id, based 

secondary structure formation proposed before first X-ray 
structures were solved 

(Pauling & Corey, 1951, Pauling et al., 1951, Pauling & Corey, 1953a, 
Pauling & Corey, 1953b) 



Fig. 1.7: Hydrogen bond pattern of helix 

Hclices of polypcptidc chains with i n t c d  hydrogen bonds (dashed). Hydrogen bonds are 
between the amide and carbonyl groups of residues i and i+3. Thus one helix turn covers 3.6 
residues extending over some 1.5A per residue. The side chains point outwards (circles 
marked with R). Figure taken from Schulz & Schirmer (1979). 

S h  O'Donoghue k Burkhvd Rort: Cornpuwtiond tools for cxperimenwl determination and chrorclical prediction of prolein rbwturc:ISMB' 95: Cambridgz Jul16.1995 IT-13 

Fig.. 1.8: Hydrogen bond patterns of strand 

t . b t  t t i  

Hydrogen bonds are indicated by dashed lines and chain directions by arrows. Ca are 
marked by dots. (a) antiparallel three-stranded &sheet, (b) parallel three-stranded psheet 
The side chains point alternatively above and below the sheet. The distance between two 
neighbouring strands is about 581. It has been noted recently that often the larger of the two 
holes formed in an antiparallel sheet (a) cannot be filled by side chains, thus, effecting a 
majority of the defects of close packing in protein globules (Finkelstein & Nakamura, 1993). 
Figure taken from Schulz & Schirmer (1979). 

S h  O'hnoghue X: Durkhvd Rost: Computational twlr for cxpduncntal determination and lhcorelical prdiction nfpmtcin structure: IShlB qk Cambridge: l u l  16.1005 IT-74 
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Fig. 1.9: Calcium binding motif: helix-loop-helix 

In ribbon diagrams, helices are usually drawn as spirals or cylinders, and strands as arrows. 
Calcium binding motif: the two helices (from the muscle protein parvalbumin) give the 
scaffold for binding and releasing the calcium ligand (shown as a sphere). Figure taken from 
BriinindCn & Tooze. (1991). 

Fig. 1.10: Greek-key motik four strands 

Greek key (or pmeander) motif: four adjacent antiparallel pstrands are arranged in a pattern 
similar to ornamental patterns used in ancient Greece. The structure is that of stapl~yloco~cus 
nuclease, an enzyme that degrades DNA. Figure taken from B m d h  & Tooze, (1991). 



classification based on motifs 
(Richardson, 1981, Richardson, 1985, Richardson & Richardson, 1989, 

Johnson, 1991, Murzin & Chothia, 1992, Orengo et al., 1993, Wodak & 
Rooman, 1993) 

classification based on structural alignments and domains 

classification based on content in secondary structure 

(Holm et al., 1993, Holm & Sander, 1993, Holm & Sander, 1994a, Holm & 
Sander, 1994b) 

(Chothia, 1976, Richardson, 1981, Zhang & Chou. 1992) 

- all-a: % a  245% ;"/oopc 5% 
- all+ % a  C 5% ;%p> 45% 
- arb: % a  130% ;% p 220% 
- rest 

)> Fig. 1.11 
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Fig. 1.11: Percentage helix vs. percentage stvand in known 3 0  structures 
Figure 3: Content of helix YS. content of strand 



What drives folding? 
What determines conformational specificity? 

.~ 

Scan O'hnogbuc k B U M  Ron: Compuwimnl look for experimental determination and thcomkd prediction of pmtM s~p~~rc:IShlB'  95: -bridge: JulI6.1WS 

folding largely two state transition: 
- unfolded nonnative U -> folded native N 
- free energy: 

A fU->N cc -RTlnK 

>> R, gas constant; T, absolute temperature; 

)> typical values -5 to -15 kcal/mol 
K, equilibrium constant = #U/#N 

(Lattman & Rose, 1993) 

packing densities reminiscent of solids 

possible explanation for density: jigsaw puzzle 
(Jaennicke, 1987, Lattman & Rose, 1993, Pickett & Sternberg, 1993) 

(Taylor, 1992) 
>> Fig. 1.12 

SCm O'lhino$hue h Ourkhal Run: Cnmpiilatiimal tinih fur expnirncnlal Jclcnninalitin an1 thcoreticd pmlicticln of pnilcin slnictiirc: 1ShlD' 9% Carnhrit1.w: Jul 16. 1'MS 
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€ig. 1.12 Protein jigsaw puzzle 

The protein jigsaw punle. At first sight the solution is 
easy because there is a known backbone structure 
(green) to copy. But  packing the side-chains (small red 
and black circles) i s  difficult, because for each piece 
there are a number of alternatives (rotamers) only one of 
which will appear in the completed picture at any 
position. The approach of Desmet et a/. can be ex- 
plained. in simplified terms. by considering the options 
for the residue (C) at the second position. If there are  
three rotamers for C and two rotamers for S. then each C 
is tried with each S at the first and third positions. If 
there is a roamer of C that will not fit with any S at 
either adjacent position (or with G at the thirteenth 
position). then that piece cannot be part of the final 
picture and can be  thrown away. This test Is applied to 
all positions, so reducing the number of pieces that 
need to be considered when it comes to the final 
(combinatorial) assembly stage. 

Figure taken from (Taylor, 1992) 

SLm ODonoghuc k Burlrhard Ron: Compub!ionaI bok for cxpaimenlal determination and theoraicd pedictim of pmtein sknctnre:ISI~W 9% CYnbtidgc: Jul16.1995 1T-21 

one candidate: density of packing: 
ody very specific conformations fit into the jigsaw 

another: sfereochen&cal U->N code: cc -RTlnK 

"It is plausible that conformational specificity is imposed 
through a redundant stereochemical code that arises 
from the interplay between the shape and polarity of 
residue side chains and secondary structure 
conformation." 

(Lattrnann & Rose, 1993) 

Can we model protein folding? 



"When the first structures of proteins were solved by X- 
ray crystallography biochemists were struck by the 
beautiful topologies of their backbone folds and soon 
researchers in €he field became e a g e r  to collect 
structures, and much like zoologists and botanists in 
past centuries they developed systematic schemes and 
looked for common features among the various families 
of folds hoping to unravel t h e  underlying theme 
responsible for their bizarre 

(Sippl et al., 1994) 
- first structures: myoglobin and hemoglobin (oxygen 

(Kendrew et al., 1960, Perutz et al., 1960) 

(Berstein et al., 1977; Abola et al., 1988) 

binding) 

- today more than 2,000 structures known 

Myohcmcrytrhin (Zmhr) 
four hcliix bundle with 118 rcsidues. The molecule binds oxygcn in musclc cells (sourcc: 
sipunculan worm). The helices are shown as spirals, the loop regions as lhin lines. The 
fifth helix is a 310 helix. spanning only over three residues. The other helices extend over 
16-24 residues. 
Myoglobin (lmba) 
seven hclix bundlc with 146 residues. This moieculc was one of the two first 
expcrimentally solvcd structulcs (Kcndrew et al.. 1960). It is used for oxygcn siongc 
(sourcc sea hare). Thc oxygcn is stored in form of the heme group shown in thc centre 
(green with blue ccntre). The heme is enclosed by the scven heliccs (shown as cylindrcs) 
like in a pocket. Thc helices span over 5-16 residues. The 310 helix shown on the left 
hand side (red, above the heme) spans over 6 residues. 

' dimer (two distinct chains) with 247 residues (source: human). The strands are shown as 
arrows with the head pointing towards the end of the protein (C-terminal end). The 
hydrogen bonding partners of the residues in a strand are those at the strand nearest by 
(bonds not shown). The antiparallel p-sheets extend over 2-10 residues: 
Immunoglobulins act as antigen receptors on the surface of B cells in the immune system. 
All immunoglobulin domains have similar 3D structure. 
Satcllite tobacco nccrosis virus coat protein (2stv) 
dominantly an a I p structure with 184 residues. The virus RNA is embedded in the 
pockets formed by the p-sheets. The structure is typical for most v i m  coat proteins. 

mixture of helices and strands with 138 residues (source: clostridium MP). It is involved 
inelectron frmport (flavin mononucleotide-binding redox protein). The binding of the 
ion is illustntd by thc aroma8 at thc right hand sidc (grccn). The &shcc8 form a pockct 
iii ilic con: of [lie prciicin. w1icn.n.s ilic licliccs lic on ilicsitrfacc. Tic ion is hoitntl on t l ic  
loop mgions at the N-terminal cnds (arrowhcads) of thc pamllcl pstnnds. 
TIM barrcl lriosc phosphatc isomcmc (6th) 
barrel1 structure with 249 residues (source: trypanosoma Brucei). It functions as an 
enzyme to transform ATP (adenosine tri phosphate) into ADP (adenosine di phosphate). 
The molcculc is built up from four fJ-u-p-a motifs that arc consccutivc hoih in scqucncc 
and struclurc. The motifs arc m g e d  such that in the ccnln: ;I b m l  is formcd. 

Bence-Jones immunoglobulin (Ibjl) 

Ravodoxin (4fxn) 

Sean ODonoghue k Uurkhvd Rosc: Computatimnl bmls forexpnimental &mination and iheordinl prnliition of pniicin stturturc:IShm' 9% Cambridge: Jul 1 4  lW.5 1T-21 



Boiling an egg implies unfolding proteins 

Can this procedure be reversed in theory? 

Two schools: statitics and physics 
Obstacles to modelling from first principles: 

(Perutz, 1940; Perutz, 1980) 

Can the Rosetta stone of protein folding be decrypted? 

- marginal free energy difference between folded and unfolded state 
- one residue exchange can destabilise a structure 
- given complexity -> too much CPU-time 
- inaccuracy in knowledge of physical constants, i.e, potentials 

How far do we come with today's molecular dynamics? 
- refining structures 
- modelling the interactions between protein and ligands 
- modelling of short (some residues) loop regions 

(Abagyan & Totrov, 1994, Abagyan et al., 1994) 

BUT. not distinction: native fold and grossly misfolded structure 
(Novotny et al., 1984, Novotny et al., 1988) 

Scan O'Donoghuc & B U M  R o e  Computationiond mob forcxpaimcnld delumidon and LbecraicaI pcdictiw oiprutein slrnctttrc:ISMB'95; Cambridge: Jull6.1995 1T-25 

A single mutation can destabilise a protein 
- free energy marginally different (= Ikcal/mol) 
1993) 

(Lathan & Rose, 

(Zabin et al., 1991) - thus single residue exchange can destabilise 
- => 20 
- in principle yes, but are they all realised? 

Only mutatioiis not altering structure survive 
- random errors in DNA basis for evolution 
- all errors carved into fossils of protein structures? 
- no, function has to be maintained -> structure 
- more complex: evolution by shuffling domains or modules 

different folds of proteins with N residues? 

(Darwin, 1859; Monod, 1970) 

(Bork, 1992, Doolittle & Bork, 1993, Green et id., 1993) 

How much variation in sequence is possible? 
- structure evolutionarily more conserved than sequence 

- 75% of the sequence can be exchanged without changing the structure 
(Chothia & Lesk, 1986, Schneider & Sander, 1991) 

(Snndcr Rr Sclimidcr, 1991) 



Figure 1.13: Relationship between structural honiology and sequence identity 
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For about 1,000 pairs of fragments from proteins with known 3D structure, alignments are 
made. The percentage of identical sequences in this fragment is plotted versus the length of 
the fragment (alignment length). The homology threshold divides the graph into a region in 
which all pairs are structurally homologous (root mean square deviation of backbone e MA), 
and a region where homology is unlikely ("don't know region"), Le. where some fragment 
pairs are structurally similar and some are not. Figure kindly provided by Reinhard 
Sc hneider. 

S6m O'Donoghuc k B U M  Roa: CompulJlionnl (OOL for uperimenwl Jelcnninalion awl lhcOraid prediction of prolein skuclu~c: ISMD' 9% Cambridge: Jul 16.1995 

only 1000 folds? 

how similar are similar folds? 
root-mean square deviation of backbone: 

(Chothia, 1992) 

where rj is the vector pointing to residue i of structure S, N the number of 
residues, and the minimum is taken over all k possible orientations, i.e. the 
optimal solution. A reasonable cut-off to regard two structures as 
ImiioIoguc is D I 3 A. 

(Sippl, 1982) 

how many folds = where setting the cut-off 



-0- model building by homology (HSSP) 
--6. known 3D structures (PDB) 
A unique 3D structures ( 4 5 %  scquencc identity) 

100%=40191 
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Fig. 1.15 Nirrnber of iiniqtie protein folds 

255 
250 

200 

150 

100 

50 

0 

set = 330 

1 2  3 4 5 6 7 8 9 10 

level  of structural similarity 

Figure taken from (Holm & Sander, 1994a) 



Given a certain cut-off: 
How many folds exist? 
Again: not as simple 
- secondary structure level? 
- level of all residues? 
- level of domains? 

(Holm & Sander, 1994b) 

Thus: how many? 
human sequences 
now implicitly known 3D 
unique( <Z% painvise seq. identity) 
unique (most stringent cut-off) 

=> unique human folds 

=> 3 
=> currently >2,OOO 
=> currently > 400 

100,000 
10,000 
< 400 
< 150 

< 1,500 ?? 

SCsn O'Donoghuc & Burkbvd Rost: Compuetiond tools for expnimaIa1 delcrminlon and chmtic;rl prcJiaion of pmlcin ~ ( I ~ l n r c :  ISMB' 95: CYnbridSc. Jul16.1995 1T-31 



Calculating protein structures 
from experimental data 
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Summary ’ 

The experimental determination of protein 
structure is blooming. Part of the reason is the 
recent development of computational methods for 
the determination, and the availability of 
computers powerful enough to run them. In spite 
of the fundamental role of this methods in 
determining the accuracy of the protein structure, 
none have been rigorously evaluated. 

We will briefly a v e r  the basic experimental 
methodology behind the two main techniques for 
atomic-resolution structure detexmination - nuclear 
magnetic resonance (NvIR) spectroscopy and X-ray 
crystallography mC). In this tutorial, the NMR 
methods will be e m p h a s i i  For NMFC structures 
are calculated from a set of short @A) distances 
using either distance-geometry @G) or dynamical 
simulated annealing @SA). These initial structures 
are then refined with a number of methods: 
currently, there is no consensus on which methods 
are best 

For XRC, the central problem is determining the 
phase of the reflections in the diffraction pattern. 
We discuss briefly several computational 
approaches: direct methods, maximum entropy, 
density modification, and molecular replacement 

Introduction 

The state of the art. Look in any recent volume 
of Nature or Science and you are guaranteed to f a d  
at least one important protein structure which has 
recently been solved at atomic-resolution. For 
more structures, you could glance at the newly 
created Nature Structural Biology, designed to 
handle the ovefflow of structures from Nature, or 
several other newly aeated journals loaded with 
protein structures e.g. Proteins,  Prote in  
Engineering, Protein Science, or Structure. Driven 
by advances in molecular bioIogy, data acquisition, 
and computer power, the experimental 
determination of protein structures is blooming. 

What is the rle of computational methods? 
Which computational method is used is of 
fundamental importance to the accuracy and 
precision of structures obtained, or even to the 
success or failure of the determination. Recent 
advances in these methods have increased the scope 
of structures which can be determined. However, 
due to rapid development, new methods have been 
introduced based only on prototype, single-case 
studies; there is currently no adequate measures for 
comparing methods. 

What are the major techniques? Which are the 
limitations? For any protein given we want to 
know the structure of;we have two major 
approaches. If the protein less than about 250 
residues, we can use NMR spectroscopy to 
examine the solution structure - this will almost 
always work, and the process takes from two 
months to two years, sometimes forever. The 
NMR technique is still emerging - in the near 
future, the current limitations of protein size and 
speed of determination will improve; also, NMR 
will yield more detailed information on the 
dynamics of proteins in solution. Other 
breakthroughs are likely, although the direction is 
less clear. The other approach to structure 
determination, with no theoretical h i t  on the 
protein size, is to try to convince the protein to 
crystallise. The crystals must be large and well- 
ordered. This is a question of luck and patience, but 
the success rate is nowadays very high. However, 
not every protein structure can yet be solved. Most 
of the extremely large proteins are simply too 
irregular to form adequate crystals; here, we have to 
be content with breaking the protein into smaller 
domains and solve the structures of them. Some 
classes of proteins, for example membrane 
proteins, still present a challenge that we have no 
established method for dealing with, although even 
here we are making progress. 



How to access experimental protein structures? 
For convenient browsing through aIl protein 
structures, it is worth looking at  the 
Macromolecular Structures series published 
annually by Current Biology press which covers 
all proteins solved in the last year. The central 
public computer database is the Brookhaven 
protein databank - PDB (httpJ/www.pdb.bd.gov/). 
Currently, there are over 3000 structures; of these, 
400 have homologies less than 25%; about 150 are 
unique folds. About 20% of the structures in the 
database are determined by NMR; this proportion 

The current format of a PDB entry is widely 
recognised as outdated, note the card numbex at the 
last line - helpful if your stack of paper cards (one 
per line) falls on the floor! There are efforts to 
come up with a new format, but they are not 
expected to come to fruition for at least two years 
more. 

of NMR StNCtUreS is increasing. 

Structures of proteins in soIution: 
NMR spectroscopy 

Basic experimental methodology 
Sample preparation. There are a few important 

requirements for studying a protein by NMR 
spectroscopy. One is that the sample must be 
sufficiently concentrated (around OSmglml or 
more); for many proteins, this is actually close to 
physiological concentration, however in vitro 
aggregation is often a problem at these 
concentrations. This must be prevented as it will 
raise the effective molecular weight of each 
molecule above what can be studied by NMR. 
Another requirement is the production of 2H-, I3C- 
, or 15N - labelled protein 'samples - larger 
proteins, labelling is essential. Fortunately, this is 
not so difficult with modem cloning techniques. 

CoZlecting spectra. Not a trivial step - first, the 
NMR spectrometer: it costs at least $US113 
million - requires special housing in a building 
without iron; the liquid nitrogen cooling the 
superconductor coils must be renewed weekIy; 
most metals must be kept at least 3-4 metres 
distant from the spectrometer. Such a valuable 
instrument is usually purchased for the use of 
several (or many) research groups - unfommately, 
to collect adequate (3D and 4D) spectra to 
determine a large protein can take one, two, or 
more weeks of uninterrupted measurement time - 
this means fighting with other users for exclusive 
acass4 

Then comes the measurement techniques, or 
pulse sequences, which determine the type of 
spectra obtained; NMR is a rapidly evolving 

technique - there is no standard set of techniques: 
instead, there are many standard techniques, all 
constantly beiig improved by different groups. 
Different proteins require different pulse sequences 
to be used, depending on the size, type of labelled 
compound that can be made, etc. In addition to a 
background in biochemistry or molecular biology, 
the protein NMR spectrometrist must have a good 
grasp of the mathematics and physics behind 
biological NMR. 
1D NMR spectra. The sample is placed in a high 

intensity magnetic held (7 Tesla or more) - nuclei 
with a net magnetic moment tend to align with the 
field creating a macroscopic magnetisation 
pointing in the same direction as the spectrometer's 
field (up, or usually along the z axis). 
In continuous-wave (CW) spectrometry, we 

apply radio-frequency waves, and slowly scan 
through a range of frequencies. Different nuclei in 
the sample have different resonant frequencies; 
when the frequency scan passes through a resonant 
frequency, a small absorption peak can be detected. 

CW spectrometry, although conceptually 
simpler, has been superceeded by pulse 
spectroscopy pioneered by R. Ernst (for an 
excellent review, see his Nobel lecture: Emst, 
1994). Here, the radio frequency is applied as a 
pulse, rather than a continuous wave. The pulse is 
timed to rotate the magnetisation 90°, from the z 
to the x axis. The pulse is then stopped, and the 
magnetisation precesses around the z-axis, slowly 
decaying towards it. This precession causes a 
(much weaker) radio frequency electromagnetic 
signal which is detected. The different firequencies 
corresponding to the different nuclei a l l  contribute 
to the signal. By calculating the Fourier transform 
(FT) of the signal, one can then construct the same 
spectnun measured by the CW method, however 
the entire spectrum is obtained at once. The main 
advantage is a tremendous gain in signal-&noise. 

Spectra of two or more dimensions. The NOE 
spectrum The 1D NMR spectra of proteins is not 
in itself very useful; it is simply too crowded, 
since the dispersion or frequency differences 
between nuclei is often smalIer than the line width. 
But to calculate structures from these spectra, the 
lint thing we must do is to assign each peak with 
a specific atom in the protein (in the future, this 
may not always be necessary - see below). 
Narmally we do proton NMR - we see one or more 
peaks for each proton - some protons are easy to 
assign. For example, if we have only one tyrosine 
in our protein, the protons of the tyrosine wil l  
have a clearly distinguishable chemical shift 
(ffequency) due to the effect of the ring-current 
magnetic field. What we then need to do is to 
connect these assigned protons to neighbouring 
protons. This is the principle behind 2D spectra. 

2s-2 

http://httpJ/www.pdb.bd.gov


The most important 2D spectra are the nuclear 
Overhauser effect WOE) spectta. it consists of 
cross-peaks which we can normally assign as 
arising from pairs of protons (a and b). The 
volumes of the cross-peaks, V,, can be related to 
the distances between the protons to a first 
approximation (hhcura & Ernst, 1980): 

(1) V, = c d (s,b,,) -' 
where c is a constant determined once for each 
spectrum. Thus for each volume we can assign in 
the NOE spectra, we obtain a distance restraint Dn - 
the set of all such restraints for a given protein is 
denoted D. Due to the inverse4xth power of this 
relationship, only small distances (<5& can be 
detected. Thus the calculation problem of NMR is 
to find the structure given only D. 

Structure calculation from inferproton disfances. 
First, we must use ab inifw methods, i.e., those 
which begin with no prior knowledge of the 
structure - hence random starting structures are 
used, either random x,y, and z coordinates, or 
random phi-psi coordinates (Le. structures with 
correct geometq). These methods then generate 
'well-defined' Structures which have reasonable 
geometry and agreement with D. The next step is 
to use refinement methods (see section below) 
which start from these well-defined structures, and 
attempt to improve them. 

Major problems 

determinationare: 
P1 How to increase the molecular size 

The major open questions with NMR structure 

limitation? 

P2 How to automate the assignment process? 

P3 Which structure calculation procedure to use? 

P4 How to handle the dynamic nature of the data? 

We will discuss new approaches to p2-P4. 

Ab initio structure calculation in 
distance space 

Distance space is where each interatomic distance 
is considered a coordinate: hence we have p( A-l)p 
dimensions for a molecule of A atoms. Methods 
which work in this space are called distance 
geometry (DG) methods. DG methods were the 
first to be used to calculate structures from NMR 
data; they are still in wide use, although the 

molecular dynamics methods (next section) are 
better. We will cover DG m some detail. 
Aim. Beginning only with D, search in distance 

space to find sets of complete distance matrices 
(which correspond to 3D structures) which 
simdtaneousIy satisfies (as closely as possible) all 
restraints in D, covalent geometry restraints, and 
also some non-bonded term to prevent spatial 
overlap of the atoms. 

Method: From D ,  construct upper- and lower- 
bound distance matrices reflecting the initial 
knowIedge about all interatomic distances in the 
molecule. Most distances in these matrices will 
have initial lower bounds of the van der Waals 
radius, and initial upper bounds of infinity. These 
bound matrices are then smoothed by repeated 
application of the triangle inequality - d(a,c) S 
d(a,b) + d(b,c). From these smoothed bound 
matrices, we then use some procedure (either 
random selection, or meterisation (Havel & 
Wiithrich, 1984)) to choose unique values for each 
interatomic distance, de. Such a distance matrix is 
called embeddable i f a  3D structure exists which 
is consistent with the matrix. From the distance 
matrix, we construct a metric matrix gij - if the 
distance matrix is embeddable, the metric matrix 
has exactly three Eigenvalues which give the 
coordinates of the structure. Normally, however, 
due to inaccuracies in the data, and difficulties with 
the method, d is not embeddable; hence g has more 
than three Eigenvalues. In these cases, the three 
largest Eigenvalues are chosen. The resulting 
structure is normally quite poor, and require further 
refinement. 

Variations: (Havel ef al., 1983; Kuntz et aL, 
1989); DG with meterisation, (Havel & Wiithrich, 
1984); substructures, @vel & Wiithrich, 1984); 
linearized embedding, (Crippen, 1989). 

Results. Provided D has a sufficient number of 
distances, the method works well. When D is 
sparse, there are sampling problems (Melzler et QL, 
1989). 

Discussion Initially, this approach was used for 
all NMR structure calculations. It is sti l l  widely 
used for the initial ab inifio calculations, although 
DSA (see below) has better sampling and is more 
efficient. The method is sometimes used to 
generate substructures of about 1/3 of all the 
atoms; these are then refmed with other methods. 
A major limitation is the requirement that a l l  input 
data be expressed as distances: many restraints 
derived from NMR spectra cannot be expressed in 
terms of distances, e.g. ambiguous constraints. 
Hence this method is limited in application. 
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Ab inifio structure calculation in 
Cartesian space 
In 3D Cartesian space, eachatomis descn'bedby 

three coordinates; hence the total dimension for a 
molecule of A atoms is 3A - about A/6 times 
fewer dimensions than for distance space. The 
method we will discuss in some detail is called 
dynamical simulated annealing @SA) (Griewank, 
1981). This method combines the simulated 
annealing principal (Metropolis et ul., 1953) with 
moIecular dynamics techniques (Valet, 1967). 

Aim Beginning from random struuures, search 
in 3D Cartesian space to find sets of structures 
which satisfy D ,  covalent geometry, and non- 
bonded term. 

Method: Start with either an extended 
polypepti& chain (Briinger et aL, 1986; Nilges et 
aL, 1988c), a random chain (i.e. random (I and y 
angles) (Nilges et al., 1991b), or with atoms in the 
gas phase (Le. random Cartesian coordinates) 
(Nilges et aL, 1988a). Then calculate the dynamic 
trajectory of the system using a molecular 
dynamics (MD) force field, plus a 'soft' potential 
energy term (Niiges et a l ,  1988~) which directs the 
motion toward structures which satisfy D; the soft 
potential switches between flat, square, and 
asymptotic behaviour: 

0 Brian 
%O&NOE Gn-DJ2 :a>E&D, { a@-@-'+ p@i-o)+x Bn2c 

n 

where the sum is over each NOE distance restraint 
Dn, a', is the corresponding distance in the current 
model structure, and the parameters crandx are set 
by the constraint that the function is continuous 
and differentiable at the switching distance Q. 

In the DSA method, the temperature of the 
dynamical system is controlled by coupling to a 
heat bath. By setting the initial bath temperature to 
lOOOK, and reducing the temperature gradually 
throughout the simulation, ending at or near zero, 
we anneal towards low energy structures. 
Essentially, we are simulating the condensation of 
the molecule Erom the liquid or gas phase to the 
solid phase. 

Variations.  DSA with DG-generated 
substructures (Nilges et ul., 1988b); solving 
symmetric multimas (Niiges, 1993; ODonoghue 
et ol., 1993); PEACS (van Schaik et aL, 1992); 
RUSH (Li et d, 1992; Byrne et al., 1994); Monte 
Carlo approaches have also been tried, however in 
MD, motion is restricted to the physically 
plausible steps, effectively reduceding the 

dimensionality of the search space. Thus h4D is 
expected to be more effienient than Monte Carlo 
(Griewank, 1981). 

Results. The method is Easter than DG, and has 
better sampling that the DG methods (Briinger et 
ul., 1987; Niiges et ul., 1991b). 

Discussion. Currently DSA is the method of 
choice for ab initio structure generation. The 
method is very general and flexible, and is still 
being actively developed. An additional advantage 
over the DG method is the possiiity of including 
ambiguous distance data. The approach is also 
potentially applicable to 30 structure prediction, 
provided that 2D distance information can be 
obtained (see section on 2D structure prediction). 

Ab inifio structure caIculation in 
torsion-angle space 
In torsion-angle space, each torsion angle is 

considered a coordinate: every residue has two free 
backbone torsion angIes ((I and y), and an average 
of about three side-chain torsion angles &$; thus, 
for a molecule of R residues we have a total 
dimension of about SR, nine times less than for 
Cartesian space. We will discuss in detail the most 
popular implementation of these methods which is 
in the program DIANA (Giintert et d., 1991). 

Aim. Beginning from random structures, 
searches in torsion-angle space to find sets of 
structures which satisfy 0, covalent geometry, and 
a non-bonded temL 

Method. Beginning with random chains. a 
variable target function is used: in the first stage, 
only restraints between sequentially close residues 
are used. Later, all distance restraints are used. 
Minimiition is done with a gradient decent 
algorithm. 

Variations. DISMAN, (Braun & Go, 1985); 
Monte Carlo methods (Bassolino et ul., 1988). 

Results. Due to the reduced number of 
dimensions, these methods are fast. Some 
difficulties handling P-sheets, although work- 
mundmethodshavebeenpmposed. 

Discussion. Currently shares the equal most 
popular position with DSA as a method for the ob 
initio structure generation. The high speed makes 
it useful for quick testing of distance data. Major 
limitation is the use of gradient minimkition - 
simulated annealing would probably give better 
performance. Not useful for fnrther refinement. 
One disadvantage of these methods compared with 
DSA is the assumption of perfect geometry - real 
structure have occasional violations. So far, no 
MD methods have been used in torsion angle space 
because of the difficulty in solving Newton's 
equations with so many holomonic constraints, 
although the technique is beiig developed. 

2s-4 



Distance-based refinement 
Aim. These algorithms start with a well-defined 

structure - by which we mean a structure with 
reasonable geometry, no serious van der Waals 
overlap, which also agrees reasonably wen with D. 
The starting strucbxe could come from any of the 
three ab inifio techniques discussed above. The aim 
is to improve the agreement to the data, also 
possibly to fit the structure to a more sophisticated 
force field. 

Method All these methods use constrained MD 
in Cartesian space. Most popular is refinement 
with DSA algorithms (Niges e? d., 1988b). A 
newer class tries to focus on the dynamic nature of 
proteins by generating ensembles of structures 
which have average distances that satisw the NOE 
data: time-averaged distances (Tor& et al., 1989; 
Torda et d., 1990); ensembleaveraging (Sheek e? 
al., 1991); exclusion potential (see talk). 

Results. It is clear that many of these methods 
do improve the structures, and the computational 
requirement for these calculations can be easily 
met. 

Discussion. As yet there is no coI1sensus as to 
which is the best method. The most popular is to 
use DG-generated initial structures with DSA 
distance-refinement, ending the structure- 
determination at that point. The success of these 
methods is evident in the number of solution 
structures now being produced. In many cases, 
where similar structures are available from XRC, 
the agreement between the two independent 
methods is very good (usually better than 1A 
RMSD). However, there still remains the question 
of the intrinsic dynamic nature of protkiis: the 
calculation procedures do not sufficiently address 
thii issue. 

Relaxation-matrix refinement 
Here we describe a relatively new type of 

refinement procedure that promises to improve the 
accuracy NMR structures - but at a cost! 

Aim. NMR does not measure distances directly - 
from the NOE spectra we obtain a set of cross-peak 
volumes, V, which we nonnaUy interpret as 
distances. But this’ interpretation has several 
assumptions which systematically fail. The main 
problem is called spin diffusion - the 
magnetisation transfer that we observe between 
two protons may have transferred via another 
proton. Thus we have some systematic errors in 
the distance set D. These algorithms attempt to 
address this problem. The algorithms start with 
structures already refined against D; the aim is to 
refine the structure to fit V. 

Method. We calculate the volumes from the 
atomic coordinates, we calculate the matrix of 

magnetic relaxation rates between all possible 
proton pairs - this is called the complete relaxation 
matrix (Keepers & James, 1984). We also require 
the gradient of this matrix (Yip & Case, 1989). 
Unfortunately, both these are O(N3) algorithms, 
hence requiring significant computation time. 
However, several recent algorithms have been 
developed to speed the calculation, and the problem 
can be parallelised. As with distance-refinement, 
we use a dynamical force field with an annealing 
schedule, however we replace the distance potential 
ENoE with a potential which measures agreement 
to V (Nilges et d., 1991a). 

Variations. torsion-angle minimisarion (Mertz et 
d., 1991); ensemble-averaging (Landis & Allured, 
1991; Yang & Have& 1993; Bonvin et al., 1994; 
Forster & Mulloy, 1994). 

ResuZrs. The method has not been widely used as 
yet, however in a l l  cases tried so far, relaxation 
matrix refinement has changed the structures by 
about 1A from the distance-refined structures, and 
has moved closer towards the crystal structure by 
about 0.4& 

Discussion. Although computationally 
challenging, RMA refinement has been achieved at 
least for some small proteins. Probably the biggest 
initial barrier is the integration of a l l  the NOE 
peaks - in the past, researchers usually just counted 
counter lines - the idea of going back and 
integrating several thousand peaks manually it nor 
pleasant However, new methods of assignment 
which increasingly involve computers from the 
beginning stages means that peak integration is 
increasing automatic. Thus, we are likely to see 
more RMA refinements. There is also currently a 
feeling of uncertainty about the application of this 
method, before the problem of multiple 
conformationshasbeen*uatelyaddressed 

New calculation methods for assignment 
We will discuss several new computational 

methods - all currently in progress - aimed at 
helping the assignment problem, which is the 
major bottle neck in the structure determination 
process. Methods covered include techniques for 
making assignments afrr the structure calculation 
floating assignment (Niges, 1993; O’Donoghue et 
aZ., 1993; Nilges, 1994); structure calculation in 
the absence of any initial assignments; also, 
attempts to use homologous structure to aid 
assignment 



Protein structure in the crystalline 
state: 

X-ray diffraction 

Basic experimental methodology 
Crystallisation. Proteins don't form crystals in 

vivo; convincing them to do so in vitro is a black 
art - but then, so is structure calculation. It is 
relatively easy to find conditions for a given 
protein to form a crystal, but forming the right 
crystal takes at Iot of playing around with different 
solvents and conditions. Finding the right crystals 
can take one week, 15 years (the case of actin), or 
forever. Average time: about six months. 

The smallest parallelepiped from which the 
whole crystal lattice can be constructed is called the 
unit cell. From group theory we know that there 
are only 65 possible types of crystal lattices in 
three-dimensions. 

Data collection. Having got the right crystal, the 
next step is to put it into the path of a X-ray 
(generally 1.5A wavelength) and record the 
resulting diffraction pattern. The difhction results 
from scattered of the X-rays by interaction with the 
electrons in the structure; hence for each atom, 
scattering is proportional to its atomic number. 
Due to the crystal lattice, which acts like a grating, 
the diffraction pattern is made up of discrete 
reflections. 

Phasing 
Aim. From the diffraction pattern, we can 

construct an image of what each unit cell looks 
like, we add a sine wave for each reflection, with 
frequency determined by its position in the 
diffraction pattern. But one thiig is missing - we 
need to know the phases of these waves - this 
information is simply not in the diffraction 
pattern! This is the infamous phase problem of 
crystallography. We discuss briefly computational 
approaches to the problem. 

Ab initio methods. The problem is to 
reconstruct the molecule from the discretely 
sampled FI' without phase information. The 
problem can be solved for small molecules, using 
the additional constraints of atomicity and 
positivity. So far, however, this approach breaks 
down for more than about 40 atoms. Direct 
methods are those which calculate the phases 
automatically: these methods work up to about 40 
residue (but only using very high quality data). A 
more promising approach involves representing the 
phase information in probabilities, and using 
maximum entropy and likelihood methods (Jaynes, 
1978; Bricogne, 1984, Bricogne, 1991). 

Molecular replacement methods. Phases can 
also be determined if a sufficiently similar (usually 
c 1.4A) structure is available using molecular 
replacement (Hoppe, 1957; R0ssman.n & Blow, 
1962). It has the theoretical danger that it uses 
previously determined structures to determine later 
structures, hence potentially adding biases. One 
example of this biases is that the number of 
structures solved with similar structures will be 
artefactually increased. This can affect database 
staristics on fold similarities. 

Having obtained at least preliminary phase 
information, an electron density map can be 
constructed: the initial map is usually quite poor 
and requires substantial refinement. Substantial 
improvements can be made by imposing simple 
constraints on the electrondensity map consistent 
with chemical knowledge about the molecule 
(atomicity, positivity, map continuity, etc.). 

Model building 
Aim. To build an atomic model of the protein 

which fits into a given electron density map. 
Methods. Hand-building is still very popular. 

Computer-assisted methods are available using 
fragment databases, however these require expert 
knowledge to use correctly. Several attempts have 
been made at developing automatic approaches 
(Read & Moult, 1992; Lamzin & WSon, 1993). 
This is a problem suited to artificial intelligence 
methods (Fortier et aL, 1993); neural networks 
have also been tried (Torda, personal. comm.). 

Refinement 
Aim. The initial structures built from the 

density maps can be very crude - the aim is to 
refine these models in Cartesii space. 

Methock. The method of choice is DSA (Briinger 
et al., 1987) - the minimisation procedure is 
similar to that for NMR DSA - molecular 
dynamics force field with an additional term to 
constrain the smcture to fit the X-ray data 



Structure verification and 
assessment 

How can we define which strucmres are 
acceptable? How do we measure the quality of 
structures? There are two approaches to these 
questions: acceptable shuctures must agree with 
the dataused to derived them (intemal criteria), and 
they must also satisfy additional criteria derived 
from our knowledge about what correct structures 
look like (external criteria). 

Regarding the internal criteria, the use of 'free' 
R-facms has been recently proposed for both XRC 
and NMR structure determination (Briinger, 1992, 
Briinger, 1993; Briinger et aL, 1993). This quantity 
is derived analogously to the cross-validation 
statistics (see Evaluation of prediction methods, 
next chapter). Use of this quantity promises to 
avoid over-refining and to recognise m r s .  

Regarding the external criteria: several packages 
are now available for checking protein structures: 
Procheck (Thornton, University College, London) 
and What if Wried, EMBL) check covalent 
geometry against small molecule databases, as well 
as some stereochemistry, and overlap checking. 
These groups have combined with several others 
and,the PDB in a project to provide comprehensive 
checking tools - they have a common WWW 
server (http://ww w.embl-heidelb erg .de: 840 04 
which has a hypertext interface to their programs 
and can be used to submit strudures for checking. 
Unfortunately, at the moment, support for NMR 
structures is only limited. A very different type of 
checking is done by Rosa (Sippl, University of 
Salzburg): it uses mean force potentials derived 
from the PDB to assess if the overall fold is 
nativelike (see next chapter). 
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Prediction of protein structure 

Overview 
- ‘State of the art 
- Importance of the computational methods 
- Comparison of methods 

Solution structures: NMR 
,’ - Basic methodology 

-Ab  initio calculation 
- Refinemint 
-Assignment 

-Methodology 
-Phasing 
- Model building and refinement 

Crystal structures: XRC 



The State of the art 
- unprecidented rafe of structure determination -Fig. 2.1 
- The PDB format -showing ifs age 
- 4 5 0  residues - NMX or XRC 
- >2SO residues - X'IRC 
- ve y large complexes, membrane proteins - ? 

- Set  the scope of what strudures can be solved 
- Accura y and precision are infwutoven with methods 
- How to compare methods? 

Importance of calculation techniques 
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ATOM 
ATOM 
ATOM 
ATOM 
AMM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 

In case you drop your stack of computer cards on the floor... 
1 CA ACEA 0 
2 C ACEA 0 
3 0  ACEA 0 
4 N A S P A  1 
5 CA ASPA 1 
6 C ASPA 1 
7 0 ASPA 1 
8 CB ASPA 1 
9 CG ASPA 1 
10 OD1 ASP A 1 
11 OD2 ASP A 1 
12 N GLU A 2 
l3 CA GLUA 2 
14 C GLU A 2 
15 0 GLUA 2 
16 CB GLU A 2 
17 CG GLU A 2 
18 CD GLUA 2 
19 OEl GLU A 2 

105.046 
105.314 
105.220 
105.665 
105.992 
107.024 
106.927 
106.533 
106.801 
107.722 
106.092 
107.976 
109.054 

109.454 
109.372 
110.164 
109.564 
108.416 

io8 .707 

51.546 
50.822 
51.451 
49 -507 
48.589 
49.191 
49.088 
47.248 
46.077 
46.143 
45.066 
49.873 
50.658 
51.166 
51.029 
51.861 
51.624 
50.572 
50.739 

40.626 
41.951 
43.013 
41.867 
42.982 
43.936 
45 -163 
42.410 
43 -383 
44.215 
43 -291 
43.293 
43 -886 
45 -277 
46.250 
42.969 
41.669 
40.753 
40.320 

1.00 72.72 
1.00 72.72 
1.00 72.56 
1.00 71.64 
1.00 70.20 
1.00 69.70 
1.00 69.14 
1.00 70.66 
1.00 71.73 
1.00 71.57 
1.00 71.25 
1.00 69.24 
1.00 69.94 
1.00 69.71 
1.00 69.74 
1.00 69.58 
1.00 68.60 
1.00 68.20 
1.00 67.20 

lATN 263 
lATN 264 
lATN 265 
lATN 266 
lATN 267 

lATN 269 
lATN 270 
lATN 271 
lATN 272 
lATN 273 
lATN 274 
lATN 275 
lATN 276 . 
lATN 277 
lATN 278 
lATN 279 
IATN 280 
lATN 281 

~ATN 268 

Experimental methods 
- Requirements for sample 
- Specfromeier - expensive ,superconductor 
- Background iheory 
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Under certain conditions: The distance between a pair of 

protons a and b is related to the volume by: 

V n =cd(a n n  , b ) d  

In practice e5 Angstrom 
spin diffusion and other evils 



(I side chain 

covalent 

within unit: 
between units: only spatid connectivity 

covalent and spatial connectivity 

P1 
P2 
P3 
P4 

How to increase the molecular size limitafion? 
How to automate the assignment process? 
Which structure calculation procedure to use? 
How to handle the dynamic nature of the data? 
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e Distance space 
- high-dimensional space 
- Requires all interatomic distances 

Triangle inequality- d(a,b) 5 d(a,b) + d(b,c) 
Also tetrangle and pentangle inequalities, but... (Fig. 2.9) 
Bounds smoothing 

*metric matrix -g 
embedding 

.. . 

0 
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Prediction of protein structure 
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summary 

Theoretical tools become increasingly 
demanded. Suppose one has a protein sequence of 
unknown structure, say SOUS. What can be 
learned about SOUS before beginning an 
experiment? Dah banks of protein sequences and 
structures are growing rapidly (Elernstein, et al. 
1977, Abola, et al. 1988, Bairoch & Boeckmann 
1994)s a result of large-scale sequencing projects 
(Oliver, et al. 1992, Johnston, et al. 1994) and 
improvements in experimental determination of 3D 
structure (Holm & Sander 1994c. Lattman 1994) 
.Can we profit from the information flood? Does 
the data bank teach us how to predict the 3D 
structure of SOUS? 

Homology modelling allows prediction in 30. 
The most successful tool for prediction of three- 
dimensional structure is homology modelling. An 
approximate 3D model (which has a correct fold, 
but inaccurate loop regions) can be constructed if 
SOUS has significant similarity to a protein of 
known structure. evaluated in terms of sequence 
similarity (i.e. alignment) or sequencestructure 
fitness (Le. threading). Homology modelling 
effectively raises the number of 'known' 3D 

structures from about 1500 to 10.000 (Sander & 
Schneider 1991, Sander & Schneider 1994). But 
what if SOUS has no homologue of known 3D 
structure? Can 3D structure be predicted directly 
from sequence? 

For most proteins the predictwn task has to be 
simplified Without detectable homology we are 
still forced to resort to shpliications of the 
prediction problem. In the p m s ,  we can make 
use of the rich diversity of information in current 
data bases. For this tutorial we have selected 
generic methods for prediction at three different 

f simplif7Cation Fig. 32), namely one, two 
le$& an dimensions (for a short review (Rost & 
Sander 1994e). Prediction in 1D (secondary 
structure, solvent accessibility and transmembrane 
helices) can be improved significantly through the 
use of evolutionary information. Prediction in 2D 
(inter-residue contacts, inter-strand contacts, 
disulphide bonds) can also, to a certain extent, 
profit from evolutionary information, but so far, is 
of only limited accuracy. Lastly, incorrect 3D 
structures can now be detected with remarkable 
accuracy (mean-force potentials) and technical 
improvements and data base growth have made 
alignments, threading and homology modelling 
become increasingly powerful 

Overview 

What is the state of the art in structure 
prediction? We cannot predict 3D structure in 
general, yet most & Sander 1994e). The most 
successful theoretical tool for the prediction of 
structure is homology modelling (Greer 1980, 
Greer 1991, Holm, et al. 1994, May & Blundell 
1994). Homology detectable by significant 
sequence identity (95%) to aprotein of known 3D 
structure can be applied to some 25% of all known 
proteins (Sander & Schneider 1994). In absence of 
significant sequence identity, threading techniques 
can be used for remote homology modelling (Sippl 
& Weitckus 1992, Sippl & Jaritz 1994). (The lack 
of reliability of current threading techniques makes 
it difficult to estimate the scope of this technique. 
The number of proteins for which 3D structure 
could be predicted based on remote homology 
would currently probably be some thousands 
(Holm & Sander 1994a).) For proteins, for which 
neither homology modelling nor threading is 
applicable, the prediction problem has to be 
simplified m s t  & Sander 1994e). 

How can the prediction problem be simplified? 
The most extreme simplification is to project the 
full complexity of 3D information onto lD, i.e., 
secondary structure, or solvent accessibility 
assignments for each residue. Less information is 
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lost, when projecting 3D co-ordinates onto 2D 
maps of inter-residue distances. As explained in 
the experimental section, 3D structure can be 
generated from 2D maps. 

Which prediction is of interest for molecular 
biology? Large scale gene-sequencing projects 
produce an overwhelming information about 
protein sequences (Oliver, et al. 1992, Johnston, et 
ai. 1994). This information alone is not very useful 
for molecular biology. A crucial step is to 
associate the sequences to information about 
structure or function of the proteins (Bork, et aL 
1992b). Given the rapid advance of sequencing 
techniques, such association cannot be gathered 
exclusively by experiments. Instead, theory has to 
contribute to closing the sequence-structure and 
sequence-function gaps. Consequently, any 
prediction method that contributes to closing these 
gaps is of help. However, not all aspects of protein 
structure are valuable. For example, the prediction 
that a protein belongs to the all-alpha class may be 
useful if used as input to a post-processing method 
that, e.g., predicts remote homology, but is hardly 
of any use per se . 

EvaIuation of prediction methods 

Publishing optimistic results? A sustained 
testing of the performance is a precondition for any 
prediction to become useful. For example, the 
history of secondary structure prediction has gone 
through a head-hunting for highest accuracy 
scores. Oversptimistic claims by predictors on 
the one hand, nourished scepticism of potential 
users on the other hand. Two points became clear 
in the fust meeting for the 'State of the art in 
structure prediction' in Asdomar, C.A., Dec., 1994 
(Defay & Cohen 1995). Fiist, an inaccurate 
prediction is not as bad, as is an over-estimated 
one. Second, even a prediction method of limited 
accuracy can be useful if the user knows what to 
expect. In the following, some criteria will be 
Summansed which help reducing the likelihood to 
fall into the trap of overestimation. As an example 
the prediction of secondary structure will be 
chosen 

What is the goal and which limits are to be 
expected? Say the goal is to predict secondary 
structure in three states. Which is the best current 
method for the prediction of secondary structure? 
If applicable, homology modelling. Wich is the 
worst method? Random prediction. How accurate 
are existing methods for prediction? 

How to choose the data set? Proteins used for 
deriving a method and for evaluating should have a 
pa'nwise sequence identity e 25%, else homology 
modelling can be applied (Sander & Schneider 

1991). For all prediction methods the data set has 
to be split into a set used to set free parameters 
(training set) and another to estimate the expected 
performauce on unknown proteins (test set). The 
criterion for separating training and test set is 
provided by the best alternative method (homology 
modelling). 

How m y  proteins to use for the test set? All 
available unique proteins should be used for testing 
(currently more than 300 (Hobohm & Sander 
1994)). Furthennore, results should be compared 
to standard sets used for the evaluation of 
alternative methods (Rost, et al. 1993, Rost & 
Sander 1994b). The reason for taking as many 
proteins as possible is simply that proteins have a 
wide spread facet of features: some are easy to 
predict, others harder. A criterion for a sufficient 
size of a test set could be the following. N proteins 
are enough, if (and only if) the standard deviation 
of a certain measure for accuracy fulfils: 

in other words, if doubling the test set would not 
alter the results. 

Optimising free parameter with respect to the 
test set? The cross-validation described so far is 
still not enough. A seemingly trivial - and often 
violated - rule is that methods should never be 
optimised with respect to the test set. Instead, 
parameters should be optimised (ii necessary) 
based on yet a different set (screening or 
optimisation set), and should be kept fixed 
BEFORE the final cross-validation experiment is 
p e r f O l m e d  

How many cross-validatwn experimnts have to 
be performed? Say the test set consists of 300 
proteins. One extreme a two-fold cross-validation 
would mean to split the set into two set with 150 
proteins each (A and B) and perform two 
experiments: fitst train on A, test on B, then train 
on B, test on A, and finally report the test results 
for A+B. The other extreme a 300-fold cross- 
validation (jack-Me) implies 300 splits into pairs 
of a training sets A with 299 proteins and test sets 
B with one protein each such that each protein is in 
one of the test sets. After 300 experiments the 
results are averaged over all 300 test sets. In 
practice the choice is often somewhere between 
two and 300. Does the number of splits have an 
influence on the correctness of the evaluation? 
The simple answer is: no! More splits tend to be 
better for the methods, as more proteins can be 
used for training. But with respect to the 
generality of the result there is no difference 
between two- and 300-fold cross-validation (as 
long as the previous points had been taken into 
account). 

Enough of testing? Even if al l  those points had 
been taken into account, the sceptical molecular 

ON I= cm s 
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biologist should still not be satisfied. A further 
necessary step is to test the method on a new set of 
proteins, ideally after the paper had been written. 
With the rapid increase in the number of known 
structures, it should never be difficult to find say 
some 50 proteins which have no significant 
sequence identity to any of the 300 proteins used 
so far. This f d  test helps the reader and the 
predictor to assess whether or not the estimated 
performance is likely to be correct for new 

How to measure performance accuracy? 
Another rather obvious demand is that to defrne an 
appropriate measure. The measure should reflect 
the goal of the method. For example, if the goal is 
to predict 3D structure by remote homology 
modelling (threading), the results have to be given 
in e.g. root-mean square deviation. This example 
may appear particularly trivial, nevertheless, the 
current practice is the opposite. Another negative 
example are alignments, after more than 25 years 
of dynamic programming, there is still no measure 
for the quality of an alignment published that was 
tested on a large enough data set. No matter what 
the measure is, the predictor should always provide 
an estimate for the standard deviation of the 
expected accuracy! 

proteins. 

Evaluation of prediction methods: Literature 
Evaluation of secondary structure predictions: 

(Kabsch & Sander 1983b, Rost, etal. 1993, Rost & 
Sander 1994b, Defay & Cohen 1995) 

Measures for secondary srmcture predictions: 
(Schulz & Schmer  1979, Cohen, et al. 1983, 
Taylor 1984, Taylor & Thornton 1984, Cohen, et 
al. 1986, Cohen & Kuntz 1989, Benner 1992, 
Presnell, et al. 1992, Sternberg 1992, Thornton, et 
al. 1992, Benner, et al. 1993, Colloc'h, et aL 1993, 
Rao, et al. 1993, Rost & Sander 1993b. Rost, et al. 
1993, Russell & Barton 1993, Rost, et al. 1994c) 

Prediction of protein structure in ID 

Secondary structure prediction 
Prediction methods. Secondary structure 

prediction has been attempted even before the fmt 
X-ray struchues became known (Szent-Gyiirgyi & 
Cohen 1957, Kendrew, et al. 1960, Perutz, et al. 
1960). Ever since the problem startled many 
researchers and SeNed for many physicists, 
mathematicians and computer scientists as an 
entrance into the world of molecuIar biology. The 
principle idea of most methods is to make use of 
the fact that segments of consecutive residues have 
preferences for certain secondary structures (Fig. 
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3.7). Thus, the prediction problem becomes a 
pattern-classification problem tractable by 
computer algorithms (3T-18/21). In many respects 
secondary structure prediction reflects the principle 
difficulties and solutions for many prediction 
algorithms. Therefore. we shall cover this topic in 
more detail than the others. Three basic algorithms 
are d e s u i i  information theory (3T-23); neural 
networks (3T-24-31): and nearest neighbour 
classifiers (3T-32/34). Despite improving the 
algorithms in detail, the real --bough came 
by using evolutionary information (3T-35/38). 
Additionally, two specialised versions of the 
secondary structure prediction problem will be 
discussed: the prediction of secondary structure 
content (3T-50/54) and the prediction of secondary 
structure in two states, e.g., helixlnon-helix (3T- 
55). 

Necessity of sustained testing. Useful 
computational are urgently demanded by molecular 
biologists. However, to make a prediction method 
useful b e e  points have to be met. Fmtly, the 
predicted feature of protein structure or function 
has to be suitable for an experiment (or post- 
processing prediction methods). Secondly, the 
method has to be made available. And thiidly, 
most importantly to keep theary in the game, 
prediction accuracy has to be estimated at a 
sustained level. In the wake of today's flood in 
literature, experimental biologists and even 
theoreticians from slightly different fields have no 
chance to critically assess the claims of predictors. 
Thus, the application of prediction methods 
requires quite a level of trust. This demands a 
significant level of modesty on the si& of the 
predictors. Levels of expected accuracy should be 
conservative and tend to under-estimate rather than 
to overestimate the abilities of tools. Given the 
ease of distributing software and services over 
current internet resources, the issue of appropriate 
evaluation becomes increasingly sensitive. For the 
predictor appropriate evaluation implies to spend 
much more time on testing than on developing a 
tool. Secondary structure predictions can serve as 
an example for how to appropriately test methods. 
We shall in detail discuss different measures for 
prediction accuracy (3T-38/43). 

For single sequences 
prediction accuracy is about 60%. It raises above 
70% if i n f o d o n  from multiple alignments is 
used (3T-45/47). These levels of expected 
accuracy of course are not sharp numbers, but 
rather averages of underlying distriiutions, e.g., for 
PHD (neural network prediction) the three-state 
overall per-residue accuracy for single proteins 
chains is 7 W %  Fig. 3.20). Of practical use is the 
definition of a reliability index for the prediction 
(Fig. 3.21). For prediction methods, secondary 

Evaluation of impact. 
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structure predictions are a simple example, how 
expert knowledge and the wealth of growing data 
bases can be carved into improved methods. 

Secondary structure prediction. Literature 
Reviews: (Kabsch & Sander 1983b, Schulz 

1988, Fasnan 1989a, Gamier & Levin 1991, Rost, 
et al. 1993) 

Measures: (Schulz & Schirmer 1979, Cohen, et 
aL 1983, Taylor 1984, Taylor & Thornton 1984, 
Cohen, et al. 1986, a h e n  & Kuntz 1989, Benner 
1992, Presnell, et al. 1992, Sternberg 1992, 
Thornton, et al. 1992, Benner, et al. 1993, CollOC'h, 
et al. 1993, Rost & Sander 1993b, Rost, et al. 1993, 
Russell & Barton 1993, Rost, et al. 1994~) 

Methods (only basic and new methods listed): 
(Pain & Robson 1970, Nagano 1973, Chou & 
Fasman 1974, Lim 1974, Nagano & Hasegawa 
1975, W i e l d  & Scheraga 1976, Nagano 1977, 
Gamier, et al. 1978, Maxfield & Scheraga 1979, 
Cohen, et al. 1980, Cohen, et al. 1983, Ptitsyn & 
Finkelstein 1983, Taylor & Thornton 1983, Gibrat, 
et al. 1987, Zvelebs et al. 1987, Biou, et al. 1988, 
Bohr, et al. 1988, Gascuel & Golmard 1988, Qm 
& Sejnowski 1988, Holley & Karplus 1989, 
McGregor, et al. 1989, Benner & Gerloff 1990, 
Fasnan 1990, King & Sternberg 1990, Kneller, et 
al. 1990, Rooman, et al. 1991, Rooman & Wodak 
1991, Benner 1992, Hayward & Collins 1992, 
Muggleton, et al. 1992, Presne& et at 1992, Rost 
& Sander 1992a, Rost & Sander 1992b, Stemberg 
1992, Stolorz, et al. 1992, Zhang & Chou 1992, 
Zhang, et al. 1992, Asai, et al. 1993, Barton & 
Russell 1993, Benner, et al. 1993, Fariselli, et al. 
1993, Levin, et #. 1993, Maclin & Shavlik 1993, 
Rost & Sander 1993% Rost & Sander 1 9 9 3 ~  Rost 
& Sander 1993b, Sasagawa & Tajima 1993, Yi & 
Lander 1993, Donnelly, et al. 1994, Livingstone & 
Barton 1994, Rost & Sander 1994b, Solovyev & 
Salamov 1994, Wako & Blundell 1994b, Salamov 
& Solovyev 1995) 

Methods (infomion theory): (Pain & Robson 
1970, Robson & Pain 1971, Nagano 1973, Chou & 
Fasman 1974, Robson 1974, Robson & Pain 
1974% Robson & Pain 1974. Robson & Pain 
1974b, Nagano & Hasegawa 1975, Robson 1976, 
Nagano 1977, Suzuki & Robson 1977, Chou & 
Fasman 1978, Gamier, et al. 1978, Levin, et al. 
1986, Gibrat, et al. 1987, Biou, et al. 1988, Chou 
1989, Zhang, et al. 1992, Levin, et al. 1993) 

Methods (neural networks): (Bohr, et al. 1988, 
Qian & Sejnowski 1988, Holley & Karplus 1989, 
McGregor, et al. 1989, Bossa & Pascarella 1990, 
Kneller, et al. 1990, Hayward & Collins 1992, 
MUM& Kim 1992, Pancoska, et al. 1992, Rost & 
Sander 1992a, Salzberg & Cost 1992, Stolon, et 
al. 1992, Zhang, et al. 1992, Andrade, et al. 1993, 
Fariselli, et al. 1993, M a c h  & Shavli 1993, 

preSnell& Cohen 1993, Rost 1993, Rost & Sander 
1993% Rost & Sander 1 9 9 3 ~  Sasagawa & Tajima 
1993, Tchomnatchenko, et al. 1993, Rost & Sander 
1994b, Rost, et al. 1994% Chandonia & Karplus 
1995, Rost 199%) 

Methods (nearest neighbour): (Kabsch & 
Sander 1983~, Levin, et al. 1986, Schneider 1989, 
Zhang, et al. 1992, Yi & Lander 1993, Solovyev & 
Salamov 1994, SaIamov & Solovyev 1995) 

Solvent accessibiity prediction 
Prediction methods. The principle goal is to 

predict to which extent a residue embedded into a 
protein smctme is accessible to solvent Various 
ways for the description of solvent accessibiity are 
possible (3T-59). The most simple is a two-state 
model that distinguishes whether the residue is 
buried or exposed. Solvent accessibility is 
evolutionarily conserved (3T-60). Two prediction 
methods will be descriied: neural networks and 
infomation theory-based predictions. 

Evaluation of impact. Prediction accuracy is > 
70% in a two-state (bded, exposed) description of 
relative accessiiity. This level is sufficient to use 
predictions as a seed for predicting secondary 
structure (Benner, et al. 1994, Wako & Blundell 
1994b), but it is not accurate enough to make 
predictions become as useful as secondary 
structure predictions (Rost 1995a). Although 
accessibility predictions have to viewed with 
scepticism, they contain information that is useful 
for many post-processing prediction methods. 

Solvent accessibility prediction. Literature 
Dejinifions and hydrophobicity scales: (Lee & 

Richards 1971, Chothia 1976, Janin 1976. 
Richmond & Richards 1978, Wodak & J a r h  1978, 
Cohen, et al. 1980, Wodak & Janin 1980, Kyte & 
Doolittle 1982, Sweet & Eisenberg 1983, 
Eisenberg, et al. 1984% Eisenberg. et al. 1984b. 
Cornette, et al. 1987, Hubbard & Blundell1987, 
Lawrence, et al. 1987, Ponder & Richards 1987, 
Flores, et aL 1993, Jackson & Sternberg 1993, Rost 
& Sander 1994c) 

Methods: (Holbrook, et al. 1990, Benner, et al. 
1994, Esposito, et al. 1994, Rost & Sander 19% 
Wako & Blundell1994a) 

Transmembrane segment predictions 
Even in the optimistic 

scenario that in the near future most protein 
structures will be either experimentally determined 
or theoretically predicted, one class of proteins will 
certainly be abundant in terms of knowledge about 
3D structure: transmembrane proteins. The major 
difficulty is that integral membrane proteins do not 
crystallise and are hardly tractable by NMR 
spectroscopy. Consequently, four this class 

Prediction methods. 
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predictions will be even more important. 
Fortunately, the prediction task for transmembrane 
proteins is easier than for globular proteins, as the 
lipid bilayer of the membrane reduces the degrees 
of freedom to such an extent that 3 0  structure 
formation is almost a 2D problem. Once the 
location of transmembrane segments is known for, 
e.g., helical transmembrane proteins, 3D structnre 
can be predicted by exploring all possible 
conformations (Taylor, et aL 1994). And even the 
prediction of 1D secondary structure, Le., the 
prediction of the locations of the transmembrane 
helices is a much simpler problem than is the 
prediction of secondary structure for globular, 
soluble proteins. Some principle ideas of methods 
based on expert rules, information theory and 
neural networks will be sketched (3T-69/71). 

Evaluation of impact. All prediction methods 
have a comparably high accuracy of about 95% 
(3T-7U74). However, this level is not sustained, 
as reliable data for locations of transmembrane 
helices exists for only a handful of proteins. Data 
used for training, e.g., neural ne€works stems ftom 
experiments in 'cell biology. Different authors 
often report different locations for transmembrane 
regions. Despite this warning the prediction of 
transmembrane helices is a valuable tool to quickly 
scan entire chromosomes. The sorting into 
membrandnot-membrane proteins has an expected 
error rate of less than 5% and can be useful for 
some experimental purposes. 

Transmembrane heZikprediction: Literature 
Methoris: (von Heijne 1981, Argos, et al. 1982, 

Engelman, et al. 1986, von Heijne & Gavel 1988, 
Park, et al. 1992, Edelman 1993, Sipos & von 
Heijne 1993, Jones, et al. 1994, Persson & Argos 
1994, Taylor, et al. 1994, Rost, et al. 1995) 

Prediction of protein structure in 2D 

Prediction of (long-range) inter-residue contacts 
Prediction of contacts. From the knowledge of 

al l  inter-residue contact or distances Fig. 3.2) one 
can, in principle, model a 3D structure using 
distance geometry methods (Have4 et al. 1983, 
Havel & Wiithrich 1984, Braun & G6 1985, 
Briinger, et al. 1986, Havel 1991, Bohr, et al. 1993, 
Briinger & Nilges 1993, Nilges 1993, Nilges & 
Briinger 1993, Saitoh, et al. 1993). Two questions 
surround such methods: fust, can contact be 
predicted accurately enough; and second, are all 
important contact predicted? A trade-off occurs 
between the Scylla of predicting enough contacts 

and the Charibdii of predicting only correct ones 
F1g. 3.36). 

Prediction methods. In sequence alignments, 
some pairs of positions appear to co-vary in a 
physico4emiCalIy plausible manner (i.e. a loss of 
function' point mutation is often rescued by an 
additional mutation that compensates for the 
change (AItschnh, et al. 1987, Altschuh, et al. 
1988). One hypothesis is that compensation would 
be. most effective in maintaining a structural motif 
if the mutated residues were spatial neighborn. A 
method that uses correlated mutations for 
prediction of inter-residue contacts will be 
desmied, along with a neural network method 
predicting medium-ranged distances. 

Applying a stringent 
significance cut-off in the prediction of contacts by 
correlated mutations, a small number of residue 
contacts can be predicted with reasonable 
accuracy. Correlated mutations may provide 
sufficient infoxmation to distinguish between 
alternative models of 3D structure, but not enough 
information to predict conformations ab initio (Fig. 
3.37/8). The success of the neural network 
predictions of contacts are difficult to assess. The 
general conclusion is that prediction of inter- 
residue contacts of tremendous potential value, but 
so far of rather limited accmcy. 

Evaluation of impact. 

Prediction of inter-residue contacts: Literature 
Correlated mutations: (AItschuh. et al. 1987, 

Altschuh, et al. 1988, Finkelstein, et al. 1993, 
Finkelstein & Nakamma 1993, Gerstein, et al. 
1994, Goebel, et al. 1994, Neher 1994, Shmdyalov, 
et al. 1994, Taylor & Hatrick 1994) 

Other methods: (Galaktionov & Rodionov 
1980, Bohr, et al. 1993, Saitoh, et al. 1993, 
Galaktionov & Marshall 1994) 

Prediction of contacts between beta-strands 
Prediction methods. One simplification of the 

problem to predict inter-residue contacts is to 
specifically predict the contacts between residues 
in beta-strands, ie, to predict the conformarions of 
sheets. The only method applied to do so is based 
on data based derivd potentials. 

Evaluatwn of impact. Prediction of inter-strand 
contacts is possible if the locations of the strands 
are known. Given the error of current prediction 
methods, the accuracy in predicting inter-strand 
contacts drops, but in some cases is sti l l  high 
enough to be useful for modelling 3D structure. 

Prediction of inter-strand contacts: Literature 
(Hubbard 1994, Hubbard & Park 1995) 
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Prediction of disulphide bonds 
Prediction methods. A more extreme 

simplification of the problem to predict inter- 
residue contacts is to only predict disulphide- 
conwts. l'hese give the most dominant signal for 
methods predicting inter-residue contacts based on 
mean-force potentials (Valencia et al., 
unpublished). Thus, a prediction of disulphide 
bonds may be useful for other contact prediction 
methods. Here, we sketch the prediction of 
contacts between two cysteines and cysteines and 
other residues by a neural network. 

Evaluation of impact. Prediction accuracy is 
claimed to be m the range of 80% which appears to 
be rather high. However, the evaluation of the 
usefulness of the tool is made difficult by the too 
small test set used. 

Prediction of disuhhide bonds: Literature 
(MUM. et al. 1990) 

Prediction of protein structure in 3D 

Sequence alignment THE prediction tool 
At the level of protein 

molecules, selective pressure results from the need 
to maintain function, which in turn requires 
maintenance of the specific 3D structure (Doolittle 
1986, Farber & Petsko 1990, Pastore & Lesk 1990, 
Doolittle 1994) This is the base for attempts to 
align protein sequences, i.e., to optimally 
superpose 1D strings of amino-acid letters. 
Accordingly, conservation and mutation patterns 
observed in alignments contain very specific 
information about 3D structure. How much 
variation is tolerated? Two naturally evolved 
proteins with more than 25% identical residues 
(length > 80 residues) are extremely likely to be 
similar in 3D structure (Fig. 1.11). Even so, 
structure may be conserved in spite of much higher 
divergence (Holm & Sander 1994a). Do we have 
enough data to detect structure-specific sequence 
motifs (Rooman & Wodak 1988) and to correctly 
align very remote homologues? 

Methods. The basic procedure of dynamic 
programming is rather straightforward. Although, 
the principie tool requires fine-tuning of 
parameters such as gapspen penalty, the tool is 
rather robust under the variation of free 

* parameters. For more sensitive searches, 
biological howledge has to be included by basing 
the alignment on profiles for residue exchange 
probabilities. 

Reason for success. 

Evaluation of impact. When sequence simiity 
is sufficient, alignment procedures are (more or 
less) straightforward (Sander & Schneider 1991, 
Jones, et al. 1992b, Flores, et al. 1993). For less 
similar protein sequences, however, alignments 
may fail (Elordo 1993, Henikoff & Henikoff 1993, 
Bordo, et al. 1994, Vingron & Waterman 1994). 
The art of sequence alignment is to accurately 
align related sequence segments and to avoid 
aligning unrelated sequence stretches (Higgins & 
Sharp 1988, H i g m  & Sharp 1989, Altschull991, 
Sander & Schneider 1991, Deperieux & Feytmans 
1992, Higgins, et al. 1992, Russell & Barton 1992, 
Altschull993, Hanssler, et al. 1993, Henikoff & 
Henikoff 1993, Heringa & Argos 1993, Johnson, et 
al. 1993, Lawrence, et al. 1993, Livingstone & 
Barton 1993, Henikoff & Henikoff 1994, Krogh, et 
al. 1994, Thompson, et al. 1994). Alignment 
techniques can easily be improved by 
incorporating information derived from 3D 
str~~ctures (Henikoff & Henikoff 1993). 

Sequence alignment: Literature 
Methoa3 (only basic and recent methoa3 listed): 

(Needlman & Wunsch 1970, McLachlan 1971, 
Smith & Waterman 1981, Waterman 1983. 
Gribskov, et al. 1987, Pearson & Lipman 1988, 
Taylor 1988, Higgins & Sharp 1989, Vingron & 
Argos 1989, Altschul, et al. 1990, Bacon & 
Anderson 1990, Smith, et al. 1990, Smith & Smith 
1990, Henikoff 1991, Sander & Schneider 1991, 
Vingron & Argos 1991, Alexandrov 1992. 
Deperieux & Feytmans 1992, Higgins, et al. 1992, 
Altschul1993, Henikoff & Henikoff 1993, Heringa 
& Argos 1993, Johnson, et al. 1993, Lawrence, et 
al. 1993, Livingstone & Barton 1993, Krogh, et al. 
1994, Thompson, et al. 1994, Vingron & 
Waterman 1994) 

(Dumas & Ninio 1982, 
Wilbur & Lipman 1983, Lipman & Pearson 1985, 
Pearson & Lipman 1988, Altschul, et al. 1990, 
Karlin & Altschul 1990, Karlin, et al. 1990, 
Altschull991, Altschul1993) 

Methods (profie based): (Higgins & Sharp 
1988, Higgins & Sharp 1989, Altschul 1991, 
Sander & Schneider 1991, Deperieux & Feytmans 
1992, Higgins, et aI. 1992, Russell & Barton 1992, 
Altschul1993, Haussler, et al. 1993, Henikoff & 
Henikoff 1993, Heringa & Argos 1993, Johnson, et 
ai. 1993, Lawrence, et al. 1993, Livingstone & 
Barton 1993, Henikoff & Henikoff 1994, Krogh, et 
al. 1994, Schneider 1994, Thompson, et al. 1994) 

Methods (hashing): 

Homology m o d e n i  
Prediction methods. The principle idea is to 

model the structure for SOUS (protein of unknown 
structure) based on the template of a known 
homologue, say KNOWN. To make this possible, 
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fmt one has to fmd a known structure in the data 
base that has a significant level of pairwise 
sequence identity to SOUS. The basic assumption 
is that KNOWN and SOUS have identical 
backbones Pig. 13). The task is to correctly place 
the si& chains of SOUS into the backbone given 
by KNOWN. Here, we shall briefly describe 
methods that make use of rotamer hiraries (Fig. 
3.54). 

Evaluation of impact. The accuracy of 
homology modelling depends on the level of 
pairwise sequence identity between SOUS and 
KNOWN (Fig. 353). For higher levels, homology 
modelling is as accurate as is experimental 
determination of structure. However, even down 
to levels of some 25-30% sequence identity, 
homology modelling produces relatively accurate 
models about the fold of proteins of unknown 
structure. 

Homology modelling: Literature 
Methods: (Greer 1980, Jones & Thi ip  1986, 

Blundell, et al. 1988, Summers & Karplus 1989, 
Overington, et al. 1990, Sali, et al. 1990, Greer 
1991, Johnson 1991, Vriend & Sander 1991, Holm 
& Sander 1992b. Lesk & Boswell 1992, Levitt 
1992, Overington, et al. 1992, Overington 1992, 
Johnson, et al. 1993, Vriend & Eijsink 1993, 
Abagyan & Totrov 1994, Abagyan, et al. 1994, 
Holm, et al. 1994, May & Blundell1994, May & 
Johnson 1994, Sali & Blundell 1994, Totrov & 
Abagyan 1994) 

Quick data base scan: (Bryant 1989, Islam & 
Sternberg 1989, Vriend 1990) 

Rotamer libraries: (Ponder & Richards 1987, 
Summers & Karplus 1989, Karplus & Petsko 1990, 
Summers & Karplus 1990, Berendsen 1991, 
Cornell, et al. 1991. Holm & Sander 1992a, Levitt 
1992, Eisenmenger, et al. 1993, Vriend & Sander 
1993, De F'iippis, et al. 1994) 

Reviews: (Johnson 1991, Lesk & Boswell1992, 
Overington 1992, May & Blundelll994) 

Potentials of mean-force 
Prediction methoa's. A sufficiently valid 

working hypothesis is that protein sequence 
determines protein structure. Thus, in principle 
structure could be determined based on quantum 
mechanical principles. The problem is made 
hopelessly difficult by the size of the search space. 
One way around the limitations of inductive force- 
fields is a deductive approach, i.e., to derive an 
energy from knowledge contained in the data base. 
Here, one such potential of mean-force will be 
describedin dew 

Evaluation of impact. Mean-force based 
potentials were successfully applied to predict 
errors in experimentally determined 3D stmctures. 

I 
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The sensitivity of such potentials is far beyond the 
mere statement that a certain structure contains 
errors: stresses in certain regions can be spotted 
and different models derived from refinement 
procedures canbe distinguished. 

Potential of meaqforce: Literature 
Methodr (basics): (Sippl 1990, Sippl & 

Lackner 1992, Sippl1993a, Sippl1993b) 
Methods (further): (Hendlich, et al. 1990, 

Cas& & Sippll992, Sippl, et al. 1992, Sippl & 
Weitckus 1992, Sippl & Jaritz 1994, Sippl. et al. 
1994, Sippl, et al. 1994, Fkkner, et al. 1995) 

Other knowledge-based potentials for quality 
control: (Holm & Sander 1992a, Laskowski, et ai. 
1993, Vriend & Sander 1993) 

Semi-empirical potentials: (Momany, et al. 
1975, Briinger, et al. 1986, Brooks, et al. 1988, van 
Gunsteren 1988, Karplus & Petsko 1990, van 
Gunsteren 1993) 

Remote homology modelling (threading) 
Remote homology. All naturally evolved 

sequences with more than 30% pairwise sequence 
identity are homologous. However, not all with 
less than 25% are non-homologous. Instead, there 
are some thousands of pairs of structurally 
homologous pairs of proteins with less than 25% 
sequence identity (remote homologues) known 
(Holm & Sander 1994a). The principle objective 
of threading techniques is to detect such pairs and 
to generate alignments accurate enough to model 
3D structure based on a profile to a remote 
homologue of known structure. 

The principle concept of most 
threading method is to derive potentials that 
describe the fitness of a sequence for a given 
structure. Some potentials will be sketched. 

One problem with 
evaluating threading techniques is that their 
accuracy has often been over-estimated. 
Furthermore, hardly any method had been tested 
on a larger data set. Instead, so far all methods 
have been evaluated on a small set of favourable 
cases. What makes the situation even worse, is the 
confusion of 'fold recognition' and '3D prediction'. 
The conclusion from a 'prediction experiment' 
summarised in a meeting in Asiomar, C.A., Dec., 
1994 was that threading techniques do recognise 
the conect fold in less than 50% of the cases and 
do result in correct alignments (that could be used 
for 3D modelling) in some cases (Shortle 1995). 
As frustrating as this result may sound, threading 
techniques may still become one of the most 
successful'tools in structure prediction. 

Methods: 

Evaluation of impact. 
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Remote hohwlogy modelling: Literature 
Methods (intra-molecular potentials): 

(Novorny, et al. 1984, Novomy, et aL 1988) 
Methods (volume computation): (Gregoret & 

a h e n  1990, Gregoret & Cohen 1991) 
Methods (empirical solvent accessXfity tern): 

(Eisenberg & McLachlan 1986, Baumann, et al. 
1989, Chiche, et al. 1990, Holm & Sander 1992a) 

Methods (contact energies): (Tanaka & 
Scheraga 1975, Crippen 1977, Lifson & Sander 
1979, Galaktionov 8c Rodionov 1981, Miyazawa & 
Jernigan 1985, Miyazawa & Jernigan 1993) 

Methods (contact potentials optimised to place 
native structure in global minimum): (Crippen 
1991, Maiorov & Crippen 1992, Crippen & 
Maiorov 1994, Maiorov & Crippen 1994) 

Methods (self-consistent hydrophobic force- 
field): (Fiiktein & Reva 1991, Finkelstein & 
Reva 1992) 

Methods (environment specific preferences): 
(Bowie, et al. 1990, Overington, et al. 1990, 
Bowie, et aL 1991, Eisenberg, et aL 1991, Liithy, et 
al. 1991, Liithy, et al. 1992, Overington, et al. 
1992, BlundeU & Johnson 1993, Ouzounis, et al. 
1993, Taylor 1993, WiImanns & Eisenberg 1993) 

Methods (mean-force (or Sippl) potentials): 
(Hendlich, et al. 1990, Sippll990, Casari & Sippl 
1992, Jones, et aL 199% Sippl & Weitckus 1992, 
Bryant & Lawrence 1993, Nishikawa & Matsuo 
1993, Bauer & Beyer 1994, Sippl & Jaritz 1994, 
Sippl, et al. 1994, Flkkner, et al. 1995, Koehl& 
Delarue 1995) 

(Taylor & Orengo 1989, 
Taylor 1991, Godzik, et al. 1992, Godzii & 
SkoInick 1992, Goldstein, et al. 1992, Rost & 
Sander 1992b, Stultz, et al. 1993, Topham, et al. 
1993, Abagyan, e€&. 1994, Goldstein, etal. 1994, 
Iathrop & Smith 1994, Rost 1995% Rost 199%) 

(Wodak & Rooman 1993, Shortle 
1995) 

Methods (other): 

Reviews: 

(Bork & Grundwald 1990, Hirst & Stemberg 1991, 
Nayal & Di Cera 1994, Villar & Kauvar 
1994) 

(Bork, et al. 1992b, Bork, et al. 199% Bork, et al. 
1994, Johnston, et al. 1994) 
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Introduction: proteins the complex machinery of life 

Experimental determination of protein structure 

Sfan Olhnoghuc s: Burkhvd Ross: Computational tuulr for cxpcrhcnl.4 dclermin.rlinn 2nd thwrcticd prcdicdon of protein suuctu~': IShlB' 95: Cunhridgu: Jul 16.1995 3T-1 

Overview: 

Evaluation of prediction methods 

Prediction of protein structure in 1D 

- Prediction of structure and function, where are we now? 

- How to choose the data set? Why cross-validation? 

- secondary structure; solvent exposure; transmembrane 
helices 

Prediction of protein structure in 2D 
- inter-residue contacts; inter-strand contacts; disulphide 

bonds 
Prediction of protein structure in 3D 
- multiple sequence alignments; homology modelling; 

potentials of mean force; threading 
Prediction of protein function 
- sequence motifs; binding sites 

Sdm OLXinoFhus & BurKhilid RosI: Compulmional lools for cnpcrimciirjl dclcrminnlion 2nd thcorcticnl prcdiclion of pmtcin svuclurc: IShlB' 9s: r:imhridcc: Jul 16. IOOS 3T-2 I 



What is the state of the art in structure prediction? 
Fig. 3.1 

How can the prediction problem be simplified? 
Fig. 3.2 

Which prediction is of interest for molecular biology? 

Epstein, Anfinsen 1961: 
sequence uniquely determines structure 

=> 
Input: 
Output: 

protein sequence 



From sequence to structure 

unique 3D s ~ ~ r c s  

homology modelling 

for 60.70% no genenl knowlcdgc aboul 3D s l r u d u a  

From sequence to function 

b 
E)' 
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Publishing optimistic results? 
What is the goal and which limits are to be expected? 
How to choose the data set? 
How many proteins to use for the test set? 
Optimising free parameter with respect to the test set? 
How many cross-validation experiments have to be 

Enough of testing? 
How to measure performance accuracy? 

performed? 

Publishing optimistic results? 
- An inaccurate prediction is not as bad, as an over-estimated one. 
- Even a prediction method of limited accuracy can be useful if 

the user knows what to expect. 

What is the goal and which limits are to be expected? 
)> best alternative prediction? 
>> worst prediction (random)? 
>> how accurate are existing prediction methods? 

Fig. 3.3 

How to choose the data set? 
>> in general, to be decided with respect to 'best alternative' 

secondary structure: pairwise sequence identity e 25% 
Fig. 3.4 

)> cross-validation 
Fig. 3.5 

Stan O'fhnaphuc & Uurkhud R o e  Computatinnd I d c  for cxpcrimcnld cktcrmimtion 2nd Ihmrcticd predictinn of pmtcin s~ructurc: IShlB' 9% Camhridpc: Jut 16.199s 3T-8 
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single 
residue 
identity 

35% 71% 88% 

random PHD 3Dpairs 

37% 72% 90% 
segment prediction segrnenr 

overlap 
random PHD .3D pairs 

100% 

0% 

normalised accuracy 
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Pool of proteins with known 3D structure 

hide under table 

4 fold cross validation 
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How many proteins to use for the test set? 
>> as many as possible, but ... 
)> features of proteins are distributions, i.e., vary between 

>> => at least as many to mirror this variance 
)> rule of thumb; choose number of proteins N such that: 

different proteins 
Fig. 3.6 

. 

0, = 0, i.e. doubling test set => same result 
Optimising free parameter with respect to test set? 

)> optimise free parameters BEFORE cross-validation 

How many cross-validation experiments have to be 
experiment is performed 

performed? 
>> 2 x 150:150 ? 
>> 3 0 0 ~  299: 1 . ? 

- No difference with respect to generality of results 

S€m O’Donoghuc k Burkhvd ROSE Cornpubtiom1 look forexpaimenul dclermilwtion and Leordkd prcdition of protcin smcmlc: ISMB’ 95: Cunbridgr. Jul16.1995 3T-13 

per-residue identity between homologous protein chains 
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Enough of testing? 
)> 'pre-release test' 

ideally after manuscript has been written 
How to measure performance accuracy? 

>> what is the goal of the method? 
e.g. prediction of secondary structure 

>> which measure best to describe goal? 
per-residue: information; accuracy for helix, strand (%obs,%pred) 

>> which measure best to reflect biological reality of goal? 
per-segment: optimise by structural comparisons 

)> which standard deviation is to be expected? 
variancc of accuncy with protcin chain 

- NOTE the expected variation may not necessarily follow 
from statistics based on the test set! 

prediction helidnon-helix, based on test set of 10 proteins may result in 
an estimate o f f  3% for the standard deviation, however from three-state 
predictions, it is known that the correct value is rather in the order of & 
10% 

S C a  O'Donoghuc k Burlchd Ron: Cornputationnl tools for cxpdvnrnwl dclenninafion yd thcorctid prediction ofpmteinreuctarc:ISMB' 9% Cambridsc. Jul16.1995 3T-15 

Secondary structure prediction 

Solvent accessibility prediction 

Transmembrane helix prediction 

S i a  O'hnoghuc & Burlchard Ron: Cornputntionnl tools fur cxperirncnhl Jelcnnimlion 2nd thenrcficd prediction of protein SVUCIUIC: ISMB' 95: Chnhridp: Jut M.1WS 3T-16 
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Goal and concept 
Methods 
- Statistics 
- Neural networks 
- Nearest neighbour algorithms 
- Break-through by using evolutionary information 

Results 
>> Measures for accuracy 
>> t?xe&state accuracy > 72% 

Further methods 
- Prediction of secondary structure content 
- Prediction of secondary structure in two states 

Applications 
>> Post-processing prediction methods; chain tracing; 
-mutational experiments; speculations about binding sites 
and function 

SCw ODonoghue k B u r k h d  Ron: Computational took forupcrimenhl deIerminatkm mi thmrctical prediction ofpmcin rrmcturc:ISMB' 9% k b r i d g r .  Jul16.1995 3T-17 

Basic idea: 
classification by similarity to known cases 

Fig. 3.7 
>> pentapeptides not unique, ... 
>> but, longer peptides are! 

screening secondary structure of central residue in a 
window of zu adjacent residues 

* - typical values for w = 1-21 
Fig. 3.8 
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Secondary structure prediction as a pattern recognition problem: Certain oligopcptides 
have high prcfcrcncc to bc in a particular secondary structure. Circlcs: uppcr left (dark 
shading): helix, upper right (light shading): strand, centre (no shading): loop. Thc 3 
pentapeptides bctwee-n the helix and strand circles are observed in both structures. 
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Information theory 
>> principles 
>> application to secondary structure prediction 

Neural network 
>> principles 

Neural network 

Neural network 

Nearest neighbow algorithm 

>> simple solution for secondary structure prediction 

>> problem specific adaptation 

>> principles 
>> application to secondary structure prediction 

)> information contained in evolutionary exchange patterns 
)) implementation of information into NN 

Break-through by using evolutionary information 



principle: 
(Robson & Paine, 1971; Gamier et al., 1978; Gibrat et al., 1987) 

state S, one residue R 
p(S I R) 

= log[p(R)p(s)l 
I(S,R), information of residue R in state S; p(S,R), probability of obseming residue R in state S: 
p(R). probability of fiding residue R p(S). probability of finding state S 

slatcs S ,  S', onc rcsiduc It: 

I(S:s';R) information diffaence of residue R in states S and S' 

states S, S', (2m+l) residues R: 

>> two steps: 
1. linear: 
2. non-linear: sigmoid trigger, i.e., project sum onto 0-1 

sum over all input x connection 

. 1.0 

B e  L 4 

inpu~ to unit 
(-=) 

dccisih l i c  

result: < decision line 
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- output: NincI 

inj value of input unitj; outi value of output unit i: 
Jg connection between input unitj and output unit i 

- error: 

ortc value of output uniti : desi secondary structure state 
observed for central amino acid for output unit i (q. for 
a helix: des 1=1, de.@, des34) 

- free variables: 
- goal: 

connections { J } 

>> representation of set of examples (training set) for which 
the mapping input->output is known, i.e., the secondary 
structure state of the central residue has been observed by 
the network 



training = change of connections {J] such that E decreases 
simplest procedure: 
- gradient descent 

where iWaJ is the derivative of the error with respect to 
the network connection; t is the algorithmic time given by 
the presentation of one example; E determines the step 
width of the change (learning strength, typically some 
0.01); a gives the contribution of the momentum term 
(NO-1) , typically some 0.2). which permits uphill moves 

Stan O'Donoghuc k Burkhsd Ron: CompuIJlionnl loolr forexpdmmwldcknnition and h o r c t i i  praJiaion of pmtcinstntaua: ISMI)' 95: CMbridgr. Jul16.19ys 3T-27 

0.65 4 / 

0 5 10 15 20 25 
I1umbt.r of cycles 
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inputloutput coding 

adapting the tool to the problem 
Fig. 3.9 

- balanced training 
- second level of networks 
- jury decision 

Fig. 3.10 
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overall 
accuracy helix Ostmd loop 

2% 0 z;\%fg) distribution 

60% 0 @ 
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72% 

Sdm Obnoghuc k B u r k h d  Rost Computilional tools for UperLncnlJl dclcrmirnlion and lhcordicd pmliclion orpmlcin SINCIUIC: ISh.10' 9% C3mhridgc: Jul16.1995 3T-31 

principle idea: similarity to known structures 
(Kabsch & Sandcr, 1983b; Levin ct al., 1986; Schneider, 1989; Bang ct 
al., 1992; Yi & Lander, 1993; Solovyev & Salamov, 1995) 

unknown structure 

KSNPD 
EHQGE known structures 

W 

a b  D (Ri,Ri ), is the distance (or similarity) between the residues at position i for the two strings R and b 
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problem: what is similar? 
solutions 
- Hamming distance: 

)> equal residues: 
>> different residues : 

D(R,R) = 1 
D(R,R') = 0 

- Dayhoff matrix 
@hang et al., 1992) 

x: denotes m h o  acid xh at window position k : 

S&n ODonoghue k Durkhard R o e  Computational took forerpcrimenwldelennination andchmctical prediction of prolcin s~mcmrr ISMB' 95; Catnbdgc 3~116.1995 3T-33 

(Solovyev & Salamov, 1995) 

compute distances based on 'fitness-of-sequence-for- 
structure' potentials 

(Bowie et al., 1990; Bowie et al., 1991; Ouzounis et a]., 1993) 

distinguish between helix core, helix N- and C-term 
restrict list of possible similar segments by information 
theory 
balance statistics 
include evolutionary information 



Problem: 
different algorithms yield only marginal 
differences in prediction accuracy 

Reason: 
only local information processed, but secondary 
structure formation is strongly determined by non- 
local interactions 

>> increase window size 

>> then, what? 
Evolution has it! 

Way out: 

not possible, ultimately as not enough patterns in database 

S&n O'DoMghUC k B u r k h d  Rort: Computational tools for cxpcrimcnlJ1 dckrmimlion a d  (heorcticP prcdiion of pmcdn s~cDJDR:ISMD. 95: CsmbridgG Jul 16.1995 3T-35 
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secondary ESP E E E E E E E  E E E E E E H H H  
90 N S T N K D W W K V E V N D R Q G F V P A A Y 

structure 

alignment 

profile 

additional 
information 

9 N K S N P D W W E G E L N G Q R G V F P A S Y  
9 E E H . G E W W K A K S S K R E G F I P S N Y  
$4 R S T . G D W W L A r V T G R E G Y V P S N F  
sl F S .  . . .  F F G V e V D D L Q V F V P P A Y  

v 0 0 0 0 0 0 0 0 0 4 0  0 6 0 0 0  0 0 2 0 2 0 6 0  0 0 0 0 
L o o o o o o o o r n o  0 2 0  0 0 2 0 0  o o o o o o o 
I 0 0 0 0 0 0 0 0 0 0  0 0 0 0  0 0  0 0 2 0  0 0 0 0 
H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

w 0 0  0 0  0 0 8 3 8 0  0 0 0 0 0 0  0 0  0 0 0  0 0 0 0 
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 020 0 0 0 0 8 0  

P 0 0 0 o x  0 0 0 0 0 0 . 0  0 0 0 0 0 0 0 1 0 0 2 0  0 0 

F 2 0 0  0 0  0 0 2 0 2 0  0 0 0  0 0 0  0 0  0 6 0 2 0  0 0 0 2 0  

G 0 0 ' 0  0 9  0 0 0 2 0 2 0  0 0 0 4 0  0 0 8 0  0 0 0 0 0 0 
A 0 0 0 0 0 0 0 0 0 4 0  0 0 0 0 0 0 0 0 0 0 4 0 4 0  0 

S O C O 2 5  0 0 0 0 0 0 0 O . ! O L !  0 0 0 0 0 0 0 1 0 ; Y )  0 
T 0 0 5 0  0 0 0 0 0 0 0 0 0 2 0  0 0 0 0 0 0 0 0 0 0 

H 0 0 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
R ?a 0 0 0 0 0 0 0 0 0 2 0  0 0 0 F l ) a O  0 0 0 0 0 0 0 
K 0 2 0  0 0 2 5  0 0 0 4 0  0 2 3  0 0 3  0 0 0 0 0 0 0 0 0 

N 40 0 OW 0 0 0 0 0 0 0 0 4 0  0 0 0 0 0 0 0 0 4 0  0 
D 0 0 0 0  O X  0 0 0 0 0 0 2 0 4 0  0 0  0 0 0  0 0 0 0 

N h  0 0  0 0  0 0 0 0 0 0 2 3 1 0 0 0  0 0 0 0 0  0 0  

c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0  0 0 0  0 0 0 0 
2 0 2 0  0 0 0 2 5  0 O M  0 6 0  0 0 0  040 0 0 0 0 0 0 0 P 

t b  0 0 1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
(w 1.0 0.8 0.7 0.8 0.6 1.1 1.5 1.5 0.8 0.9 1.0 0.7 0.7 0.9 0.9 0.7 1.5 1.0 1.2 1.5 0.9 0.7 1.5 

>> Aij = number of residues predicted to be in structure type j 
and observed to be in type i 

>> The sums over the columns of A 
give the number of residues pre- 
dicted to.be in structure i : 

>> The sums over the rows give the 
number of residues observed to 
be in structure i : 

>> The sum over all elements of A 
is the number of residues in the 
data bank used, abbreviated by b : 

>> The percentages of residues correctly 
predicted to be in class i from all  re- 
sidues predicted to be in i are given by: 

>> The percentages of residues correctly 
predicted to be in class i from all re- 
sidues predicted to be in i are given by: 

3 

j=l 

3 

j=l 

ai = Aji , fori = a, p, L 

bi = CAij ,fori =a, p, L 

3 3 

j=l j=1 
b =  c b j  =Ea: 

Qi%pred = Aii - 
ai 



3 

(correctly predicted residues/all residues): i=l 
c Aii >> Overall three-state accuracy 

"100 Q3 = b 

with pi king thc numbcr of propcrly prcdictcd miducs in conrormation i. 5 the numbcr of thou: 
correctly not assigned to structure i. ui the number of undcrestimated. and oi that of 
overestimated conformations. 

3 3 
C ai*lnai - C Aij*lnAij 
i=l ij=1 

D Information content: 
I = 1 -  Z 

b*lnb - bj*lnbj 
j=l 

This information is related to the probability of deviation of 
table A from a random distribution: 

I = 0, if: Ai=1/9, for i, j=1,2,3 
I = 1, if: Aij=O , for i#j and Aji=bi, i,j =I, 2,3 

Stan O'Donoghue k Burkhvd Roa: CornpuWional tools forcxpcrimcn~Idetmimtion and lbcmticd @don of protein strucm~:ISMB' 92: b b t i d y :  JuI 16.1995 3T-39 

i- +-----------+----------- 

I %obs I @red I 
+---+---+--- +---+---+--- 
I H l E l C l H l E l C l  
+---+---+---+---+---+--- 
I 711 61 221 781 101 141 
I 71 621 291 51 641 131 
I 101 111 771 161 251 721 
+---+---+---+---+---+--- 

+ 
i 

i. 



>> average segment length: 

sum of the lengths over all segments of structure i 
number of all segments of structure i <Li> = 

>> distribution of segments 

>> loose overlap between segments 

oyIoosc 

0 = 1 if  helices or strands overlap by one half, and loops 
by at least 2 residues 

>> 

>> optimised measure for segment overlap 

... .HHHHH. . .HH 

..HHHHH...HHHH€ 

3 2 
3 7 FOV= - + .  
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Basic idea: 

classification by similarity to known samples 
Not as simple: 

accuracy in 3 states: helix, strand, rest = 60% 
Improvement by: 

- new algorithms? 
- increase in number of known 3D structures? 
- more insight into protein folding? 

Projection from 3D onto ID reduces information 
-> in search for more information 



Basic idea: 

classification by similarity to known samples 
Not as simple: 

accuracy in 3 states: helix, strand, rest =: 60% 
Improvement by: 

- new algorithms? 
- increase in number of known 3D structures? 
- more insight into protein folding? 

Projection from 3D onto ID reduces information 

Evolutionary information pushes to 
-> in search for more information 

> 70% 



SCw ODonoghue k Burkhard Rort Computslional tools for experimental delamination and tbcaeiinl  prediction ofprotein drucmrz ISMB'95: Cambridge: JuI 16.1995 3T-47 
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0 20 40 60 80 100 
percentage of resdidues predicted 

S h  O'Lhwoghuc k Burkhsd Rou: Computational twk for uperimenlsl defmnimtion and lhcoraical prediction of pmkin smcture: ISMB' 9% Cambridge: Jn116.1995 3T-49 

definition of structural content 
neural network specialists 
usual network (PHD) 
CD measurements 



NET 2 

Generoluotion Helix ? Strond ? 

NET I Mfl Mf2 Mf" Iter 

I from Muskal & Kim, 1992 

- -  
A C D E  mol.wt. Heme 

60 

50 

40 

30 

20 

10 

0 10 20 30 40 50 60 70 80 90 100 
Figure taken from (Rost & Sander, 1994b) 

95 of helix 



Pearson correlation: Nprot helix strand quote from: 
HM 130 0.97 0.97 Rost et al., 1994b 
PHD 124 0.91 0.73 Rost & Sander, 1994b 
COMBINE 124 0.83 0.51 Rost & Sander, 1994b 
CD (Perczel et al., 1992) 22 0.88 c0.5 Rost & Sander, 1993b 
PHD 22 0.86 0.88 Rost & Sander, 1993b 

SCyl O'Lbnoghue k BurLhvd Rose Computational tools for cxpatmnW delctmination and theoretical p ta i cn  of pmlein SINCNTC: ISMB' 9% Cambridgr. JnI 16.1995 3T-53 

J A 

method" sef' Nprota 

HM:SeqAli set 1 80 
RAN set 1 80 

PHD set2 126 
PHD set3 124 

PHD set2-6 337 

Ahelixb Astrandb 

2.83.8 2.73.2 
32.1-0.8 21.3k14.5 

8.533.0 7.5k8.1 
7.8S.8 7.3k7.9 

8.1k7.9 7.1k7.6 

~~~ 

 all^' All+' alp' R e ~ f  QcImc 

94.1 86.7 100.0 89.7 90.0 
0.0 0.0 0.0 71.2 44.7 

85.7 50.0 50.0 74.1 74.6 
94.1 0.0 55.6 74.5 75.8 

85.0 55.6 45.5 75.6 74.2 

a See caption of Table I. 
Errorin predicting the content of helix or strand averaged over all protein 
chains in the data set. The error is computed as the difference between the 
percentage of helix (Ahelix) or strand (Astrand) between observed and 
predicted. ("P values refer to one standard deviation). 
Percentage of protein chains correctly predicted in either of the four 
classes: all- a, all-p, alp and all others. %lass gives the percentage of protein 
chains correctly predicted in any of the four classes. 



gain by specialising on one class 

problem of most publications: too few examples 
results about 80% accuracy for helixlnon-helix specialised 

(Maxiield & Scheraga, 1976; Taylor & Thornton, 1984; King & Sternberg, 
1990; Kneller et al., 1992; Muggleton et al., 1992; Rost & Sander, 1993c) 

prediction methods 
MK!3 (Muggleton et al, 1992): 
Helix network (Rost & Sander, 1993~): 

PHD (Rost & Sander, 1993~): 

80.5 % 
82.7% 

marginally better than methods predicting 3 states 

BUT: inaccuracy in determining the class results in that . 
specialists (two-state predictors) have on average lower 
prediction accuracy than, e.g., three-state predictors! 
MIND: two-state number not comparable to three-state 
numbers 

81.2% 

RAN (two states; Rost & Sander, 1993~): 54.5% 
RAN (three states; Rost et al., 1994b): 35.4% 

SCyl ODonoghw k Durkhud Rost Computational took forexpaimcnbl dclcrminzlion and thcorclical prediction of pmlcin ~ ~ c I I I ~ : I S M B ’  95: CYnbridZc Jull6.1995 3T-55 

Evolution improves secondary structure prediction by 6-10 

Neural networks are easy to be adapted to specific features 

Prediction not perfect, but reasonably accurate 

percentage points 

of problems 

- for 40% as good as homology modelling 
- well balanced 
- segments 

But: 

Evolution helpful to continue? 
Goal is to predict 3D structure 



Post-processing prediction methods 
>> 3D modelling 
>> threading 
>> contact-predictions 

Chain tracing 
Mutational experiments 

)> change of secondary structure by exchange of residues, 
e.g., for finding (de) stabilising mutations 

Speculations about binding sites and function 
>> e.g. specific patterns, such as helix-turn-helix 

Goal and concept 
Methods 
- Neural networks 
- Statistics 

*Results . 
>> Measures for accuracy 
>> Three-state accuracy < 60% 

)> Accurate enough to seed predictions of secondary structure 
)) Not accurate enough to be as useful as secondary str. predictions 
)> Clear improvement by database growth (evolutionary information) 

Evaluation 

Applications 
)> Post-processing prediction methods; Speculations about binding sites 

and function 
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accessibility (DSSP) 
relative accessibility 
two-statemodell : 

three-state model: 

ten-statemodel : 

= 0-300 A' 
= 0-100 % 

buried 
exposed 
buried 
in termed ia te 
exposed 

Acc 
XeZAcc 

C20% 
220% 

e 5% 
520% 
220% 

RelAcc,, = INTEGER $00 x RelAcc 

Scan Obnoghuc k Burkhud Rosc: CompulJtionnl took forcxpaimenwl delennitwion and thcorctinl prdiction of pmlcin ~ ( T ~ c N I c :  IShW 9% Cynbridpc: Jul16.1995 3T-59 

10 state description sufficiently detailed 
- binary and ternary descriptions lead to a frustrating 

ambivalence in choosing the thresholds for state distinctions 
Solvent accessibility is less conserved than is secondary 
structure 
Accuracy of homology prediction sharply decreases with 

Small residues are conserved best 
sequence identity 



gcnemtion of network input 
from sequence information 

8 
E e 2  

occurrence -e" .J" $2 w d 2.2 
ormnt.g. - . 

amino acid .B 8 003 

I .  M 

of each 

. *  . I  . ..... . .... 
,T SHTT; '. 
N N... 
K PGG. 
D DED. 
W W W W F  . .... . ..e. 

T=0.50, S = 0 . 2 5 ,  I-kO.250.2 0 0 .35 
N d . 0 0  0 . 6  0 0 .4  
K=0.25 ,  G=0.50, P = 0 . 2 5 0 . 2  0 0 . 3  
D=0.75, E = 0 . 2 5  0 . 2  0 0 .55 
W=0.80, Fz0.20 0 0 0.75 

amino acid composition of protein 
length of protein 
distance of window from N-term 
distance of window from C-term 

(20 i I unirs) (l+lunifs) (lunir) 

ricunl network 

a a E 
.I 

U n i t s  

uni& 

u a n 
a - 
0 

f 0 

(Wake & Blundell, 1994a) 

two states: buried (<20%), exposed ( ~ 2 0 % )  
information theory on multiple alignments 



Correlation of accessibility, with x ind  y being the relative accessibility a pair of 
homologue proteins (for the analysis of accessibility conservation in 3D families), or 
for a prcdiction and the obscmtion (for the analysis of prediction accuracy). 

Q2 = percentage of conserved (or correctly predicted) residues in two states (B. E) defined 
by thresholds given above. 

Q3 = percentage of conserved (or correctly predicted) residues in three states (B, I, E) 
defined by thresholds given above. 

Qd = for n sbtcs: pcrccntagc of conservcd (or correctly prcdictcd) residua in statcX. 

=same as before. for the prediction of accessibility the percentages are normalised by 
the number of residues observed to be in state X . 

Q%P" ,x = prohahilily fora corrcct prcdiction. i.c. thc numhcr of rcciducs prcdictcd correctly 
in statcX (X 100) dividcd by thc numbcr of all rcsiducs pxdictcd to hc in staicx . 

Stan O'Donoghuc &lurkhad Rort Compuidonal Cook for expaimam1 deIaminaIion and rhcorctical prediction of protdo rmlcurrc:ISMB' 95; Cambridge: Jul16.1995 3T-63 

2 stat 

PREVIOUS METHODS 

$ Wako & BIundell 
$ Holbrook et al. 

(13 families) 
(5 proteins) 

PHDacc for different testinp sets 

* PHDacc 126 = cross-validation set 
* PHDacc 112 = pre-release set 

* PHDacc 99 monomers (of 238) * PHDacc 13 from Wako & Blundell 
* PHDacc 5 from Holbrook et al. 

5 
42 

76.5 
72.0 

75.0 
74.7 

77.7 
79.2 
75.7 

57.9 76 12 81 0.54 
57.9 77 12 75 054 

60.5 77 13 81 0.59 
60.8 77 12 86 0.61 
58.4 76 10 79 0.55 

most accurately predicted: 
residues in helices and in buried strands 



Evaluation 
- Accurate enough to seed predictions of secondary structure 

- Not accurate enough to be as useful as secondary str. 

- Clear improvement by database growth (evolutionary 

(Wako & Blundell, 1994b; Benner et al., 1994) 

predictions 

information) 
Applications 
- Post-processing prediction methods 

>> prediction of contact maps: upper and lower limits 
>> threading 

- Speculations about binding sites and function 

Stan ODonoghuc k Burkhsd Rosl: CompuWionnl Wls for experimental &termination and thcorcIied prcdictionofprotein thlldorc: ISMB’ 95: Cambridge: 301 16,1995 3T-65 

Goal and concept 
Methods 
- Expert rules based on physico-chemical properties 
- Statistics 
- Neural. networks 

Results 
>> Measures for accuracy 
>> Two-state accuracy about 95% 

>> Often accurate enough to seed 3D or topology predictions 
>> Improvement by database growth (evolutionary information) 

Evaluation 

Further method @-strand segments) 
Applications 

>> Design mutation experiments; Speculations about binding sites and 
function; Fast mapping of all proteins from entire chromosomes 
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hydrophobicity scales 
(Argos et al., 1982; Kyte & Doolittle, 1982; Eisenberg et al., 19S4a; 
Eisenberg et al., 1984b; Engelman et al., 1986; Cornette et al., 1987; 
Degli Exposti et al., 1990; Claverie & Daulmiere, 1991) 

expert rules 
- positive-inside rule: 

positively charged amino acids (R, K) are more‘abundant in 
cytoplasmic than in periplasmic segments 

(yon Heijne, 1981,1986,1991,1992; yon Heijne & Gavel, 1988; von 
Heijne & Manoil, 1990;Boyd & Beckwith, 1990; Dalbey, 1990; Sipos & 
yon Heijne, 1993) 

information theory 
(Engclman, 1993; Joncs ct al., 1994; Pcrssori & Argos, 1994) 

neural networks 
(Fariselli et aL, 1993; Casadio et al., 1995; Rost et al., 1995) 

S f y l  ODonogbuc k D u r k b d  Roe Computational tools foruperimcnW dctennimxion and thcaeticd prediction of protein smcturc:ISMB’ 95: Cambridge: Jul 16.1935 3T-69 

sequence information 
from protein family 

pofile d-&d Gum multiple alignmni 
for a wn&w of w adjacent residues 

i J 4 w o c d i n s e p p l n  . 
A c L I a s v-alcte. 

m,o 0 0 0 0 0 0 0 . 1 9 .  
m 0 0 0 0 0 0 3 3  0 0.a 

0 om 0 0 0 0 0 3 3  0.92 

66 0 0  0 3 3  0 0 0 0  Ll.7 

0 0 0 0 3 3  0 6 6  0 0 O R B  

0 0 3 3  66 0 0 0 0 0 0.741 

0 6 6  0 0 0 3 3  0 0 0 0.74 

in& global in s e p e n u  

frequency of each amlno add In proteln 
Iengtholprotdn (.560,suO,~,>240] 
dbtanct centre to N-term ( s 4 0 , s j o ~ o )  
d I s t a n c e c e n t r e t o C t v m ( s o 9 ~ 0 )  

0- position for p e d i a i o n - 0  

two levels of neural n e t d  system 

input 
laya 



I too short helices 

if { L e 17 n Rb7 (at either end of helix) }-> 

if [ only one helix predicted } 

if [ at least 2 heliccs predicted } 

elongate helix by one residue 
until L 2 17 

if { L <  17 } -> cuthelix 

if [ L < 11 } -> cuthelix 

I too long heIices 
if [ L>35 } --> split helix at position U 2  

if [ L > n x 22, n=3,4, ... 1 
into two helices of length L/2 
split helix into n of length L/n -> 

Sfa  O'hnoghue k BurWard Rost Cornpumiond tools for cxpcrimmnwl dctcnnination and cheorclinl prcrtiction of protein s(Ncurc ISbW 9% Cambxidgr. JulI6.1995 3T-71 

Overall Helical vansmanbranc segments only 

Per-residue score Segment-based scores 

Serb Method' N QZ Info OIpObsQnr %PrdQm Con (L) ~OObSSov GPrdSov Nsgdovcr Nsegundcr 

Set 1 So profiles 69 90 0.45 Sa i o  0.71 23 90 81 15 47 

PHDhtm 69 95 0.64 91 84 0.84 23 96 96 5 10 
6.3% 17% 

1.9% 3.8% 

Set2 PHDhtm 37 95 91 
Edelman (1993) 37 88 90 

0.85 23 
0.70 26 

Sa 3 Jones et 31. (1994) 67 I5 6 
4.5% 1.9% 

Set4 PHDhtm 28 

Pmson and Argos (1994) 28 
Sot cross-validated' 

3-2' 3 
1.6% 2.3% 
2-3' 3 
1.6% 2.3% 



Evaluation 
>> Often accurate enough to seed 3D or topology predictions 
N Improvement by database growth (evolutionary information) 

>> prediction methods for globular proteins (secondary 
structure prediction) often accurate enough, but ... 

>> no general method available. 

>> Design mutation experiments 
>> Speculations about binding sites and function 
>> Fast mapping of all proteins from entire chromosomes 

Further method @-strand segments) 

Applications 

Fig. 3.31 

Scan O'hnoghuc & B u r k h d  Rost Cornpulnlional look forexpcrimcnbl dctminntion and theoretical prediction of pmtcin stmc~urc: ISMI)' 95: Cmbridgc: Jul 16. l W  3T-74 
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Table 5. Prediction of transmembrane he1ice.i for yeast chromosome Yll la  

Identifier Nmb- Ndib Locations of prediaed ygmcnu Nhmb 

Y H W  

YHL047c 

627 

637 

YHRo92c 

YHR096c 

YHRO94C 

YHROZ6w 

YHRWZw 

YHLO48w 
YHR190w 
YHR129c 
YHROOSc 
YHR183w 
Y H R W  
YHR176w 
YHR039c 
YHLOlIc 
YHR028c 
YHRW7c 
YHR037w 

592 

S70 

213 

357 

381 
4p4 
384 
472 
489 
295 
373 
614 
320 
818 
530 
175 

21 

18 

17 

18 

8 

4 
i 

258 
153 
39 
7 
6 
5 

22 
8 
7 
4 

15-88 
205-216 
363-387 
568-581 
70-83 

200-21 1 

563-576 
70-87 

215-226 
435459 
85-101 

230-241 
450-475 
64-80 

209-220 
4294.53 
20-37 

180-205 
37-53 

271-281 
39-62 

272-283 
137-153 
331-347 
360-371 
103-117 
262-272 
49-66 
73-92 
26-44 
2547 

209-227 

358-3az 

316-127 
231-252 
404418 

Ill-122 
5 - 2 4 7  
.roM13 

12.1-139 

47-92 
147-261 

138-154 
262-276 
489-507 
.I 18-133 
241-255 
463486 
56-80 

102-115 

10-93 
295-310 
349-360 

418-429 
377-387 

201-216 
338-351 
247-264 

141-151 
285-308 
J2944l 

136-152 
2&303 
425436 

152-171 
369-385 
500-518 
161-186 
385-400 
515-533 
146-165 
363-379 
494-512 
94-122 

141-153 

233-252 
425-440 

173-190 
326-342 
458477 

168-185 
321-337 
453473 

1794% 
400-413 

194-212 
415-428 

173-191 
394-407 

145-168 

201-227 

2~x1-277 

13 

13 

11 

I 1  

2 
2 
I 

Prediction of (long-range) inter-residue contacts 

Prediction of contacts between beta-strands 

Prediction of disulphide bonds 

Sfan Ollonochuc k Butkhvd Rost: Computnrimnl tmlr for cxpcrimcntal dctcnninatien an11 lhmct in l  pmliction of m c i n  smct~~rc :  IShln' 95: CamCridcc Jttl 16. IN5 3T-76 
__T_-_ _.__ _. 
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Goal and concept 
Methods 
- Statistics (correlated mutations) 
- Neural networks 

Results 
>> Predictions based on correlated mutations: 

>> For others, results difficult to assess 

>) Distinction between alternative models for 3D structure? 
>) No prediction of conformations ab initio 

>> Possibly many, none so far 

between 1.4 and 5.1 times better than random predictions 

Evaluation 

Applications 

SCm O'Donoghuc k B u m  Rom Computationd Wls forcxpaLmnLll &termination and lheorelicl p r r d i o n  of pmcin smetnrc: ISMB' 95: Cambridgr. Jul16.1995 3T-77 

Residue 
flu* 

I"+ I I  I1 11, IbllII II I l l  II i I ,  I I II Il-Tq . .  . .  
I 111 10 IO a11 io Id1 :a IiiI ill 

Residue n u d e r  

.. 

Sfm O'hnoghuc & Durkhvd Ron: Computational Wls for experimental dctcnninatmn a d  theoretical pdiction of protein SIIYCIUTC: IShlD' 9% Cambrir1:c: 1111 16.1')L)S 3T-78 
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evolutionary constraints on protein sequences 
- selective pressure from need to maintain protein function 
- consequently, conservation and mutation patterns evidence 

of functional or structural constraints plus mutational drift 
>> functional constraints: surface residues 
>> mutational drift: loop regions 
>> structural constraints: core 

- simplifying assumption: 
residues in contact show correlated mutational behaviour, 
i.e, if one residue mutates, its contact partners also tend to 
mutatate 

Do correlated mutations imply spatial proximity? 
- sometimes 

(Altshuh et al., 1987; Altshuh et al., 1988; Neher, 1994; Taylor & 
Hatrick, 1994; Shindyalov et ai., 1994; jGoebel et al., 1994) 

.. .. . .. 

9 
Y 
2 

3 0 

25 

20 

15 

10 

-0.3 -0.1 0: 1 0.3 0.5 0.7 

correlation 
(Figure 2 from Goebel et al., 1994) 

SCm O'bnaghue & Durkhd Ron: Compulntiad tcok for cxperimcnlnl delerminntion and themelid prediction of pmlein S ~ C I U ~ :  ISMU' 9% Cambridge: Jul 16.19% 3T-80 
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starting point: multiple alignment derived mutation matrix 
Fig. 3.34 

rij distance between residues at position i andj ; siu mutation 
matrix for residue at position i , k, I = 1, ..., Nazi , where Nazi is 
the number of sequences in the alignment; <.si> is the average 
over all k and I ,  and ai the respective standard deviation 

contact predicted, if r(i,j> > threshold 
- exclude positions with > 10% gaps 
- exclude completely conserved positions 
- define clusters of correlated residues: 

cluster of rank n: 
residue part of cluster n, if it is correlated with at least n other 
residues in the cluster 

S C a  ODonogbuc k Burkhard Rest Computationd look forcxpaimmml dckrmimlion and Lmtid prediion ofpmtein shucture: ISMB' 95; Cambridge: Jul16.1995 3T-81 

i 
1 . ... v .... 
2 .... L .... 
3 .... F .... 

2 LV . LF 

j 
1 .... s .-.. 
2 .... T .... 
3 .... A .... + 

(Figure 1 from Goebel e l  al., 1994) 



(Figure 1 from Bohr et at, 1990) 

S&nODonogbue &Burkhvd Ron: C o m p u ~ o n d  took forapcrimenttl deternilnation 4 theordied prr&clion of pmlcm srrnctnrc:IShIB’ 95: CYnbriJgc. Jul16. I995 3T-83 

Accuracy: /1 
Lcorrect 

Acc = Cpredicted 

How many of the predicted contacts are observed? 

Coverage: 

How many of the obsevved contacts are predicted? 

AccPred Improvement over random: 
prove = ACCmdom 

random prediction: contact density 
-> dependent on size, e.g.: 

trypsin inhibitor (56) => random = 0.39 
trypsin (223) random = 0.13 
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(Figure 4 from Goebel et al., 1994) 

Stan O’Donoghue k B u r k h d  Ron: Computational tools for experimental detaminacion snd chetaelical prediction ofpmtcinshucturc; ISMB’ 95; Cambridge; Jul16.1995 3T-87 

1’1 llhl 11’Rni 

Fig.2. Binary diitancc matrim for ITRM. The matries CU3 x 223) ahor which C arom are within an 8 i\ 10 a c h  other c. in 
the folded protein. a) The mauix corresponding 10 rhe Utuaure determined from the X-ny dam (8 i\ thrrrhold). b) Nmnl nccwrk pdiaion 
of an 8 A distance matrix. A 6l-midue bandmtcredalong the diagonal is generaled. Thencrwork prcdictr this h n d  with an a c m C y  or96.6’1 
c) The matrix corresponding lo the sttuaure p r o d u d  by ncepa d a m 1  minimization. ~ n g  the nnrnl naworf prediabn ~a stvtinr pcrin~ 

(Figure 2 fromBohr et al, 1990) 



Results 
>> problem is a hard one (at least for non-local contacts) 
>> improvement of 1.4 - 5.1 times over random predictions 

Evaluation 
- ab initio prediction of conformations not possible, ... 
- ... but, distinction between alternative models may be 

possible 
- open: combine information from correlated mutations with: 

>> conservation of residues 
>> statistical predictions 

>> other ... 
Applications 

(Taylor & Hahick, 1994) 

(Galaktionov & Rodionov, 1980; Galaktionov & Marshall, 1994) 

- post-processing prediction methods 
- speculations about function 
- HOWEVER, none so far ... 

S C a  O'bnoghue k B u t k h d  Rost: Compulviond toak forupuimmtal detmimtion and rheorclicd prcdiion of protein s k n c k ! ~  IShiD' 95: CYnbridgc: Jul16.1995 3T-89 

Goal and concept 
Methods 

Results 
Evaluation 

- Statistics (potentials of mean force) 

>> Less accurate for predicted strands, 
>> But used successfully for predicting higher aspects of 3D 

structure 
Applications 

>> Post-processing prediction methods 
>> Speculations about binding sites and function 
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S & n O h g h u c  k Burtbxd Rod: Compuluionll took for expeMlalll dclmnination ud theoraicll preaicticn of protein smurc:IShiB'9S: C M b d g r  Jul16.1995 3T-91 
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Figun 1 Subdivisions of &strand residue pairs by 
parallellantiparallel; hydrogen-bonding pattern and with 
respec1 to N and C termini. Some suMivisiom have k e n  
omitted from the figure for clarity. 



residue-contact propensities: 

Sfan O'hnoghue k Durklurd Rort: Compuwlionnl wls for expcrimmwlderctminntion and Lcorcticd prediction ofprotein r(Nclurc:IShlB' 95: Cynbtidge; Jul16.1595 3T-93 
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Figure2 For each pstrand residue pair IJ. the 
occurrences of pairs lj-2, ij-1, lj, lj+l, lJ+2 are 
countd in separate tabla. 

(Figure 2 from Hubbard, 1994) 



definition of pseudo-potential: 
s u m  of propensities from relevant tables for all pair 
interactions (Fig. 3.42), 
divided by total number of interactions summed 
(four different for tables in Fig. 3.41) 
selective for: 
- parallel / antiparallel 
- correct 1 incorrect hydrogen-bonding 
- correct / incorrect strand order 

ability to identify correct strand alignments 
(without knowing length of strand-strand interaction) 

Fig. 3.43 

accuracy about 35-45% 

Sfm O'Donoghuc k B u r k h d  &st: Computationsl 100k f0rcxpcrimcnt;rl dclcxmimtion and Lmtid prcdiclionofpro(cin s ~ ~ ~ c t u r c :  ISLID' 95; Csmbridgc; Jul16.1995 3T-95 

I 
M A SI- s G T 

(1 ) observed (DSSP) alignment (parallel) 

(2) incorrect alignment (parallel) 

(3) incorrect alignment (anti-parallel) 

0 (4) highest scoring alignment (parallel) 

Figure5 Method for searching local alignment space 
around a bstrand pair (KNnv and LILGC) which interact to 
form 8 paalkl &she& h w s  following the squen#s 
point towards the C-terminus of h e  protein. Each box 
indicates an iJ alignment between corresponding residues on 
each axis. (1) indicares the correct alignment. (2) indicates 
an misalignment of the strands by 3 residues. (3) indicates 
an alignment of the wrong sheet type. (4) indicates an 
alignment which aligns the correct residues, but which is a 
different length and overlap. 

(Figure 5 from Hubbard, 1994) 

Stan ODonoghuc & B u r k h d  Rost: Computational tools forcxpnimcnul dclmimlion and thmelicd prediction of protein stnrclurc:IShlD' 9% CamhridFc Jill 16.1995 3T-96 
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: :: \, Src-homology 3 
i 'IJ. tlf '%\ \ 

(SH3) domain 
: ', p-strand interactions 

(Figure 8 from Hubbard, 1994) 

(Figure 9 from Hubbard, 1994) 
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S-k.  he cutpn'r~de wih ~k aim vliviry d rhe n ~ w a ~ r  deddm (Figure 1 from Muskal et al, 1990) 

Scan O'Donoghue k Burkhard R o e  Compuhtial  look for cxpaknental determination urd theordid prcdiaion of protein skucfnrc: ISMB' 9% Cambridge; Ju116.1995 
3T-103 

. . ..- A.. . . . -  . .  
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Slgnlflcance Filter 



Results 
- ss 81% 
- sx 80% 

- extremely small testing set 7 x 20 

>> filtering contact predictions 
>> post-processing prediction methods 
>> BUT, non so far published 

Evaluation 

Applications 

Scan O'Donoghuc k Bnrkbsd R o e  c0mput;uiond took for Cxperimental dehnimtion and theorelid prediction of prolein shuctuurc:IsMB' 95: Cynbridgr. JulI6.1995 3T-105 

. . . .  ......... . . . . .  . . .  ................ . . . .  :.. - . - - .  . .  - 

Sequence alignment THE prediction tool 

Homology modelling 

Potentials of mean force 

Remote homology modelling (threading) 



Goal and concept 
Methods 
- Hashing 
- Dynamic programming 

Results 
')> Straightforward for high levels of pairwise sequence identity 
)> Tricky below about 30% pairwise sequence identity 

)> Power of dynamic programming grows with databases 
)> Sensitive and fast enough as first step for sequence analysis 
)> Drawback: few methods provide cut-off criteria 

)> Post-processing prediction methods 
)> Prediction of function or binding sites 

Evaluation 

Applications 

Sba ODomghuc k Durkhvd Rosc: Compuwtiond look for expximcnwl dclcrmina!ion a d  lhmrclical pdiction of prokin smclm. Tutorial ISMB' 95: Cambridge: Jul16.1995 

... 
I .I 

. FASTA 

- 1. search identical 'words' (e.g. pairs) 
- 2. widen range of identity (profile based) 

(Dumas & Ninio, 1982; Wilbur & Lipman, 1983; Lipman & Pearson, 
1985; Pearson & Lipman, 1988) 

BLAST * 

- 1. list of high scoring words, 

- 2. search database for identical words 
- 3. expand words to segments 

typically words of length four with high information 

(Altschul et al., 1990; Karfin & Altschul, 1990; Karlin et al., 1990; 
Altschul, 1991,1993) 

3-107 



exchange matrices 
- PAM: accepted point mutations (Dayhoff, 1978) 

(percent accepted mutations; point accepted mutations per 
100 residues) 
merely counts of occurrences 

- mutation matrix: probability of amino acid exchanges 
- log-odds matrices: logarithm of exchange probabilities 
- comparison of various matrices: (Henikoff & Henikoff, 

1993) 

dynamic programming (optimal alignment) 
- gaps originally length independent (Needleman & Wunsch, 

1970) 

R 

B 

(Sellers, 

2 1 1 1 1 2 1 1 1 1 2 ' 0  0 
1 2  1 1  I 1  1 1  1 1  lb 0 

P 0 0 0 0 0 0 0 0 0 0 0 1 0  

- length dependent: 
1974) 

g(k) = go + g e  k 
go gap open penalty; ge gap elongation penalty; k length of 
gap 
typically g, / go = 1/30 

- problem: global alignment, Le., full length of aligned 
Sfan ODomghuc B n u l k ~ ~ $ 4 ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ - i n ~ ~ n  and thenrclinl prediction of protein nruchlre:Tuhrial LSMD' 95: CmBridgc: Jul16.tcMS 3-109 

- alternative: alien similarities (Srnilli L Walcnnan. 1981) 

Fro. 4. Contributors to tho mrrXimum match in the completed array. 
'l'Itu alkmativc patlt~vaya t h t  could form tho mnxiniurn match am illustmtod. Tho maxiinun: 

match terminates at the largest numbcr in the first row or 6rst column. 8 in this caae. 

(Figure 2 from Needeman'& Wunsch, 1970) 



optimal alignment practicable for Nali <=3 

pairwise alignment -> multiple alignment 
(Murata et al., 1985; Murata, 1990) 

(Barton & Sternberg, 1987;.Feng & Doolittle, 1987; Taylor, 1987; 
Corpet, 1988; Higgins & Sharp, 1988; Vingron &Argas, 1987; Sander 
& Schneider, 1991; Higgins et al., 1992; Schneider, 1994) 

profile-based alignment 
e.g.MaxHom 
1994) 

(Sander & Schneider, 1991; Schneider, 

- position dependent conservation weight 
- 1. pairwise alignment of homologous sequences based on 

conservation weight of previously aligned sequences 
- 2. fix conservation weights 
- 3. repeat pairwise alignments with fixed conservation 

weights 

SCmO'Donoghuc k Uurkhvd Ron: Cnmpuwtiond IWIS for CxperimcnIaI dctcrminatiun 2nd IhamlicJlprcdiclion olprukia wuaurcli~t&,l IShlD' 95: CmhriJFcJul If, lY)S 3-111 

a l i m e n t  number 

weight 

posit ion 

(Figure 12 from Schneider, 1994) 
S b n  ODonoghue k Burkhvd Rost: Compurntiond (001s for experimenwl determination and IhmFelicJl prediction of pmlcin smctmc Tutorid ISMB' 9% Cmhrid. *e: Iul I6.100~ 3-1 



(Figure 13 from Schneider, 1994) 
S b n  ODonolhuc k Burlthard R o a  CompuUtimal look for aperimenu1 deInmination and thmtiul prediction of prokin N D c b v r  Tuto~ial ISMB' 95: Cambridge: J u l 1 6  199s % 

idcnlity in 8 0 .1  0.1.5 0.2 0.2s 03 03s 
idciidiy in % 



Nali c wHsimH(i) 

c WH 

kl=l 1 
cw(i) = Nali , with WH = (1 - 100 %identityH) 

kl=l 

cv( i )  conservation weight at position i ; Nazi number of sequence in alignment; 
k, Z indices for sequences in multiple alignment; wu weighting factor to balance 
uneven distribution in sequence space; simdi) similarity between amino acids at 
position i of sequences k and I ; %identity, percent identity between sequences k 
and 1 

- normalised such that ccw> = 1 
- include only sequences above threshold for homology 

SCan O'Domghuc k BurwIvJ Rost CompuIzliond tools for expen'mcnlf dclaminalion a d  IhmrclicJl prcdiamn of protein s w c l u ~ r  Tulahl ISMI)' 9% Cmhridbc Jul16.1WS 3-115 

Results 
>> Straightforward for high pairwise sequence identity 
>> Tricky below 30% pairwise sequence identity 

>> Power of dynamic programming grows with databases 
>> Sensitive and fast enough as first step for any sequence 

>> Drawback 1: few methods provide cut-off criteria 
>> Drawback 2: lack of thourough tests on performance 

Evaluation 

analysis 

accuracy 
Applications 

>> Post-processing prediction methods 

>> Prediction of function or binding sites 
prediction in lD, 2D, 3D 



Goal and concept 
Methods 

Results 

Evaluation 

Applications 

- Rotamer libraries 

>> Accuracy depends on level of painvise sequence identity 

>> Sufficiently accurate to predict 3D structure 

>> Si te-di rected mutations 
>> Prediction of function and binding sites 

S f ~ n  ODocqhuc k BurkIurd Rort: Compuwliond mlr forexpcrimcn~Idclerrnin~!ion mdthmrclicjl prcdidion of prowin sUuclurc:TukhI ISMD' 9% Cambridge: JulI6.1995 3-117 

protein structure is more conserved than is sequence 
(Chothia & Lesk, 1986; Pastore & Lesk, 1990; Lesk, 1991; Lesk & 
Boswell, 1992; Holm et al., 1993; Holm &Sander, 1993; Holm & 
Sander, 1994a) 

single point mutations can be fatal to protein structure 
and furiction, but ... 

(Dao-pin et al., 1990; 1991a-c; Grenzin et al., 1992) 

most often, proteins within a sequence family have 

given a protein of unknown structure (SOUS), try to 
model its 3D structure by using the Ca-backbone of a 
known structure as template 

homologous 3D structure 
(Chothia & ksk, 1986; Sander & Schneider, 1991) 

early work (Dickerson, 1976; Greer, 1980,1981,1990,1991) 

limiting steps: function of pairwise sequence identity 
Fig. 



100% 

75% 

!3% 

25 % 

0% 

SPEED 

ALIGNMENT 

DETECTION 

Figure 1. The main limiting steps for model building by homology as function of the percentage sequenc 
idcntity bclwecn Lhc structure and the model. 

(Figure 1 from Holm et al., 1994) 
Stan O'Donoghuc k Durkhvd R o e  Computational tools forexpcrimenwl Jelcnninzlion and thmrctiul prediction of protein SMCIUIC Tubrid ISMU' 95: CYnhridgc: Jul IG. 1935 3-1 

High homology: placing new side chains in the structure 
- side chains can be 'grown' during molecular dynamcis 

(Karplus & Petsko, 1990; Cornell et al., 1991; Berendsen, 1991) 
)> problem: time (useful for difference of one residue) 

- similar environment in database of known structures 
(Ponder et al., 1987; Summers & Karplus, 1989; Summers & Karplus, 
1990; Holm & Sander, 1992; Levit, 1992; Eisenmenger et al., 1993; 
Vriend & Sander, 1993; Vriend & Eijsink, 1993; De Fillippis et al., 
1994; Vriend et al., 1994) 

D problem 1: what is similar? 
)> problem 2 quick scan, i.e, 

database systems that allow for fast, easy and flexible 
retrieval of specific information 

(Bryant, 1989; Islam & Sternberg, 1989; Vriend, 1990) 

Intermediate homology: 
- building loops if there is an insertion in the model 
- verification of quality of models 

Low homology: improving the alignment 



position-specific rotamer analysis 
(Jones & Thirup, 1986; Vriend & Eijsink, 1993; Vriend et al., 1994) 

(Hobohm et al., 1992; Hobohm & Sander, 1994) 
- start: database of non-redundant sequences 

- extract rotamer distribution 
- fragment lengths: 

>> helix and strand seven residues 
>> loop: five residues 

>> identical amino acid in centre 
>> local backbone similar to that around evaluated position 

- accepted fragments: 

(4.5 A r.m.s.d.) 

Stan O'Dnnnghuc Xr nurklwrd Roe Cnmpulnlimd Vnlr for cxperimnlnl dcterminntion and lhcorclinl rrcdulbn of prolcin sLmciu~e: Tutorial LMD' 9% Cunhddre: Jul16.1WS 
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Figure 2 from De Filippis et al, 1994) 
iclionnf Fmtcin Wucl~nc: Tqiori9 lc\tn'oi. r.-hi I-.. 1.4 IC 1-1 

3-121 



Results 
>> Accuracy depends on level of pairwise sequence identity 

(De Filippis et al., 1994) 
)) for intermediate homology: sometimes loops correct 

(Abagyan & Tokov, 1993; Abagyan et aL, 1994; Tokov & Abagyan, 1994) 
>> for low homology: rough estimate, not sufficient in general 

)> for high homology > 60% correct 

to design experiments 
Evaluation 

Applications 
>> Sufficiently accurate to predict 3D structure 

>> Site-directed mutations 
)> Drug design 
>> Prediction of function and binding sites 

S h n  O'Donoghue k Burkhvd Rest Computational Look forcxperimenwl dctumhation andthmrctical pdiccion of pmtcmrln~cture:Tuto~l ISMB' 95: Cambridgq Jul16.1995 3-123 

Goal and concept 
Methods 
- Sippl potentials 

Results 

Applications 
>> Accurate enough to spot incorrect structures 

)> Post-processing prediction methods (e.g. threading) 
)> Site-directed mutations 
)> Selection of the best among an ensemble of possible 

)> Spot stresses in structures 
structures 



inductive approach quantum-mechanics 
>> semi-empirical force fields 

(Momany et al., 1975; Brooks et aL, 1988; van Gunsteren, 1988, 1993; 
Briinger et al., 1986; Karplus & Petsko, 1990) 

deductive: knowledge-based potentials of mean force 
>> Boltzmann's principle 

(Sippl, 1990; Sippl et al., 1992; Hendlich et al., 1992; Sippl, 1993a) 
0 

Lu-bzsdcrived fora  ticld 
C w  b a s  oiknoan ~UudWcs 

3-125 

3-12fi 



oltzmann’s principle . .  
.._ . : _. . . .._ . ;I 

Boltzmann law: 

i, j, k variables of system; k Boltzmann constant; 
T temperature; Z partition function: 

ijk E 
Z=c expkT 

ijk 

general goal in statistical mechanics: 
given energy E -> 

compute partition function Z and probabilities p 
- problem 1: accurate energy function 
- problem 2: analytical or numerical computation of Z 

. . .. . . - -- ._ -... .. . - -7- . ’?) . .  

Eijk = -k T In [fijk] + k T In Z 
E: potential of mean force; f: relative frequencies 
obtained from measurements 

note: limn+, fijk = pijk , i.e., 
relative frequencies equal probability densities 

- Z is constant, thus, no effect on energy differences 
- consequently, here the following choice is made: 

z=1 
which is consistent with definition of partition function 



system described by four variables: i, j, k, 1; 
subset of variables: k, 1; AE: net potential of 
mean force; 
note: net mean force energy contains only those 
components which are particular to the 
subsystem labelled i and j 

Forces = partial derivatives of energies: 

with m = 1, k 

Stan ODonoghuc k DurwIvd Rose Cornputadoad Urok for experimental delaminnfion and lheorctiul prcdiclionorpmtein str~~carrc:Tu!mial ISMB' 95: Csnhridgr Jul16.1995 3-129 

Variables 
- amino acids: a, b 
- atom types: c, d 
- sequence separation: k 
- spatial distance: r 

thus, compilation of fabcdkr straightforward 
next: choice of subsystems and reference frame 

- problem: sparse data 



(Figure 2 from Sippl, 1993a) 
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(Figure 3 from Sippl, 1993a) 
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_*__ -~ ~ __--- - _ _ _  - 
(Figure 3 from Sippl, 1993a) 

S h n  ODonoghuc k Burkhard Rost CornpulJlionsl twls forexperimenbl dclminarinn and !henrelint prediclinn el rmtcin m c b r r  t l i t ~ r h t  ICMR’ 05. Ca-hidry 1 4  I <  lnnc q-1‘4’ 
_ _ _  - 

Thr-Thr 

-0.5 

Fig. 3. Esampla of @-C‘ m a n  force potentials for scpantion k =4 along the amino acid sequence. Energies arc scaled 
in the form UkT. For small c l lua  of k particular values of; correlate strongly wih  local s v u c t u ~  The deep minimum 
of Leu-Leu at r = 6 A reflects the s!ron_e preimmce for a-helical structures. In  cont ras t  a-helical conformations arc 
e n e r ~ e t i c l l l ~  unfamunblc for Thr-Thr. The m k c d  pin arc in fermeduie  Thr-Leu. for e.xmple. has IRU minima of 
comprJble depth a! a - h e l i d  and extended c o n i o m ! i o n r  



AE: = - k T In [ -1 e 
PS 

s number of atoms in a sphere of radius R around 
atom a; 

AS(S,C) = C E:"'" 
i 

AS(S,C) total surface energy of sequence S in 
conformation C; 

AE(S,C) = wpAP(S,C) + wsAS(S,C) 

total energy and total molecular force field 

Shn ODomphuc & Dnkhvd Roe Computational uxrls for cxpuimcnhl delcrmination and thwretical prediction orpmtein shllcmrr Tuurchl EMB' 95: h b f d g c  Jul16.1995 3-133 

i 

Fig. 5. Outline of the compuution of the tom1 pair interaction energy of proteins. The diaanm between atoms arc 
alculated..The residue types a and b. atom types c and d. the separation k along l e  sequence determine the type of 
potential used toevaluate thcenngyatrliuuncer. Thetotal pairinteraaion energyisobtained bysummingoverallatom 
pairs in thc molecule. (Figure 5 from Sippl, 1993a) 

Stan ODomghue & Burkhud ROSI: Computrtionnl tools for cxpcrimentrl detcnnination and thmretid prediction of protein shnctrtre:Tnurcrial ISMB' 95: Cmhridgc: Jul16.1995 3-1: 



reference system: 
- polyprotein 

- evaluate likelihood of background, i.e, find system with 
goal: 

lowest energy 
compute z-scores: 

C, conformation q along the polyprotein; (r 
standard deviation of the average energy over all 
conformations q; 

1 PAZ j lALC 

sequence sequence 

Fig. I I .  Raidueprofilesforsxenl protcinstmuresdetermined byX-rayan~~~.Theme~eswercolculatcdfrom CP 
intenaionsonly. I n t h c p l ~ ~ n i n I l P A Z ) . m ~ o ~ l o b i n c l ~ l B A ) . s n d a - I a ~ b u m i n I l A L C ) p r o f i l a t h c e n ~ ~ i n s  
mostl? k l o w  7 . 0 .  Only occsiomlly we encounter small positiw peaks. In contrast. the mktue profile o f X N 5  contains 
Inrgc phititc p n k r  Thc ctinformntion n p p n  t o  he extremely sinind. It  is noteworthy that this \inin is not a 
consequence of steric osrrlap. The energies for a11 dstjnccs r Its than 5 A were excludd from the dcubt ions .  The 
isindoit used for @idin_e asmys amounts to IO residua. 

(Figure 11 from Sippl, 1993a) 
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Results 
>> Accurate enough to spot incorrect structures 

Applications 
>> Post-processing prediction methods (e.g. threading) 
>> Site-directed mutations 

, >> Selection of the best among an ensemble of possible 
structures 

>> Spot stresses in structures 

S&nO'D&ghuc k B u t k h d  R o e  Compubtiond loot IorcxperimenlJl dctcrmindbn and theoretical prcdulion of p r o ~ i n s l ~ c t u r c : T u ~ ~  DMB' 9% Cambridge: Jul1& 1995 3-139 

Goal and concept 
Methods 
- Sippl potentials 
- Fosfos potentials 

Improvement by evolutionary information 
Results 

>> Potentials can retrieve h e  original structure 
>> Correct remote homologue often found 
>> Prediction of 3D structure seems to work sometimes 

>> Evaluation of tools a shame! 
>> Prediction accuracy overemphasised in the past, ... 
>> but, methods will probably become increasingly important 

>> If successful, same as for homology modelling 

Evaluation 

Applications 



'simple' program: 
)> given sequence of unknown structure SOUS 
D generate all possible conformations 
>> select best 

>> semi-empirical force-fields cannot even distinguish the 
correct from a grossly misfolded structure, in general 

not so simple: 

(Novotny et at ,  1984; Novotny et al., 1988) 

alternative simplify potentials 
D base distinction on inter-residue contacts 

or averages over contacts 

fitness of sequence for structure (fosfos) 
goal: 

S h n  ODono~huc dr Burkhard ROn. Computationsl bok for experimental determination and thcor-ctical prediction of protein s ~ c t ~  Tutorial ISMB' 95: Canbridge: Jul16.1995 3-141 
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current PDB (3.000 structures): 
some 5.000 pairs in 

"don't know" = "remote homology" region 

(Figure from Sander & Schneider, 1991) 
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(Figure 1 from Ouzouniz et al., 1993) 
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3D - ID potentials 

- simplest: 
hydrophobicity matching accessibility 

(Bowie et al., 1990) 

- more elaborated description: 
18 classes (accessibility, polarity, secondary str.) 

(Bowie et al., 1991; Lfithy et al., 1991) 

- contact interface potentials: 
29 classes 

>> helix, strand, turn, rest 
>> buried, intermediate, exposed 
>> residue, solvent 

>> + core weights: conserved and not exposed 
(Ouzounis et al., 1993) 

.. -.- . _ -  . . . .  I . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  - ... __ . ~ _  ~I----.--I__ ~ - . . ~ ~  



(Figure 6 from Bowie et al., 1990) 
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(Figure 4 from Bowie et al., 1990) 
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-+- 3D homologues * random alignments 
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(Figure 6 from Rost, 1995a) 
Sbn O h g h u e  & Burkhrd Rost Computationsl tmb for experitnatal detrnninJlian and thmrctid prediction of pmlcin stntchtrc; Tucorkl ISMB' 95: Cambridge: Jull6.1995 
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0 6 :  
accessibility 
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rest 

Area buried (A2) 
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S b n  O'Dom~huc k Burkhard Rost Computational rook for upaimenfaldclmninJlbnvld theoreticalpdiction of prntdn smclursTurori;rl ISMB' 95. Cznbxidgr.lul14 199s 3-149 

(Figure 2 from Ouzouniz et al., 1993) 
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Results 
>> Potentials can retrieve the original structure 
>> Correct remote homologue often found 
>> Prediction of 3D structure seems to work sometimes 

>> Evaluation of tools a shame! 
>> Prediction accuracy overemphasised in the past, ... 
>> but, methods will probably become increasingly important 

>> If successful, same as for homology modelling 

Evaluation 

Applications 

Stan O'Domghue k B U M  ROSC Computational cools forexperimentaldelominvion srd chmEticalprcdiclion of prokin s m t d u ~ T u t o h 1  ISMB' 9% CYnbridgc:Iull6,1995 3-154 
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1D 
2D 
3D 
4D 
ADPIATP 

cw 
DG 
DSA 
DSSP 

FSSP 

FT 
GOR 

HM 

RSSP 

m 

MD 
NMR 
NOE 
PDB 

PEID 

PHDacc 

PHDhm 

PHDsec 

RMSD 
sous 

Abbreviations used 

onedimensional 
two-dimensional 
three-dimensional 
four-dimensional 
Adenosine Di-PhospatelAdenosine 
Tri-Phospate, the reaction: 
ATP->ADP releases = W m o L  
Continuous wave 
Distance geometry 
Dynamical simulated anuealing 
data base containing the secondary 
structure and solvent accessibility 
for proteins of known 3D structure 
(Kabsch & Sander 1983a) 
data base of remote homologues of 
known 3D structure (Holm, et al. 
1993, Holm & Sander 1993, Holm 
& Sander 1994a) 
Fourier transform 
prediction of secondary structure 
based on statistics (Gamier, et al. 
1978, Gibrat, et al. 1987, Biou, et al. 
1988) 
Homology Modelling: modelling the 
3D structure of a protein based on a 
significant level of pairwise 
sequence identity to a protein of 
known 3D structure 
data base containing for each PDB 
protein of known 3D structure the 
alignments of all SWISSPROT 
sequences homologue to the known 
structure (Sander & Schneider 1991, 
Sander & Schneider 1994). 
Trans-Membrane-helix, helix 
crossing the lipid bilayer of integral 
transmembrane proteins 
Molecular dynamics 
Nuclear Magnetic Resonance 
Nuclear Overhauser effect 
Protein Data Bank of experimentalry 
determined 3D structures of proteins 
(Bernstein, et aL 1977, Ab04 et al. 
1988). 
Profile based neural network 
prediction of 
solvent accessibiity (PHDacc; most 
& Sander 199% Rost 1995b)), and 
transmembrane helices (PHDhm; 
most 199% Rost, et aL 1995)). 
secondary structure (PHDsec; (Rost 
& Sander 1994b, Rost 199!%)), 
Root-mean-square deviation 
Sequence Of Unhown Structure. 

SWISSPROT 
data base of protein sequences 
(Bairoch & Boeclanann 1994). 

TM Trans-Membrane, region bound to 
lipid bilayer of integral trans- 
membrane proteins. 

XRC X-ray Crystallography 

Sources of Figures 

Introduction 

Fig. 1.1 Basic tetrahedron of all amino acids 
(Rost 1993) 

Fig. 12 The 20 amino acids (Rost 1993) 
Fig. 13 Biosynthesis of amino acids to poly- 

peptides (Rost 1993) 
Fig. 1.4 The dihedral angles (Rost 1993) 
Fig. 15 SimpWxed view of protein folding 

(Sander, et al. 1992) 
Fig. 1.6 Chaperone mediated protein foIding 

(Martin & Hartl1993) 
Fig. 1.7 Hydrogen bond pattern of helix 

(Schulz & Schirmer 1979) 
Fig. 1.8 Hydrogen bond pattern of strand 

(Schulz & Schirmer 1979) 
Fig. 1.9 Calcium binding motif: helix-loop- 

helix @&&n & Tooze 1991) 
Fig. 1.10 &&-key motif: four strands 

(Bmden & Tooze 1991) 
Fig. 1.11 Relationship between structural 

homolo-gy and sequence identity 
(Rost & Sander 1994b) 

Fig. 1.12 Protein jigsaw puzzle 
(Taylor 1992) 

Fig. 1.13 Relation between structural 

(Sander & Schneider 1991) 
homology and sequence identity 

Determination methods 
Fig. 2.1 The growth of the protein data bank 
Fig. 22 The PDB format - showing its age 
Fig. 2.3 Chemical shifts for different 

hyrdogen atoms in peDtides 
(Creighton, 1993) 

Fig. 2.4 Continuous wave vs Fourier 
transform spectroscoPY - -  

(Emst, 1994) 
Pulse sequences - a black art 

(Emst, 1994) 
Schematic representations of 2D 
spectra (Emst, 1994) 

Fig. 25 

Fig. 2.6 
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Fig 2.7 2D NMEt spectraum of a small 
proteinWagner & Wiithrich et f, 
1990) 

Fig. 2.8 Sequential assignment: 

Fig. 2.9 

Fig. 2.10 Distance geometry algorithm 

Fig. 2.11 Problems with DG-generated 

(Wuthrich, 1986) 

(Have1 et f, 1983) 

(Kuntz et aL, 1989) 

TetrangIe and pentangle inequalities 

Fig. 2.12 

Fig. 2.13 

Fig. 2.14 

Fig. 2.15 

Fig 2.16 

Fig. 2.17 

Fig. 2.18 

Fig. 2.19 

Fig. 2.20 

Fig. 221 

structures with meteriiation: 
(Briinger & Nilges, 1993) 

The soft potential fuction 
(Nilges et aL, 1988b) 

Annealing a protein structure from 
liquid to solid phase 

(Briinger & NilgesJ993) 
Annealing from the gas phase 

(Nilges et f, 1988a) 
Cornparision of CPU times for DG 
vs DSA (Kuszewuki et al., 1992) 
Torsion-angles in a protein - torsion- 
angle space 
Methods which consider protein 
dynamics - time-average constraints 

(Torda et al., 1990) 
Effect of motion on relaxation rate 

(Bruschweiler & Case, 1994) 
A protein in the crystallme state: the 
unit cell of an immunoglobulin Fab 
fragment. (Satow et al, 1986) 
Example diffraction p a t m  

(Creighton, 1993) 
Fitting a protein model into a refined 
electron density map. 

(BlundeU et f, 1981) 
Fig. 2.22: Molecular replacement search 

strategy (Briinger & Niiges, 1993) 

Prediction methods 

Fig. 3.1 

Fig. 32 

Fig. 33  

Fig. 3.4 

Fig. 3.5 

Fig. 3.6 

Fig. 3.7 

State of prediction art 

Protein'strucam in 3D, 2D, lD 

Bedworst prediction scale 

Signifcant sequence identity 

Cross-validation 

Variance between proteins 

CIassification by residue pattern 

(Ra t  1995a) 

(Rost & Sander 1994e) 

(Rost, et al. 1994c) 

(Sander & Schneider 1991) 

most & Sander 1994a) 

(Rost, et al. 19W) 

most & Sander 1994a) 

Fig. 3.8 

Fig. 3.9 

Fig. 3.10 

Fig. 3.11 

Fig. 3.12 

Fig. 3.13 

Fig. 3.14 

Fig. 3.15 
Fig. 3.16 
Fig. 3.17 

Fig. 3.18 

Fig. 3.19 

Fig. 320 

Fig. 321 

Fig. 322 

Fig. 3.23 

Fig. 3.24 

Fig. 3.25 

Fig. 3.26 

Fig. 327 

Fig. 328 

Fig. 329 . 

Fig. 330 

Central -residue screening 
(Rost &Sander 1993b) 

Pattern classification by NN 
(Rost & Vriend 1993) 

The effect of overtraining 
(Rost & Sander 1993b) 

Simple NN for sec str pred 
(Rost & Sander 1993b) 

A&pting neural networks to 
problem (Rmt & Sander 1994a) 
Evolution has it! 

(Rost & Sander 1994a) 
Processing alignment information 

(Rmt & Sander 1994a) 
Accuracy table most 1993) 
Per-segment measures (Rost 1993) 
Criterion for best segment measure 

(Rost, etaL 1994c) 
Accuracy for various methods 

(Rost & Sander 1994b) 
Nomalised accuracy for various 
methods (Rost & Sander 1994b) 
Distribution of prediction accNacy 

(Rost 1995b) 
Reliability of prediction 

(Rost 199%)) 
Distinction of structural classes 

(Rost & Sander 1994b) 
Tandem network for content 
prediction (Muskal &Kim 1992) 
Content prediction: experiment vs. 
theory compile for tutorial 
Accuracy in predicting sec str 
content (Rost 1995b) 
Neural network for accessibility 
prediction (Rat & Sander 19%) 
Locations of transmembrane helices 

most, et al. 1995) 
H"M prediction by ne& network 

(Rost, et al. 1995) 
Filter for HTM prediction 

(Rat, et al. 1995) 
Reliability of HTM prediction 

(Rost, et al. 1995) 
Fig. 3.31 HTM regions for  entire 

chromosome: yeast VIII 
(Rost, et aI. 1995) 

Fig. 3.32 Contact-map 
(Rat  & sander 1%) 

Fig. 333 
(Goebel, et al. 1994) 

Fig. 334 Correlated mutations 
(Goebel, et al. 1994) 

Fig. 335 Distance matrix prediction by neural 
network (Bohr, et al. 1990) 

Fig. 3.36 Pay-off between accuracy and 
coverage (Goebel, et al. 1994) 

Mutations correlated to distance 
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Fig. 3.37 

Fig. 3.38 

Fig. 3.39 

Fig. 3.40 
Fig. 3.41 

Fig. 3.42 

Fig. 3.43 

Fig. 3.44 

Fig. 3.45 

Fig. 3.46 

Fig. 3.47 

Fig. 3.48 

Fig. 3.49 

Fig. 350 

Fig. 351 

Fig. 352 

Fig. 3.53 

Fig. 354 

Fig. 356 
Fig. 3.55 

Fig. 3.57 

Fig. 3.58 

Fig. 3.59 

Fig. 3.60 

Fig. 3.61 

Fig. 3.62 

Fig. 3.63 

Fig. 3.64 

Fig. 3.65 

Accuracy of contact prediction 

Predicted contact map (CorrMut) 
(Goebel, et al. 1994) 

Predicted contact map (Neural 
Network) (Bohr, et al. 1990) 
Contacts between strands 
Generation of propensity tables 

(Hubbard 1994) 

(Hubbard 1994) 
Identifying the correct strand 
alignment (Hubbard 1994) 
SH3: observed contacts 

(Hubbard 1994) 
SH3: all contacts predicted 

(Hubbard 1994) 
SH3: contacts predicted from 
alignments (Hubbard 1994) 
Neural network for disdphide bond 
prediction (Muskal, et al. 1990) 
Pay-off between accuracy and 
coverage (Muskal, et al. 1990) . 
Dynamic programming 

(Needlman & Wunsch 1970) 
Evolution of conservation weights 

(Schneider 1994) 
Profile-based alignments: MaxHom 

(Schneider 1994) 
Profde-based alignments: p21 ras 

(Schneider 1994) 
Limiting steps of homology 
modelling (Holm, et aL 1994) 
Rotamer distributions 

(De FiIippis, et al. 1994) 
Mean-force approach (Sippl1993a) 
Mean-force: pair interactions 

(Sippl1993a) 
Mean-force: potentials 

(Sippl1993a) 
Mean-force: total energy 

(Sippl1993a) 
Potentials for known structures 

(Sippl1993a) 
Mean-force energy z-scores for 
known structures (Sippl1993b) 
Potentials for 2GN5 and lBGH 

most & Sander 19%) 
Remote homology 

(Sander 8c Schneider 1991) 
Fosfos potentials -principle idea 

(Ouzounis, et aL 1993) 
Aligning accessibility potentials 

(Bowie, et aL 1990) 
Separating positives and false 
positives (Bowie, et aL 1990) 

(ConMUt) (Goebel, et d. 19%) 

Distinguishing 5 classes 

Fig. 3.66 

Fig. 3.67 

Fig. 3.68 

Fig. 3.69 

Fig. 3.70 

Fig. 3.71 

Fig. 3.72 

APP-3 

Separating positives and false 
positives - more cases 

(Rost 1995a) 
Bowie & Eisenberg potentials: 
Classes (Bowie, et al. 1991) 
Bowie & Eisenberg potentials 

(Bowie, et al. 1991) 
Fosfos potentials 

(Ouzounis, et al. 1993) 
Sippl potentials 

(Sippl1993a) 
Threading: a non-trivial problem 

(Flo&er, et al. 1995) 
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