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I. INTRODUCI'ION TO QUASICRYSTALS 

Introduction 

In 1984 D. Shechtman and coworkers published electron diffraction patterns 

(Fig. 1.1) from rapidly quenched, metastable samples of A16Mn that exhibited 

relatively sharp diffraction peaks arranged in a pattern with icosahedral point group 

symmetry.[*] This marked the beginning of a new class of structures called 

"quasicrystals". 
.. 

Fig. 1.1. TEM diffraction patterns from rapidly quenched AI-Mn taken 
perpendicular to (a) a 3-fold axis, (b) a 5-fold, (c) a pseudo-2-fold axis, 
and a 2-fold axis. The diffaction peaks are not arranged periodically. 
Arrows point to the corresponding poles of the stereographic projection 
for the icosahedral space group rnE, which is incompatible with 
periodic order.121 
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These structures presented a dilemma that caught the attention of researchers 

from a wide range of fields including physics, chemistry, metallurgy, and 

mathematics. The fundamental issue at hand, at least during the early 

investigations, was that diffraction patterns from quasicrystals defied a century old 

belief that sharp diffraction peaks signify the presence of long-range periodic order 

. 

while it is well known that periodic structures cannot exhibit crystallographically 

forbidden rotational symmetries (e.g., fivefold, eightfold, tenfold and twelvefold 

rotation It was s.oon realized that our notion of the equality of order and 

periodicity was a rather restrictive view of the full range of possibilities for ordered 

structures. While sharp diffraction spots are, indeed, the signature of long-range 

positional order, the positional order in the icosahedral phase alloys is aperiodic 

rather than periodic. Soon after the discovery of the original AI-& quasicrystals, 

other AI-based alloys such as AI-Li-Cu and AI-TM-Si (TM=Transition Metal), as well 

as Ga-Mg-Zn and Ti-Mn-Si were discovered to exhibit stable or metastable 

icosahedral phases.[4-6] The AI-Mn quasicrystal, then, was not an isolated curiousity, 

but represented the first example of a new class of "ordered" structures. 

The emergence of any new field of study is generally accompanied by a new 

body of terms unique to that field. In the sections that follow, my principal aim is to 

introduce and explain the phenomenon of diffraction from icosahedral quasicrystals 

along with the nomenclature used to describe the possible structures that the 

diffraction patterns reveal. 

Quasicrystallography 

The first problem with which we are faced is a proper description of the 

diffraction pattern of icosahedral alloys and their structures. Inasmuch as the 
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diffraction pattern is a representation of the reciprocal space of the system, the direct 

space, or real space, structure of these alloys follows from how we describe the 

reciprocal "lattice." Quasicrystals are fundamentally incommensurate systems 

which, for some purposes, are best described in terms of a reciprocal lattice in an N- 

dimensional space, where N > 3. This abstraction is not unique to quasicrystals 

themselves. Indeed, the use of higher dimensional spaces for the description of 

incommensurate systems had proved useful long before the discovery of 

quasicrystals. Higher .dimensional spaces were used for descriptions of . 

incommensurate crystals by DeWolf in 1972171 and Janner and Janssen in 1977.[*] 

Studies of short range icosahedral order in metallic glasses and supercooled liquids 

led Sadoc and Mosseri in 1982,[9] and Nelson in 1983,[1O] to use a four dimensional 

space for their description of atomic correlations. For quasicrystals, the 

development of a six-dimensional description of the diffaction pattern and real space 

structure follows from the indexing system used to characterize the diffraction 

pattern as described below. It also provides us with a relatively straightforward 

manner of describing various structural models for the icosahedral phase, the 

relationship between the models, as well as the types of structural disorder 

characteristic of quasicrystalline aIloys.[1*-171 

Periodic Crystallography 

The diffraction pattern from three-dimensional periodic crystals can be 

indexed in terms of a set of three integer indices (h,k,Z) and three corresponding 

basis vectors {a*i,b'j,c'?} where a*, b* and c* are reciprocal to the lattice constants 

of the periodic structure. This implies that a periodic reciprocal space lattice can be 

constructed so that the reciprocal lattice points are defined by, 0 = (a'hi + bo@ + c'Z2). 

1 
i 
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For the case of x-ray diffraction, the scattering crystal can be represented as a charge 

distribution p(T) that can be written as a Fourier series related to the reciprocal 

lattice so that 
1 

I 

where the pQ are complex coefficients associated with each reciprocal lattice point. 

In a scattering measurement, the sfmcture factors, F ~ L ,  which largely determine the 
intensity of the diffracted beam, are given by pQVc (Vc = Volume of the unit cell). 

Unfortunately, the reflections give no information about the phase of the 

i 
I 

coefficients. The fundamental process for solving crystal structures involves 

3 determining the Coefficients pa and, in light of the "phase problem," comparing the 

observed pe with those calculated from some model structures. Various techniques 

have been developed, such as the Patterson and Direct methods, for partial phase 

analysis and experimental techniques for measuring the phase relation between 

pairs of Fourier coefficients have been developed based on multiple scattering 

techniques.[*&] 

i 

Quasicrystallography 

In the case of icosahedral quasicrystals, (for example the electron diffraction 

patterns of Fig. 1:l and the powder x-ray diffraction pattern of Fig. 1.2) it is not 

possible to index the set of reflections using three integer indices. Rather, one finds 

that the reflections must be indexed using six integer indites for basis vectors along 

three orthogonal axes: 

0 = C'[(h + T h y  + (k  + 2k')j + ( I  + TI')?], 
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-- 4 

0 ( Inverse Angstroms) 

Fig. 1.2. Top: High-resolution x-ray diffraction pattern of quenched AI-Mn 
powder. The sample consisted of FCC Al and icosahedral AI-Mn. Peaks 
are labeled A1 or I respectively and indexed appropriately. Broad 
diffraction peaks are evidence of disorder in the icosahedral phase. 
Below: Diffraction pattern of annealed Al-Mn powder reveals 
orthorhombic A16Mn.[lgb1 

Here, z is the golden mean (z = (&+ 1) / 2) which arises from the geometry of 

icosahedra and pentagons and {h7h’7k7k’7f7f’} is the set of six integer indices. Since z 

is an irrational number, the set of lattice points in reciprocal space do not form a 

periodic sequence. While equation 1-2 provides a means of indexing the lattice that 

is useful for scattering work, it does not exploit or elucidate the symmetry of the 

reciprocal lattice. For quasicrystals with icosahedral point symmetry one can choose 

the basis vectors as the set of six independent vectors drawn from the center to the 

vertices of an icosahedron (Fig 1.3). The basis vectors can then be written: 
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. 

1 
I 
I 
I 
I 
1 
I 
I 
I 
I 

I 

(1-3) 

where (q7~,n3 ,n4 ,n5 ,n6}  is the set of integer indices and the reason for the notation, 

qoIl, will soon be made apparent. Defining the basis vectors in this manner, the 

connection between measurements made in three dimensions and the higher 

dimensional description of the reciprocal lattice becomes apparent since equation 1-4 

also describes a periodic function of six variables. 

The six dimensional reciprocal space can be described by assuming a set of 

six-orthogonal basis vectors <* to form a hypercubic lattice defined by 
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Fig. 1.3. Reciprocal lattice vectors are drawn from the center to the vertices of an 
icosahedron and are defined as in equation 1-3. 

The advantage of this construction is that we are now dealing with a periodic lattice, 

albeit in six dimensions. Icosahedral quasicrys tals, then, are incommensurate 

structures in three dimensions, but periodic in six-dimensions. An important point 

here, which has relevence to later discussions of dynamical scattering 

quasicrystals, is that the the charge density can still be written as a Fourier series 

in 

. .  
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where po are complex coefficients. 

The problem of solving the structure of a quasicrystal involves relating this 

charge distribution to the reciprocal lattice points and producing the appropriate 
complex coefficients po from the data. Just as in the case for periodic crystals, the 

absence of phase information for the coefficients is the problem. An additional, 

fundamental difficulty in solving the structure is that the absence of periodicity also 

implies the absence of any fundamental structural building block, or unit cell in 

three dimensions. This means that, in principle, the full description of the structure 

of a quasicrystal in three dimensions requires the Specification of an infinite set of 

atomic positions. 

As was true for the reciprocal space construction above, the direct space 

structure of icosahedral quasicrystals may be described, abstractly, in terms of 

a six-dimensional hypercubic lattice. Since periodicity is recovered in this 

higher dimensional space, it is only necessary to solve the atomic decoration of 

a single 6-D unit cell as opposed to the entire 3-D quasicrystal. However, one 

consequence of this construction is that now, rather than having a unit cell 

decorated withpoint particles, the particles are represented by three dimensional 

atomic surfaces. The solution of the structure in six-dimensions requires only 

the specification of a finite set of atomic surfaces. In order to illustrate this idea 

and demonstrate the connection between the higher dimensional description and 

the lower dimensional physical manifestation of the structure I consider, below, 

a set of simplified one dimensional examples of the "cut and projection" 

technique. 
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2-D to I-D Projection 
i 

It is possible to produce one-dimensional periodic and aperiodic structures by 

means of what is called a "2-D to I-D cut and projection technique." 

One first constructs a two-dimensional square lattice of points with basis 

vectors = i and Z2 = j .  A line I?,, is drawn through the origin in space making an 

angle 8 with. the x axis as shown in Fig. 1.4. This line defines two orthogonal unit 

vectors, F,, is parallel to the line and Fl is perpendicular to the line. The position of 

any point in space can be'described by the vectors r' = r,,?,, +rlp1, where r,, is called 

the parallel or physical space component and rJ. is the perpendicular space 

component. At each lattice point of the 2-D space, we place an atomic surface.. For 

the atomic surfaces to represent point like atoms in the I-D physical space, it is 

possible to represent the atomic surfaces as lines segments (perpendicular to ?,,I as 

shown in Fig. 1.4a. The intersection of an atomic surface with the 4, axis determines 

the position of that atom in the physical space. The physical space, in this case, is a 

one dimension cut through a two dimensional periodic lattice. 

It is useful here to illustrate the process with two examples: the Fibonacci 

sequence of atomic displacements that results from a specific irrational cut through 

the 2-D lattice, and a periodic approximant to the Fibonacci sequence which results 

from a rational cut through the 2-D lattice. The significance of these structures will 

be discussed in the next section. 

It is observed that the line segment I?,, contains points separated by two 

lengths of increments, long and short. The slope of the line 4, in the two 

dimensional space determines the lengths of the segments L and S as well as 
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Fig. 1.4. 

X 

Y 

. . . . . . . .  

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  
X 

Contruction of a Fibonacci sequence by the cut and projection method. 
(a) The line segments represent atomic surfaces at sites of a two 
dimensional square lattice. The intersections of the atomic surfaces with 
the one dimensional physical space 4, place atoms in a Fibonacci 
sequence. (b) An alternative scheme constructs a Fibonacci sequence of 
atoms in one dimension. The heavy lines represent the boundaries of an 
acceptance domain. All sites in the 2-D lattice within the acceptance 
domain are projected onto I$. The horizontal and vertical dashed lines 
projected onto L and S segments along the 4I axis form a Fibonacci 
sequence. 
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whether if the sequence is periodic or quasiperiodic. If cot(8) is the irrational 

number z, then the sequence will be defined by a Fibonacci sequence of long (L) and 

short (S) interatomic spacings. If cot(8) is a rational number so that cot(8) = p /  q 

where p and q are integers, then the sequence of points will be periodic. For 

example, if cot(f3)=1/1 the sequence of interatomic separations will be long L 

segments followed by short S segments. This is the 1 / 1 (or z2) approximant of the 

Fibonacci sequence. An entire series of periodic approximant structures to the 

Fibonacci sequence can.be produced for angles 8 = cot"(p/q) where p and q are 

succesive integers in the Fibonacci sequence (e.g. 3/2,5/3, 8/5 etc..). As the slope 

cot(8) approaches z, the unit cell becomes larger and the structure better 

approximates the Fibonacci sequence. 

Diffraction from the I-D Aperiodic Sequence 

The diffraction pattern from the resulting structure in our physical space can 

again be determined by projection from a 2-D reciprocal space. A 2-D periodic 

structure factor can be calculated as the Fourier Transform of the 2-D periodic 

square lattice with an atomic surface at each site. This produces a periodic square 

lattice as shown in Fig. 1.5. The 2-D reciprocal lattice axes are Q, and Q,,, the 

physical reciprocal space axis Q", and the perpendicular reciprocal space axis Q' are 

defined in Fig. 1.5. The structure factor along the physical reciproca1.axi.s Q" 

corresponds to the structure factor that would be calculated for the I-D sequence of 

atomsin 

An interesting point to note in the Fourier transform of Fig. 1.5 is that the 

intensity. of diffraction depends upon the the perpendicular distance of the 

reciprocal lattice point from the Q" axis or, equivalently, the value of Q' for the 
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Qy t * 

Q* 

Fig. 1.5. An expanded view of the Fourier transform of the Fibonacci sequence is 
obtained by placing the Fourier transform of the atomic surfaces in Fig. 
1.4a or the acceptance domain of Fig. 1.4b at the sites of a two- 
dimensional lattice reciprocal to those of Fig. 1.4a and Fig. 1.4b. The 
intensity of a diffraction peak is proportional to the square of the 
amplitudes of the transforms where they intersects the Q" axis. 
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reciprocal lattice point. This is one aspect of diffraction from quasicrystals which 

does not have an analog in diffraction from three-dimensional periodic structures. It 

is for this reason that while the reciprocal space of a quasicrystal is densely filled 

with reciprocal lattice points, only a few contribute sidficantly to the scattering. In 

general, two reciprocal lattice points along the same direction that have similar 

values of Q" , have very different values of Q'. 
. 

Two types of icosahedral quasilattices have been observed. For simple 

icosahedral (SI) structures, such as found in AI-MiW] and Al-Li-Cu,[2Ol the indices 

are unrestricted (each ni may take on any integer value), in analogy with simple 

cubic crystals. For face-centered icosahedral (FCI) structures, such as Al-Cu-Fe, 

AICU-RU,[~~] and Al-Pd-Mn,[zl the indices must have the same parity (ni all even or 

all odd), in analogy with the face-centered-cubic crystals. Interestingly, there are 

striking differences in the stability and degree of disorder between these two classes 

of alloys that appear to be related to an enhanced degree of chemical order in the 

FCI alloys. Structural differences between FCI and SI alloys have been the subject of 

intense scrutiny over the past five years. 

1 

One-Dimensional Structural Models 

It is instructive to examine the calculated diffraction patterns for a variety of 

one dimensional collections of identical scatterers in order to appreciate how 

different classes of structural models for quasicrys tals produce diffraction patterns 

and are related to each other. In this section I will focus on three one-dimensional 

models that have proved to be relevent for the present understanding of 

quasicrystalline order. 
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Fibonacci Chain 

It is possible to construct a one dimensional aperiodic yet positionally 

ordered sequence of points by following a Fibonacci sequence. The chain is 

composed of a series of two building blocks of different length (a long L, and a short 
S). The ratio of lengths L/S is equal to an irrational number z= ( l + 8 ) / 2 .  The 

structure can be produced by the "cut and projection" technique described in the 

previous section or, alternatively, by adhering to the following set of the growth 

rules: 

1: Start with any given segment, L or S , in the first generation 

2: In the next generation, all long segments are replaced by a long and short 

L + LS, and all short segments are replaced by long segments S + L. 

Several iterations of the inflation process are demonstrate in Fig. 1.6. The calculated 

diffraction pattern for a Fibonacci Chain is shown in Fig. 1.7, and consists of a set of 

sharp peaks with a width limited only by the finite size of the sample. Interestingly, 

examples of I-D Fibonacci ordered structures have been discovered in rapidly 

quenched alloys of AI-Ni-Si, AI-Cu-Mn, and AI-CU-CO.~~~~ These structures display 

periodic order in two directions and aperiodic order in a third orthogonal direction. 

Periodic Fibonacci Approximant 

As described in the previous section, it is also possible to construct a periodic 

chain of scatterers that produces a calculated diffraction pattern approximating that 

for the Fibonacci chain. This periodic Fibonacci approximanf, grows like a Fibonacci 

chain for a finite number of iterations and then repeats. The length of the repeat 
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Iteration Fibonacci Chain 
1 LS 
2 LSL 
3 LSLLS 
4 LSLLSLSL 
5 .  LSLLSLSLLSLLS 4 

6 LSLLSLSLLSLLSLSLLS 
7 LSLLSLSLLSLLSLSLLSLSLLSLSLLSLLS 

Fig.l.6 Generation of a Fibonacci sequence by the rules L + LS and S + L is an 
example of long range aperiodic order in one dimension. 

sequence determines how closely the diffraction pattern from the periodic chain 

approximates that of the Fibonacci Chain. The repeat sequence will consist of p 

long segments, q short segments, and a total of n = p + q segments (Fig. 1.8), so it is 

possible to label the chain by p / 4  or equivalently z,,. As the repeat sequence 

becomes infinitely long the ratio p / 4  approaches z. Examples of calculated 

diffraction patterns for several periodic approximants are also presented in Fig. 1.7. 

What seems clear from these diffraction patterns is that as p / q  approaches z, it 

becomes progressively more difficult to distinguish between a high-order periodic 

approximant and the aperiodic sequence itself. A series of alloys of AI-Ni-Cu (which 

are layered structures) have been discovered to approximate the Fibonacci sequence 

and to correspond to the approximants labeled as z,, r3, z,, z,, z13, z,,, and z3.[241 

* Hendricks-Teller Model 

The two models described above are ordered structures. Disorder can be 

introduced into either model by a process analagous to stacking faults in crystals. 
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Fig. 1.7. 

1 

1 oo 
0 0.5 I 1.5 2 

q (Units of 21r/a) 

2.5 3 

Calculated structure factors of computer generated one dimensional 
sequences of intervals of length a and za. Shown is: a) the Fibonacci 
sequence, b) the zs9 approximant, c) the r,, approximant, and d) the rs 
approximant. It can be seen that as the unit cell of the approximant 
increases, not only does the reciprocal space become more densely filled 
with peaks, but the 'diffraction pattern of the approximant better 
resembles the pattern of the Fibonacci sequence. The infinitely long 
Fibonacci sequence produces a reciprocal space that is filled with an 
infinite number of sharp peaks, although the number of strong 
reflections remains limited. 
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Fig. 1.8. 

17 

repeat unit sequence 
LS 
LSL 
LSLLS 
LSLLSLSL 
LSLLSLSLLSLLS 
LSLLSLSLLSLLsLSLLSLSL 
LsLLsLsLLsLLsLsLLsLsLLsLLsLsLLsLLs . 

Repeat sequences (composed of long and short segments) for periodic 
structures that approximate the Fibonacci sequence. 

That is, one can imagine the random substitution of L for S and S for L in the 

Fibonacci sequence. The extreme limit of this case- has come to be termed the 

Hendricks-Teller model[Z] and has proved to be useful for the description of 

disordered layered structures.[26~27] In the present context, the I-D chain consists of a 

random sequence of long, L, and short, S, segments An example of a calculated 

diffraction pattern from a HT chain is presented in Fig. 1.9. Perhaps the most 

interesting feature of the diffraction pattern is that it consists of both broad and 

sharp diffraction peaks. Furthermore, the weaker peaks are also the broader peaks. 

We will come back to this point below in the context of disorder in quasicrystals. 

Since the relationship between the ideal I-D Fibonacci sequence and its 

periodic approximants has been illustrated using the "cut and projection" procedure, 

it is useful to briefly describe the higher dimensional analog of the HT model. 

Referring back to Figure 1.4, all that is really necessary to generate a disordered 

sequence of L and S segments along the physical space axis is to assume a random 

set of shifts of the atomic surfaces along the direction perpendicular to the physical 
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space axis. Alternatively, in the bottom part of Fig. 1.4, one can allow the acceptance 

strip to meander. Both have the net effect of exchanging L(S) segments for S(L) 

segments in a random fashion leading to the HT chain. 

Three-Dimensional Structural Models 

The Periodic Models 

One proposed set of structural models for describing the observed electron 

diffraction patterns is actually based on periodic structures.[2*-3*] These models 

Fig. 1.9. 

40 

30 

20 

10 

0 

1 2 3 4 5 0 

q (Units of 27da) 

Calculated ensemble average structure factor of a computer generated 
random sequence of intervals (a Hendricks-Teller Model) of length a 
and za reveals both sharp and broad peak widths. 

t 
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consist of periodic crystals with large unit cells that are decorated with atoms in 

such a way as to produce diffraction patterns that approximate icosahedral 

symmetry (the diffraction peaks are shifted slightly from those of an icosahedral 

structure). If the unit cell is large enough, these small shifts can become 

unresolvable. As an explanation for the observed diffraction patterns from alloys 

such as Al-Pd-Mn, these models fail because the unit cell that would be appropriate 

requires a decoration of more than 100,000 atoms. The decoration of such a large 

unit cell presents a problem in itself. The question can be asked, "after packing . 
100,000 atoms together aperiodically, why does the structure repeat as opposed to 

continuing the aperiodic growth?" 

Although the periodic models are not an appropriate description for 

quasicrystals, alloys of compositions similar to known quasicrystals have been 

found to grow as periodic approximants of quasicrystals. The structural 

determination of the unit cell decoration revealed atoms forming icosahedrally 

symmetric clusters (Fig. 1.10).[32-341 It is believed that these clusters are building 

blocks of the quasicrystalline phases for alloys of slightly different stochiometry. In 

addition, the observation of the quasicrystalline phase growing coherently with the 

crystalline phase in the same sample is frequently observed.[35.36] The study of 

quasicrystal-related periodic structures has helped in our understanding of local 

atomic order, stability and physical properties of quasicrystals.[2] 

The Quasiperiodic Model 

In 1974 R. Penrose discovered an aperiodic, highly ordered, pentagonal tiling 

of the plane shown in Fig. l.ll.[38J9] This structure was later sho-m to produce an 

optical diffraction pattern that revealed sharp peaks.[m] The Penrose tiling structure 
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i 
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0 A1 
0 Mn 

3 

Fig. 1.10. Periodic crystals of a(AIMnSi) have been found to approximate SI AI- 
Mn quasicrystals. A structure determination of a(A1MnSi) has found 
that the unit cell is decorated by an icosahedrally symmetric cluster 
called the Mackay icosahedron which is an aggregate of 54 atoms of AI 
and Mn. Top: Shown is a depiction of a Mackay icosahedron with the AI 
atoms as empty circles and Mn atoms as filled circles. Bottom: the 
icosahedra1 clusters are positioned at the co-mers and centers of the unit 
cell as shown. Additional atoms of AI and Si surround the Mackay 
icosahedra.[37] 
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Fig. 1.11. Penrose tiling is an example of a two dimensional quasiperiodic 
ordering of two types of tiles, (in this case "thin" and "fat" rhombuses).[39] 
Diffraction patterns from this structure would produce the 
crys talographically forbidden 10-fold symmetry. 
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was adapted to an icosahedral aperiodic tiling of space by R. Ammann.[41] These 

models avoid the restriction imposed on periodic crystals that exclude five fold 

symmetry by filling space with an arrangement of more than one type of unit cell in 

a highly ordered aperiodic manner. P. Steinhardt and D. Levine proposed that 

quasiperiodic structure models may be appropriate for the discription of the Al-Mn 

alloys, computed the diffraction pattern of an ideal quasicrystal, and showed that 

the electron diffraction patterns obtained by Shechtman et al. were closely related to 

that of an icosahedral quasicry~tal.[~~I The quasicrystal models have been found to 

be most successful in describing the diffraction patterns of the highly perfect Face 

Centered Icosahedral quasicrystals (Al-Cu-Fe, Al-Cu-Ru and Al-Pd-Mn). Although 

the perfect quasicrystal model presents an explanation of aperiodic long range order 

as a means of producing sharp diffraction peaks and diffraction patterns exhibiting 

icosahedral symmetry, it does not explain how the restrictions on the arrangement of 

the unit cells relate to the growth process involved in the actual quasicrystal 

' formation. 

The Icosahedral Glass Model 

Determined to produce a model that explains the experimentally observed 

icosahedral symmetry and the broadened diffraction peaks, P. Stephens and A. 

Goldman (1986) proposed the "Icosahedral Glass" m0deI.[4~-44] The model is in a 

way a three dimensional analog of the Hendricks-Teller model (Fig. 1.12). The 

model, as defined in Ref. 37, "consists of a system composed of clusters of atoms 

such that: (I) each individual cluster has icosahedral symmetry, (2) the clusters are 

joined so that they all have the same orientation, (3) there is some degree of 
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randomness in the connection of the clusters, and (4) the accretion of the clusters is 

governed by purely local geometric rules." 

Calculated diffraction patterns from computer calculated icosahedral glass 

models proved to agree well with x-ray diffraction data for Simple Icosahedral 

alloys. Variations of the original model have included more detailed local growth 

rules and have produced better reproductions of the diffraction data. The 

icosahedral glass model's dependence only on short range correlations for the 

growth process seems to be an intuitively reasonable explanation for the mechanism 

for SI quasicrystal growth. The model, however, is inappropriate as a description of 

the structure of FCI alloys such as AI-Cu-Fe, Al-Cu-Ru, and Al-Pd-Mh, since these 

alloys produce resolution limited diffraction peaks. Therefore, the understanding of 

how nature grows FCI structures with correlation lengths as large as 1 pm has not 

yet been realized. 

. 

Quasicrystals and Disorder 

Although the diffraction peaks from the earliest icosahedral alloys, such as 

AI-&, were reasonably sharp, they were not perfectly sharp. In fact, the widths of 

the diffraction peaks and the systematics of peak broadening were key issues during 

the early investigations of these alloys. There were several reasons for this. First, 

the structures described above, particularly the icosahedral glass model and the 

ideal quasicrystalline model, are distinguished primarily by the disorder present in 

the fonner and absent in the latter. A careful study of disorder in real samples, 

could be used to validate one structure or the other. Secondly, all of the early 

icosahedral alloys exhibited diffraction peak broadening that could not be 

eliminated by traditional strain relief techniques such as annealing. The peak 



R 

24 

Fig. 1.12. Shown is a random assortment of oriented pentagons which can be 
viewed as a two dimensional analog of an icosahedral glass.1441 
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broadening in all alloys was virtually identical, corresponding to a positional 

correlation length smaller than about 1000 Angstroms. This led to the conjecture 

that icosahedral structures were somehow intrinsically defected, akin to the 

icosahedral glass model. Finally, the mechanism of peak broadening could not 

be discerned since no apparent systematic trend in the peak widths could be 

identified. 

For periodic three dimensional structures the mechanisms for diffraction peak 

broadening generally falls within two categories. Small crystallites, for example, 

will exhibit diffraction peak widths inversely proportional to the size of the grain 

(finite particle size broadening). In this instance, all diffraction peaks will exhibit 

approximately the same width. If the crystal is strained, on the other hand, the 

width of diffraction peaks increases with the scattering angle, 28, or the momentum 

tranfer, Q. A simple way to envision this is that strain introduces an effective range 

of interatomic (or interplanar) distances which "smears" out the peak with 

increasing scattering angle. The peak broadening from the icosahedral alloys, 

however, followed neither of these trends as revealed in diffraction data such as the 

powder diffraction in Fig. 1.2.[1%1. What is particularly unusual about this disorder 

is that it produces peak width broadening that varies from peak to peak. In 

particular, it was found that the strong reflections were relatively sharp while weak 

reflections showed large amounts of broadening. 

The fundamental incommensurability of quasicrystals introduces a new 

possible mechanism for peak broadening that can be illustrated by the 1-D HT chain 

described above. One can imagine that nature will make many mistakes (such 

as stacking faults) in any attempt to grow a quasiperiodic sequence in one- 

dimension or a quasicrystal in three-dimension. At one extreme, the random 
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packing of icosahedral units in three-dimensions represents the most disordered 

Structure consistent with the observation of overall icosahedral symmetry in the 

diffraction pattern. The one-dimensional analog of this structure, the HT chain, 

produces a diffraction pattern with characteristic peak broadening similar to 

that which is observed in real alloys. In our "cut and projection" description of the 

HT structure, this disorder arises from random shifts of the atomic surfaces along 

the direction perpendicular to the physical space axis, leading to a rearrangement 

of the L and S segments that destroys the long-range positional order characteristic 

of the ideal Fibonacci sequence. In a physical picture of the structure, this 

corresponds to the "hopping," or diffusion of atoms that flip the order of the 

segments in 1-D, or a rearrangement of the tiles in the 3-D quasicrystalline model. 

This peculiar type of disorder, unique to quasicrystals, has been termed "phason 

strain" if the motion of these "defects" is pinned, or "phason disorder" if the 

fluctuations are dynamic. 

-This mechanism, "phason strain", does indeed have a unique signature in the 

peak broadening from icosahedral alloys. As mentioned above, physical strain 

produces diffraction peak broadening that increases with increasing momentum 

transfer, Q. Phason strain may be viewed as a similar process which occurs, not in 

the physical space, but in the complementary perpendicular space in the higher 

dimensional lattice. The diffraction peak broadening from quasicrys tals, as 

illustrated in Fig. 1.2, for Al-Li-Cu, increases with increasing e'. This mechanism 

for peak broadening appeared to be universal for the icosahedral quasicrystals until 

the discovery of a second class of icosahedral alloys in 1988. 

In 1988 a new class of quasicrystals was discovered and was labeled the Face 

Centered Icosahedral (FCI) alloys. A large number of ternary alloys such as Al-Cu- 
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Fe, Al-Cu-Ru, AI-Pd-Mn, etc. fall into this category.[2IJz] What was most surprising 

about this new set of alloys was that, when prepared properly, they presented no 

evidence of the phason strain that plagues the original quasicrystals, now called 

Simple Icosahedral (SI) alloys.[4547] The difference between the structure of the 

original SI alloys and the FCI alloys was attributed to chemical ordering.[48.-49] The 

chemical ordering is also believed to be responsible for the absence of phason strain. 

Today, a large number of alloys have been discovered to present simple icosahedral 

symmetry and Face Centered Icosahedral symmetry. The degree of disorder varies 

greatly from the AI-Li-Cu alloy with correlation lengths of -3OOA to nearly perfect 

AI-Cu-Ru and AI-Cu-Fe with correlation lengths greater than lp1.[45~46] 

The discovery of nearly perfect samples of FCI quasicrystals has compelled us 

to ask "How perfect can a quasicrystal be?" The resolution of this question was the 

initial goal of this thesis topic. The following chapters of this thesis are organized as 

follows. First, a description of the growth method and parameters for obtaining 

high quality single crystals of FCI AI-Pd-Mn for x-ray and neutron diffraction 

studies is presented. Next, a method for obtaining and using a coherent x-ray beam 

as a means of studying order and disorder over length scales on the order of 10 

microns is discussed and the results of coherent x-ray diffraction measurements 

from our AI-Pd-Mn samples are presented. These coherent x-ray measurements 

led us to the study of dynamical x-ray diffraction from quasicrystals. The fourth 

chapter is an introduction to the dynamical theory and its implications as applied 

to quasicrystals. Finally, a description of the experimental observation of 

dynamical diffraction in the form of the Borrmann Effect, Pendellosung Fringes and 

high resolution x-ray topographs from icosahedral AI-Pd-Mn quasicrystals is 

presented. 
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11. SAMPLE PREPARATION 

Introduction 

Before any of these experiments could be performed it was necessary to 

obtain a single quasicrystalline sample of sufficiently high quality. The study of 

coherent x-ray diffraction and dynamical x-ray diffraction requires large grains of 

highly perfect crystals (or quasicrystals) with flat, strain-free surfaces. Often the 

samples must be prepared in the form of parallel faced wafers of a specified 

thicknesses (0.2 mm - 1 mm). The surface normals must be carefully oriented with 

respect to the high symmetry directions (e.g. fivefold, twofold, threefold) to be 

studied. 

The rapid rate of development of the dynamical theory of x-ray diffraction 

during the early 1960s was a direct result of the new availability of high quality 

crystals of silicon. Researchers have, throughout the years, developed and 

optimized techniques for preparing strain free samples of silicon and germanium. 

Optimized preparation techniques for the production of strain free quasicrystals, in 

particular Al-Pd-Mn,[so-54] have not, until now, been developed. In particular, 

details of the growth parameters had to be optimized, techniques for the preparation 

of strain free surfaces required development and, although many researchers in the 

field have attempted to produce a chemical etching technique to reveal grain 

boundaries in quasicrystalline samples, no succesful solution had been found. 

Here, I will describe the procedures that we have developed for the 

production of highly perfect icosahedral AI-Pd-Mn samples at the Ames Laboratory, 

as well as techniques for preparing strain free surfaces appropriate for surface 

studies by means of x-ray and Low Energy Electron Diffraction (LEED) techniques. 
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Finally, a description of a chemical etching technique that reveals the grain 

boundaries in an ingot is described. 

Crystal Growth 

The steps involved in sample production for these studies include crystal 

growth, followed by grain extraction, surface preparation and grain characterization. 

The analysis of the final product can then be used to revise the growth parameters as 

well as the other sample preparation techniques in order to eventually optimize the 

quality of the sample. 

Single crystals were grown from A170Pd21.5Mn8.5 alloys by the standard 

Bridgman method. Starting elements with purity of 99.99% were arc melted and 

chill cast into a copper mold. The as cast ingot was placed into an alumina crucible 

in a Bridgman apparatus. We also performed growths by using various other 

crucibles (such as graphite and boron nitride) and found that the alumina crucible 

was least reactive with the sample as well as less likely to promote nucleation sites 

that minimize grain size. The chamber was evacuated to 1 . 3 ~ 1 0 ~  Pa and the sample 

temperature was raised to 300" C for 30 minutes, in order to extract water and other 

contaminants. The furnace was then backfilled to 2.06~105 Pa of argon gas. The 

sample was then heated above its melting point, to 1050" C. The crucible was pulled 

out of the high temperature region of the furnace at a specified rate. 

The quality of the final product proved to be highly sensitive to the growth 

rate. For example, setting the growth rate to 0.5 mm/hr produced an ingot with 

large compositional variations from the top to bottom of the ingot. When the 

growth rate was larger than 2 mm/hr the ingot was composed of a large number of 
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Fig. 2.1 A photograph of an ingot of icosahedral Al-Pd-Mn grown by means of 
the Br idpan  method. The scale is in millimeters. 

small grains. The best results were obtained with a growth rate of 1 mm/hr 

(Fig. 2 3 ,  producing large grains, some extending over the full length of the ingot. 

Grain Extraction 

Grains were located by means of neutron diffraction techniques performed at 

the Missouri University Research Reactor and by x-ray Laue photographs performed 

in our laboratory. The neutron diffraction technique consisted of mounting the ingot 

on a four circle diffractometer and taking Polaroid photographs of the strongest 

Bragg reflections in order to obtain projected images of the individual grains. The 

various projected images were then associated with regions of the sample until most 

of volume of the ingot was accounted for (Fig. 2.2). The Polaroid film was then 

replaced by a detector and the mosaic width of each grain was determined. 

Alternatively, x-ray Laue photographs, taken at carefully selected points over 

the surface of the ingot, could be used to determine the approximate location of 

grains and grain boundaries. The information gained from these two 
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Fig. 2.2. A Polaroid photograph of a strong reflection of neutrons. The 
Background reveals weak reflections from other portions of the ingot. 
The image is a 1:l projection of the scattering grain. The exposure time 
is 30 seconds. 

complementary techniques enabled the identification of individual grains. These 

grains were then extracted and cut to the desired shape by means of a diamond 

wafering saw. As each new surface was cut, a series of x-ray Laue photographs 

were taken, revealing the newly accessible grain boundaries. The process was 

I 
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continued until Laue photographs taken from any point on the sample proved to be 

consistent with what was expected from a single grain. Eventually, individual 

grains as large a 2 cm x 1 cm x 1 cm were extracted. The best grains exhibited 

resolution limited mosaic widths, (AO<O.O2O), by neutron diffraction measurements. 

Surface Preparation 

Dynamical x-ray diffraction studies demand samples with strain free surfaces. 

For many studies performed on silicon and germanium, it is sufficient to first polish 

the surface with 600 grit paper followed by a fine compound (for example I-6um 

diamond compound) and, finally, chemical etching of the sample with an acid 

solution. Unfortunately, these methods are not applicable to Al-Pd-Mn, an 

intennetalic alloy with strong corrosive resistant properties. It was found that a 

relatively strain free surface could be produced in the following manner: The sample 

was first polished with 2000 grit sandpaper, then with 6, I, and 0.25 pm diamond 

compound in that order. Alumina combined with water was found to react with Al- 

Pd-Mn and therefore could not be used. Surprisingly, no chemical etch, as was 

necessary for silicon and germanium, was required to obtain AI-Pd-Mn surfaces 

suitable for dynamical diffraction studies. 

While sufficient for bulk dynamical diffraction measurements, the above 

technique did not produce surfaces of the'high quality necessary for surface studies. 

The additional step of electropolishing the Al-Pd-Mn sample was required. In order 

to electropolish AI-Pd-Mn a solution of 1.0 vol. % Triflic Acid/Methanol was 

used.[55] The solution was stirred slowly by a magnetic stirrer while the temperature 

was held at approximately -70' C. The sample, previously polished with 2000 grit 

sandpaper, was pressed against a counter-sunk hole in a flat parallel faced stainless 
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steel electrode. The opposite electrode, a parallel faced plate, was placed 

approximately 5 mm from the first electrode so as to form a parallel plate capacitor. 

The fwo electrodes were connected to the voltage source and submerged in the 

solution. The advantage of this technique was that although the sample size and 

shape varied from sample to sample, the configuration of the electrodes and thus the 

field between the electrodes was equivalent and uniform. The combination of a 

d o r m  electric field and a uniform electrolyte rate of flow across the entire face of 

the sample produced a consistent electropolishing rate over the entire face of the 

sample that could be controlled by varying the voltage. The current through the 

electrodes was measured as the voltage across the electrodes was vaned. A plot was 

produced (Fig. 2.3) and we found that the sample polished most uniformly in the 

voltage range of 52-56 Volts (a region where the current density is least sensitive to 

the applied voltage). 

In order to determine the degree of surface perfection of the samples, LEED 

studies were performed. For these measurements, a parallel-faced wafer with a 

fivefold symmetry axis normal to the electropolished surface was mounted in an 

ultra high vacuum chamber. The surface was cleaned by means of 1000 eV argon- 

ion bombardment followed by a 600-700' C annealing cycle. After repeated 

sputtering and annealing cycles, the sample produced LEED patterns (Fig. 2.4) 

which exhibited five fold symmetry and were consistent with what would be 

expected from a quasicrystalline surface. The LEED spots were observed for 

incident electron energies in the range of 5 eV to 240 eV. Within the resolution of the 

LEED apparatus, no structural phase transition was detected within the temperature 

range 20 and 700" C. 
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Fig. 23. Plot of current vs. voltage during the electropoIishing process. The most 
uniform polishing was attained at voltages between 52 and 56 volts. 
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Fig. 2.4. Low energy electron diffraction patterns from Al-Pd-Mn at electron 
energies of a) 18 eV, b) 24 eV and c) 33 eV show fivefold diffraction 
patterns 
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Comments on Surface Quality 

We have found that the non-electropolished surfaces did not produce LEED 

patterns even after much effort. This obseration implies that the electropolished 

surface with a fivefold axis parallel to the normal exhibits less strain than the 

equivalently oriented mechanically polished surface. It is interesting to note that for 

dynamical x-ray diffraction, the method of surface preparation is less significant. 

This can be seen by means of high resolution x-ray topography. Fig. 2.5 is a 

transmission topograph (see chapter 5)  from a sample with a five fold axis along the 

surface normal. The central portion of the surface was electropolished (the border of 

the electropolished region can be seen as a circle where the electropolishing was 

imperfect and caused tarnishing of the surface). The diffracted intensity from the 

mechanically polished region and the electropolished region are essentially 

indistinguishable. Measurements of rocking curves by Roberto Colella from 

equivalently prepared samples also support this conclusion.[%] 

Chemical Etching (Macro-Etch) 

The problem of developing a macro-etch for Al-Pd-Mn has concerned many 

researchers in the field. The AI-Pd-Mn alloy seems to be insensitive to most etches, 

other than soruti6iu of hydrofluoric acid and nitric acid. Yet the nitric-hydrofluoric 

solution does not effectively reveal any grain boundaries, but rather turns the 

surface black. 

After many attempts, we found that a 40:60 HF-Nitric acid solution cooled in 

an ice water bath works very well as a macro-etch for Al-Pd-Mn. The lower 

temperature reduces the reaction rate. While the sample usually turns black at first 
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Fig. 2.5. High resolution transmission x-ray topograph of a parallel faced 0.4 mm 
thick sample. The diffraction of x-rays from the electropolished (left 
side of sample) and mechanically polished regions (right side of sample) 
is essentially the same. Arrows signify the boundary between 
mechanically polished and electropolished regions. 

' 
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(this is because the sample is initially at room temperature), the corrosion flakes off 

and a metallic surface is again revealed. The sample is then washed in a cold bath of 

water or alcohol to prevent tarnishing. 

It might be possible to modify this technique to obtain a slow etch for the 

preparation of strain free surfaces. Unfortunately, it is difficult to prevent some 

tarnishing of the sample. Nevertheless, it simplifies the procedure for identifying 

the grains in the sample. In addition, it is possible to quickly reveal details of the 

quality of the ingot. For example, it is easy to recognize regions in the ingot that 

contain dendritic growth (as shown in Fig. 2.61, which is to be avoided as a sample 

for dynamical x-ray diffraction experiments. 

The preparation of high quality samples of icosahedral Al-Pd-Mn has enabled 

researchers to perform a range of experiments that were not believed to be possible 

for the study of quasicrystals. We have continued to increase our understanding of 

quasicrystals by participating in collaborative efforts on a range of experiments. For 

example, in collaboration with Pat Thiel's group, to better understand the surface 

structure and surface properties we have continued to study Al-Pd-Mn samples by 

means of low energy electron diffraction measurements and scanning tunneling 

microscopy.[57] We plan to perform x-ray surface scattering measurements at the 

National Synchrotron Light Source at Brookhaven National Laboratory. Angular- 

resolved pho toemmision measurements were performed in collaboration with 

David Lynch's group and have produced information about the electronic density of 

states.[58] Collaborations with David Black at the National Institute of Standards and 

Technology has allowed us to use x-ray topography to resolve defects in the bulk 

sample and will allow the characterization of defects in quasicrystals. Diffuse 

scattering by means of elastic neutron scattering studies were conducted in 
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Fig. 2.6. Magnified photographs of a cross sectional cuts (diameter = 14 mm) 
from an ingot after being polished and then chemically etched. The 
chemical etching reveals grain boundaries in two different regions of an 
ingot. The top photo presents large grains while the bottom photo 
reveals a large number of small grains. 
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collaboration with Marc de Boissieu, Michel Boudard and others from Grenoble to 

study disorder in' quasicrys tal~.[~g] A collaboration with Fred Mueller and Evert 

Haanappel of Los Alamos National Laboratory and the National High Magnetic 

Field Laboratory has allowed us to observe the De Haas-van Alphen effect on 

appropriately prepared samples of Al-Pd-Mn which will eventually allow us to 

describe the Fermi surface of the Al-Pd-Mn quasicrystal.[60] 
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111. COHERENT X-RAY DIFFRACTION MEASUREMENTS 

Introduction 

One of the most interesting and fundamental issues concerning quasicrystals 

has been the degree of perfection possible in aperiodic structures. Quasicrystals, as 

was explained in the introductory chapter, exhibit an interesting form of disorder 

called phason strain. It has been found that quasicrystalline alloys present a varied 

degree of phason disorder which, in turn, indicates whether the crystal is best 

described by an icosahedral glass model or the ideal quasicrystalline model. The 

discovery that the FCI alloys reveal resolution limited x-ray diffraction peaks implies 

that if details of disorder in these highly perfect quasicrystals are to be resolved, a 

probe sensitive to larger length scales will need to be applied. Conventional high 

resolution x-ray diffraction methods are limited to length scales on the order of one 

micron. In this chapter, we focus on the applicability of coherent x-ray diffraction as 

a probe that is sensitive to order and disorder over length scales of about ten 

microns. 

X-ray diffraction experiments are typically done with beam sizes of several 

hundred microns to one millimeter. In these measurements, the incident radiation is 

incoherent and defects such as dislocations, strain and domain structures produce 

longitudinal and/or transverse broadening of diffraction peaks. In the 

measurement technique described in this chapter, a beam size on the order of the 

natural transverse coherence length of the synchrotron radiation is employed, thus 

producing a coherent beam. As demonstrated by Sutton et a1.,[611 the coherent 

incident beam may be used to study the x-ray speckle pattern produced by the 

presence of defects in the region illuminated by the beam, and so provides a 
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sensitive probe of the presence of strain and disorder in materials. For instance, i t  

has already been pointed out by Garg and Levinel621 that the disorder inherent to 

random packing models for the icosahedral phase should produce observable 

speckle in diffraction patterns taken using a coherent incident beam. Indeed, this 

result should hold for quasicrystals with any significant degree of phason strain. 

This chapter contains an introduction to h e  basic requirements for the observation 

of speckle in the x-ray regime. In addition, several calculated speckle patterns from 

two model quasicrystal grains of varied phason disorder are presented. Finally, 

results from an x-ray speckle experiment that was performed on Al-Pd-Mn are 

described. 

The Coherent Beam and Speckle 

When light from a coherent source, such as a laser, is reflected from a rough 

surface, the reflection appears "grainy". The effect is due to the fact that different 

portions of the surface introduce random phase shifts to the reflected beam. The 

reflected light interferes coherently, thus allowing constructive and destructive 

interference producing a speckle pattern. Because this is an interference effect, it is 

not possible to observe speckle involving length scales less than about 200 nm, for 

visible light. If one is interested in observing speckle from disorder on atomic length 

scales, it is necessary to use an x-ray source. 

The feasibility of producing a speckle pattern with presently existing x-ray 

sources was realized by Sutton et a1.[6*1 The principle requirement for the 

observation of speckle is that the incident beam itself must have sufficient 

longitudinal and transverse coherence. With visible light this is typically achieved 

with a laser source, although it is possible to use an incoherent source, such as a 
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mercury arc lamp, provided that the beam is sufficiently well collimated. Carrying 

this idea over to the x-ray regime, Sutton et al. demonstrated that the speckle pattern 

of disordered, or partially ordered, alloys may be studied by the coherent scattering 

of x-rays. The high brilliance of the X25 wiggler beam line at the NSLS was used to 

produce a coherent x-ray beam of -3~10' photons-s-' in a beam spot of size -6 

p. Using this source, the speckle pattern from the (001) diffuse reflection of a 

partially disordered sample of C%Au was resolved. 

The Coherent X-Ray Beam 

It is possible to describe the coherence of a beam by three parameters: the 

longitudinal coherence length, the temporal coherence length and the transverse 

coherence length.[6&1 

The longitudinal coherence length is a measure of the distance, along the 

direction of propagation, over which the incident waves are coupled coherently. 

The longitudinal and temporal coherence of the beam, then, are related by Ax = cAt, 

and therefore, as described below, the monochromaticity of the source. 

The x-ray beam emitted from a source can be represented by a distribution of 

spherical wave pulses, or wave trains, of finite duration and varied wavelength, 

emitted from a large number of infinitesimal volumes that together make up the 

volume of the source. The distance from the source to the point of observation can 

most often be assumed to be much greater than the dimensions of the source thus 

allowing the spherical waves to be approximated by plane waves. A narrow 

distribution of frequencies is selected by a monochromator. We focus first on the 

radiation emitted by one infinitesimal source volume and assume it to be 

represented by a gaussian distribution of frequencies centered about a,. The full 
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width at half maximum of the gaussian is A@ and is dependent upon the acceptance 

of the monochromator. The field amplitude, distribution can then be written: 

The Fourier transform allows the field amplitude to be written in the time' domain as 

where At = 27r/Ao.  This relates the bandwidth of a wave to the width of the 

monochromatic wave pulse in the time domain (Fig. 3.1). This width is called the 

0 0  

frequencey t ime 

Fig. 3.1. Light possesing a guassian like distribution of frequencies in the 
frequency domain can be represented as a pulse of finite duration in the 
time domain. 
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temporal coherence length, AT and is an indication of the duration of @e for which 

a wave pulse is continuously emitted from the source. It should be noted that if the 

distribution of frequencies is represented by a delta function (as for an ideally 

monochromatic source) then the wave pulses become infinitely long and the 

temporal coherence length goes to infinity. On the other hand, an x-ray beam from a 

quasi-monochromatic infinitesmal source volume is composed of a distribution of 

continuous plane waves of varied frequency and can equivalently be viewed as a 

sequence of coherent wave pulses of frequency Amo. The beam from a source of 

finite extent can be looked upon as a s u m  of such pulses, each pulse being emitted at 

a different time from the source volume. This summation of overlapping pulses 

creates a continuous x-ray beam. 

We define the distance Cr,  called the longitudinal coherence length, as 

$, = CAT. The longitudinal coherence length is a measure of the average length of a 

coherent pulse. There will be little interference between x-rays which have path 

differences exceeding C,. It is possible to relate the longitudinal coherence length to 

the wavelength spread if we recall that 

and 2zc A U = - M .  a2 (3-5) 

a* 
So that 5r =E- (3-6) 

This implies that after being monochromated by a Si (111) double crystal 

monochromator, having M / A =  1.4 x 10" for 1.5 A x-rays, 5, = 1 p. It is of course 

possible to take advantage of a more selective monochromator but not without the 

drawback of reducing the intensity of the beam. For our purposes, it is essential that 
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the scattering volume be illuminated by coherently related x-rays. This means that 

the effective thickness of the sample must be smaller than the longitudinal coherence 

length. This limit can be acheived by limiting the actual thickness of the sample to 

less than 1 pm or by selecting the energy of the x-rays so that the photoelectric 

absorption limits the scattering to within 1 pn of the surface. 

Transverse Coherence Length 

The problem of determining the transverse coherence length of an extended 

quasi-monochromatic source is a question of calculating the degree of coherence of 

the emitted radiation at two arbitrary points of observation, Pl and P2 displaced 

from each other by a vector in the direction transverse to the propogation of the 

beam (Fig. 3.2). The dimensions of the source, as well as the distance between any 

two points PI and P2 of observation, are assumed to be very small in comparison 

with the distance between the source and the points of observation. These 

assumptions allow us to ignore effects due to finite longitudinal coherence. It is then 

appropriate to define the correlation function as: 

(3-7) 

where 

The points Pl and P2 are represented by vectors Tl and T2 drawn from the center of 

the source. I(F..)and I (T2) are the intensities at points PI and P2 respectively while 

I ( F f )  is the intensity distribution of the source as a function of position. 7 is a 
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Fig. 3.2 The transverse coherence of the light a distance R from a quasi- 
monochromatic source of finite extent is a measure of the mutual 
coherence between the light at points of observation PI and P2 in a 
plane perpendicular to the direction of propogation. 

"dummy" variable of the integration which is over the volume of the source. The 

coherence function will take on a magnitude between 0 and I, depending on the 

degree of coherence between the radiation at poitits P, and P2 

The van Cifferf-Zernike fheorern of optics states that the above integral is 

equivalent to one describing the complex field amplitude in the diffraction pattern 

on an opaque screen, arising from diffraction of a coherent spherical wave from an 

aperture. More specifically, this diffraction pattern will be produced if the source is 

replaced by an aperture of the same shape. Furthermore, the field amplitude 

distribution of the spherical wave is proportional to the intensity distribution of the 

... . 
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source. The pattern is centered at point PI with a normalized peak intensity of 

unity. The intensity at point P2 is equal to p(Fl,Fz) which will vary between 0 and 1 

depending on the distance between the points Pl and P2 

In order to determine an approximate value of the natural transverse 

coherence length of an x-ray source, the source can be approximated as a uniform 

disk of diameter d,, a distance R from the point of observation. The correlation 

function will be simply that of diffraction from a circular aperture. This solution can 

be found in many optics texts and is 

where z = -IFz nd, - Fll and J1 is the Bessel function of the first kind and of first order. R;1 

When z=O, the correlation function is unify, while as z increases towards the first 

root of the Bessel function, at z=3.83, p(z) steadily decreases to zero. The correlation 

function will be at half maximum when 2=2.22. The transverse correlation length is 

defined as the full width at half maximum of the correlation function, therefore 

(3-10) 

It is possible to calculate the natural transverse coherence expected of a 

rotating-anode x-ray generator source (point focus). The source size is typically 1 

mm, the point of observation is about 1 meter from the source and the wavelength 

for CuKa, is approximately 1.54 A. This yields a transverse coherence length of 0.15 

jm. Therefore, in order to achieve a coherent beam, the beam would have to limited 
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by a 0.15 pm collimating aperture. Beyond the practical difficulties of producing an 

aperture of this dimension, the remaining beam intensity would only be on the order 

of 0.1 photons s-1. It is evident that in order to produce a coherent x-ray beam of 

practical intensity, it is necessary to take advantage of the high brilliance of a wiggler 

or undulator source at a synchrotron. We can calculate the transverse coherence 

length expected using the parameters appropriate for a synchrotron beam line. At 

the X25 beam line at the National Synchrotron Light Source, the nominal source size 

is 0.3 mm, the observation point is approximately 30 meters from the source and the 

wavelength can be set to 1.55 A, producing a transverse coherence length of -15 pm. 

Thus a source with a brilliance of IO15 photons s-'mad-* mm-2per 0.1% bandwidth, 

when collimated through a 10 p.m pinhole, is expected to deliver a usable coherent 

beam of -106 photons s-1. 

The longitudinal and transverse coherence lengths, together, represent the 

approximate dimensions of the coherent wave pulse. In other words, the maximum 

volume over which the scatterers can be considered to be illuminated by coherent x- 

rays. The entire beam is interpreted as a continuum of such coherent wave pulses, 

each creating a coherent interference pattern. Each pulse is incoherently coupled 

with the others thus the individual patterns sum incoherently. If the scattering 

volume is much larger than the coherent pulse volume then the speckle pattern 

produced by each coherent pulse is not necessarily equivalent, the incoherent sum 

will typically average to produce one broadened diffuse peak. On the other hand, if 

the scattering volume is limited to the dimensions of the coherent pulse volume, 

then each coherent pulse produces equivalent coherent interference patterns which 

add together to preserve the speckle pattern. In the latter case, the beam is said to be 
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a coherent x-ray beam and can produce speckle (provided the sample is appropriate 

for producing speckle). 

In conventional diffuse x-ray scattering with incoherent light, the angular 

intensity distribution of a peak is related to the type and degree of disorder in the 

sample. Diffuse peaks are observed in a large variety of systems and can be 

attributed to stacking faults, phase boundaries, twinning, phason strain in 

quasicrystals etc. The scattering from each of these systems can be described by the 

structure factor 

(3-11) 

This is a summation over all the N atoms in the sample vhere f,(q) is the scattering 

amplitude of the nth atom and Fn is the position of the nth atom. Unfortunately, it is 

impossible to know the positions all the atoms in a partially-disordered system (this 

is not a problem when performing computer simulations). 

X-Ray Speckle from CugAu 

It is convenient to focus on the example of the observation of coherent x-ray 

speckle from the partially ordered ChAu system, since it was the first example of the 

observation of x-ray speckle from a partially ordered three-dimensional solid.[6*] 

The copper and gold atoms in the C%Au crystal, at temperatures above the 

critical temperature of about 39OoC, are randomly positioned at the atomic sites of a 

face centered cubic lattice.[64-66] Because of the stochiometry, each site in the 

structure has a 1/4 probability of being occupied by a gold atom and a 3/4 

probability of being occupied by a copper atom. The crystal can be considered as 
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being an FCC crystal with each site occupied by a statistically average copper-gold 

atom. 

Below the critical temperature, the structure is simple cubic with a four atom 

basis. Because of the four different sites that the gold atom can occupy in the basis, 

there will be regions of a sample having the gold atom at the (O,O,O) position, while 

other regions having the gold atom occupying the (1/2,1/2,0), (0,1/2,1/2) or the 

(1 /2,0,1/2) positions. Consequently, the sample will be composed of domains of 

perfectly ordered cubic C%Au, yet the presence of domains will introduce phase 

shifts in the scattering with respect to the other domains. Close to the critical 

temperature, these domains are quite small and so the sample is considered to be 

partially ordered (Fig. 3.3). The high temperature phase is FCC, as a consequence, 

the (001) reflection is forbidden. In the partially ordered state, C%Au is 

=Au 

0 =cu 

Fig. 3.3 Due to the four different ways in which the C%Au atoms can be 
arranged in the underlying periodic crystal lattice, C%Au is an excellent 
example of a partially ordered binary alloy exhibiting phase domains. 



52 

composed of a collection of cubic ordered domains, thus a diffuse (001) peak exists 

and can be viewed as arising from the superposition of contributions of scattered x- 

rays from a set of domains. Because of the finite domain size, each domain produces 

a broad diffraction peak of angular width - A / 6 ,  where 5 is the average domain 

size. When incoherent x-rays are diffracted from the crystal, a diffuse peak results 

from the incoherent sum of the scattering from these domains. The width of the 

diffuse peak will be -A / 4.  
The equivalent reflection, when taking advantage of a coherent x-ray beam, 

will be composed of the coherent s u m  of the scattering from the random array of 

domains resulting in a speckle pattern. The speckle pattern can be seen as a 

modulation of the conventional diffuse peak (Fig. 3.4 and Fig. 3.5). The angular 

0.6 - 

0.4 - 

0.2 - 
h 
a 
(d 2 0.0 - 
v 
a 
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-0.6 - 
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Fig. 3.4. A photograph of the speckle pattern in the diffuse (001) peak of Cu,Au. 
A 2.5 jun collimating pinhole was used (therefore L=2.5 mm).[611 
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Fig. 3.5. (a) The cross-sectional intensity distribution of equivalent speckle 
patterns was measured by scanning a pinhole and detector transversely 
through the peak. The beam dimensions were limited by collimating 
pinholes of diameter: (a) 2.5 pm, (b) 5 pm, and (c) 50 pm. The detector 
pinholes were 50, 25, and 100 pm respectively. Due to the limited 
transverse coherence of the experimental configuration, (c) represents a 
conventional incoherent x-ray diffuse peak. A comparison of (a) and (b) 
with (c) supports the fact that the coherent speckle patterns can be 
viewed as modulations of the diffuse peak.[sll 
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extent of each "speckle" is comparable to the width of the central peak in the 

Fraunhofer diffraction pattern of the collimating pinhole, as this corresponds to a 

change of A in the largest path-length difference. This width is - A / L,  where L is 

the beam diameter. 

If we consider the Bragg diffraction of a coherent x-ray beam from a highly 

ordered sample (6 > L) then the width of the peak will be resolution limited. In 

other words, the peak will be the size of a single speckle. 

Calculated Speckle Patterns from Model Systems 

To better understand the sensitivity of the coherent scattering technique for 

the study of disorder in quasicrystals, it is instructive to turn to computer 

simulations. I have grown two model structures. Although each model consists of a 

collection of 10,000 equivalently oriented icosahedrons, the packing rules and thus 

the degree of disorder is different (as can be seen in Fig. 3.6 and Fig. 3.7). The first 

model is an icosahedral glass following only three rules: that all the icosahedrons are 

oriented in the same way, that two clusters cannot overlap each other, and that the 

grain grows by randomly adding one cluster after another, each being placed so as 

to have its face match up with a face of one of the preexisting clusters. This 

produces a grain with a relatively large degree of phason strain. The second model 

grows by the same rules as the first modified by additional constraints introduced 

by Robertson et al[63bl that results in a relatively small degree of phason strain. 

The speckle patterns are computed numerically by calculating the structure 

factor as a function of reciprocal space vector 0 for an array of point scatterers 
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positioned at the centers of the clusters of the model E,,. The expected intensity is 

equal to the magnitude of the squared structure factor, 

(3-12) 

Speckle patterns from three reflections along the two fold axis ((012 O / O  

O/O), (212 010 O/O)  and the (2/4 0/0 O / O ) }  were calculated for each model and 

are shown in Fig. 3.8 to Fig. 3.13 respectively). It is apparent, after comparing 

equivalent reflections from the two contrasting models, that the icosahedral glass, 

presents broader, richer speckle patterns as compared to the more ordered model. 

In addition, the width of the patterns is related to the perpendicular components of 

the six dimensional reciprocal lattice vectors. In other words, the larger the Q,, of a 

peak, the broader is the speckle pattern. 

These calculations show that coherent x-ray speckle may be a sensitive probe 

for the study of disorder in quasicrystals. It should be interesting to resolve a 

speckle pattern from an actual quasicrystal and compare the results with computer 

models to better understand the details of phason strain in quasicrystals. 

Experiment 

The coherent x-ray diffraction line shape measurements were done on the X25 

wiggler beam line at the National Synchrotron Light Source (NSLS) using a Si (111) 

monochromator set to diffract 7 keV (h=l.77 A) x-rays. The scattering geometry is 

shown in Fig. 3.14. The energy resolution was calculated to be 62 / A = 1.4 x lo4, 

yielding a longitudinal coherence length, A2 / S A  on the order of 1 pm. The 

transverse coherence length of the incident beam is on the order of Us / ds , where R, 

is the distance from the source and ds is the source size. For the NSLS, the vertical 
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Fig. 3.6. One half of a computer constructed icosahedral glass consisting of ten 
thousand clusters. Due to the minimal amount of growth constraints, 
the structure exhibits a large degree of phason disorder. 
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Fig. 3.7. One half of a computer constructed icosahedral glass consisting of ten 
thousand clusters. Due to the inclusion of growth constraints, consistent 
with the "Robertson model," the structure exhibits a relatively small 
degree of phason disorder. 
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Fig. 3.8. The 4/4 speckle pattern from a computer constructed icosahedral glass 
consisting of ten thousand clusters. The pattern displays a large amount 
of speckle. 

E- 
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Fig. 3.9. The 8/12 speckle pattern from a computer constructed icosahedral glass 
consisting of ten thousand clusters. 
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Fig. 3.10. The 20/32 speckle pattern from a computer constructed icosahedral 
glass consisting of ten thousand clusters. 
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-0.125 

Fig. 3.11. The 4/4 speckle pattern from a computer constructed "Robertson"- 
icosahedral glass consisting of ten thousand clusters. 
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Fig. 3.12. The 8/12 speckle pattern from a computer constructed "Robertson"- 
icosahedral glass consisting of ten thousand clusters. 
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Fig. 3.13. The 20/32 speckle pattern from a computer constructed "Robertson"- 1 

icosahehral glass consisting of ten thousand clusters. 
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and horizontal dimensions of the source are 0.2 mm and 0.4 I, respectively, and 

the sample was situated roughly 28 meters from the source, yielding a 25 pm 

transverse coherence length in the vertical plane, and 12 p in the horizontal plane. 

The coherence of the incident beam is demonstrated in Fig. 3.15, which is the 

detector 

analyzing pinhole A J 
monchroma ti 

x-rays 

0 pinhole 
wiggler 
source 

Fig. 3.14. Scattering geometry for coherent x-ray measurements. 

Fraunhofer diffraction pattern from a 7 pn circular aperture placed just upstream of 

the sample position. The structure of the incident beam was measured by 

translating a 18 pm pinhole across the detector placed on the two-theta arm of the 

four-circle diffractometer. The solid line represents a fit to the experimental data 

obtained by convoluting the Fraunhofer pattern from the 7 pm aperture with the 18 

pm analyzer pinhole aperture. The observed shape of the central peak and the 

position of the subsidiary minima and maxima of the measured diffraction pattern 

agree well with the theoretical calculation, thus showing that the transverse 

coherence length is at least 7 pm in the vertical and the horizontal directions. 
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Fig. 3.15. Beam profile after a 7 pm circular pinhile displaying a Fraunhofer 
pattern. 
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The icosahedral Al-Pd-Mn sample was mounted at the sample position of the 

four-circle diffractometer using the 7 pm collimator pinhole before the sample and 

an 18mm pinhole before the detector. Longitudinal (Q-scans) were made for the 

(0/2 O/O O/O), (2/2 O/O O/O), (2/4 O/O O/O), and the (4/6 O/O O/O) peaks 

along a twofold axis. The observed diffraction peak positions were all within 

Aq = &0.001A-' of the expected values calculated for a FCI quasicrystals with a 

quasilattice constant of a, =4.563A. The longitudinal peak widths were all 

resolution limited. Similarly, transverse scans (q-scan) across several peaks, such as 

the( 213 O/O l/2) shown in Fig. 3.16, yielded resolution limited transverse widths. 

We point out that the resolution limit of the peak width in the transverse direction is 

determined by the acceptance of the detector pinhole (approximately 0.001'). These 

measurements show that over a length scale of several microns, the Al-Pd-Mn 

quasicrystals is very highly ordered, albeit aperiodic. No evidence of phason strain 

could be discerned since peak broadening, or speckle using a coherent x-ray probe, 

was absent in the diffraction pattern. 

We continued to study the perfection of the sample by measuring the rocking 

curve of the sample over a range of points on the sample. This was done by 

eliminating the detector slits and rocking the sample with respect to the beam. The 

beam was collimated by a 7 pm circular aperture. The horizontal position of the 

aperture was scanned over a range of 1 mm in 50 pm increments. After each 

increment, the rocking curve was measured (Fig. 3.17). The variation of the 

integrated intensity, the full width at half maximum, as well as position of each 

curve is small. The significance of these results is that the sample is not only 

scattering coherently over the 7 pm area, but, in fact, over approximately one 

millimeter of sample. 
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Fig. 3.16. Transverse scan (&scan) of the Al-Pd-Mn (2/2 0/0 O/O) peak. The solid 
line through the data is intended as a guide to the eye. 
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Fig. 3.17. A series of rocking curves of the (2/2 0/0 O/O) reflection as the position 
of the sample is vaned reveal relatively uniform position and intensity of 
the rocking curves 
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Conclusion . 

With present third generation x-ray sources, it is possible to obtain coherent 

beams of reasonable intensity, thus making x-ray speckle experiments feasible. 

Although computer simulations demonstrate that x-ray speckle is a sensitive probe 

for the study of disorder in quasicrystals, results from an experiment on icosahedral 

Al-Pd-Mn show that the sample exhibited an extraordinarily high degree of order. It 

will be interesting to perform these measurements on other quasicrystals that are 

known to produce diffuse peaks. These speckle patterns could then be compared to 

those produced by the various existing structure models. It would then be 

interesting to study the intensity fluctuations of the speckle pattern as a function of 

time. 

If the arrangement of the scatterers changes, then the coherent sum of 

reflected light also changes (the speckle pattern changes). The observation of the 

intensity fluctuation as a function of time for one point in a speckle pattern provides 

a direct measure of the time correlation function of the inhorn0geneity.[~~-68] This 

leads to a technique called intensity fluctuation spectroscopy, which is a mature field 

of study using lasers for investigations of temporal fluctuations in liquids, 

macromolecules in solution, etc. The investigation of the time-dependence of 

speckle patterns or x-ray intensity fluctuation spectroscopy, is actively being 

developed as a probe of dynamics in condensed matter systems.[69] Eventually the 

goal will be to study phason-strain and the time scale of phason fluctuations in 

condensed matter quasicrystalline sys tems. 

E' 
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IV. DYNAMICAL THEORY OF X-RAY DIFFRACTION 

Introduction 

The results of the coherent x-ray scattering measurements indicated that 

the structural coherence length of the icosahedral AI-Pd-Mn sample is greater 

than 6 pm. This, in turn, suggested that this alloy might be of sufficient quality 

to be considered a "perfect" icosahedral quasicrystal. In general, as the defect 

density decreases and, therefore, the size of the coherent scattering region 

increases, the kinematical scattering theory fails to be an appropriate description 

of diffraction from crystalline s0lids.[70~~1] For an accurate description of the 

diffraction of x-rays from a perfect crystal it is necessary to apply the dynamical 

theory of x-ray scattering. The dynamical scattering theory, first introduced by P. 

P. Ewald in 1917 and reformulated by M. von Laue in 1931, has continued to 

develop through the years.[72] It has been successful in predicting the intensities 

and angular widths of diffraction peaks, as well as explaining the spectacular 

phenomenon of anomalous transmission (the Bornnann Effect) and many other 

phenomena that the kinematical theory of x-ray scattering neglects. 

The derivation of the dynamical theory has been presented in many 

excellent texts and review articles.[73-78] In this chapter, a summary of the 

derivation of the theory based on these previous works will be discussed, 

focusing on the aspects that are relevant to the experimental measurements 

presented in the next chapter. The wave equation will be derived and the 

boundary conditions will be stated. The two beam approximation will be 

introduced and the promoted x-ray wavefield inside the crystal will be described. 

This allows us to explain some interesting phenomena such as the anomalous 
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transmission of x-rays through the sample at the Bragg angle (the Borrmann 

Effect). The spherical wave theory, the prediction of Pendellosung interference 

fringes and the Borrmann Fan will also be described. Finally a discussion of how 

the dynamical theory of x-ray diffraction applies to quasicrystals is included. 

The Dynamical Theory of X-Ray Diffraction 

When an x-ray enters a crystal, the electromagnetic wave associated with 

the photon displaces th.e electronic distribution with respect to the positively 

charged ions, inducing some polarization of charge in the crystal. The variation 

with time of this perturbed electron density leads to the existence of a 

"Schrodinger" current. within the crystal. The propagation of an electromagnetic 

wavefield in the crystal leads to a dynamic equilibrium between the wavefield 

and the electrons of the crystal lattice. In order to describe the wavefield it is 

necessary to obtain the solution of Maxwell's equations in a medium with a 

periodic dielectric function satisfying the appropriate boundary conditions 

demanded by the surface of the crystal for the particular case of interest. 

Electrodynamics of X-Rays in Condensed Maser Structure 

Fundamentally, the problem at hand is one of electrodynamics and thus 

must be approached by solving Maxwell's equations. 

- - 1aP - 1dB 473 (iii) v x E = --- (i.0) V X R = - -  +- 
c dt c at c 

The goal is to eventually derive the wave equation for the electric field 

inside the crystal. Equation (ii) allows the magnetic field to be represented in 
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terms of a vector potential A ,  so that fi = 7 -  A. Equation (iii) can then be written 

as VXB=--- (V x A) thus implying that E = --- 1 aA - v$, where V$ is an 

additive term that can be set to zero (we are working in the Coulomb gauge) 

- 
c at c at 

The electromagnetic waves of interest are in the x-ray regime and have 

periodic time dependence so that the fields can be written 

E(z,t) = E(z)exp(-iwt) 

R(2,t) = R(T)exp(-iwt) 

A(z,t) = A(a)exp(-iot). 

(4-5) 

(4-6) 

The time derivative is thus equivalent to a multiplicative factor of -iot. For 

example 

= -iwE(T,t). dE(2, t )  
dt (47) 

Electric Polarizability and the Dielectric Function 

The displacement of the negative charge due to the electromagnetic wave 

is described by the polarization P ,  which is a continuous function of the 

coordinates. This allows us to define the electromagnetic displacement D as 

D=E+4nP (4-8) 
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provided that the frequency of the external field is far from the natural 

absorption edge of the system. The lack of free charge in the system means that 

P.b = 0 hence the electric displacement is a transverse field. The conductivity is 

zero at x-ray frequencies so we can write 

b=&E (4-9) 

where e is the dielectric function. The net current density and the net charge 

density are equal to zero so the electric polarization can be expressed as 

where x is the electric polarizability and, from 'equations (4-8), (4-9) and (4-101, is 

equivalent to E-1. 

The polarization may be expressed in terms of the electric field since the 

equation of motion of a free electron in the field E is 

d2X- - 
m-=-eE.  

dt2 

e 
mw 

Thus Z=-- l? describes the displacement of an electron due to the electric 

field. The negative charge displaced from the positive charged nucleus creates an 

electric dipole that can be represented as a polarization P = - a .  For x-ray 

energies far removed from absorption edges of the system's atoms, the effects of 

anomalous scattering and dispersion can be neglectedP1 A continuous negative 

charge distribution p(.'), is assumed to represent the electrons, thus the 

polarization can be written as 

F(F) = p(F)x' 
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or 

F(T) = - 7 p ( T ) E ( T ) .  e2 
m a  (4-13) 

1 
So that the electric polarizability of the crystal can be written 

The Wave Equation 

It is now possible to proceed to derive the wave equation for the 

transverse wave of the electric displacement in a medium with an electric 

polarizability defined as above. Maxwell's equation (i), becomes 

1 aI7 
c at VX(D - 4 4  = --- 

taking the curl of this and substituting Maxwell's fourth equation for q x I? gives 

Dx v x b  - P x V x 4 n F  = -- :(?) - 

- -  
If we take advantage of the identity, D x x A = V(V- A)  - v 2 I ,  as well as v - 
and 47@ =x(P)D(P) the wave equation is obtained 

= 0 

The interaction of the atoms with the x-ray field lies solely in the electric 

polarizability, as can be seen in the wave equation. Until now we have not 

considered photoelectric absorption. This can be introduced into the problem by 

adding an imagnary term to the electric polarizability in the form of a complex 
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structure factor. Thus the charge distribution can be represented as a Fourier 

series 

and the electric polarizability can be written 

x(F) = - e2A2 C F, exp[-2ni(~ - I?, )] . 
V c m c  m 

(4-19) 

Consequently, the complex electric polarizability can be represented as a Fourier 

series 

with Fourier coefficient xm defined as 

xm = j x ( ~ ) e x p [ 2 z i ( ~ - f i ~ ) ] f i .  

It is possible to represent the complex dielectric function as 

e2A2 
E ( J )  = 1 - T Z ~ ~ e x p [ - 2 n i ( ~ - ~ ~ ) ]  m C  m (4-22) 

or 

Finally, t.e wave equation for x-rays in an ordered structure can be written as 

0. (4-24) 
1 a2B(r) V2”(F) - - 

c2 at2 
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Lattice Functions and the Solution to the Wave Equation 

1 
A convenient term used by M. von Laue when describing dynamical 

effects in a periodic crystal is the lattice function. The term applies to any 

function that has the periodicity of the space lattice. Hence the function can be 

represented by a Fourier series. For example the charge distribution, 

can be written as a Fourier series with the structure factor as the coefficient of 

each term. Similarly, the electric polarizability x(r^), the dielectric function ~ ( r ^ ) ,  

and the electric displacement b(T;), are just a few of the other quantities that can 

be considered as lattice functions. Although the charge density can be 

determined directly through the measurement of the structure factors of the 

reflections F,, the coefficients in the summation for the other lattice functions 

must be derived from p(r^). 

In the case of the perfect icosahedral quasicrysta1;the concept of lattice 

functions can still be applied. The charge density can be written: 

where F, is the structure factor per unit volume and the reciprocal lattice is 

defined in equation (1-2) as 0 = C’[(h + zh’)f + (k + zk’)j + ( I  + zl’)2] with 0 = 2n.. 

Therefore, if the charge distribution is represented as a Fourier series, it is 

possible to derive all the other lattice functions and describe the wave field in the 

perfect icosahedral quasicrystal. 

In general we assume the solution of the wave equation to be of the form: 
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(4-27) 

so that we can substitute in the expressions for x(T) and D(F) into the wave 

equation and, with a little work, obtain a solution and a relation for the 
coefficients Dm. 

where Em =& +Bm. 

where, bnrml is the component of D,, perpendicular to Em. This is considered the 

fundamental relation of the dynamical theory. For an infinite crystal, the 

wavefield is described by equation (4-28) which is a Fourier series. Accordingly, 

the wavefield is composed of an infinite set of wavetrains (one for each 

reciprocal lattice point) each with a wave vector E , .  Each term of the series has a 

coefficient fim, proportional to another series (4-29) that is associated with the 

reciprocal lattice. The coefficients of electric polarizability x,,,-,,, which ultimately 

depend on the structure factor, Fm-n, couple all the wavetrains together. 

Consequently, even if the structure factor for a certain reciprocal lattice vector is 

zero, the amplitude of the corresponding wave train can be non zero. As it 

stands, determining the exact solution for the wavefield in the crystal is 

impossible, but if we introduce boundary conditions and make the appropriate 

assumptions, it is possible, to arrive at approximate solutions that prove to agree 

very well with experiments.[794*1 
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The Reflection Sphere Construction 

By way of introduction, it is inspuctive to review some of the results of 

the familiar kinematical theory approxima tion. In particular, the reflection 

sphere construction (or "Ewald sphere" construction) can be used as a geometric 

tool to describe kinematical scattering in reciprocal space. The kinematical 
approximation assumes that the magnitude of the wavevector 161 inside the 

crystal is identical to the wavevector in vacuum llml=l/A.. i.e. 

~ ~ o ~ = ~ ~ , , ~ = [ ~ ' ~ = l / A , ,  where 6 is the refracted wavevector, lh is the reflected 

wavevector and E' is the external wavevector in vacuum. To first order, this is 

a reasonable approximation since the index of refraction for x-rays in solids 

differs little from unity. The construction of the reflection sphere in reciprocal 

space is presented in Fig. 4.1. One starts by drawing the incident wavevector 

pointing towards the origin 0 of reciprocal space. A sphere of reflection of 

radius 1 / A, is then drawn with its center at the tail of the incident wavevector. If 

a second reciprocal lattice point labeled H,, in Fig. 4.1 lies exactly on the sphere 

then, and only then, is the Laue condition satisfied for the corresponding 

reflection with wavevector & =lo +gh.  The point, L.u from which the 

wavevectors are drawn is called the Laue Poinf. We note in passing that if more 

than two reciprocal lattice points lie on the sphere of reflection then the crystal is 

said to be in a multiple scattering condition. Although the reflection sphere 

construction of the kinematical theory is not appropriate for the dynamical 

theory it can be used as a guide in determining which approximations may be 

valid. 
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i 

Fig. 4.1. 

0 

a 

0 

0 

The construction of the reflection sphere or "Ewald Sphere" in 
reciprocal space describing the scattering of x-rays from a crystal in the 
kinematical approximation. The incident wavevector 6 converges 
on the origin of reciprocal space. A sphere of radius l / A ,  is drawn 
with its center at the tail of the incident wavevector. If a second 
reciprocal lattice point is intersected by the reflection sphere then the 
corresponding reflection is excited with wavevector &, . 

I 

Resonance Error 

The dynamical theory differs from the kinematical theory in that it 

accounts for the small deviations of the wavevectors within the crystal resulting 

from the crystal's anisotropic dielectric function. It is convenient to introduce a 

parameter e,, first introduced by Ewald who called it the "resonance error."[304] 

This parameter is a measure of the deviation of the magnitude of a 
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wavevector IEml of a constituent wavetrain from the magnitude of the 

wavevector in vacuum /Em[ and is defined as 

(4-30) 

The wavefield is composed of terms describing an infinite number of reciprocal 

lattice points, but only those terms described by reciprocal vectors near the Ewald 

sphere contribute effectively to the scattering. 
If /Em/ = lEml then e,,, << I. 

For these reflections, 

and the fundamental equation (4-29) can be written as 

Examples: 

Silicon: 

e2A2 I 
n a z a  2mc2v a 

- 
Lo ---- 

for CuKa radiation: 

h=1.54A 

Z=14 

n=8 

(4-33) 
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e2 - = 2 . 8 1 7 ~ 1 0 ” i  
mc2 

V = (5. 431A)3 

therefore e, =-7.4x104. 

A17J?d20Mnlo for CuKa radiation: 

e2A2 
e0 =-- 2 PAI-Pd-Mn 2 m c  . 

a 

(4-35) 

x x a z a  
= 1.4558 electrons j A3 

pA1-pd-Mn t w a  

therefore e, = -1.539 x 10”. 

We see that while the kinematical theory predicts that reflections occur 

only for those reciprocal lattice points on the reflection sphere, the dynamical 

theory relaxes the condition, requiring that the reciprocal lattice point be within 

the resonance error of the reflection sphere. The resonance error associated with 

the origin of reciprocal space e,, can be intuitively viewed as introducing a 

thickness to the sphere of reflection of the kinematical approximation. 

. . .  . 
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The Single Wave Approximation 
! 

In the dynamical theory, the case of only one reciprocal lattice point (the 

origin) near the sphere of reflection is called the single wave approximation. 

Consequently, the summation in the definition of the wavefield (4-28) has only 

one significant term so that 

This has the solution 

Since xo << 1 we can write 

(4-36) 

(4-37) 

(4-38) 

If we imagine, in reciprocal space, the set of wavevectors Eo that satisfy this 

condition, positioned so as to converge at the origin, and then draw the set of 

points that correspond to the set of allowed starting points for these vectors, we 

obtain a sphere So about the origin. This sphere is called the dispersion surface 

and is shown in Fig. 4.2. The dispersion surface represents the set of allowed 

wavevectors which satisfy Maxwell's equations within the crystal. The 
difference in radius between the spheres of radius lEMl and lEol is exaggerated 

for, in reality, the difference in radius is on the order of one part in lo5. One 

should also note that the electric polarizability is a complex value, but 
since absorption is relatively small when Iz'I is far from an absorption edge 
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of the crystal, it is common to draw the dispersion surface in a real reciprocal 

space. The real part of (l+x, /2) corresponds to the isotropic index of 

refraction and the imaginary part corresponds to the isotropic absorption 

coefficient. 

Fig.4.2 The dispersion surface for the single wave approximation consists of 
a sphere So drawn about the origin of reciprocal space. 

The Two Wave Approximation 

I€ the crystal is rotated with respect to the incident x-ray so that a second 

reciprocal lattice point Hh approaches the sphere of reflection, the resonance 

error e,, becomes comparable to eo and, accordingly, the contributions of both 

reciprocal lattice points become significant. Taking into account the 
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contributions of both reciprocal lattice points in (4-29) leads to the two-beam or 

two-wave approximation. The fundamental relation simplifies to two vector 

equations 

Each vector can be decomposed into two components: 

Do =D,"+Doxf D h  =D:+f i f  

where Doo and are defined as the components normal to the plane passing 

through the wavevectors Eo and l h  of the two plane waves. This plane is 

commonly called the plane of reflection shown in Fig. 4.3. The components 

and fi: are directed along 6: = k^ x 6: and fif = k^ x 6; respectively. Thus fif and 

D; are parallel, while Dox and f i f  are rotated by an angle 28 with respect to each 

other. 

The CT component equations are 

(x, - 2 e , ) ~ :  +x&' = o 

x,Df - (x, - 2eh)D; = 0 

and the n component equations are 

(xo - 2 e , ) ~ , ~  + C O S ( ~ ~ ) ~ ~ D , "  

(4-43) 



The condition implied by these equations can be written 

where C=O for the 0 component and C=cos28 for the 7c component. The 

significance of this equation is that it defines a direct relationship between the 

Fig. 4.3. The plane of reflection and the components of the field vectors of the 
o(n) state of polarization. The 0 components of the electric 
displacement Dou and are normal to the plane of reflection and are 
mutually parallel. The n components of the electric displacement Box 
and lie in the plane of reflection but are misaligned by an angle of 
28 with respect to each other. 
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resonance errors e, and e,,. The wavevectors of the plane wave constituents of 

the wave field are define by /lo[ = lEm[(l+e,) and IE,,I=[l,[(l+e,,). Consequently, 

equation (4-46) represents a relationship between the two wavevectors. The 

relationship can be illustrated by the construction of the dispersion surface which 

is the locus of allowed pairs of wavevectors E, and Shown in Fig. 4.4 is a 

region of reciprocal space near the Laue Point La displaying a portion of the 

dispersion surface. Due to the scale of the drawing, the circles S, and S& of 

radius Ixdl centered around the 0 and Hh appear as straight (dashed) lines. In 

addition the circle So of radius 1$1 centered about 0 and the a rde  Sh of radius I lh1  

centered about H h  will also appear as straight lines. Although So and s,, are 

dispersion surfaces in the case of the single wave approximation, the dispersion 

surface for the two-wave approximation is slightly shifted from these spheres. 

The largest shifts are in the region nearest the Lorentz Point Lo as shown in Fig. 

4.4. A pair of wavevectors E, and Eh satisfying equation (4-46) is drawn from a 

point P on the dispersion surface to the reciprocal lattice points 0 and H,, 

respectively. The 

significance of the dispersion surface is now apparant. It is the locus of solutions 

of equation (4-46) which is the result of applying a two-beam approximation to 

the fundamental equation (4-29). A better understanding of the shape of the 

dispersion surface can be attained by introducing two parameters 5, and e,, 
(Fig. 4.5) which are,defined as the perpendicular distances from P to S, and P to 

S,, respectively, so that 

The point P is called a tie point (or excitation point). 

(4-47) 

(4-48) 
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This allows equation (4-46) to be written 

\ s, 
\ 

/ 
/ 

/ 
/ \ 

\ / 

Fig. 44. A portion of the dispersion surface in the visinity of the Laue Point 
La. Because of the scale of the drawing, the spheres So, Sw and S& 
appear as straight lines. The point of intersection of S, and S& is the 
Laue Point La and the point of intersection of So and S h  is called the 
Lorentz point Lo. A pair of wavevectors k3, and l h  satisfying. the 
fundamental equation of the dynamical theory are drawn from a 
point on the dispersion surface P (called a tie point) and converge on 
the reciprocal lattice points 0 and Hh respectively. 
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Fig. 4.5. The dispersion surface in the case of the two-beam approximation 
consists of four branches as shown in the figure. Far from the 
Lorentz point, the dispersion surface asymptotically approaches the 
spheres of the single wave case. 

Equation (4-49) defines the dispersion surface for the two-wave case. In the plane 

of the drawing, the dispersion surface appears as a pair of hyperbola with the 

lines So and S,, as asymptotes. Due to polarization of the electric displacement D, 
C will either be equal to 1 or cos28. Because cos28 is always less than one, this 

implies that the hyperbola of the n dispersion surface (called the n-branch) is 

always closer to the Lorentz point Lo than the o-branch. In order to obtain the 

surface in three dimensions it is necessary to rotate this hyperbola about the axis 

defined by the vector ph. This forms a hyperbolic cylinder with axis parallel to 
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the vector B,, centered about the origin with its narrowest diameter on the plane 

perpendicularly bisecting the line segment OH,. 

The dispersion surface consists of four branches {oa, op, na, np} as 

shown in Fig. 4.5. Any wave propogating in the crystal must be composed of 

terms with wavevectors drawn from points on the dispersion surface and 

converging on either 0 or H, .  

The equation of the wave field can be written 

and a relationship between the amplitudes Do and D, can be determined from 

equations (4-42 to 4-45,4-50) and the amplitude ratio R can be written 

Hence the dispersion surface not only allows the determination of the 

wavevectors from the position of the tie point, but also the amplitudes. 

Boundary Conditions 

Relation (4-28)- defines the allowed wavevectors for the propagating 

wavefield inside the crystal and allows the description of the dispersion surface. 

But what has not yet been explained is the relationship between the external 

incident beam and the wavefield inside the crystal. In other words, how does 

one determine which tie points are excited. In order to describe the wavefield it 

is necessary to invoke the familiar boundary conditions that are imposed on 

electromagnetic waves. This applies constraints on the frequency, amplitude and 

wavevector. The continuity of the frequency simply implies that the boundary 
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has no effect on the frequency of the wave as it passes through the boundary. 

The continuity of the wavevector at the surface of the crystal implies that the 

tangential component of the wavevector must be equal on either side of the 

boundary since the wave fields on either side of the boundary must have equal 

phase velocities tangent to the surface. 

The boundary condition on the amplitude requires that the amplitude of 

the electric displacement be continuous at the surface. Thus 

0 =& +D,,@ , for all h .  

The Single Wave Approximation 

In the case of the single wave approximation, we draw the dispersion 
surface inside the crystal So as the sphere of radius Fol. Outside the crystal the 

dispersion surface is the sphere of radius lE'l. In addition the surface normal E 

is drawn in the direction facing into the crystal as shown in Fig. 4.6. The incident 

beam wavevector in vacuum id is drawn from a tie point on the sphere S,. To 

determine which tie point is excited on the internal dispersion surface it is 

necessary to draw a line parallel to the surface normal and through. the point Q. 

The line intersecting the dispersion surface at P. This is the tie point (or 

excitation point) that corresponds to the excited wave field in the crystal that 

satisfies the boundary conditions. This graphic description is analogous to 

Snell's Law of optics and defines the refraction of x-rays due to the crystal surface. 
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The Double Wave Approximation 

-In the case of the two wave approximation, the dispersion surface near the 

Laue Point is composed of two cylindrical hyperboloids. The construction of the 

boundary conditions is done as for the single wave case. If we assume a 

transmission (Laue) geometry the surface normal is drawn into the crystal and 

the dispersion surface is drawn as in Fig. 4.7. The wavevector &., is drawn from 

Fig.4.6. The boundary conditions in the case of a single wave case can be 
graphically displayed. Shown is the surface normal i ,  the incident 
wavevector Em, the resulting exitation point P and the 
corresponding internal wave vector 6 .  
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a tie point on the external dispersion surface S,. If the crystal is set at the Bragg 

angle then this tie point corresponds to the Laue Point La. A line parallel to the 

surface normal is drawn through La and intersects the dispersion surface at  four 

tie points PI P2, P3 and P4 (Fig. 4.7) thus exciting four waves in the crystal. 

Fig.4.7. The boundary condition in the case of a Laue transmission geometry 
selects four tie points on the dispersion surface. 
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Energy Flow 

1 Assume a crystal to be set in the symmetric Laue geometry as shown in 

(Fig. 4.8). The Pointing vector gives the direction of energy flow in the crystal 

and is defined as 

- c  s = - ( @ x R )  
4n 

But 

- iw - H = - ( k x E )  
C 

so that for the two beam approximation 

s OC (Ioio I h z h )  

(4-55) 

(4-56) 

where I, and I, are the intensities of the refracted and diffracted waves 

respectively. The Pointing vector can be decomposed into two components S, 

and S, where 2 and 2 are defined in Fig. 4.8. We introduce a new parameter A,  

which is the angle between the propagation direction of the wavefield and the 

Bragg planes. The components of the Pointing vector can then be written 

Forming the ratio of the two equations leads to 

(4-59) 
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Fig. 4.8. Depiction of the Laue scattering geometry and the defineh coon 
system. 

.nate 

This is a relation between the direction of propagation and the amplitude 

ratio R. Further calculations lead to a relation between the tie point on the 

dispersion surface and the direction of propagation 3 in the crystal. The result is 

that the Pointing vector for a wavefield is perpendicular to the dispersion surface 

at the associated tie point. This leads to an important effect called the 

"Borrmann Fan". In the case where the tie point is at the diameter point of the 

dispersion surface, then R = 1 and tanA = 0 so that the Pointing vector is directed 

along the Bragg planes as shown in Fig. 4.9a. If the incident beam angle is 

slightly misaligned from the Bragg angle, for example Fig. 4.9b, it is seen that two 

waves are promoted that propagate in different directions (in other words the 

beam splits into an a-beam and a p-beam). If'the crystal is misaligned by the 

same amount in opposite directions, then the beam, again, splits in two but as 
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can be seen in Fig. 4.9c, now the /-I branch and the a branch are switched from 

the second case. 

Therefore as a crystal is rocked through the Bragg angle with respect to an 

incident x-ray plane wave which is monochromatic and spacially well defined, 

the excitation point can be imagined to move along the dispersion surface. The 

resultant wavefield will vary in intensity as defined by the rocking curve for the 

reflection and will vary in direction as determined by the propagation angle 

which varies in the range - eB and 6,. This means that a triangle can be drawn 

that encompasses any possible wavefield in the crystal (Fig. 4.10). 

I 

I 
I 
I 

i 

The Borrmann Effect 

We consider the case of a x-ray beam represented by a monochromatic plane 

wave incident on a sample that is oriented in the symmetric Laue reflection 

geometry (Fig. 4.8). For convenience let us assume that the incident beam is 

polarized so as only to contain the 0, component. The 7c dispersion surfaces can 

then be ignored and only two tie points on two dispersion surfaces are excited. 

We have shown that, in general, the x-rays in the crystal must be consistent with 

the dispersion surface defined by equation (4-29). But if only one reciprocal 

lattice point (other than the origin of reciprocal space) is near the sphere of 

reflection then it may be appropriate to make the two beam approximation. The 

dispersion surface, as defined by equation (4-49), was a pair of hyperboloids (with 

points of narrowest diameter on the plane perpendicularly bisecting the line 

. segment OH,) that asymptotically approach the spheres So and S, away from the 

1 

I 

1 
1 
! 

Laue point. 

The boundary conditions for the case of a sample in the shape of a parallel 

I 
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Fig.4.9. (a) The Pointing vector in the case of a symetric Laue transmission 
lies along of the Bragg planes. (b) If the angle of incidence is slightly 
offset from the Bragg angle then the Pointing vectors of the a and /3 
branch diverge thus causing an a and a p beam as shown. (c) An 
offset of the angle of incidence in the opposite direction causes an 
exchange of the a and p branch beams. 
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I 

Fig. 4.10. The propagation angle A is limited to the range f 0,. This defines a 
triangle drawn through points A, B and C and is called the Borrmnnn 
Trin ngl e. 

faced wafer with primary diffraction planes perpendicular to the surface will 

result in the excitation of only two points on the dispersion surface. These two 

points will be at the diameter point of the dispersion of the ao and the Po 

branches. The wavefield in the crystal will be defined by equation (4-50) where 

the amplitude ratio R of equation 451 will be either 1 or -1 for the a and the p 
mode respectively. The time averaged intensity of the a and the p constituents 

of the wave field can be written 

I ( P )  =po)2[2+2cos(-21cii, T)] (4-60) 

where the -(+) is for the a(P) mode. In the case of a strong reflection where all 

the atoms scatter in phase (such as the Si (220) reflection) the photoelectric 
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wavefield that has its maximum intensity at the atomic plane positions, will 

suffer a greater degree of photoelectric absorption (Fig. 4.11). In the case of a 

strong reflection where all the atoms scatter in phase (such as the Si (220) 

reflection) the /I-branch waves will be strongly absorbed, while the waves of the 

a-branch will travel through the crystal suffering little absorption. If we 

consider a crystal thickness of ten absorption lengths (assuming the isotropic 

absorption coefficient for the sample) when rotated away from the Bragg 

condition, the kinematical theory and the single wave approximation predict an 

attenuation of the transmitted beam of exp(-lo). Consequently one would not 

observe any transmitted intensity in the forward direction or the Laue reflected 

direction. When the crystal is brought into the Bragg condition, then the waves 

of the p-branch are eliminated but the waves of the a-branch pass through the 

crystal allowing the Laue reflected and the forward transmitted beam to be 

detected. This effect is called anomalous transmission or the Borrmansz Effecf 

(Fig. 4.12). 

As was previously explained, the direction of propogation s of the waves 

inside the crystal is perpendicular to the dispersion surface at the tie point. In the 

case of the symmetric Laue reflection, this implies the wave propogates along the 

atomic diffraction planes. If one is carefull, it is possible to observe the offset of 

the transmitted beam (which is actually forward scattered). If the primary 

reflection does not have a large structure factor, this corresponds to having 

atoms between the scattering planes. Consequently absorption of the a-branch 

reduces the amount of anomolous transmission. If the sample is not of 

sufficient perfection so as to promote a standing wave, then the anomolous 

transmission is eliminated. 
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a Branch p Branch 

I 

Fig.4.11. The a and p components of the wavefield consist of waves with 

periods equivalent to the period of the Bragg planes that cause the 

reflection. The a and p modes are different by a 90" phase shift. In 

the case of Si (220), the wave of the a-branch has a minimum 

intensity at the atomic positions and suffers a relatively small 

amount of absorption while the &branch is strongly absorbed. a) The 

a and the p wavefield. b) The corresponding scattering geometry. 



f 100 

e 

H 
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Fig. 4.12 a) In the thick crystal limit, when slightly misaligned from the Bragg 
condition, the transmitted beam is eliminated due to absorption. b) 
At the Bragg condition, a wavefield is promoted that allows a portion 
of the x-rays to pass through the sample suffering a smaller amount 
of absorption. The wavefield exits the sample at the back face and 
splits into the two components D,, and fib propagating in the 
directions &, and respectively. These exiting beams are commonly 
labeled the 0 and the H beam. An undeflected beam is called a 
Radiographic beam R c) The intensity of the 0 beam as the crystal is 
rocked through the Bragg angle. 
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Spherical Waves, the Borrmann Fan, and Pendellosung Fringes 

If the incident monochromatic x-ray beam exhibits a divergence that is 

larger than the rocking curve width of the reflection, then the beam is best 

represented by a spherical wave.[*2-85] This results in the simultaneous excitation 

of the entire dispersion surface in the vicinity of the Laue Point, so that all the 

propagation angles A defined by the Borrmann Triangle will be produced. In 
other words, if the intensity of the x-rays at the back face of the crystal is 

measured, it will be found to be distributed over the distance B to C in Fig. 4.13a. 

To describe the intensity distribution over the back face, one might first 

assume that the intensity will be maxiinum when A=O because this corresponds 

to x-rays that are incident at the exact Bragg angle. This is not the case, because of 

a subtle effect due to the variation of the divergence of the x-ray beam inside the 

crystal as opposed to the divergence of the incident beam. A relation between the 

incident divergence 6&, and the internal divergence 6& can be written in terms 

of the Bragg angle OB, the wavevector IE'l, the angle of incidence and the radius 

\ 

of curvature of the dispersion surface. 

' IE&(cOseB -= = A  
Rcos8 

where A is defined as the angular amplification. It is evident that at the 
diameter point, the radius of m a t u r e  is smallest (RC-+,I> therefore A is largest 

and the x-rays are spread out over a larger range of angles, A, while further from 

the diameter point, the dispersion surface asymptotically approaches the sphere 
of radius lz'l, so that the angular amplification approaches unity. For periodic 

crystals, values of the angular amplification on the order of lo4 have been found 
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at the diameter point.[761 This effect causes the intensity to be distributed mostly 

toward the edges of the Borrmann Fan as shown in the Fig. 4.13. Since the 

intensity of the wavefield in the Borrmann triangle is composed of both a and 

p-modes that have different magnitudes, there will be constructive and 

distructive interference that modulates the Borrmann Fan intensity patterns 

(Fig. 4.13) These fringes are called Pendellosung fringes. 

Fig. 413. The simultaneous excitation of the entire dispersion surface in the 
vicinity of the Laue Point results in a wave field composed of a range 
of propagation angles, A, defined by the Borrmann triangle. 
(8Bragg 2 A 2  -eBragg). In the case of little absorption, the intensity is 
concentrated at the edges of the Borrmann Fan. 
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The Three Wave Case 

The decription of the Borrmann Effect and Pendellosung pattern in the 

Borrmann Fan were described for the case of a two beam approximation. This 

resulted in the discription of the dispersion surface and the wavefield by 

equations (4-49) and (450). 

It is instructive to consider the three wave case for a moment. Rather 

than dealing with a general three wave case, I will assume that the three waves 

lie on the same plane of reflection. This simplifies the problem while still 

allowing us to appreciate the additional complications that arise when 

attempting to describe the wave field in an n>2 approximation. In the case of 

three waves (4-29) can be written as:[73] 

2e,Q = X,D,[,] +X&] +xj?Dp[.] 

2e,4 = x&] + X,fi,,[,, + x h - p f i p [ h ]  

(4-62) 

(4-63) 

(4-64) 

where 0, H,, and Hp are three reciprocal lattice points lying simultaneously on 

the Ewald sphere. If we only concern ourselves with the o-polarized electric 

field components, the vector equations simplify to three scalar equations. 

2QP = XpD0Ip] + x p - h f i , , [ p ]  + xofip[p] 

(x, - 2%)Q + Xi;Q + x p p  = 0 (4-65) 

x,,Q + (X,  - 2 4 4  + X h - p o ,  = 0 

xpo, + x p - A  + (x, -2ep)Dp = 0 

This produces the solutions: 
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(4-68) 

(4-69) 

This solution reveals an interesting result. One can immediately see that 

even if a certain term of the polarizability, let's say xp, is zero (i.e.. the structure 

factor Fp is zero) but the reciprocal lattice vector RP, is near the Ewald sphere, it is 

incorrect to simply assume a two wave approximation. The amplitude Dp, is 

non zero if neither xp nor xp-,, is zero. 

Dynamical Diffraction and Quasiaystals 

The presence of multiple scattering of the x-rays is the significant factorin 

determining whether a crystal scatters kinematically or dynamically. This 

condition is described and discussed in B. E. Warren's text "X-Ray Diffraction"I861 

and basically requires that the effective mean free path of the x-ray be smaller 

than the absorption length (l/k). In addition, the coherent volume of the 

structure must be large enough as well (the mean free path of the x-ray must be 

smaller than the correlation length of the crystal). This implies that for strong 

reflections, the quasicrystal, (or any crystal) may scatter dynamically while for 

weak reflections we are in the kinematical limit. The question can be raised, 

"how does the dynamical theory need to be modified to describe dynamical 

diffraction in a quasiperiodic structure?" and "is it possible to observe the 

Borrmann effect and Pendellosung fringe patterns in a non-periodic structure?" 

The answer is that the theory does not have to be modified (other than the use of 

E 

, 
i 
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a structure factor per unit volume rather than structure factor per unit cell) if the 

two beam approximation holds. In the case of the Borrmann Effect, the 

promotion of the standing wave with period equal to the d-spacing of the 

primary diffraction planes only requires a reciprocal lattice point H p .  The 

existence of anomalous transmission of x-rays requires that a majority of the 

absorbing atoms be distributed approximately at the atomic planes of spacing 

(2n/H). This is another way of requiring the structure factor for the primary 

reflection to be large, the same condition imposed on periodic crystals. 

The question, then, is whether the two beam approximation is valid for a 

quasicrystal, which is an incommensurate structure, with an infinite number of 

diffraction peaks near the Ewald sphere. Although most of the reflections are of 

infinitesimal structure factor, the question can be raised, can an infinite number 

of infinitesimal peaks near the sphere of reflection invalidate the two beam 

approximation for quasicrystals? It can be argued that the effect of a weak 

reflection near the Ewald sphere cannot be ignored by the example of the 

previous section discussing the three beam case. But if one takes into account 

the condition for dynamical diffraction, the weak reflections are not strong 
enough to scatter dynamically. If the coupling reflections Hh-p is also not strong 

enough to scatter dynamically, then the weak reflections can be ignored in the 

dynamical equation and $he ~ wavefield. This implies that when describing the 

- 

dynamical diffraction from quasicrystals, there will be no dynamical effects from 

weak reflections H p  if there is only a very weak coupling reflection Hh-p. 

The final constraint is ultimately, whether it is possible to grow a 

quasicrystal that has strong enough structure factors and is perfect enough to 

require the dynamical theory. 



106 

Besides proving some indication that the two beam approximation is 

valid, the Borrmann Effect and Pendellosung fringe pattern have proved to be 

sensitive probes for measuring the temperature effects on the structure factor (in 

the form of the Debye-Waller factor)[s3] and the structure factor in absolute units. 

Dynamical x-ray diffraction offers a range of scattering techniques as probes of 

crystalline structures, for example standing wave experiments, allows us to 

develop x-ray polarizers and understand beam optics required for practically any 

high resolution experiment. 

The observation of the Borrmann Fan and Pendellosung fringe patterns is 

directly related to the shape of the dispersion surface and is dependent on the 

existence of both the a and the p waves propagating simultaneously. Therefore 

the Pendellosung pattern is direct evidence of the dynamical theory. 
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V. DYNAMICAL X-RAY DIFFRACTION EXPERIMENTS 

Introduction 

The coherent x-ray scatttering measurements, presented in chapter 3, show 

that icosahedral Al-Pd-Mn is characterized by true long-range positional order over 

a length scale of at least 6 pm. These results suggest that this alloy might be of 

sufficient perfection for the observation of dynamical x-ray diffraction. As pointed 

out in the previous chapter,*the absence of periodicity itself should not preclude or 

obscure dynamical diffraction effects, although the effects of multiple scattering 

from an "infinite" set of Bragg points may have some impact upon quantitative 

measurements. Indeed, the anomalous transmission of x-rays through an 

incommensurate or aperiodic crystal has been treated theoretically in some detail by 

Berenson and Birman for the special case of a one-dimensional Fibonacci lattice.[85] 

They concluded that while the effect is weaker in aperiodic systems, since full 

reflections are not found, it should still be observable. However, until the present 

measurements there existed no direct experimental evidence of dynamical x-ray 

scattering in quasicrystals or, indeed, other incommensurate systems. In the 

previous chapter, the origin of the Borrmann effect and Pendellosung fringe patterns 

were described. The observation of either phenomena is undisputable evidence of 

dynamical x-ray diffraction. In this chapter, results from two sets of experiments 

carried out on carefully prepared samples of icosahedral Al-Pd-Mn will be 

described. 
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Measurement of the Borrmann Effect 

The Borrmann Effect (as described in the previous chapter) is best observed in 

the case of a symmetric transmitted Laue reflection of monochromatic x-rays. The 

sample is prepared in the form of a parallel faced wafer with the scattering planes 

perpendicular to the surface of the sample. The measurement consists of detecting 

x-rays transmitted through the sample as the sample is rocked through the Bragg 

angle for the strong reflection. One of the beautiful aspects of the measurement is 

that data analysis is quite simple (at least for the qualitative aspects of the 

experiment). The observation of a forward diffracted 0-beam at the Bragg angle 

provides direct evidence of anomalous transmission and consequently dynamical 

diffraction. 

The experiment was performed on a 0.4 mm thick parallel faced wafer of a 

single grain of the icosahedral Al-Pd-Mn alloy cut with twofold axes parallel and 

perpendicular to the smallest dimension (Fig. 5.1). The experiment was performed 

on beamline X23A3 at the National Synchrotron Light Source using 12 keV x-rays 

from a silicon double-crystal asymetric-cut monochromator set at the (111) 

reflection. At this energy, the 0.4 mm thick sample presents approximately 10 

absorption lengths to the incident beam so that its transmission through the sample 

is essentially eliminated. In the terminology of dynamical diffraction, we are in the 

"thick - crystal limit." The asymmetric monochromator was chosen in order to 

magnify the vertical dimension of the beam and, at the same time, reduce the 

angular divergence of the x-rays to produce a collimated monochromatic beam with 

a uniform intensity over a large cross sectional area. Although these beam 
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characteristics were not required for the Borrmann effect measurement itself, they 

were necessaary for x-ray topographic measurements performed at the same time. 

For the anomolous transmission measurements, the dimensions of the beam were 

reduced to 3 mm in the horizonatal and 1 mrn in the vertical direction in order to 

reduce spill over of x-rays around the sample. 

The experiment is shown schematically in Fig. 5.1. The x-ray beam is incident 

from the left and strikes the sample at the correct Bragg angle for diffraction from 

the (h/h' k/k' 1/1')=(2/4 0/0 O/O) reflection along the twofold axis (using the 

indexing scheme discribed in Chapter I). This reflection is one of the strongest 

found in Al-Pd-Mn, and therefore is the most likely candidate reflection for the 

observation of dynamical effects. At the Bragg condition, two emerging beams were 

recorded on Polariod film placed 3.5 cm behind the sample (right side of Fig. 5.1). 

The H beam is the diffracted Laue beam found at an angle of 2 0 ~ ~ ~ ~ ~  from the 

incident beam direction. The 0 beam is the anomalously transmitted (forward 

diffracted) beam parallel to, but displaced laterally from, the incident beam 

direction. As the sample was rotated by 0.04" away from the correct Bragg angle, no 

intensity at these positions was observed. Nevertheless, the observation of the 0 

beam, at the Bragg angle, is clear evidence of dynamical diffraction from the sample. 

The intensity profile of the 0 beam was recorded by replacing the film with a 

NaI scintillation detector and aperture to isolate the 0 beam from 'the H beam and 

other background radiation. Fig. 5.2 shows the intensity in the forward scattering 

direction as the crystal angle is scanned through the diffraction condition, again 

clearly showing the phenomenon of anomalous transmission. The measured 

angular width of the forward diffracted beam, 0.006" FWHM, results from the 

convolution of the incident beam profile and the rocking curve width of the 
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I film I 

Fig. 5.1. Schematic (left) and results (right) of the Borrmann effect measurement. 
The sample surfaces are represented by the rectangle and the 
crystallographic orientation is illustrated directly above the sample. The 
dashed arrows passing through the sample depict the paths traced by 
the incident beam as well as the three exiting beams. The right side of 
the figure is an enlargement of a photograph taken down-stream of the 
sample in the Bragg condition. The H, 0, and the R beams of the 
schematic have been drawn to correspond to the analogous images. 
When the sample is rotated about an axis perpendicular to the scattering 
plane, the H- and the 0-beam disappear and the R-beam is left as a 
single stripe of weak intensity. 

’ 

_- .. -- I 
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Fig. 5.2. Intensity of the forward diffracted beam (0 beam) as the sample is 
rotated through the diffraction condition. The nominal zero of the 
horizontal scale was chosen at the center of the angular range of the 
reflection. 

quasicrystal. The divergence of the incident monochromatic beam was limited to 

0.004' by a 1.0 mm vertical slit before the sample. Therefore, from this measurement 

a reasonable upper limit on the intrinsic rocking curve of the (2/4 0/0 O / O )  reflection 

is 0.004', comparable to the rocking curve width of the (111) reflection of silicon of 

approximately 0.0020. 



112 

The sample, as might be expected, is not perfect across the entire 3 mm by 1 

mm extent of the beam. There is structure in both the 0 and H beams related to the 

existence of defects in the quasicrystal. Figure 5.3 shows a magnified view of the 0 

and H beams, revealing the presence of macroscopic voids (black spots) and 

scratches on the surfaces (both front and back) of the sample. The contrast in these 

images arises from the strain field surrounding the defect that distorts the lattice 

over a region, generally, much larger than the defect itself. 

The study of defects in crystals through this technique, x-ray topography, is a 

mature field of studyW In the present study, we have used this technique to 

evaluate the size and location of regions of the sample that were relatively free of 

defects. For x-ray topographic measurements at synchrotron sources, exposures 

must be taken with relatively short exposures to observe fine details. To accomplish 

this, the incident x-ray energy was increased to 20 keV, decreasing the effective 

absorption length of the sample. The diffraction geometry remained the same as for 

the Borrmann effect measurements, but the slits upstream of the sample were 

opened to make full use of the large spatial extent of the beam. Typical exposure 

times were on the order of five minutes. 

Figure 5.4 shows a transmission Laue topograph ( the H beam) taken when 

the sample was rotated into the "correct position" for the (2/4 0/0 O/O) reflection. 

Here, the dark regions correspond to the portions of the sample which diffract, while 

the light regions correspond to portions out of the Bragg condition. If the sample is 

rotated by a small angle ( on the order of the rocking curve width), away from this 

position, the contrast changes (see, for example, Fig. 2.5). These large scale 

variations in contrast are not unusual in metallic crystals (even so-called perfect 

ones) and can arise from the presence of elastic strain or compositional variations in 
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Fig. 5.3. A magnified view of the 0 and H beams of Fig. 5.2, revealing the 
presence of macroscopic voids (black spots) and. scratches on 'the 
surfaces (both front and back) of the sample. 
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the sample. Figure 5.4 also exhibits some very fine-scaled variations in contrast 

which arise, most likely, from dislocations in the structure. 

The Bomann  Fan - Pedellosung Fringe Experiment 

The observation of anomalous transmission, descibed above, implies the 

existence of dynamical scattering and the promotion of a wavefield inside the 

sample. However, In order to obtain even more direct evidence of the existence of a 

dispersion surface, it is necessary to resolve the Borrmann Fan (as described in the 

previous chapter) from the transmission of x-rays through a thin parallel faced 

sample. The Borrmann fan is modulated by Pendellosung fringes which are due to 

the interference of the two modes (a and p) propagating through the structure. 

The Borrmann Fan experiment is similar to the anomalous transmission 

experiment in that the sample is prepared in the form of a parallel faced wafer and 

oriented with respect to the x-ray beam so as to satisfy the condition for a symmetric 

transmission Laue reflection. The Borrmann Fan experiment differs from the 

anomalous transmission experiment in the use of a thin crystal and a divergent 

beam to illuminate entire dispersion surface simultaneously as described in 

Chapter 4. 

These experiments were done at the Cornell High Energy Synchrotron Source 

(CHESS) beam line B2 using a double crystal, asymmetric cut Ge(220) 

monochromator. The asymmetric cut crystals were now used to demagnify the 

beam in an attempt to increase the angular divergence of the incident beam so that it 

was larger than the rocking curve width of the quasicrystal. Again, the crystal was 

set in the symmetric Laue geometry, diffracting from the (2/4 0/0 O/O) reflection. 

In order to observe the interference of the a and p modes of the wavefield, it is 
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A. 

Fig. 5.4. A transmission topograph of the (2/4 0/0 O/O) twofold reflection ( two 
fold planes perpendicular to the surface) from a parallel faced sample 
(0.4mm thick) with fivefold planes parallel to the surface. 
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necessary that absorption does not eliminate the p mode. For this reason x-rays in 

the energy range above 20 keV were used, for a 0.4 mm thick (pt-2) sample. 

The expected Pendellosung pattern can be calculated from the known 

thickness of the sample, the Bragg angle of the reflection, the absorption coefficient, 

and an estimate of the structure factor of the reflection.[a#861 In Fig. 5.5 I show 

calculated Pendellosung patterns for the (2/4 0/0 O/O) reflection at a series of three 

energies using a structure factor determined in measurements by deBoissieu et al.1871 

The Bragg angle of the reflection at 20.5 keV incident energy is 8~,,=8.483'. The 

width of the pattern, for an incident beam of infinitessimal width, should then be 

L=2tsin(B~,~~)=118 km. Under these conditions, about 14 fringes from one edge of 

the fan to the other should be observed, with an average fringe width of 

approximately 8.5 pm. 

The experimental geometry used in this measurement is shown in Fig. 5.6. 

The incident beam was first passed through an aperture in order to create a spaaally 

defined beam and the sample was oriented in order to satisfy the Bragg condition for 

the (2/4 0/0 O/O) transmission Laue reflection. The key to a succesful measurement 

of the Borrmann Fan and the Pendellosung pattern is to limit the size of the incident 

beam to avoid smearing the Pendellosung pattern and obscuring the fringes. In 

order to obtain a beam size at the sample of 5 pm (smaller than the average fringe 

spacing), we constructed apertures by aligning two polished tungsten cylindrical 

rods with a 0.003" gap between them. Although the gap was too large for the 

required resolution, the gap between the rods could be centered on the beam. The 

rods were then rotated to reduce the effective width of the aperture. The slits were 

mounted on translation and rotation stages that allowed alignment and adjustment 

of the apertures. The spacial distribution of intensity at the back face of the sample 
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1 

Fig. 5.5. Calculated Pendellosung patterns for the (2/4 0/0 O/O) reflection at 
energies of a) 21.5 keV, b) 21 keV, and c) 20.5 keV. The horizontal axis 
represents the transverse position, X, across the reflected beam in units 
normalized to the half width of, the reflected beam (L/2). 
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Fig. 5.6. The experimental geometry used for the Pendellosung measurements. 

was measured by scanning a second aperture across the diffracted beam in steps of 

2.5 pm, over a range of approximately 240 pm. 

Data were taken at several energies around 20 keV, and as a function of angle 

measured relative to the center of the rocking curve of the sample. The data taken at 

20.5 keV incident energy, shown in Fig. 5.7, clearly show the existence of the 

Borrmann Fan of the expected width and approximate shape. In particular, the 

distinctive peaks in intensity at the edges of the fan are found. This observation 

again confirms that the Al-Pd-Mn quasicrystals is scattering dynamically. There is 

also evidence of the Pendellosung interference pattern in these scans, although it 

appears disto,rted and smeared. While unfortunate, this is not surprising since the 
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Fig. 5.7. The intensity distribution of the keflected 20.5 keV x-rays from the 
(2 /4 0/0 O/O) reflection of Al-Pd-Mn at varied values AO (the deviation 
of the incident beam direction away from the Bragg condition). The 
patterns clearly show the existence of the Borrmann Fan of the expected 
width. Furthermore, the shape of the pattern (particularly the intensity 
at the center) is very sensitive to AO. 
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Pendellosung pattern is extremely sensitive to strain and the quality of the sample 

surface.[76] 

Two features of Figure 5.7 warrant further discussion. In the ideal 

experiment, where the incident beam divergence is much greater than the rocking 

curve of the reflection, the entire dispersion surface is excited. The Pendellosung 

pattern should then be symmetric and relatively insensitive to small deviations from 

the exact Bragg angle. In Figure 5.7, however, we see a pronounced asymmetry in 

the intensity at the margins of the pattern that changes from one side of the Bragg 

angle to the other. Furthermore, we see that the shape of the pattern (particularly 

the intensity at the center) is very sensitive to the deviation of the incident beam 

direction away from the Bragg condition. One possible explanation for the presence 

of this central peak is that a portion of the sample is scattering kinematically rather 

than dynamically. Scattering from these portions of the sample would contribute to 

the central region of the pattern, but not the wings. Alternatively, both the 

asymmetry of the pattern and the presence of the central peak indicate that the 

incident beam divergence was not large enough to excite the entire dispersion 

surface simultaneously. 

In the following discussion it will be useful to refer back to Fig. 4.9 and Fig. 

4.13. If the incident beam does not excite all points on the dispersion surface, then at 

A0=0 (in Fig. 5.7), the intensity at the center of the Borrmann Fan will be a maximum 

with lower intensity in the wings, while as A0 increases, the intensity in the wings 

will grow at the expense of the central peak. Furthermore, the asymmetry in the 

intensity at the edges of the pattern can be attributed to the difference in absorption 

of the a and p modes of the wavefield. For uniform illumination of the dispersion 

surface, the a and p modes contribute equally to the intensity at both edges of the 
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pattern. If the incident beam divergence is only marginally larger than the rocking 

curve of the reflection, the p (a) mode will contribute more to the left(right) wing of 

the patterns in Fig. 5.7 for incident angles slightly lower than the nominal Bragg 

angle. Conversely, for incident angles slightly larger than the nominal Bragg angle, 

the situation is reversed. Since the absorption for the p mode is greater than that for 

the a mode, the asymmetry observed in Fig. 5.7 results. 

Conclusion 

The observation of dynamical diffraction from quasicrystals holds some 

important implications for structural investigations of these phases. First, we point 

out that primary extinction effects associated with diffraction from single grains of 

Al-Pd-Ah, and presumably many of the other FCI alloys, may be very significant 

and should be carefully corrected for prior to the use of diffraction data as input to 

structural determinations. Preliminary comparisons between diffracted beam 

intensities from roughly ground spheres of Al-Pd-Mn and the sample used in this 

present study confirm this point.[8A Second, we note that several probes based 

upon dynamical diffraction effects, such as x-ray standing wave fluorescence 

techniques, multiple beam interference effects and x-ray transmission topographs, 

may now be employed to study the bulk and surface structure of some quasicrystals. 

Indeed, efforts are already underway by some groups to use multiple diffraction 

interference effects to determine whether quasicrystalline sys tems are 

centrosymmetric[a! More generally, the observation of dynamical diffraction from 

icosahedral Al-Pd-Mn is a striking confirmation of the fact that quasicrystals can 

present a degree of structural perfection comparable to that found in the best 

periodic intermetallic crystals. 
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