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ABSTRACT 

We summarize recent theoretical advances in the description of 
the evolution of Rydberg atoms subject to ultrashort pulses extend- 
ing only a fraction of an optical cycle. We have performed classical. 
semiclassical and full quantum calculations in order to delineate the 
classical-quantum correspondence for impulsively perturbed atomic 
systems. We observe classical and quantum (or semiclassical) oscil- 
lations in excitation and ionization which depend on the initial state 
of atoms and on the strength of the perturbation. These predictions 
can be experimentally tested. 

1. Introduction 
Very recently, the generation of subpicosecond ‘half-cycle’ electromag- 

netic pulses has been achieved both in the terahertz [I] and in the gigahertz 
regime j2]. In contrast to short laser pulses which extend over several optical 
cycles. half-cycle pulses are characterized by a strong unidirectional electrical 
field confined to a very short time interval corresponding to only a fraction of 
a cycle. These characteristics make half-cycle pulses very similar to the elec- 
tric field pulse generated by the passing-by projectile in an ion-atom collision. 
Thus. the study of the dynamics of Rydberg atoms subject to these pulses 
is of practical importance in problems such as transport of ions and atoms 
through solids (e.g. [3-41) or plasma modelling and diagnostics of high tem- 
perature fusion plasmas ( [5] and references therein). These new experimental 
developments have stimulated a number of theoretical studies [6-lo]. From a 
more fundamental point of view, Rydberg atoms subject to short strong pulses 
provide an interesting case for the study of classical-quantum correspondence. 
The classical limit of quantum dynamics can formally be recovered as the limit 
A-0. However, this limit is highly singular and non-uniform. The complexity 
manifests itself in the non- commutativity of the limits of long times t-oo and 
FC-0. So matter how small A,  for times t long compared to the Heisenberg 
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time t* = h / A E  where A E  is the typical level spacing of the system, classi- 
cal and quantum dynamics display discordance 1111. Since in Rydberg atoms 
the limit of large n-oo is equivalent to the limit h-0 and the duration of 
the pulse, Tp, of the order of the Heisenberg time (in a.u.) t*zz27rn3 can be 
experimentally achieved, impulsively driven Rydberg atoms provide an ex- 
perimental and theoretical testing ground for the classical l i t  of quantum 
dynamics. The above estimate for t * ,  which agrees with the classical orbital 
period, To,  is strictly valid only for a onedimensional hydrogen atom. In the 
3D case, substate splittings introduce new and longer time scales which play 
an important role in further delineating the classical-quantum correspondence. 

We briefly review in the following results of fully classical, semiclassical. 
and fully quantum calculations. We illustrate the quantum-classical corre- 
spondence as a function of the pulse duration, Tp,  and of the pulse amplitude 
and point out possible experimental tests. The dependence on the initial state 
is shown to be crucial in identifying the classical and semiclassical origin of 
oscillations in the time evolution of the Rydberg atom. 

2. Theory 
A hydrogen atom subject to a pulsed electric field is described by the 

(1) 
2 

Hamiltonian 
H= f - *+ F(t): .  

where F ( t )  denotes an external electric pulse which is directed towards the 
positive z-axis. z is coordinate of the electron along this axis, and r‘ and p’ 
are the momentum and position of the electron. respectively. Atomic units 
are used throughout unless otherwise stated. W e  consider in the following 
a rectangular pulse F ( t )  = Fp with Q l t l T p ,  Fp being the peak field strength. 
Other pulse shapes can be treated similarly. The classical evolution of an 
electron with the Hamiltonian in Eq. 1 is calculated within the framework 
of a classical trajectory Monte Carlo (CTMCI approach [12]. Briefly, this 
approach consists of sampling a large ensemble of electronic initial condi- 
tions from a phasespace probability density which mimics the corresponding 
quantal position and momentum distributions of the atom and of numerically 
solving the cooresponding classical Hamilton equations of motion for each ini- 
tial condition. The excitation and ionization probabilities can be obtained 
from the number of electrons which lie after the interaction with the pulse 
in the “target:’ bin of classical actions 1, around the final quantum number 
nj , n, -1/2<fj<nj+1/2.  Details of our initial phase-space distribution can 
be found elsewhere [13,14]. 

Our quantum mechanical calculations uses an expansion of the wave- 
function of the electron in a basis of about i o 3  states composed of hydrogenic 
bound states and Sturmian pseudo states representing the continuum. Our nu- 
merical solution of the time-dependent Schrodinger equation associated with 



Eq. I is based on the fact that the smooth field F ( t )  can be represented 
by a sequence of a large number IV of infinitesimal 'kicks: or instantaneous 
momentum transfers Ap; = Tp F(iTp /,V)/iV, Le. 

where N is increased until the ionization probability converges (typically, 
i02<N<i05) and F ( i T p / N )  describes the pulse shape of the field. This tech- 
nique is equivalent to the split-operator algorithm for the calculation of the 
evolution operator [15]. If U(tk+l , tk)  denotes the evolution operator that 
evolves the state of the electron iY(t)) from an instant of time tk=kTp/N just 
before the k t h  kick to an instant of time t k + 1  just before the k+l th  kick, then 

where Ho is the unperturbed Hamiltonian of the atom. A more detailed 
description of the method can be found elsewhere [16]. 

Unlike our classical and quantal calculations, the semiclassical analysis 
is performed for an effectively one-degree of freedom problem. We use the 
semiclassical S matrix formulation of Miller [IT]. The transition amplitude 
from an initial state ni to a final state nj is given by 

where I ( t )  is the action of the classical orbit starting at t=O with a value 
I(o)=n; and ending at the conclusion of the pulse with I ( t ,=Tp)=nj .  The 
conjugate angle is denoted by e and the sum extends over all initial angles 
8; which serve as starting points of trajectories connecting the integer values 
IZ; and n j . If more than the one path connects n; and nf , semiclassical path 
interferences occur. The action-angle variable representation is valid only for 
bound-bound transitions. However. ionization probabilities can be estimated 
from the probability flux to very high nf >> n; for times tST , .  Eq.(5) 
represents the primitive, i.e. non-uniform semiclassical approximation. It does 
not contain contributions from dynamical tunneling and possesses unphysical 
singularities at caustics. 

The semiclassical approximation (Eq.(5)) is only valid in those cases for 
which the 3 0  classical mechanics is effectively dynamically confined to one -re- 
action coordinate" which turns out to be the parabolic coodinate q=r-z ana 
which describes the motion across the potential barrier of the timedependent 
Stark effect. We employ 3D classical trajectories but include only those for 
which the other parabolic coordinate. <=r+z, remains small 'compared to the 



sue of the orbit during the evolution. In terms of parabolic actions (or quan- 
tum numbers) we choose the maximum value n2(t=0)=n-1 and the minimal 
value nl(t=o)=O. We include all conjugate initial angles el and e2 which lead 
to the desired outcome of an effective quasi- one dimensional transition to 
12(t=Tp)=nj-1 and I1(t=Tp)=O. In our 3 0  calculation the final action Il(Tp) 
is not exactly zero, and we accept the trajectories as a desi& outcome pro- 
vided Il(Tp) lies in a bin near zero, I l ( T p ) < o . ~ .  The action-angle variables 
entering explicitly the one-degree of freedom formula (Eq.(5)) are therefore Iz 
and 82. 

The approach to the classical limit starting from Eq.(5) involves two 
steps. One first disregards all cross terms in the double s u m  over classical 
paths in the probability Pni,n, = Itni,,,, I2 based on the argument that is the 
limit A-PO they oscillate infinitely rapidly. This amounts to an averaging over 
a small interval of the final action I, whose size tends to zero as h-0. The 
classical limit is given by an incoherent sum over contributions from all pathes 

The classical Monte Carlo method is recovered &om Eq.(6) by summing 
over all events for which the final action is not p well-defined integer but 
lies in the interval nj-1/251(Tp)Sn1+1/2. This *binning7 can be made to 
preserve microreversibility if both initial and final actions are binned in a 
symmetrical form. It should be noted that only in the limit M I , i / n , , i - ~  the 
CTMC method is asymptotically equivalent to the classical limit of vanishing 
bin size (Eq.(6)). For large but finite n the equivalence is only approximate. 
“Binning“ corresponds to an averaging over Ii.1 of probabilities (as opposed 
to amplitudes). 

3. Stark beats 
The excitation dynamics of the Hamiltonian (Eq.1) depends strongly on 

the initial state. W e  stress the fact that the origin of semiclassical (or classical) 
oscillations in the excitation function are different for initial states which are 
spherical eigenstates W n t m  of the zero-field Hamiltonian and those which are 
eigenstates of the Stark Hamiltonian in presence or‘ a static electric field. i.e. 
parabolic states tbnlnZm- The reasons for the difference are twofold: spheri- 
cal states are. unlike parabolic states. intrinsically threedimensional and the 
reduction in terms of one *:reaction coordinate” is not valid. In fact, only one 
extreme parabolic state which resides near the saddle (see Fig. 4 below) can 
be approximated in terms of an effective 1D system. The second reason is the 
presence of additional Stark “beat” frequencies due to the lifting of the n shell 
degeneracy which introduced new time scales larger than the 1D Heisenberg 
time t*=2;rn3. These Stark oscillations tend to overshadow oscillations due to 



the coupling of different n levels, or equivalently, of path interferences between 
n changing trajectories. 

Excited states of hydrogen with energy levels E,=-1/ (2nz) ,  are energet- 
ically split due to the linear Stark effect 

E n l , n z  =E,i$n(ni-nz)F,  (7) 
where n2,nz denote parabolic quantum numbers (n=nl+nz+(ml+l,m being 
the magnetic quantum number). Accordingly, the wavefunction of hydrogen 
prepared in an initial state jni,&,rn) and exposed to a half cycle pulse, F ( t ) ,  
during a time interval O<t<Tp is given in the limit of weak fields by 

. ,  
exp[--i$n(nl --nz)Ap] 

where the sum extends over all parabolic states within the shell ni. In the 
following we focus on m=O for the polarization of the fields (laser and half- 
cycle pulse) parallel to the i axis. The evolution phase accumulated between 
t=o and t=Tp depends on the time integral over the field strength 

I 
A p  = JOT' d t F ( t )  (9) 

(the product FpTp for a rectangular pulse if F(t)=Fp for O<t<Tp) rather than 
the field strength and the time separately. In the limit of ultrashort pulses, 
the variable A p  represents the momentum transferred to the electron by the 
pulse. 

The expectation values of dynamical variables ( Q ( t )  IAlQ(t)) display oscil- 
lations as a function of time (.Stark beats') due to the time evolution factors 
exp(fiG,.k) ([18] and references therein) 

The precondition for the appearance of Stark oscillations is that the initial 
state is a coherent superposition of different eigenstates of the Stark Hamilto- 
nian. i.e. of different parabolic states (see Eq. (8)). -4 spherical state v,,(,,, is 
a realization of such a coherent superposition. 

The appearance of Stark beats as a consequence of coherent superposition 
of quantum states should not obscure the fact that Stark beats are of semi- 
classical. those with the fundamental period even of classical origin [18) Beats 
with the fundamental period are described by secular perturbation theory for 
adiabatic invariants [19]. We use the two classicai pseudospin vectors 



which are linear combinations of the angular momentum e and the normalized 
Runge-Lenz vector ii=qx where 

&P'x z-2;. (12) 
In the presence of a weak electric field, P, the two pseudospin vectors 

precess about the electric field vector according to the Bloch equations (Fig. 

T "  

Fig. 1: Precession of the classical pseudospins = +(&ti) about the 

In view of Eq.(ll) ,  the pseudospin precession results in a periodic fluctu- 
ation in and k If at t=O the two pseudospins lie in the z-I plane and with 
j1.,>0 and j2,=>0 the vector E has its maximum length IEl. At t=&- the 
two vectors 71 and 32 have precessed into the y-: plane pointing in opposite 
directions ( j l ,n<O,  j2,#>0 or vice versa). In this configuration the length of 
ii has reached its maximum value while IEl is at its minimum. After a pe- 
riod of td=2x/ud = ,IEl has reached its second maximum, with the two 
pseudospin lying in the z-z plane and both z components j1,=, j2 ,= negative. 

electric field P vector. 
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Fig. 2: Time evolution of the population of all e states in the n=16 
manifold after H ( 1 6 d o )  is exposed to a rectangular pulse with F,=lkV cm-': 
quantum (a) and classical (b). 

This recurrence time corresponds to the fundamental Stark period (or beat fre- 
quecy =,.,=3nF (see Eq. (10)). Fig. 2 displays both the quantum and classical 
evolution of a initial 16d m=O state in hydrogen in angular momentum space 
under an influence of a half cycle pulse with a strength F,=I kV/ cm in the 
perturbative regime. While the fundamental beat periods for Stark beats with 
frequency W, of the wavepackets agree very well. the quantal evolution shows 
oscillations with all 15 harmonics (k=1, ... n-lmi-1). This frequency spec- 
trum can be recovered by semiclassical quantization of the pseudospins 71.2. 



It can be shown that the Stark-like beat pattern persists for much higher 
field strength well into the regime of overlapping n manifold (FzF,=gn-5 or 
equivalently, and for a scaled field Fo=&, where Fo=Fn4). For short pulses. 
it also applies to non-hydrogenic systems, as long as the avoided crossings are 
still predominately traversed diabatically [18]. The experimentally observed 
oscillations in the survival probability of Na(l6d) for pulses with F,<lOkV/crn 
[go] can therefore be identified as Stark beats. 

4. Oscillations in the Excitation Probability 
of Parabolic States 
When adjacent n manifolds strongly overlap, oscillations with frequencies 

associated with the energy spacing AE,=n‘= and the 1D Heisenberg time be- 
gin to show up. However, they are overshadowed by the large number of Stark 
frequencies. A different situation occurs for parabolic initial states and strong 
fields. Parabolic states diagonalize the evolution operator for a static field. 
Therefore, the coherent superposition (Eq.(8)) and the Stark beats are absent 
and only couplings between different n manifolds govern the spectrum of oscil- 
lation frequencies in the excitation function. Because of the dynamical sym- 
metry of hydrogen in a presence of an electric field, the number of couplings 
is. however, limited. Most of the crossings between states of Merent  n mani- 
folds are strictly diabatic. The most “redshifted” Stark state (n2=n-1, nl=o) 
with the lowest energy and which lies closest to the potential saddle plays 
an exceptional role. After traversing all other states of the adjacent lower 
manifold n‘=n-I diabatically, this state undergoes a broad avoided crossing 
with the lowest member of the n’ manifold with quantum number n!pn‘-l 
and n:=o. The avoided crossing occurs a t  a field strength close to static field 
ionization threshold F,=1/9n4 (or Fo=1/9). Near this broad avoided crossing 
strong couplings to many other n levels and to the continuum occur. At this 
field strength which is large compared to the Stark beat regime (Fs+) the 
excitation function of the extremal (“downhill”) state possesses oscillations 
which are associated with path interferences [8] between different n chang- 
ing paths.  It is the proximity in both energy and coordinate space to the 
saddle that renders the dynamics quasi-one dimensional with the parabolic 
coordinate q=r-z as reaction coordinate. Path interferences can therefore 
be described in terms of the one-dimensional semiclassical transition matrix 
I Eq.(S)). 



Probability 
0.4 

0.2’ 

0. I 

0.0 

O D 4 1  0.3 

02\ 0.1 

-2.0 7 --LO -I  .5 

EO 
4.5 

0.0 

Fig. 3: Quantum (reduced basis set) and semiclassical population 
dynamics of excited states of a hydrogen atom initially in a “downhill” 
n=20.n2=19.m=0 state as a function of time. Binding energy and time are 
expressed in units of the initial ionization potential and orbital period, respec- 
tiveip ( Eo = E/ I Eni I ,To=T’ /Tni) - 

Fig. 3 presents the comparison for the time evolution in energy space of 
an initid n=20.n2=19 state in the presence of a electric field of F = ~ x ~ O ‘ ~  
a.u. (scaled field Fo = 0.8) using both the semiclassical transition matrix 
(Eq.\5)) and the solution of the Schrijdinger equation. Since the dynamics is 
quasi- one-dimensional we have included only the nr=O states in a reduced 
basis which allows to subtend both the near threshold regime and the contin- 
uum with a finer energy grid as compared to the full 3D calculation. In the 
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semiclassical calculation we have removed the singularities which are caused 
by the primitive (i.e. non-uniform) treatment of the caustics. The agreement 
between the semiclassical and quantal calculation is very good. While in its 
current form (Eq.(5)) not directly applicable to ionization, the semiclassical 
analysis has the advantage that the origm of the oscillations can be understood 
as an interference between one path approaching the nucleus with high speed 
and being strongly perturbed by the fieId and another path starting close to  
the saddle and being driven to other n or even to the continuum by the time- 
dependence of the saddle potential (Fig. 4). The oscillations observed in Fig. 
3 extend to positive energies E>O indicating that not only bound state ex- 
citation but also the ionization probability displays oscillations as a function 
of time or field strength. On the other hand. ionization of the other extreme 
parabolic state (n2=O1n1=n-1), the most blue shifted or "uphill" state, does 
not display oscillations in the ionization probability as a function of F. This 
state resides near the repulsive wall (Fig. 4). The classical orbits in the re- 
gion of phase space are not confined to one reaction coordinate but explore 
the plane perpendicular to the field direction. The simplified 1D semiclassical 
analysis (Eq.(5)) is therefore not appIicabIe. The 3D classical dynamics fea- 
tures, however, classical beats as a function of the time with the period of the 
Heisenberg time t * .  

Fig. 4: Typical interfering trajectories leading to ionization of the quasi- 
one-dimensional "downhill" state of hydrogen in a strong electric field. Ei: 
initial orbital energy, solid line: instantaneous potential in the field F ( t )  along 
the z coordinate. schematically. 



It is important to realize that the semiclassical path interference can be 
observed only for pulse durations comparable to the classical orbital period. 
In the ultrashort pulse limit (T,-O) the energy and momentum transfer is 
purely impulsive, 

and the solution of Eq. (15) is unique, i.e. only one initial condition r' for the 
trajectory features the correct orbital momentum p' to transfer the required 
energy AE. In this impulsive limit ionization becomes completely classical 
provided that the momentum transfer Ap is sufficiently large 16,211. 

A E  = Ap2/2 + fir)&p (15) 

5. Discussion 
We have delineated two distinct regimes in which excitation and ioniza- 

tion of Rydberg atoms by short electric half-cycle pulses displays oscillations. 
One regime refers to spherical initial states and field strength comparable 
to fields sufiicient for n manifold overlap (Fz&,Fo=&), the othe? to one 
extreme parabolic initial state and field strengths near the static ionization 
threshold ( F = F o / g ) .  In each case some (but not all) oscillatory structures in- 
dicate that quantum mechanics or semiclassical mechanics diverges from clas- 
sical mechanics since the time scales involved are of the order of the Heisenberg 
times t' where the existence of discrete energy levels leaves its mark on the 
dynamical evolution. On the other hand. in the impulsive l i i t ,  T<<t', clas- 
sical mechanics can mimic quantum dynamics quite well. Short times are, 
however. only a necessary but not a sufiicient condition. A second condition 
to be fuElled is that the transfer of momentum Ap must be sufficiently large 
WI. 

Apn2 >> 1 (16) 
This relation can be simply understood in terms of the uncertainty principle. 
The De Broglie wavelength X=l/Ap associated with the momentum transfer 
should be small compared to the size of the orbit (scn'). In this limit the 
internal structure of the atom is resolved and the energy transfer proceeds via 
localized interactions between the electron and the field conserving energy and 
momentum, rather than by classically forbidden dipole transitions by virtual 
photon absorption. The predictions of the present theory can be tested by 
current experiments [1,2] and should provide detailed insight into classical- 
quantum correspondence and the approach to the classical limit. 
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