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Network Asymptotics for High Contrast 
I 1 1 1 p e d an c e To mogr ap hy 

Liliana Rorcea; James G. Berryman! and George C. Papanicolaout 

Abstract 
Fluid contaminant plumes underground are often electrically con- 

ducting and,  therefore, can be imaged using electrical impedance 
tomography. We introduce an output  least-squares method for 
impedance tomography problems that  have regions of high conductiv- 
ity surrounded by regions of lower conductivity. The  high conductivity 
is modeled on network approximation results from an asymptotic anal- 
ysis and its recovery is based on this model. The  smoothly varying part 
of the conductivity is recovered by a linearization process as is usual. 
We present the results of several numerical ex! erirnents tha t  illustrate 
the performance of the method. 

1 Introduction 

For purposes of hazard remediation, it is important to know the location 
and extent underground of fluid contaminant plumes. These plumes are 
often composed of electrically conducting fluids and, therefore, the extent 
of these fluids can be imaged using electrical resistance tomography (ERT) 
[6, 161 or electrical impedance tomography as it is more commonly known 
in the applied mathematics community. 

Let fl be a bounded two-dimensional region with conductivity u(x, y )  
and resistance (or impedance) p(z ,y )  = m. The recovery of u from 
measurements of the potential # a t  the boundary 80 is the impedance 
tomography problem. The potential # is the solution of the boundary value 
problem 

V . ( u V # )  = 0 in R 
84 
dn u- = I on 8Q, 
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where the imposed surface current density I satisfies SanIdS = 0 and the 
potential d is unique up to a constant. .An extensive review of the uniqueness 
and stability of the impedance tomography problem is given in [SI. 

We consider the recovery of the conductivity from boundary measure- 
ments when there are regions of high contrast so that linearization methods 
( the  Born  approximation) do not work. The analysis of current flow in re- 
gions with high conductivity, the direct problem, has been carried out in 
[IO, 41. This analysis motivates our approach to the high contrast inverse 
problem: we model the unknown conductivity in a special way, suggested 
by the analysis of the direct problem, and then estimate the parameters of 
the model conductivity by an output least-squares process. 

In the nest section we give a brief review of the analysis of high contrast 
conductivity problems. In section 3 we describe the inversion algorithm that 
we use for estimating high contrast conductivities and in section 4 we present 
results from numerical computations based on this algorithm. In section 5 
we provide a short summary and conclusions. 

2 The High Contrast Model 

2.1 Description of the Model 

High contrast conductivity may arise, for example, as a uniform background 
conductivity with highly conducting or insulating inclusions. Since in most 
potential applications we do not know the shape of the inclusions, it is 
convenient to assume that the high contrast of the conductivity ( a )  arises 
in a general way from a continuum model of the form 

Here go is a constant reference conductivity, S(z) is a smooth function and 
E is a small parameter. Variations of the function S(z), the scaled logarithm 
of the conductivity, are amplified by the parameter E ,  producing the high 
contrast of the conductivity. Media with discontinuous conductivities, like 
ones with inclusions of finite size, can then be viewed as particular cases of 
the generic model (2.2). 

2.2 Review of the Asymptotic Theory 

Some of the results obtained in [lo, 41 for transport in media with high 
contrast conductivity given by (2.2) are reviewed here. Even though the 
analysis is done in the context of homogenization [3, 91, the conclusions are 
equally valid for more general circumstances. 

Consider the flow problem 

v - (aVq5) = 0 
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in a periodic unit cell Q ,  where 4 is the electric potential and a ( r )  is the 
conductivity. The flow is driven by the condition 

(2 .4)  < Vq5 >= e ,  

where < * > stands for the Iiormalized average over R and e is a unit vector. 
The mean potential gradient can be specified, for example, by prescribing 
two different constant potentials at  opposite sides of the domain. 

By using Ohm's law j = Q V ~ ,  where j is the electric current, we can 
also consider the dual problem 

(2.5) 
v x ( p j )  = 0 

0 . j  = 0 
< j > = e ,  

where p ( z )  = a(.)-' is the resistance. 
It is shown in references [lo,  41 that, when the conductivity has 

logarithmically high contrast in the form (2.2), there is strong channeling 
of the flow a t  the saddle points of a. Moreover, by using the variational 
formulation of the effective conductivity and resistance [4] 

- 1 
p =  = min < p j . j > ,  

Q < j > = e ,  V.j=O 

it is shown that, in the asymptotic limit of high contrast, the leading order 
term in the effective parameters z? and p is obtained by considering the flow 
only in the neighborhoods of the saddle points of a.  

To explain this flow behavior in the vicinity of the saddles, let us assume 
that the conductivity has a single saddle point zs E Q, which is oriented in 
the driving direction, say e = el = ( 1 , O ) .  In a small neighborhood of ZS, 
the conductivity has the form 

where k and p are the curvatures of S(.) at the saddle point. In general, the 
saddle point can be oriented in any direction but equation (2.7) still holds 
if, at  zs, we introduce a local system of coordinates (z, y )  such that the z 
direction coincides with the direction of the saddle. We take as the small 
region around xs the square I 2 - xs 15 6, I y - ys )< 6 where the parameter 
6 --+ 0 in such a way that f --+ 00 as E --+ 0. 

From (2.3), the local problem near the saddle point is 



which we solve by separation of variables. The potential ~ ( x )  is 

(2.9) 

correct u p  to an additive constant that is set to zero here. The analytical 
basis for (2.9) is matched asymptotic expansions. The local analysis gives 
the leading term (2.9) of the inner expansion valid near the saddle point. The 
outer expansion deals with the diffuse flow in the rest of the domain. The 
potential 4 ( x )  therefore has the character of an inner layer in the direction 
of the saddle, the x direction in this case. 

From (2.9) we compute the potential gradient 

(2.10) 

and the current 
(2.11) 

We see from these expressions that when the contrast of u is high ( E  is 
small) both the current and the potential gradient are narrow Gaussians 
centered at xs, which means that there is strong flow channeling around the 
saddle point of the conductivity. The results (2.10) and (2.11) imply that 
the overall, or effective, conductivity and resistance (2.6) are (see [lo, 41) 

(2.12) 

Thus, the flow through a medium with high contrast conductivity can be 
approximated by the flow through a resistor having resistance p ,  given by 

In more general situations, where there are more saddle points of o in 
the region that are oriented in different directions, the flow still concentrates 
a t  the saddles but it follows a more complicated pattern, as in a network of 
channels. In the vicinity of each saddle point of the conductivity, the flow 
is approximated by the current through resistors given by (2.12). These 
resistors are connected in a network that is identified as follows: the nodes 
of the network are the maxima of a(.) and the branches are paths connecting 
two adjacent maxima over a saddle point. A detailed analysis is given in [4]. 

(2.12). 

3 Inversion Algorithm 

The asymptotic network theory described in $2 suggests that  if we have flow 
channeling in the medium that we are trying to image, there is significant 
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information in the data about the resistor network t h a t  describes the flow 
in the high contrast regions of the conductivitv. Thus, in the first step of 
the inversion algorithm. we should attempt to identify the relevant resistor 
network (channels offlow). The flow through this network is also the leading 
order term of the flow i n  the high contrast regions of CT. We could then use 
the conductivity estimate from the first stage of the inversion algorithm as 
a starting point for a second stage, trying to recover details not captured 
by the network. Linearizing about the conductivity of the resistor network 
works well at  this stage because the main part of the flow through the 
high contrast regions of u is already estimated, and small changes of the 
conductivity about it produce only small changes in the potential gradients. 

3.1 Identification of the Asymptotic Resistor Network 

In order to identify the resistor network that describes the flow through the 
high contrast regions, we model the unknown conductivity CT by 

rn 

(3 .1)  .(.> ------$ Ob + x ' c j ( X , S j ) f j ( Z , S j ) .  
j = 1  

Here is a uniform background in which we imbed the high contrast 
modules f,(.). Each high contrast module is of the form f j ( . )  e?, 
with support in the interior of R,  and consists of a saddle point surrounded 
by two maxima and two minima. The vectors of parameters s, describe 
the structure of the modules f,(.) by specifying the position of the saddle 
points, their orientation, the curvatures a t  the saddle, the contrast, etc. The 
modules f,(.) are localized with the smooth cutoff functions ,Y,(.). Detailed 
descriptions are given in section 4.2. 

Since conductivities defined by (3.1) are completely determined by the 
parameters s,, j = 1,. . .m, we estimate them by minimizing the error 
between the solution with these parameters and the observed data. Thus, 
we estimate the s, , j = 1, . . . m by minimizing the mean-square error 

where the index of summation IC runs through the data points on the 
boundary and i labels the pair of electrodes a t  which the current is injected 
into the domain. The potential measured on the boundary is $:', while 
$:)(e) is the potential on the boundary calculated by solving the partial 
differential equation (1.1) with the current best estimate of a conductivity 
of the form (3.1). This is an output least-squares estimation method, 
parametrized with high contrast conductivities of the form (3.1). 

Introducing a model of the form (3.1) for the conductivity is a form 
of regularization [17] for the output least squares problem (3.2). It is 
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particularly well suited to high contrast problems, as we know from the 
analysis of the direct problem summarized in section 2.2. 

To describe our  minimization algorithm. we assume at first for simplicity 
that we haw only one high contrast module ( m  = 1)  in (3.1). When the 
vector of parameters s E Rp changes by -Is, the mean-square error (3.2) 
chaitges hy 

(3 .3 )  

where we use the fact that, when the change in s is small, we have 

( 3 4  

From (3.3) the change in the error is 

P P  P 

(3.5) 
j = l  I s 1  j =1  

Here we introduced the symmetric positive definite sensitivity matrix 

(3.6) 

and the vector 

(3.71 

whose components measure the current data misfit weighted by the sensi- 
tivity of the potential t o  changes in s j .  The decrease in the error A E  is 
maximized when the parameters As satisfy [12] the linear equations 

AAs = b 

and then the change in the mean-square error is 

AE M -AsT AAs 5 0. 

This Gauss-Newton algorithm [ 7 ] ,  given by (3.6) - (3.8), does not work 
well here because the matrix A ,  as defined by (3.6), is ill-conditioned. Some 
of the components of the parameter vector s change faster than others. For 
example, when the contrast is high and the flow concentration at the saddle 
point is strong, the position of the saddle point is recovered after a few 
iterations while the contrast converges slowly. We avoid this difficulty by 
updating the vector of parameters s one component a t  a time, instead of 
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all at once. This approach has, in addition, the advantage of allowing us to 
terminate the updating of parameters that have converged before the end 
of the overall iteration process. The change in the j t h  component of s that 
maximizes the decrease in the error is easily found to be 

(3.10) 

and then 

The change in the parameters s depends both on the error at the 
boundary and on the sensitivity coefficients F. Thus, a t  each step of 
the iteration, we must solve the elliptic problems 

V . ( u V $ )  = 0 

(3.12) 

and 

(3.13) 

a4 
dn u- = f ondS1 

-(O,s) dsa = 0 for i = 1 , .  . . p .  

However, since small changes in the components of s lead to  an updated 
potential of the form (3.4), we need to  solve (3.12) only once every p 
iterations. 

In the Gauss-Newton method we approximate the Hessian of the mean 
square error (3.1) by the first derivatives of the estimated potential (3.4). 
Second derivatives are difficult t o  calculate and therefore omitted. The 
success of the method depends on the negligibility of second derivatives [7] 
and to insure that they are negligible, we scale the update in the parameters 
(3.10) by a factor A, > 0. The algorithm, then called a damped Gauss- 
Newton method [7] ,  is globally convergent for many nonlinear least-squares 
problems, including large residual problems [7]. In our computations we 
choose the scaling parameter A, so that the change in sj is smaller than 
15%. 



3.2 Identification of Features of the Conductivity that are 
Neglected by the Asymptotic Theory 

The resistor network identified by the algorithm described in $3.1 is in 
general only a rough estimate of the conductivity a(.). In order to improve 
its rcsolution we milst also identify low contrast features of a(.) that are 
not captured by the asymptotic resistor network theory. This is done 
by linearizing about the network conductivity estimated by the algorithm 
described in the previous section. In this section we define the linearized 
problem and explain why it works at this stage of the inversion algorithm. 

For a reference medium with conductivity a, (z )  of form (3.1)’ we have 

V .  [ap(x)Vdp(x)] = 0 in R 
(3.14) 

where d,(;c) is the reference potential. Suppose that 

(3.15) a(.) = a,(s) + 6 o ( x ) ,  where 

Then problem (1.1) can then be written as 

V . [a,(x)V$(z)]  = -V [6o(s)V4(s)] in R 
(3.16) 

(3.17’) a# ( a t 6 a ) -  an = I  on 

where +(x) = d(x) - $,(z). The perturbed potential gradient V+(z) that 
is due to  the change 6a(z)  of the reference conductivity is assumed to  be 
much smaller than the reference potential gradient V#p(z), so we linearize 
equation (3.16) to  obtain 

(3.18) V [ar(z)V$(z)] z -V . [Sa(z)V4,(z)] in a. 
Equation (3.18) is linear in 6a(z).  Linearization is justified in the second 

stage of our inversion algorithm because, as we explained in $2.2, the resistor 
network given by a,.(z) determines the main part of the flow in the high 
contrast regions of the medium. Small changes of the reference conductivity 
can only produce small changes in the potential gradient, so linearization 
(3.18) can be used. 

Inversion of the linearized problem (3.18) recovering 6a(z) has been the 
topic of numerous studies and an extensive literature on recovery algorithms 
is available (for example, [I, 6, IS]). In our computations we used an adjoint 
representation [15] that requires less computation than the usual algorithms 
that are based on Green’s functions. 
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4 Numerical Results 

All numerical computations were done using the PLTXfG [2] software 
package. This is an adaptive multigrid solver for elliptic PDEs in two 
dimensions that we tested carefully in [ 5 ] .  

4.1 One Channel Model 
In this section we present numerical results obtained with the inversion 
algorithm described in $3 for conductivities that have only one saddle point 
in the domain. An example of such a conductivity is 

where 6 6  is a uniform background f(.) is a high contrast module that has 
a saddle point surrounded by two maxima and two minima and x(.) is a 
cutoff function that localizes f(.). We model the high contrast module by 

f(z,s) =aoexp{-sin[cr((a: - z , ) c o s @ + ( y -  y8)sine)] x 

sin[@((y - ys)  cos@ - (z - 2 , )  sin@)]}, 

1 
E 

(4.2) 

where (x,,y3) is the location of the saddle point of the conductivity, 0 is 
the orientation of the saddle and E determines the contrast. The function 
f(.) in (4.2) is periodic with periods determined by a and p, which also 
determine the curvatures at  the saddle. The constant go controls the height 
of the saddle. Thus, the high contrast conductivity module is completely 
described by the eight-component vector 

The high contrast module f(.) is tapered with the C’ cutoff function 

where 

The parameter d in (4.5) controls the sharpness of the cutoff and it is kept 
constant throughout the numerical experiments. 

The data that  we use in the numerical experiments are generated 
numerically with a synthetic model of the form (4.1) and PLTMG. An 
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FIG.  1. Model condvctiazty {Contrast = 369) 

0 
1 

7 0 . 8  0.6 ' 

0 4  
0 2 7  0.2 

Y 0 0  
X 

FIG. 2.  Initial conductivity guess (Contrast = 14.7) 

example of a conductivity used to generate data is shown in Fig. 1. In 
a uniform background, ub = 2, we have embedded a high contrast module 
(ma.(.)/ min(u) = 369) that has a saddle at (zs, ys) = (0.3,0.4) which is 
oriented at  an angle 7r/4 from the axes. 

As a starting point in the iterative process of reconstructing the model u 
shown in Fig. 1, we consider the conductivity shown in Fig. 2. Even though 
the initial guess is of the same form (4.1) as the model, the set of parameters 
{s} describing it is very different. The background conductivity is a?" = 1; 
the saddle is situated at  (z8, y,)anit = (0.7,0.7); and the contrast is 14.7. The 
initial relative error in the conductivity (see Fig. 3) is very high around the 
initial guess of the position of the saddle ( w  600%) and about 60% elsewhere 
in the domain. 

In the reconstruction process, the data consists of the value of the 
potential a t  points placed a distance h = 1/32 apart along the sides (z = 0 
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0 1  
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FIG.  3 .  L ,  initial relative error in the conductivity 

FIG. 4 .  Evolution of the mean FIG. 5.  Evolution of the LZ 
square d a t a  error relative error in the conductivity 

and L = 1) and the surface boundary (y  = 1). Current is injected with two 
different pairs of electrodes located at (0,0.5), (1,0.5) and (0,0.3), (0.5,1), 
respectively. 

The evolution of the mean-square data error during the iteration process 
is shown in Fig. 4. The algorithm reduces this error monotonically. However, 
it does not guarantee reduction of the error in the conductivity and as shown 
in Fig. 5 .  At some stage of the iteration process the error in the model 
actually increases. This behavior is due to the strong nonlinearity of the 
problem and is more subdued in experiments with contrast of order ten. 
After 250 iterations, the relative error in the conductivity in the L2 norm is 
reduced by two orders of magnitude. The final relative error in the model 
in the L ,  norm (see Fig. 6) is only a few percent so the model conductivity 
is recovered quite well. 

Some of the components of the vector of parameters s describing 
the model conductivity are recovered more quickly than others during 
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F I G .  6. Relative model error yo) 

FIG.  7 .  Convergence of high 
Co n t rast contrast module p a  ram et e rs. 

o f b  = 104 

FIG.  8. Convergence of high 
contrast module parameters. Contrast 
o f a =  14 

reconstruction. For example, the position of the saddle point is expected to  
be easily recovered in experiments with high contrast. For low contrasts, flow 
channeling is weak so the position of the saddle is harder to recover. In Figs. 
7 and 8, we show the evolution of the relative error in three parameters ( E ,  bb, 
and tS) obtained from two numerical experiments that assume contrasts lo4 
and 14, respectively. When the contrast is high, the position of the saddle 
and the uniform background are recovered more quickly than the parameter 
E that controls the contrast; when the contrast is lowered to 14, the position 
of the saddle is instead the last parameter to be recovered. The numerical 
experiment for reconstructing the model conductivity shown in Fig. 1 was 
repeated with data to which 5% noise has been added. The noise is simulated 
with independent, identically distributed Gaussian random variables. The 
starting point in the iteration is as before (see Fig. 2). From Fig. 9 we 
see that the mean-square error decreases to  about lo-' in 50 iterations and 
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FIG. 9. Evolution of mean square 
data error (370 noise) 

FIG. 10. L ,  conductivity error 
(90 noise) 

remains unchanged after that. The relative error in the model in the L ,  
norm, shown in Fig. 10, shows that,  even with very noisy data, the algorithm 
recovers the background conductivity, the position and orientation of the 
channel and the support of the high contrast region. The error is high 
( w  30%) only around the maxima of the conductivity where the potential 
gradient is nearly zero and so the inverse problem is ill-posed in this region. 
The quality of the results improves when the noise level is reduced. For 
example, with 1% noise the relative model error is smaller than 10%. 

4.2 More Complex Systems 

If the model conductivity consists of a high contrast module embedded in a 
variable background, we can perform the inversion in two steps. In the first 
step of the inversion process, we repeat the preceding analysis looking for 
a conductivity of the form (4.1) that fits the data best. In the second step 
of the inversion process, we improve the quality of the image by linearizing 
about the conductivity given in the first step. Results obtained show that 
the quality of the image improves in the background. 

When there are multiple channels present, we can try to  identify them 
all at once or one at  a time. We have used the second approach in imaging 
the conductivity of media with two and three channels of flow. If the 
channels are well separated, the algorithm works well. The channels are 
found sequentially, one by one, starting with the one closest to the boundary 
and ending with the ones in the interior of the flow domain. This is similar 
to the method of matching pursuit [13]. 

More general high contrast conductivity distributions are to  be antic- 
ipated in practice. To provide some examples, we have considered high 
contrast Gaussian conductivity perturbations. Figure 11 shows the target 
conductivity. We have tried to  reconstruct this conductivity using a single 



Gaussian, two Gaussians. and three Gaussians. For a iingle Gaussian mod- 
ule, the result is expected to be a poor fit to the target model. Lt'e pursued 
this example anyway to determine whether the single Gaussian would fit 
just one of the peaks well and ignore the other, or whether it might straddle 
the two  peaks while fitting neither very well. The result (not shown) was 
that the  single Gaussian module tried to straddle the two peaks and does a 
rather poor job reducing 'the least squares-error functional. 

08- 

07- 

06- 

::I , , , , , , , , , 

'0 0 1  02 03 0 4  0 5  0 6  0 7  O B  09 

FIG. 11. Target conductivity used in Gaussian search examples 

A reconstruction algorithm using two Gaussian modules was much more 
successful a t  fitting the target conductivity as can be observed in Figs. 12-14. 
The mean square data  for a single Gaussian mopdule was about twice as high 
and could not be improved. For two Gaussians, the overall fit is reasonable 
after about 10 iterations and continues to  improve as the algorithm searches 
for the optimum values for the Gaussian height and width parameters. 

01. 

03- 

0 2 .  

0.1 . 
I . . . , . , . . , l  

"o o 1 0.2 0.3 0.4 0.5 oa 0.7 0.8 om 1 '0 0 1 0.2 0.3 0.4 0.5 0.8 0.1 0.8 09 

FIG. 12. Starting conductivity u FIG. 13. Final conductivity u for  
f o r  two Gaussian search. two Gaussian search. 

Using three Gaussians in the search produced significantly better results 



lo 0 5 10 15 20 25 30 35 40 
i 1 e l . t ~  

FIG. 14. Evolutzon of mean square data errorfor two Gaussian search. 

as is observed in Figs. 15-17. Only two peaks are observed in the final 
reconstruction because two of the three Gaussians have coalesced. The 
mean square data  error is an order of magnitude smaller than the case with 
two Gaussians, showing that there are clear advantages to using more, and 
therefore more flexible. modules in the reconstruction algorithm. 

OD. 

0 0 -  

0 7 -  

i . . . . . . . . .  
' 0  0.1 0.2 0.1 0.4 0.5 0.6 0.7 0.8 0.9 

FIG. 15. Starting conductivity u 
for three Gaussian search. 

FIG. 16. Final conductivity u f o r  
three Gaussian search. 

5 Summary 

We have introduced an inversion algorithm for tomographic imaging of 
media with large variations in the conductivity. The algorithm is based 
on the results of an asymptotic analysis of the forward problem in media 
with high contrast. This analysis shows that when the contrast of the 
conductivity is high, the flow can be approximated reasonably well by that 
of a resistor network. The network accounts for the main part of the flow 
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a 

F t G .  17. Evolution of mean square data error for three Gaussian search. 

and neglects the residual low contrast features of the conductivity. We 
introduce a new parametrization of the conductivity based on the resistor 
network theory and use an output least-squares approach for identifying 
the network. We have shown that this parametrization acts to regularize 
the inverse problem. The conductivity estimated in this first stage of the 
algorithm may be used as a reference conductivity in a second stage, where 
we identify low contrast features not captured by the network. 

We have assessed the performance of the algorithm with several numer- 
ical experiments and have shown that it is stable and successful in imaging 
high contrast conductivities in many situations. In our first set of experi- 
ments, the inversion algorithm used high contrast modules that are some- 
what rigid [see (4.1)-(4.5)], in the sense that they require the peaks of the 
conductivity surrounding the channel to have the same height. A second 
set of experiments using more flexible conductivity modules to represent the 
model (in the present case two or more Gaussian perturbations to  a constant 
background conductivity) has shown that a degree of flexibility in the func- 
tionals used to parametrize the model space can produce much better fits 
t o  both the data and to  the desired conductivity model without introducing 
undesirable instabilities. 
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