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Compaction Waves in Granular HMX 
R. Menikoff and E. Kober 

Abstract 

Piston driven compaction waves in granular HMX are simulated with a 
two-dimensional continuum mechanics code in which individual grains 
are resolved. The constitutive properties of the grains are modeled 
with a hydrostatic pressure and a simple elastic-plastic model for the 
shear stress. Parameters are chosen to correspond to inert HMX. For 
a tightly packed random grain distribution (with initial porosity of 
19%) we varied the piston velocity to obtain weak partly compacted 
waves and stronger fully compacted waves. The average stress and 
wave speed are compatible with the porous Hugoniot locus for uni- 
axial strain. However, the heterogeneities give rise to stress concen- 
trations, which lead to localized plastic flow. For weak waves, plastic 
deformation is the dominant dissipative mechanism and leads to d is  
persed waves that spread out in time. In addition to dispersion, the 
granular heterogeneities give rise to subgrain spatial variation in the 
thermodynamic variables. The peaks in the temperature fluctuations, 
known as hot spots, are in the range such that they are the critical 
factor €or initiation sensitivity. 
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1 Introduction 
It has long been known that hot spots, localized spatial peaks in the 

temperature field, play a dominant role in the initiation of heterogeneous 
explosives [l]. Numerical simulations of shock initiation by Mader [2, Sec. 3.31 
show that hot spots generated by void collapse and impedance mismatches 
with impurities are critical factors in determining initiation sensitivity. In 
addition, weak shocks can desensitize an explosive by closing voids and thus 
decreasing the heterogeneities and eliminating sources of hot spots; see for 
example [3, 41 and [2, pp. 178-1831. 

Despite the importance of hot spots, current burn models are based on 
only bulk or spatially averaged thermodynamic variables. Models motivated 
by hot spots, such as the growth and ignition model [5] or the JTF model [6], 
are largely heuristic in nature. In effect, they use a sequence of reactions to 
simulate the effect of hot spots. The mass fraction of the reactant associ- 
ated with hot spots is an input parameter and not a dynamic variable. This 
limits their domain of applicability. Bulk burn models can be effective for 
simulating the class of experiments in which the hot-spot distribution is close 
to the distribution of the experiment used to calibrate the model. Appro- 
priately calibrated, bulk burn models have been successful at reproducing 
reaction wave profiles in shock-to-detonation transitions and in propagating 
detonation waves. 

For weak stimuli, such as a low velocity impact that initiates a deflagration- 
to-detonation transition (DDT), predictions based on bulk burn models are 
qualitatively correct but quantitatively accurate in only a very limited regime. 
A predictive burn model over a wide range of conditions requires a more accu- 
rate description of the underlying physics. This strongly suggests introducing 
additional variables to  characterize the hot-spot distribution and governing 
equations for their dynamical evolution. The stumbling block in developing 
such an improved burn model has been the lack of data. The spatial and 
temporal scales for hot spots is set by the grain size, and typically these 
scales are well below the experimental resolution of currently available di- 
agnostic techniques. However, it is possible to do numerical experiments 
of small regions with high resolution. These computations, called micro- 
mechanical simulations, apply continuum mechanics to  the meso-scale over 
which heterogenities and hot spots occur and are expected to be statistically 
meaningful. 

Just as physical measurements have experimental errors, numerical ex- 
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periments have uncertainties associated with the assumed constitutive prop  
erties of the material. Of particular importance for studying hot spots are 
the dissipative mechanisms in the model. For prompt shock initiation, the 
dominant heating mechanism is from void collapse. Material strength is neg- 
ligble and a hydrodynamic model, as used in the simulation by Mader [2], 
suffices. At low pressures, comparable to the yield strength, other dissipative 
mechanisms are possible [7], such as plastic work, viscous heating in shear 
bands, and frictional heating at grain boundaries or along closed cracks. The 
dominant dissipative mechanism is likely to be application dependent. 

Here we focus on compaction waves in granular explosives. This is of 
interest for several reasons. Granular explosives are used as a model for 
damaged explosives. Compared to  solid explosives, the additional degree of 
freedom from porosity leads to  an increased sensitivity to initiation. Porosity 
under compressive stress requires material strength. Even for weak waves, 
stress concentrations at the contact between grains leads to localized plastic 
deformation and heating, which gives rise to hot spots. The enhanced sensi- 
tivity of granular explosives to  weak compaction waves is observed in DDT 
tube experiments; see for example [SI. In addition, compaction wave profiles 
from gas gun experiments [9] show evidence of burning. 

In order to understand the structure of piston driven compaction waves 
in a granular material we have performed micro-mechanical simulations with 
the COMADREJA code. This is a two-dimensional Eulerian code developed 
by David Benson at the University of California, San Diego. A similar code 
called RAVEN has been used previously to study sintering or dynamic com- 
paction of powdered metals [lo, 111. The 2-D calculations we present assume 
planar strain. 

We use material properties and grain distribution corresponding to coarse 
HMX. With a porosity of about 20%, the grains in 2-D are mostly in contact, 
roughly speaking, a tightly packed random distribution. The piston velocity 
is varied from 200 m/s to  1000 m/s. The waves generated are nominally pla- 
nar and range from weak partly compacted waves to strong fully compacted 
waves. We find that the mechanical wave properties, average pressure and 
wave velocity, closely correspond to the values on the porous Hugoniot lo- 
cus for uniaxial strain. For weak waves, plastic deformation is the dominant 
dissipative mechanism and leads to  dispersed waves that spread out in time. 
In addition to  dispersion, the granular heterogeneities give rise to  subgrain 
spatial variation in the thermodynamic variables. The temperature peaks or 
hot spots are in the range that would affect ignition. 
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Fluctuations are more sensitive than average quantities. They are af- 
fected by mesh resolution, the numerical treatment of grain interfaces, and 
the dissipative mechanisms giving rise to  the wave profile. In addition, the 
pressure behind the compaction waves is well below the bulk modulus. Con- 
sequently, the equation of state (EOS) is stiff, and the stress is more sensitive 
to small variations in density than to variations in temperature. We believe 
the computed trends in the temperature variations are plausible, but there 
are uncertainties related to  the simplified constitutive model and limitations 
in mesh resolution. 

The following is an outline of the paper. The constitutive model used to  
characterize the HMX is specified in Section 2. This consists of a hydrostatic 
pressure and a simple elastic-plastic model for the shear stress. For compari- 
son purposes the uniaxial strain Hugoniot for HMX is given in Section 3. The 
elastic-plastic transition is accounted for in the Hugoniot locus. In Section 4 
the setup for the computations is discussed. Numerical results for compaction 
waves are presented and analyzed in Section 5. In Section 6 we discuss the 
extent to  which homogenized continuum models capture the structure of the 
micro-mechanical based compaction wave profiles. A summary and conclu- 
sions on the effect of the granular heterogeneities on compaction waves are 
given in Section 7. 

2 Constitutive Model 
The material properties of HMX, for the purpose of this study, are de- 

scribed by a hydrostatic equation of state and a simple strength model for 
the stress deviator. 

2.1 Hydrostatic Equation of State 
A Mie-Gruneisen EOS is used for the hydrodynamic component of the 

constitutive model. It is based on the principal Hugoniot with a linear us- 
up relation and a Gruneisen coefficient of the form r / V  = constant, see 
Appendix I. Parameters for the EOS are listed in Table 1 below. In the 
range of interest, up to - lOGPa, this is nearly the same as the Hayes EOS 
calibrated for HMX in Ref. [12]. 
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2.65 km/s 
- S 2.38 

r/v 2.09 
Po 1.9 g/cm3 
C, 1.0 x (MJ/kg)/K 

Bulk sound speed 
Slope of us-up relation 
Griineisen coefficient 
Initial density 
Specific heat 

Table 1: Parameters for hydrostatic equation of state. 

2.2 Strength Model 
For simplicity the strength model assumes the material is isotropic. The 

stress deviator is based on a constant shear modulus and a perfectly plastic, 
rateindependent von Mises yield condition. See Appendix 11. Parameters 
for the strength model are listed in Table 2 below. 

Table 2: Parameters for strength model. 

2.3 HMX Parameters 
The key material parameters for HMX are listed in Table 3 below. 

The shear strain energy is not included in the EOS. The maximum shear 
energy is equivalent to a temperature rise of only e/Cu = 1.2K, and to a 
thermal pressure of only $e = 2.5 x lOP3GPa. Thus, the effect of elastic 
shear strain energy is negligible. 

2.4 Additional Material Properties 
HMX melts below the ignition temperature. At atmospheric pressure the 

melting temperature is Tz  = 520 K. The melting temperature increases with 
pressure. The temperature increase can be estimated based on the Kraut- 
Kennedy relation. See 113, Sec. 5.3.21. 
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Moduli 
K 
G 
E 

sound speed 
Cl 
co 
CS 

Elastic limit 

UP 
Vel 
ax, 
Y 
e 

v 

E 

13.4 
10. 
24. 
0.2 

3.75 
2.65 
2.30 

GPa 
GPa 
GPa 
- 

km/s 
km/s 
km/s 

- 0.018 
0.07 km/s 
3.9 km/s 
0.52 GPa 
0.37 GPa 
1.2 x MJ/kg 

Bulk modulus 
Shear modulus 
Youngs modulus 
Poisson ratio 

Longitudinal sound speed 
Bulk sound speed 
Shear sound speed 

Strain 
Particle velocity 
Wave speed 
Stress 
Yield strength 
Maximum shear strain energy 

Table 3: Material parameters for HMX. 

with C = 2(Fo--i). For the strongest compaction waves we consider, pressure 
x 50 kb, x 0.1, and the melting temperature increases to about 600 K. 
The effect of the latent heat, Qm = 0.22MJ/kg7 corresponds to a tempera- 
ture of AT = Qm/Cv = 220 K, and a thermal pressure of $9, = 0.46 GPa. 
Since the reaction rate is sensitive to  temperature, latent heat has an impor- 
tant effect on ignition due to weak stimuli such as compaction waves. The 
hydrostatic model in the code accounts for the effects of latent heat on the 
temperature and on the thermal component of the pressure. It is not refined 
enough to account for the small volume change when the material melts. 

Upon melting the yield strength and shear modulus vanish. As a result 
melting limits the plastic work to  be less than Cv(Tm - To) = 0.25MJ/kgY 
where the initial temperature is TO = 300 K. We note that the plastic work is 
comparable to the latent heat of melting. The limit on the plastic work places 
a bound on the plastic strain, 4 < C,,(Tm - To)/Y = 0.7. In addition, above 
melting the shear viscosity decreases and lowers the shear heating. Only our 
later simulations have accounted for the change in yield strength and shear 
modulus on melting. The effect of melting on the tail of the temperature 
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distribution will be discussed in more detail later. 
The constitutive model neglects several other material properties. In par- 

ticular, the grains we small crystals of b-phase HMX. The crystal structure 
is monoclinic. The individual components of the elastic tensor have not 
yet been determined. Single crystal wave profiles measured by Jerry Dick 
et at. [14, Fig. 341 show an orientation dependence. In addition, the profiles 
show that the plastic wave has a rise time of 50 to 100 ns. Thus, plasticity 
is rate dependent. For simplicity the anisotropy and rate dependence of the 
plasticity are neglected. Also, the wave profiles imply the yield strength is 
closer to  0.3GPa, which is 20% smaller than the value in Table 2. In ad- 
dition, just before melting HMX undergoes a polymorphic phase transition 
from the ,&phase to  the &phase. This effect is neglected. 

Quasi-static compaction experiments indicate that the grains are brit- 
tle and fracture [15, 161. The constitutive model neglects fracture. Also 
neglected is friction as the grains slide over one another. However, the simu- 
lations used a shear viscosity with a coefficient of 310 Poise (0.031 GPa - ,us) 
below melting and 0.14 Poise above melting.' In addition to plastic work 
and viscous shear work, the calculations have a flux-limited artificial bulk 
viscosity (Christensen's modification to  the von Neumann-Richtmeyer form; 
see ref. [17]) for the dissipation mechanisms. 

Finally, the material is assumed to be inert. The simulations discussed 
here are aimed at understanding the mechanical properties of compaction 
waves and the fluctuations that can be expected from the granular hetero- 
geneity. Later we plan on studying the burn rate due to  the hot spots. 

3 Hugoniot Locus 
The l-D Hugoniot locus for uniaxial strain provides a point of comparison 

that is helpful in understanding the effects of heterogeneities on compaction 
waves in granular materials. To account for the porosity, the fluid equa- 
tions must be supplemented with the additional variable for the solid volume 
fraction 4. The simplest description of a granular material is given by the 
Herrmann-Carrol-Holt P-Q model [18, 191. (Note, the distension Q = l/#.) 
This consists of the conservation equation for fluid flow of an elastic-plastic 

'Values for shear viscosity suggested by Pad Conley, Univ. of Calif- San Diego. 
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material 

where the total specific energy is E = e + id, together with a constitu- 
tive relation defining the component of the stress in the direction of wave 
propagation oxz and a relation for the equilibrium volume fraction 4. 

The P-a model relates the average material pressure to the pressure of 
the pure solid and the porosity. In the same spirit, we relate the average 
material stress to the stress in the pure solid. This modification enables the 
porous Hugoniot locus to converge to the solid Hugoniot locus in the limit 
as the porosity goes to zero. In the simplified model the porous stress is 
assumed to  be 

where the specific volume of the pure solid is V,  = $/p ,  the elastic strain is 

Eel = m i n ( l n ( ~ , o / ~ ) ,  e.> 7 (4) 

and 
that the equilibrium volume fraction is given by 

= 5 is the strain on the yield surface. For simplicity, we assume 

where Pc is a characteristic pressure. The characteristic pressure is related 
to the yield strength. A value of P, = 0.1 GPa gives about the right crush- 
up pressure for HMX. Better fits to the equilibrium volume fraction can be 
based on data from quasi-static compression experiments [ 151. 

Steady state waves are determined by the Hugoniot equation 

e - eo = 0.5 [om + (ozz)O] - (KJ - V )  (6) 

together with the constitutive relations Eqs. (3)-(5). The Hugoniot loci for 
the pure solid and a porous solid with 4 = 0.81 are shown in Fig. 1. For the 
pure solid, we note that plastic yield gives rise to  a two-wave structure (elastic 
precursor followed by plastic wave) for piston velocities from 70 to  400m/s. 
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Figure 1: Hugoniot loci. Solid black line is porous Hugoniot (# = 0.81). Dotted 
red line is fully compacted Hugoniot (# = 1). Blue lines are pure solid Hugoniot; 
dashed line corresponds to plastic wave following elastic precursor, and dotted line 
corresponds to Rayleigh line for elastic precursor in the range of the two-wave 
struct me. 
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In this simple 1-D model, porosity leads to a lower sound speed and eliminates 
the two-wave structure due to  the elastic-plastic transition. 

A numerical example of the two-wave structure is shown in Fig. 2. Since 
the plastic strain is determined by rate independent plasticity, the plastic 
wave corresponds to  a shock. The artificial viscosity is chosen just large 
enough such that the plastic wave profile is spread out over enough cells to 
avoid oscillations in the plastic strain and hence in the stress. The same 
viscosity coefficients are used for the 2-D simulations. 

The temperature on the Hugoniot loci is shown in Fig. 3. For a given 
pressure, the temperature on the porous Hugoniot locus is significantly larger 
than on the pure solid Hugoniot locus because of the increased AV due to 
the change in volume fraction. The induction time its a function of hot spot 
radius and temperature can be computed based on an Arrhenius reaction rate 
[20]. With the parameters for HMX given in Table 4 the induction times are 
shown in Fig. 4. If ignition depended on the thermal properties of only the 
bulk material, then the two figures combined would imply that a 70 kb shock 
in the granular HMX (19% porosity) would be needed to achieve a bulk 
temperature of 650K sufficient for prompt ignition (induction time of less 
than 1 ps) and that a much stronger shock would be needed for solid HMX. 
We note that the granular material melts below the ignition temperature. 
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Figure 3: Hugoniot loci and isentrope. Solid black line is porous Hugoniot (# = 
0.81); change in slope around 650K is due to melting. Blue lines are pure solid 
Hugoniot. Blue and black dotted lines are temperature on isentrope to 
specific volume as on corresponding Hugoniot loci. 

same 

5. x 1013 ps-l 

2.5 x 104 K 
5. M J / k  
4. x 
1.5 x (MJ/kg)/K 
1.4 x lW7 (mm)'/ps 

kJ/(m - ,us - K) 

Pre-exponential fact or 
Activation temperature 
Heat release 
Thermal conductivity 
Specific heat 
Thermal diffusivity 

Table 4: Parameters for HMX hot spots. 

For the same temperature the solid would not have melted since its Hugoniot 
pressure is higher leading to a higher melt temperature. The rate constants 
for solid HMX are slower than those of liquid HMX, see [2, p. 2181 and [4]. 

It is important to note that a 3kb shock in granular HMX raises the 
bulk temperature by only 22K. Despite this small temperature rise a de- 
layed detonation occurs in DDT tube experiments [8]. In contrast, negligible 
reaction results from quasi-static compression to the same pressure. The 
micro-mechanical simulations described below are aimed at determining the 
hot-spot distribution resulting from compaction waves in a granular bed. For 
weak waves, plastic work from grain distortion is expected to be a significant 
dissipative mechanism. 
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Figure 4: Contours of induction time as function of hot spot radius and hot spot 
temperature (for ambient temperature of 300 K). 

4 Numerical Model 
For our simulations of compaction waves the granular bed consists of a 

rectangular region. The waves are driven by a planar piston moving from 
right t o  left. Thus, the x-axis is the direction of wave propagation, and the 
y-axis is parallel t o  the wave front. 

The natural length scale for the bed is the grain size. Even though the 
wave is nominally one-dimensional, to adequately describe the two dimen- 
sional effects from the heterogeneities a minimum of about 10 grains are 
needed for the bed width. Periodic top and bottom boundary conditions are 
used to  minimize effects from the boundaries parallel to the wave propagation 
direction. A bed length of about 30 grains is used in order to  give start-up 
transients a chance to die down and achieve on average a steady wave profile. 
Thus, the granular bed has an aspect ratio of about 3 to  1. 

The overall size of the granular bed, roughly 30 grains by 10 grains, 
and the available computing power then determines the resolution. The 
workstation we are using for the calculations (SUN SPARC Ultra I, 140 Mhz, 

12 



which has about the same power as a 200 Mhz Pentium Pro PC) allows a 
resolution of about 15 cells per grain diameter on a uniform mesh. Each 
simulation takes between a couple of days and a week. 

4.1 Granular Distribution 
The granular bed is chosen to  have tightly packed, randomly distributed 

grains. The grain packing algorithm has two stages. In the first stage an ini- 
tial packing is generated in which grains are allowed to overlap. The second 
stage is based on a “molecular dynamics” approach where forces and torques 
arising from overlaps are used to adjust the grain positions in order to elim- 
inate overlaps. The number and size distribution of grains is fixed at the 
beginning of the process, and the size of the box is determined by the desired 
porosity. The starting configuration is generated by randomly placing the 
grains, in order of decreasing size, in the box. The only constraint applied 
is that the position of the center of a newly introduced grain not be within 
the occupied volume of existing grains. This corresponds roughly to having 
less than 50% initial overlap between pairs of grains. The forces and torques 
between grains are assumed to be proportional to the amount of overlap 
(volume or area) between neighboring grains. The resulting grain displace- 
ment is calculated to  diminish the sum of forces on each grain. The grains 
are assumed to be rigid and their mass proportional to their size. Damping 
is applied by restricting the displacement to 10% of the diameter of the 
grain. For the second stage, either the absolute linear dimensions of the box 
or the aspect ratio of the linear dimensions of the box can be specified pro- 
vided that the total volume is preserved. Either fixed or periodic boundary 
conditions can be applied. For circular grains a solid volume fraction of 0.81 
or a porosity of 19% is readily obtained. For comparison, a regular array of 
closed packed circles has a porosity of 1 - 

Initially a 
log-normal size distribution, shown in Fig. 5, was chosen to match coarse 
grain HMX. Because the resolution requirement from the small grains lim- 
ited the length of the bed, most of our simulations used an approximate 
mono-dispersed size distribution. The “mono-dispersed’’ distribution had a 
mean grain diameter of 140,um with a uniform variation of 4~10%. For this 
distribution, a cell size of 10pm is used. The overall computational mesh 
consisted of 518x150 cells or 5.18 mm x 1.5mm. The length is comparable 
to the granular sample (3.9 mm) used in the gas gun experiments [9]. 

= 9.3%. 
Calculations were done with two grain size distributions. 
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Figure 5 :  Grain distribution for coarse HMX. 

The mono-dispersed granular bed is shown in Fig. 6. It contains a to- 
tal of 432 grains (shown in red). The porosity profile shows that there are 
short wavelength fluctuations with a large amplitude. The average porosity 
is 0.19, and the standard deviation is 0.05. Averaging over 2 grain diameters 
(0.28 mm) greatly reduces the peak fluctuations. The averaged porosity is 
then 19 f 3 %, and the variations have a wavelength of - 1 mm. The fluctua- 
tions in porosity result in a f 4  % variation in the average density. Based on 
the Hugoniot relations for a homogenized continuum model, the relatively 
long wavelength density variation will contribute to fluctuations behind a 
compaction wave. 

4.2 
When two grains are pressed together, they distort elastically. The area 

of the contact surface at which plastic flow first occurs sets a length scale for 
assessing how well a micro-mechanics calculation of granular flow is resolved. 
For a linearly elastic material and circular or spherical grains, the static stress 
and strain fields are given analytically by the Hertz contact solution; see for 
example, [21] or [22]. 

We note in passing that contact forces are the basis for the discrete ele- 
ment method first introduced for applications in soil mechanics [23]. These 
methods have evolved and have recently been used to study shear flows in 

Dimensionality and Smallest Length Scale 
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Figure 6: Mono-dispersed granular bed. Initial porosity is 19%. 
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granular materials [24]. They are suited to the low pressure regime in which 
compressibility can be neglected. Compaction waves involve a higher pres- 
sure regime in which compressibility and plastic flow are important. Hence, 
the discrete methods are complementary to  the continuum mechanics method 
we are employing. 

We outline the derivation of the elastic limit or the point at which plastic 
flow occurs for the two-dimensional case of cylinders in contact. From the 
Hertz contact solution, the force between two grains is related to the contact 
area by 

where R is the radius of the cylinder, 2b is the length of the contact surface 
in the plane normal to the cylindrical axis, F is the force per unit length 
between the cylinders, v is the Poisson ratio and E is the Youngs modulus. 
It is convenient to  relate the average stress on the contact surface to the 
peak stress. In the Hertz contact solutions the normal stress on the contact 
surface is 

oz(y) = [l- (n']+ Po, 

where 0, is the normal stress as a function of position y along the contact 
surface (-b 5 y 5 b) and PO is the peak stress which occurs at the center of 
the contact surface. From this we obtain the average stress (for cross section 
of the grain) 

A large factor in the stress concentration, a:eraae stress - - A F,2R, is the ratio eak stress 

of the cross-sectional surface area of the grains"to the contact surface area, 
R/b. Substituting into Eq. (7) yields 

b PO 
R E - = 2(1 - 22)- . 

The maximum principle shear stress [21, Eq. (42.16)] occurs a distance 
x /b  = 0.768 from the center of the contact surface in the normal direction 
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and has a value T m a  = 0.3& With the von Mises criterion, yield first occurs 
when 

Y = llall, = A T m a  = 0.3fiPo , 

where Y is the yield strength. It then follows that plastic Aow begins when 
b 2 Y 
R 0 . 3 4  
- = -(1- v2)E . 

The analogous results for the three-dimensional case of the contact be- 
tween spheres are given as follows. The average stress in terms of the peak 
stress is 

F 

where now F is the force and b is the radius of a circular contact surface. We 
note that the stress concentration factor is larger for spherical grains than 
for circular grains since in 3-D it is proportional to ( R / ~ I ) ~  while in 2-D it is 
linear in R/b. Yield occurs when 

The contact surface radius at yield is given by 
v,. b Y - R = 3 ~ ( l -  v2)- E . 

In 3-D the average stress at yield is proportional to (Y/E)2Y while in 2-D it is 
proportional to (Y/E)Y. Since Y / E  can be on the order of0.01, the average 
stress can be much smaller for spherical grains than for circular grains. This 
is one important difference due to dimensionality between 2-D calculations 
and physical 3-D grains. 

The values of important parameters characterizing the elastic limit of the 
Hertz contact solution for HMX are listed below in Table 5. 
The Hertz solution is based on the assumption that the change in grain radius 
is small. The change in radius is given by 
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2-D 3-D 
5.5 3.6 % 
0.15 0.07 % 

b/R 
ARIR 
PO 0.64 0.56 GPa 
average stress 280 3.8 bars 

Linear contact length 
Fractional change in radius 
Peak stress 
Average stress 

Table 5: Elastic limit of Hertz contact solution for HMX. 

From the table, up to the elastic limit the Hertz solution is valid. 
For our calculations, which have a resolution of only 14 cells per grain 

diameter, the contact surface at yield is less than 1 cell. This affects weak 
compaction waves (stress of less than say 0.5kb) for which elasticity dom- 
inates the stress. In particular, the plastic dissipation when the change in 
porosity is small is not accurately calculated. This also affects the weak 
elastic precursor to  stronger compaction waves. 

Another difference between 2-D calculations and physical 3-D granular 
beds is related to  the porosity and number of contacts per grain. For example, 
we can compare dense packed regular arrays in 2-D and 3-D. Circular grains 
in 2-D have a maximum porosity of 1 - & = 9.3% and 6 contacts per grain, 
while spherical grains in 3-D have a maximum porosity of 1 - & = 26% 
and 12 contacts per grain. For random packing analytic formulae are not 
available. The dimensionality of packing leads to difficulties in generating 
granular beds for 2-D computations with the same porosity as used in ex- 
periments, especially for high porosity loose packings. Even with the same 
porosity, there are uncertainties in comparing numerical wave profiles calcu- 
lated in 2-D with experimentally measured wave profiles that are inherently 
3-D. Moreover, the hot-spot distribution can be expected to depend on the 
number of contacts per grain and hence vary with dimensionality. 

4.3 Algorithmic Considerations 
Since we are interested in hot spots, it is natural to  consider the effect of 

heat conduction. The scale over which heat conduction has an effect is on the 
order of Ax = [x At];. The value of the thermal diffusivity for HMX from 
table 4 is x = 1.4 x (mm)2/p. The time covered by our compaction 
wave simulations is about lp. Over this time period, heat conduction can 
smooth out temperature variations over a length of only pm. This length is 
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30 times smaller than the cell size. Hence, heat conduction is not significant 
at the resolution in our simulations. 

Large distortions of the grains are required to fully compact the bed. Most 
of the shear strain is plastic since the yield strength limits the magnitude of 
the elastic strain to a small value (from Table 3, 5 0.018). Even though 
the plastic strain is large, the model we are using for the shear stress is a 
reasonable approximation when the elastic strain is small. 

The finite difference algorithm we are using is second order accurate in 
smooth regions. However, most of the dissipative effects that give rise to hot 
spots occur at or near grain boundaries. The algorithm treats the bound- 
ary between a grain and a pore (void) as a material interface. In addition, 
even though all the grains have the same constitutive properties, to track 
grain distortion individual grains are considered to be different materials. 
Consequently, the boundary between neighboring grains is also treated as a 
material interface. Interfaces have a lower accuracy than smooth regions. In 
an Eulerian algorithm, the interface between materials gives rise to mixed 
cells. The velocity within a cell is assumed to be constant. This implies a 
no-slip boundary condition at material interfaces. 

Mixed cell algorithms are a continuing subject of research; see for exam- 
ple [25]. The mixed cell constitutive relation we are using assumes a uniform 
strain rate in each cell and then performs 1 step of a pressure equilibrium it- 
eration. Thus, the materials within a mixed cell can be out of mechanical and 
thermal equilibrium. The advective stage of the algorithm uses the mixed 
cell partition of the component volumes and energies in conjunction with an 
interface reconstruction algorithm based on the material volume fractions of 
neighboring cells. 

For the compaction waves we are simulating, the stress is well below the 
bulk modulus. Consequently, the material is stiff, and the stress is more 
sensitive to small changes in density than to the energetics. Since only 14 
cells are used to  resolve a grain, about half the mass of the grain is within two 
cells of the interface. As a result of the stiff equation of state and the limited 
resolution, the computed fluctuations in the temperature are expected to be 
less accurate than the average mechanical wave properties. For this reason 
we emphasis qualitative effects and trends with varying piston velocity. 
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5 Numerical Results 

up 
us 
# 

We compare compaction waves with three different piston velocities. The 
average effect of the heterogeneities can be judged by comparing with the 
predictions of the porous Hugoniot for uniaxial-strain listed in table 6 below. 
In addition, we describe the fluctuations resulting from the granular structure 
of the bed. 

200 500 1000 m/s Piston velocity 
1100 2100 3400 m/s Wave speed 
0.98 1 1 -  Solid volume fraction 

Table 6: State behind compaction based on porous Hugoniot for uniaxial- 
strain. 

For pure HMX, the 200 m/s piston would give rise to  a split wave structure 
(elastic precursor followed by plastic shock shown in Fig. Z), and the 1000 m/s 
piston is fast enough such that the plastic wave outruns the elastic precursor. 
The 500m/s piston is an intermediate case. The porous Hugoniot predicts 
the wave is above the crush-up pressure and is fully compacted. In contrast 
the wave driven by the 200m/s piston is only partly compacted. These 
three cases illustrate the qualitative changes in the wave profile as the wave 
strength increases. 

5.1 Comparison with Piston Velocity 
For all the simulations the piston is initially at the right boundary. At 

t = 0, it is impulsively started and moves to the left. Two types of plots 
are used to  display the numerical results: 2-D plots in which the value of a 
variable is indicated by color, and 1-D plots of profiles. For the 2-D plots, 
voids and the region through which the piston has moved are indicated in 
gray. Superimposed in black are the interfaces of the grains obtained from 
contour levels of the material component volume fractions. These interfaces 
are displayed as a diagnostic to  indicate the distortion of the grains and are 
not used by the code for evolving the flow. The x and y coordinates are 
in mm. The 1-D profiles are averages over the y-direction, ie., transverse to 

20 



the direction of wave propagation. A triangular symbol is plotted for each 
cell to indicate the resolution. In addition, the dashed lines represent the 
minimum and maximum values. 

1. The time evolution of stress and velocity profiles are shown in Fig. 7. 
The profiles are relative to the piston whose position is translated to 
its initial value. These profiles are indicative of a propagating wave, 
though the material heterogeneities give rise to some fluctuations be- 
hind the wave front. The long wavelength fluctuations in the wave 
profile are due to the statistics of the grains, which, as discussed in 
Subsection 4.1, result in long wavelength variations in the initial den- 
sity. The wave profiles are approximately steady at the end of the runs. 
We examine in detail the wave structure at the last time displayed. 

2. The stress profiles and the stress fields (o....) are shown in Figs. 8 and 9. 
The wave driven by the 200m/s piston is only partly compacted, as 
shown by porosity profile in Fig. 10. The other two cases are fully 
compacted, Le., zero porosity behind the wave front. On the stress 
profiles, the predictions from the porous Hugoniot for uniaxial strain 
are superimposed in red; the horizontal line is the value of the stress, 
and the vertical line is the position of the shock. The stress is slightly 
low for the 200 m/s piston. This is due to the simple approximation for 
the equilibrium volume fraction used to calculate the Hugoniot locus. 
The approximation gives a volume fraction of 0.98 while the value in 
the simulation is about 0.95. Correcting for the volume fraction would 
raise the stress and the wave speed. As shown in green this is closer 
to the simulation. The other two cases are not sensitive to the chosen 
equilibrium volume fraction since their wave pressures are well above 
the crush-up pressure, and the waves are fully compacted, i e . ,  4 = 1. 
The shock being slightly behind the prediction is in part due to the 
time delay in forming the shock profile. For all three cases, the average 
numerical results are in good agreement with the Hugoniot. 

The minimum and maximum values are also shown on profiles. This 
is an indication of the range of the spatial variation. The relative 
amplitude of the variation is quite large for the low piston velocity 
case. In addition, we note that portions of some grains go into tension. 
Very likely this is due to side rarefaction within a grain. Since HMX is 
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Figure 7: Time evolution of stress and velocity profiles. 
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Figure 8: Stress profile (gzz) of compaction waves. 
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Figure 9: Stress field (cCS) of compaction waves. Pressure scale on color bar is 
in kb. 
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Figure 10: Porosity profile at t = 2 . 0 ~ s  of compaction wave driven by 200m/s 
piston. Profile has been smoothed by taking running average over a length of 2 
grain diameters. Dotted line is the average initial porosity (19%). 

brittle, tension would cause them to fracture. Fracture is not included 
in the constitutive model used for the simulations. 

There is a qualitative difference in the profiles for the three cases. 
For the 200 m/s piston, the wave profile is very spread out. The profile 
for the 500m/s piston has a precursor and then a steep gradient. For 
the 1000 m/s piston the wave profile rises abruptly without a precursor. 
For a pure solid the precursor corresponds to the elastic wave in the 
2-wave structure due to  the elastic-plastic transition. In contrast to the 
pure solid, the porous material precursor is spread out and not like a 
shock. A s  with the pure solid, the precursor is not present when the 
plastic wave is strong enough to  propagate faster than the elastic wave. 
Later we characterize the precursor in more detail. 

The 2-D plot for the low velocity case shows that the stress behind 
the wave is very non-uniform due to stress fingering. This is the analog 
of stress bridging that has been studied for statically loaded granular 
beds; see for example, [26] and reference contained therein. The stress 
fingering occurs in the precursor region for both the 200 and 500m/s 
piston. It is not as apparent in the plot for the 500 m/s piston because 
of the larger range of the stress scale. Stress fingering gives rise to  
larger stress concentrations than the estimate in Subsection 4.2 and 
leads to some plastic deformation even 
The resulting plastic dissipation affects 

at very low average stresses. 
the wave profile by damping 
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the precursor. 
In contrast to the low piston velocity case, when the piston veloc- 

ity is larger, the grains are severely distorted behind the wave front. 
Other researchers have refered to the low velocity cases as quasi-static 
compression and the high velocity cases as dynamic compression. See 
for example [ll]. The plastic deformation in the high velocity cases is 
a major source of dissipation. The non-uniform manner in which the 
grains distort is a large source for temperature variations on a subgrain 
scale. Despite the non-uniformity of the granular bed, the wave front 
is fairly planar, and the wave width is on the order of 1 to 2 grain 
diameters. 

The Hugoniot locus only determines the component of stress in the 
direction of wave propagation. Though the computed stress oZz agrees 
well with the Hugoniot, the stress is a tensor. The components of the 
stress deviator are shown in Fig. 11. For the stronger fully compacted 
waves, the stress deviator appears to be relaxing towards 0. This is in 
contrast to a pure solid for which the stress deviator behind a plastic 
wave is <z = iY = 2.5 kb. Most likely the relaxation is due to acous- 
tic waves behind the wave front generated by long wavelength stress 
ffuctuations which arise from the local variations in the initial density 
due to the grain statistics. A visco-elastic continuum model [27, 281 
has been used to  describe this relaxation behavior in porous materials. 
For strong fully compacted waves, a hydrostatic equation of state is 
adequate to obtain the state behind the wave. 

For the 200m/s piston the wave is only partly compacted, and dzz 
appears to  be approaching about 1 kb. This is only 40% of the value 
for the homogeneous case. Consequently, our approximation for the 
stress, Eq. (3), used in computing the Hugoniot locus is not accurate. 
The same can be said of the hydrostatic P-a approximation. The 
agreement for weak, partly compacted waves between the simulations 
and the Hugoniot locus is fortuitous. Since the crush-up pressure is 
small compared to the bulk modulus, the equation of state is stiff in the 
regime in which partly compacted waves occur. Consequently, a small 
change in the solid density greatly affects the stress, yet the average 
density is determined in large measure by the solid volume fraction. 
When the equilibrium volume fraction is empirically fit, the principal 
Hugoniot locus is insensitive to assumptions on the stress deviator. 
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Figure 11: Profiles of components of stress deviator of compaction waves: gzz -P  
in red, P - uvy in blue, P - azx in green, and 1 ~ ~ ~ 1  in black. 
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3. The velocitv profiles are shown in Figs. 12 and 13. The wave profile 
for the x-component of the velocity is qualitatively the same as for the 
stress. The velocity variations are small except at the wave front. The 
variation at the front increases with piston velocity. For the 1000 m/s 
piston, the velocity of a few grains overshoots by a factor of 2. This is 
the expected blow-off velocity at a free surface [29] and is a consequence 
of the pores between grains. The re-shock when the material impacts 
the next grain contributes to the localized dissipation that gives rise to 
hot spots. 

On average, the y-velocity is zero, as expected for a wave traveling in 
the x-direction. Immediately behind the wave front, the minimum and 
maximum of the transverse velocity component is a significant fraction 
of the piston velocity. This is due to the local rearrangement of the 
grains made possible by the plastic deformation that occurs when the 
pores are compressed out. Nesterenko [ 111 empirically characterized the 
dynamic compaction regime with a micro-kinetic energy. The micro- 
kinetic energy is to a large extent a measure of the extremes in the 
transverse velocity component at the wave front. It is a consequence 
rather than the cause of the pore collapse. 

4. E n e r p  profiles are shown in Fig. 14. The kinetic energy (green) is 
determined by the piston velocity. The flow behind the compaction 
wave has the expected value of the kinetic energy. The compaction 
waves are strong enough such that on the porous Hugoniot the internal 
energy (blue) is nearly the same as the kinetic energy. For the 200 m/s 
piston the internal energy in the simulation of the compaction wave 
exceeds the value on the Hugoniot locus. This is not necessarily an 
error in the simulation. While the Hugoniot locus assumes that the 
wave profile is steady, the existence and stability of a profile depends 
on the dissipative mechanism which generates the entropy required by 
the jump conditions. 

In the familiar case, when viscosity is the dissipative mechanism, the 
entropy jump across the wave is given by 

For any value of the viscosity coefficient p, the width of the wave Az 
can be adjusted to obtain the entropy increase Aq compatible with 
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Figure 12: Velocity profile (x-component) of compaction waves. 
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Figure 13: Velocity profile (y-component) of compaction waves. 
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Figure 14: Energy profiles of compaction waves. Green is kinetic energy, blue is 
internal energy, red is plastic work. Dotted lines are corresponding values from 
porous Hugoniot but with red representing the shock heating. (Hugoniot kinetic 
energy lies on top of line for Hugoniot internal energy.) 
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the Hugoniot jump conditions. In our simulations, for weak waves 
the plastic work is the dominant dissipative mechanism. The total 
plastic work across a compaction wave is given by YAq, where Y is 
the yield strength and q, is the plastic strain. The plastic strain is 
determined by a rate equation and not a conservation law. The jump 
in the plastic strain is related to the equilibrium volume fraction and 
is affected by stress concentrations which lead to  local yielding at the 
contacts between grains. Consequently, a large fraction of the plastic 
work depends on the pressure behind the wave and is independent of 
the wave width. Fig. 7 shows the wave is spreading and doesn’t have a 
steady profile. This is compatible with the excess dissipation compared 
to  the Hugoniot locus. 

In addition to  the internal energy, the shock heating and the plastic 
work are plotted in red. We define the shock heating as the internal en- 
ergy minus the energy on the initial isentrope to the same final density 
as the compaction wave; Le., shock heating is J T d q  or the dissipation 
in the wave profile. For the partly compacted wave (200m/s piston) 
the internal energy is almost entirely due to plastic work. For the fully 
compacted waves (500 and 1000m/s pistons), the plastic work is less 
than the shock heating. The remaining fraction of the shock heating is 
due to  other dissipative mechanisms; shear viscosity and artificial bulk 
viscosity. 

Figure 14 shows that the plastic work increases with piston velocity. 
The plastic work is proportional to the plastic strain. As shown in 
Fig. 15, the plastic strain increases with the change in porosity but 
the rate of increase depends on the piston velocity and hence on the 
wave strength. Within the wave profile, the change in porosity can be 
related to the pressure. Fig. 16 shows that the slope of the porosity 
as a function of pressure decreases with piston velocity. Since the time 
derivative of the pressure increases with wave strength, the change in 
slope of the porosity curve can be interpreted as a rate dependence due 
to  the inertia of the grains. Similarly, the dependence on wave strength 
of the plastic strain as a function of porosity can be interpreted as a 
rate dependence of the compaction process. We note that the rate 
dependence of the porosity is not included in the P-a model but is 
included in the closely related single-phase limit of the Baer-Nunziato 
model [30]. 
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Figure 15: Porosity vs. plastic strain on the wave profile. Wave profile has 
been smoothed by taking a running average over a distance of 1 grain diame- 
ter (0.14 mm). Green, blue and red correspond to piston velocities of 200, 500 and 
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Figure 16: Porosity vs. pressure on the wave profile. Wave profile has been 
smoothed by taking a running average over a distance of 1 grain diameter 
(0.14mm). Green, blue and red correspond to piston velocities of 200, 500 and 
1000,m/s, respectively. 
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The increase of plastic strain with piston velocity has an analog in 
uniaxial compression of a homogeneous solid. Above the elastic limit, 
plastic strain is needed to  increase the density since the elastic shear 
strain is limited by the yield strength. For strong waves, the plastic 
strain is proportional to the change in specific volume. Since the plastic 
work is cpY - YAV and the Hugoniot energy is i P A V ,  when the wave 
pressure is more than twice the yield strength, plastic work can provide 
only a part of the dissipation needed by the wave. Similarly, Figure 14 
shows that for a granular material with increasing wave strength the 
plastic work is a smaller fraction of the shock heating. 

5. The plastic strain and temperature fields are shown in Figs. 17-19. For 
the partly compacted wave (200 m/s piston), the high temperature re- 
gions correspond to the regions of large plastic strain. This is expected 
since the internal energy is almost entirely due to plastic work. More- 
over, large plastic strains result from deformations due to stress con- 
centrations at the contact surfaces between grains. Consequently, hot 
spots occur in regions near grain interfaces. 

For the fully compacted waves (500 and 1000 m/s pistons) the plastic 
strain and temperature are not as highly correlated. This is because 
plastic work provides only part of the dissipation required by the Hugo- 
niot jump conditions. The other dissipative mechanisms included in the 
simulations are from shear viscosity and artificial bulk viscosity. We 
also note that the peak plastic strain in regions of high deformation 
is excessive since the effect of melting on the yield strength has not 
been accounted for. Nevertheless, the hot spots still occur along grain 
interfaces. Their distribution is discussed next. 

6. The hot-mot distribution, temperature and size, are shown in Fig. 20. 
The average of the temperature distribution is the bulk temperature. 
The bulk temperature corresponds to the value on the Hugoniot locus 
and is close to  the temperature with the peak value of the mass fraction. 
Since the hot spots are above the average, some material must be at 
temperatures below the Hugoniot temperature. The low temperatures 
correspond to  the interior of the grains. 

From the plot of induction time shown in Fig. 4, a hot spot with 
a temperature of 650 to 700K burns within about one ps. For the 
1000m/s piston, the bulk temperature of 720K is sufficient to lead 
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Figure 17: Plastic strain and temperature for 200rnls pistori at time = 2 . 0 , ~ .  
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Figure 18: Plastic strain and temperature for 500m/s piston at time = 1 . 6 ~ ~ .  
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Figure 19: Plastic strain and temperature for 1OOOmls piston at time = 1.41-1s. 
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Figure 20: Temperature distribution and hot-spot area. Area is specified by the 
radius of an equivalent circle. Cell radius is 10pm. Initial grain radius is 7 cells. 
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to prompt ignition. For the weaker compaction waves, the tail of the 
temperature distribution is within a range that will cause significant 
reaction and the hot spots can be expected to lead to  a delayed ig- 
nition. In fact, detonation waves are observed to  occur after about 
100,~s in DDT tube experiments driven by a piston with a velocity of 
about 200 m/s. Gas gun experiments corresponding to  piston velocities 
of 500m/s show significant burning occurs after the compaction wave 
propagates only a few mm. Our simulations are compatible with these 
results. 

However, the resolution of our simulations is limited. The highest 
temperatures occur within hot spots of only 1 or 2 cells in extent, red 
curve in Fig. 20. Very likely these temperatures are affected by numer- 
ical errors at grain interfaces. Computed hot spots with a larger size, 
green curve in Fig. 20, are likely to have smaller error bars. Because 
of the uncertainty in the temperature distribution for the simulation, 
the computed mass-averaged reaction rate is subject t o  large errors. 
Qualitatively, the simulations do show that the hot spots are within 
the range expected to have a significant effect on ignition. Higher res- 
olution would be needed for quantitative predictions of the reaction 
rate. 

7. The eauivalent Dlastic stress and plastic strain are shown in Figs. 21 
and 22. With the von Mises yield condition, plastic flow occurs when 
the equivalent plastic stress (8 Ila'll) equals the yield strength. Fur- 
thermore, for rate independent plasticity the equivalent stress is lim- 
ited to  the yield stress. As a result the equivalent stress is a convenient 
quantity for examining the elastic precursor in weak compaction waves. 

The leading edge of the precursor is at the same position ( x  0.5mm 
at t = 1.6~s)  for both the 200 and 500m/s piston. The precursor 
velocity is 2.9 to 3.0 mm/p .  This is to be compared to the solid longi- 
tudinal sound speed of C1ong = 3.75mm/ps7 and the bulk sound speed 
of cbu& = 2.65mm/ps. It appears that the precursor speed is about 
4oQong = 3.0mm/ps. The porosity is expected to lower the acous- 
tic speed since a wave is transmitted from one grain to the next only 
through the contact surfaces. Hence, the effective path length the wave 
travels is longer and the average speed is lower. But we have no theory 
for the form given above. 

39 



a) up = 200m/s at time = 1 . 6 ~ s  

4 r  I I I I I I I 1 I 

z3 
- 

Y 
W 

.z 2 - 
3 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
* (mm) 

b) up = 500 m/s at time = 1.6 ps 

4 I I I I I I 1 I I 

- 

- 
- 

I I 

0.0 0.5 1.0 1.5 2.0 25  . 3.0 3.5 4.0 4.5 5.0 

e) up = 1000 m/s at time = 1.4 ps 

4 I I 1 I I I I I I 

0 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

x (mm> 

Figure 21: Equivalent plastic stress ( ($)tlla’ll) profile of compaction waves. 
Plastic yield occurs at 3.7 kb. 
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Figure 22: Plastic strain of compaction waves. 
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For the 1000m/s piston, the wave speed (3.4mm/ps) exceeds the 
precursor speed. Consequently, the plastic wave outruns the elastic 
wave, and a precursor is not possible. Thus, the precursor behavior is 
similar to  that of the pure solid. However, in contrast to  a split wave 
as shown in Fig. 2, the elastic-plastic transition gives rise to  a highly 
dispersed precursor. 

The profiles of equivalent stress and plastic strain show the effect 
of stress concentrations. Localized yielding occurs when the profile of 
the maximum equivalent stress reaches the yield strength. In fact, the 
position of the plastic wave in Fig. 8 coincides with the rapid rise in the 
average plastic strain. Plastic strain is needed to  change the porosity, 
as shown in Fig. 15. Consequently, the plastic wave corresponds to 
changes in porosity, variation of porosity with pressure shown in Fig. 16, 
and the precursor results from the elastic behavior. 

However, the precursor is not purely elastic. Even with a small aver- 
age stress, localized stress concentrations give rise to a small amount of 
plastic strain and hence dissipation. Because of the limited resolution, 
as discussed Subsection 4.2, the simulations underestimate the dissipa- 
tion in the precursor. Consequently, we expect the precursor to damp 
faster than the calculations predict. 

For a homogeneous solid, weak waves below the Hugoniot elastic 
limit correspond to elastic shocks. In contrast, weak waves in a porous 
solid would correspond to the precursor we have been discussing. They 
would display substantial stress fingering and spread out in time rather 
than having the form of a traveling wave. Consequently, a key assump- 
tion used to calculate the porous Hugoniot in Section 3 is violated for 
weak waves (below the yield strength, an average stress of say 1 kb). 
Furthermore, the stress fingering raises the stress concentrations and 
would cause plastic deformation to occur at a lower wave stress than 
the elastic limit given in Table 5. Due to the small contact surfaces at 
which plastic deformation occurs, high resolution would be required to 
calculate accurately the dissipation in weak waves. 

Though the pure solid is perfectly plastic and rate independent, the 
average behavior of a granular bed does not inherit these properties. 
Profiles in the plastic (stress, strain)-plane are shown in Fig. 23. These 
profiles have been smoothed by taking a running average over a length 
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Figure 23: Effective plastic behavior. Average profiles of 200m/s piston in red, 
500 m/s piston in blue and 1000 m/s in green Solid green line is for perfectly plastic 
pure soiid. 

of one grain diameter. The smooth increase in the plastic strain with 
equivalent stress corresponds to the stress rise in the wave profile. The 
decrease in the equivalent stress occurs behind the wave front. It is a 
consequence of the relaxation of the components of the stress deviator 
shown in Fig. 11 The final equivalent stress is nearly the same for the 
500 and 1000 m/s piston. The length of run for the 200 m/s piston may 
not be long enough for relaxation to occur. 

This average behavior of the granular HMX bed is suggestive of rate 
dependent plasticity. Work hardening would be needed if the asymp- 
totic value of the equivalent stress varied with plastic strain. Longer 
runs would be needed to determine these asymptotic values. For a 
model based on the average material behavior it would be more appro- 
priate t o  use II(a)’lI rather than (110‘11).  Both measures of the average 
equivalent stress display a similar relaxation effect. 

The results to  this point can be summarized as follows. The mechanical 
properties of a compaction wave in a granular bed, stress and wave speed, 
are in good agreement with the porous Hugoniot locus for uniaxial-strain. 
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Consequently, the total dissipative energy can be determined from continuum 
models in which the heterogeneities are averaged out. 

The elastic-plastic transition gives rise to an elastic precursor. In contrast 
to the homogeneous solid, the precursor is spread out and not a discontinuous 
shock. As with the homogeneous solid, the elastic precursor is not present 
when the plastic wave speed is larger than the precursor speed. The spreading 
out of the elastic precursor is due to the stress concentrations at the contact 
surfaces between grains. The stress concentrations lead to localized plastic 
deformation. Thus, plastic strain occurs when the average stress is below the 
yield strength. 

The plastic work is the dominant dissipative mechanism for weak partly 
compacted waves (200 m/s piston). In this case the plastic work exceeds the 
Hugoniot energy, and the compaction wave is not steady; instead, it spreads 
out in time. For the fully compacted waves (500 and lOOOm/s piston) the 
plastic work is limited by the yield strength and comprises only part of the 
shock heating. 

The granular heterogeneities give rise to fluctuations in the temperature. 
Homogenization theories typically account for only the average effect of fluc- 
tuations. This is a reasonable approximation for inert materials, but not 
for reacting materials with temperature sensitive reaction rates. For the 
compaction waves in our simulations, the fluctuations are in a range that 
would have a critical effect on ignition sensitivity. However, the fluctuations 
depend on mesh resolution and the assumed dissipative mechanisms in the 
constitutive model. The sensitivities to yield strength and shear viscosity are 
discussed in the next subsections. 

5.2 Effect of Yield Strength 
Material strength allows the granular bed to have a non-zero porosity 

under stress. The stress above which a pore must collapse, often refered to 
as the crush-up pressure, determines the wave strength to achieve a fully 
compacted wave, i e . ,  4 = 1 behind the wave. Assuming the pores between 
grains are voids, a non-zero porosity requires that the normal component of 
the stress vanishes along grain-pore interfaces. Consequently, the maximum 
eigenvalue of the stress tensor subject to the condition that another eigen- 
value vanishes provides an estimate for the crush-up pressure. Since we are 
interested in compaction waves, the maximum stress component, rather than 
the pressure, is a good criterion for pore collapse. The crush-up stress has 
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a dependence on dimensionality. We estimate it in both 2-D (planar-strain) 
and in 3-D. 

For the estimate it is sufficient to consider the case in which the stress 
and strain tensors are diagonal. In 2-D, the planar strain tensor has the form 

E = -diag(E, E, E) + -diag(El, E - €1, - E )  , 

in which the third component of strain vanishes. The corresponding stress 
tensor, assuming linear elasticity, has the form 

2G 
c = Kdiag(E, E, E) + -diag(El, E - €1, -E) , 

3 

1 1 
3 3 

where K is the bulk modulus and G is the shear modulus. Requiring the 
second component of the stress to be zero gives 

Von Mises yield condition then determines E 

where Y is the yield strength. After some algebra, the maximum stress 
component can be expressed as 

oxx = (1 - v + v')-+ Y , 
where Y is the Poisson ratio. For HMX, v = 0.2 and a wave with a stress, 
oxx > 1.09Y, will be fully compacted. With Y = 3.7kb, a wave driven 
by a 200m/s piston has a stress slightly below the value needed for full 
compaction. However, stress fluctuations due to the granular heterogeneities 
can lead to a small amount of porosity at our estimated crush-up stress which 
is based only on local conditions. 

In 3-D, a similar analysis leads to  a maximum stress component at crush- 
up of 

The 3-D maximum stress is greater than the 2-D maximum stress since it 
is not limited by the constraint of planar strain. However, for HMX the 
maximum stress is only 5% larger in 3-D than in 2-D. 
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To show the effect of yield strength on a compaction wave, simulations 
were run with a high and low value of the yield strength; 3.7 and 0.48kb 
respectively. The stress fields and stress profiles are compared in Figs. 24 
and 25. These simulations used hexagonal grains with a log-normal size 
distribution on a 564 x 200 mesh with 5pm cells. 

Yield strength has a considerable effect on weak compaction waves. For 
the 200 m/s piston, with the low yield strength the stress is above the crush- 
up pressure, and the wave is fully compacted; ie., $ = 1 behind the wave 
front. While in the high yield strength case, the stress is slightly below the 
estimated crush-up pressure, and the wave is partly compacted. Fig. 25 shows 
that the wave speed and the final stress are different. This is a consequence 
of the different final porosities. The mass, momentum and energy jump 
conditions must be supplemented with the equilibrium porosity to determine 
the Hugoniot locus. The equilibrium porosity in turn is a function of the 
yield strength. Moreover, it can be shown that decreasing the porosity has 
a similar effect to an endothermic reaction in that the partial Hugoniots 
with fixed 6 are shifted to  the left in the (V, P)-plane. Though it may seem 
counter intuitive, for fixed piston velocity the stress and wave speed decrease 
with a lower yield strength as observed in the simulations. For the 500m/s 
piston, both cases are fully compacted, and the final stress and wave speed 
are nearly the same. 

The lower yield strength has two other effects. It sets the stress scale 
for the elastic precursor. In particular, the steep gradient associated with 
the plastic wave starts at a stress of about the yield strength. The exper- 
imental rise time for a compaction wave is typically estimated as the time 
between 5% and 95% of the maximum on the profile. Hence decreasing the 
precursor can change the estimate of the rise time. The rise time for the weak 
partly compacted wave in the simulation with the expected value of the yield 
strength is larger than that observed in gas gun experiments, see [9, Figs. 2.8 
and 2.91, even after correcting for differences in porosity and grain size. A 
yield criterion with work hardening would have a large effect on the precur- 
sor and hence the rise time of the compaction wave. Physically this is quite 
plausible for the following reasons: (i) HMX twins at low stress, but the 
accumulation of defects limits the amount of twinning [16], and (ii) quasi- 
static hardness measurements lead to an estimate of the yield strength of 
0.13GPa [31], which is factor of 2.5 lower than the value obtained from dy- 
namic wave profiles 1141. The precursor has a smaller effect for stronger fully 
compacted waves. 
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Figure 24: The effect of yield strength on stress gZz. Simulations apply a 200 m/s 
piston to a bed composed of hexagonal grains with log-normal grain size distribu- 
tion. The plots are at a time of 0.8 ,us and the mesh had cell size of 5 pm. 
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Figure 25: The effect of yield strength on stress profiles: blue is high yield strength 
and red is low yield strength. 

Lowering the yield strength decreases the plastic work. This is because 
the plastic work is given by (plastic strain)xY, and the plastic strain is 
related to  the change in porosity. Consequently, the yield strength affects 
the proportion of shock heating due to plastic deformation. Changing the 
dissipative mechanisms for shock heating in turn affects the distribution of 
hot spots. For the 500m/s piston, Fig. 26 shows that the hot-spot mass 
increases with yield strength. 

The high yield cases here correspond to those in the previous subsection, 
except for the grain size distribution. Both cases have an initial porosity of 
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Figure 26: Comparison of hot-spot distribution behind wave front (1.5 < z < 2) 
with yield strength for 500m/s piston: blue is high yield strength and red is low 
yield strength. 

19%. It is noteworthy from comparing Fig. 9a with Fig. 24a and Fig. 8a with 
Fig. 25a that the mechanical structure of a compaction wave does not appear 
sensitive to the grain size distribution. Both cases display stress fingering, 
and the average stress behind the wave is about the same. Even the leading 
edge of the elastic precursor has the same velocity. The mono-dispersed 
distribution allowed for a larger cell size and a longer distance of run. We had 
expected the sharp corners in the hexagonal grains to cause greater plastic 
distortion and lead to  higher hot-spot temperatures. This effect was not 
observed. We now believe the calculations do not have sufficient resolution 
per grain to  determine whether such an effect exists. 

Up to this point the simulations have used a constant yield strength. How- 
ever, the yield strength and the shear modulus should vanish when the grains 
melt. To determine the magnitude of this effect additional simulations were 
run with the mono-dispersed granular bed. A comparison of the plastic strain 
profiles for a 1000 m/s piston is shown in Fig. 27. As expected, melting limits 
the plastic strain. The corresponding temperature distributions are shown in 
Fig. 28. Melting broadened the distribution around the peak but hardly af- 
fected the tail. This is a consequence of the energy profiles in Fig. 14, which 
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Figure 28: Effect of lowering yield strength above melting on hot-spot distribution 
for lOOOm/s piston. Blue is standard case with constant yield strength. Red is 
case in which yield strength vanishes above melting temperature. 
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show that the plastic work is not the dominant dissipative mechanism for 
compaction waves strong enough to cause significant melting. Consequently, 
the change of the yield strength with melting does not have a significant 
effect on hot spots. 

5.3 Effect of Shear Viscosity 
The yield strength and the coefficient of shear viscosity control the amount 

of dissipation from plastic work and viscous shear heating. In the previous 
subsection we varied the yield strength. Here, the viscous coefficient is varied 
in order to get a further idea of how sensitive a compaction wave is to the 
dissipative mechanism. 

All the previous calculations used a linear viscous shear stress 

I d l  u = p - € ,  
d t  

where denotes the deviator, with p = 0.031 GPa - ps (310 Poise) below 
melting and p = 1.4 x 10-5GPa ps (0.14 Poise) above melting. Since 
viscosities of solids (other than polymers) are not well known, to get an idea 
for the magnitude of the coefficient of shear viscosity, we compare it with the 
artificial viscosity needed for a shock capturing calculation of a plastic shock 
in a homogeneous solid. For von Neumann-Richtmeyer artificial viscosity the 
effective viscous coefficient is given by 

where l is a length scale usually taken as the cell size. With the flux-limited 
artificial viscosity scheme we are able to  use dimensionless coefficients pi = 
0.1 and p2 = 1.5. Taking Au to  be one third of the piston velocity and 
l = 10 pm, for the 1000 m/s piston, the artificial viscosity is dominated by 
the p2 term, and the coefficient is 150 Poise or about half the shear viscosity 
coefficient below melting. The artificial viscosity coefficient would be smaller 
for weaker waves driven by lower piston velocities. Finally, we note that for 
liquids at atmospheric pressure, viscosities are typical in the range of 
to Poise. 

The stress profiles, ozz and Uquiv, of a compaction wave driven by a 
1000 m/s piston are shown in Fig. 29 for simulations (mono-dispersed gran- 
ular bed as in Subsection 5.1) with and without shear viscosity. The profiles 
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Figure 29: Comparison of compaction wave profiles, a,, (solid line) and aequiv 
(dashed line), for 1000 m/s piston at t = 1 . 4 ~ ~ :  blue is without shear viscosity and 
red is with shear viscosity. Black line with symbols is numerical profile for shock 
in homogeneous solid at time ( 0 . 9 ~ ~ )  to match position of wave front and scaled 
to 60 kb. 

for these two cases are nearly the same. Also plotted in the figure is the shock 
profile For a homogeneous solid. The homogeneous case shows the resolution 
limited shock width of the simulations. The wave width in the granular bed 
is about 1 grain diameter and is several times larger than the numerical res- 
olution. Thus, with the parameters we are using, the grain scale rather than 
the dissipative mechanism dominates the stress profile when the compaction 
wave is strong enough to  preclude an elastic precursor. 

Though the dissipative mechanism hardly affects the stress profiles, it has 
a significant affect on fluctuations. The temperature distribution with and 
without shear viscosity is compared in Fig. 30. Surprisingly, the tail of the 
distribution is larger without shear viscosity. This is because shear viscosity, 
by smoothing out the velocity field at the wave front, decreases the amount 
of plastic deformation at grain boundaries and hence the peak plastic work. 

The extreme tail of the temperature fluctuations, T > 1500, is not shown 
in Fig. 30. Hot spots of only 1 or 2 cells dominate the extreme fail. Un- 
fortunately, these cannot be distinguished from numerical artifacts. Very 
likely meaningful temperatures will require some sort of smoothing at grain 
boundaries. Unless the hot spots can be resolved, smoothing runs the risk 
of underestimating the high end of the temperature distribution. For our 
simulations, half the mass of a grain is within 2 cells of the grain boundary. 
Clearly this is not sufficient resolution to determine accurately the tempera- 
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Figure 30: Comparison of shear viscosity on temperature fluctuations behind 
compaction wave for 1000 m/s piston at t = 1 . 4 ~ ~ :  blue is without shear viscosity 
and red is with shear viscosity. 

t ure fluctuations. 
The Arrhenius reaction rate, which we used to compute hot spot induction 

time in Fig. 4, is extremely temperature sensitive. Consequently, even if the 
extreme tail of the temperature distribution corresponds to a very small 
mass, it can have a significant effect on the mass-averaged reaction rate. The 
sensitivity of the reaction rate together with the limited resolution, which 
results in temperature inaccuracies, prevent us from presenting meaningful 
quantitative results on how the temperature fluctuations affect the mass- 
averaged reaction rate. 

With larger values of the shear viscosity, the compaction wave width be- 
gins to increase. To see this effect we tripled the shear viscosity to 1000 Poise. 
A comparison of the stress profiles for compaction wave in the mono-dispersed 
bed driven by a 500 m/s piston are shown in Fig. 31. The wave width is only 
slightly larger. This implies that the viscosity would have to be very large 
for the viscous length scale to dominate the length scale from the granular 
heterogeneities. The larger viscosity also affects the hot spots. A comparison 
of the temperature distribution is shown in Fig. 32. We see that the tail of 
the distribution increases with viscosity. 
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Figure 31: Comparison of compaction wave profiles, axx for 500m/s piston at 
t = 1.6 ,us: blue is standard shear viscosity and red is high shear viscosity. 
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Figure 32: Comparison of temperature fluctuations behind compaction wave for 
500 m/s piston at t = 1.6 ps: blue is standard shear viscosity and red is high shear 
viscosity. 
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5.4 Effect of Grain Distribution 
To check the effect the grain distribution has on a compaction wave we 

compared simulations with a random and a regular mono-dispersed granular 
bed. The regular bed was generated from a closed-packed array of circles 
by randomly decreasing the radius of 90% of the circles by up to  10%. This 
procedure resulted in granular beds with nearly the same porosity: 17.6% 
for the regular array and 18.6% for the random array. 

The stress profiles are shown Fig. 33. The compaction wave in the bed 
with the larger initial porosity has a slower wave speed. The times are 
selected such that the plastic wave is at the same position. The precursor 
is slightly weaker for the regular array. In principle, the way the regular 
array is constructed the grains are not touching, and the precursor should 
disappear. However, the spacing between grains is within one cell, and hence 
the grains are coupled due to  the limited numerical resolution. A loosely 
packed granular bed, in which there are fewer contacts per grain, would have 
a similar effect on the precursor. 

The temperature distributions are compared in Fig. 34. The tail of the 
distribution is larger for the bed with the random packing. This is because 
a grain in the regular array has more contacts, which lowers the stress con- 
centrations, and hence lowers the peak plastic work. 

This comparison again shows that the wave stress is determined by the 
Hugoniot jump relations, which depend on the porosity. But the hot-spot 
distribution is sensitive to those aspects of the granular distribution which 
affect stress concentrations. In addition, the elastic precursor and small am- 
plitude long-wave length stress fluctuations are also affected by the granular 
distribution. 

5.5 Mesh Refinement 
The resolution in our simulations is adequate for the stress profiles but 

not for the hot-spot distribution. Cutting the cell size in half would require 
that the length of the mesh be reduced by a factor of 2 to 3 in order for the 
computation to  fit within the available memory (128 Mb) on our workstation. 
With half the distance of run, start-up transients would play a larger role. 
Moreover, a factor of two increase in resolution is still not sufficient to resolve 
hot spots and would not provide a test of convergence. For the moment, our 
confidence in the calculations rests with interpreting the numerical results in 
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driven by 500 m/s piston. Blue is mono-dispersed granular bed at t = 1.6 ps and 
red is modified regular array at t = 1 . 4 ~ s .  
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terms of our physical understanding of the wave structure. 
when the ASCI computers and hydrocodes become available, increasing 

the resolution by a factor of 5 should be possible. This would increase the 
memory requirement by a factor of 25 and the computational effort by a 
factor of 125. This “high resolution” would have 70 cells per grain diameter 
and would give a reasonable chance of resolving dissipation in the vicinity 
of grain boundaries. In addition, mesh refinement techniques would become 
possible since the interface cells would represent a small enough fraction of 
the total number of cells. 

For 3-D calculations these more powerful machines would still only allow 
for the same resolution as we are currently using in 2-D. A medium resolution 
3-D calculation would require about the same computational effort as a high 
resolution 2-D calculation but would require another factor of 5 in memory. 
Even with the limited resolution, 3-D simulations would give an idea of the 
effect of dimensionality and possibly suggest how the 2-D simulations could 
be scaled in order to compare with physical experiments. 

6 Homogenized Models 
At this point it is natural to  ask to what extent homogenized continuum 

models can reproduce the behavior of compaction waves based on the under- 
lying micro-mechanical properties of a granular bed. The simulations show 
that mechanical properties, such as wave speed and stress, are insensitive to 
the dissipative mechanism. The insensitive quantities are determined largely 
by the constitutive properties of the pure solid and the conservation laws, 
i.e., the porous Hugoniot locus. Consequently, the simple P-a model, when 
empirically calibrated to reproduce the volume fraction, is able to determine 
the state behind a compaction wave. 

Continuum models also make predictions for the wave profile. However, 
the wave profile does depend on dissipative mechanisms, and quantities such 
as the wave width, or the existence of a precursor can vary between models. 
The dissipative mechanisms become important for attempts to generalize a 
model in order to account for the effect of hot spots on the reaction rate. 
Below we briefly comment on a fluid model and a plasticity model that have 
been applied to porous materials such as a granular bed. 
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6.1 Fluid Model 
Two-phase fluid like models have been used to  study DDT in granular 

explosives. This is exemplified by the Baer-Nunziato model [30]. Its single- 
phase limit can be used to  describe the compaction of an inert granular bed. 
In this case the model consists of the conservation equations for fluid flow, 
Eq. (2), the P-a form for the equation of state 

and a rate equation for the volume fraction 

which enables the pressure to  relax towards an equilibrium value. The equi- 
librium pressure p(#) is the inverse function of the equilibrium volume frac- 
tion in the P-a model. The relaxation rate is controlled by the parameter 
pc, which has dimensions of viscosity. The standard porous Hugoniot locus 
is a consequence of these equations. 

As is typical with relaxation systems, this model has a frozen sound speed 
and an equilibrium sound speed. The frozen sound speed is just the sound 
speed of the pure solid, e,. The equilibrium sound speed cW is lower than 
the frozen sound speed and is determined by p(#) and the solid equation of 
state P,(V,,e). Changes in volume fraction are dissipative with the rate of 
entropy increase given by 

As a consequence of the dissipation, the model predicts fully dispersed com- 
paction waves with mve  speeds between ceq and e,, and partly dispersed 
waves with wave speeds above e,. 

Two other properties of the dynamics of the volume fraction are note- 
worthy. First, the volume fraction is not solely a function of pressure but 
is rate dependent. Our simulations, Fig. 16, also show a rate dependence. 
Second, the time constant for the volume fraction equation is proportional 
to pc/(Ps - p). Consequently the width of a compaction wave decreases with 
wave strength. 

Though the model captures many of the properties of a granular bed, 
several qualitative features of compaction waves are not in agreement with 
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our micro-mechanical simulations. These are listed below: 
(i) Weak compaction waves are not steady but spread out in time. This is 
the result of the plastic work providing excess dissipation compared to that 
required by the Hugoniot jump relations. 
(ii) For weak compaction waves the average of the components of the stress 
deviator do not vanish. Thus, a hydrostatic pressure does not adequately 
characterize the stress. 
(iii) Moderate strength compaction waves display an elastic precursor. The 
elastic precursor is very dispersed, and the speed of the leading edge lies 
between the bulk sound speed e, and the longitudinal sound speed. 
(iv) Since the porosity is determined by the yield strength, it is natural to 
associate the compaction dissipation in Eq. (21) with the plastic work. How- 
ever, the compaction work only dominates the dissipation for weak waves. 
The 500m/s piston drives a compaction wave with a speed 2.1 km/s, well 
below the bulk sound speed of 2.65 km/s. Yet the plastic work provides only 
about half of the dissipation when the hydrodynamic model predicts a fully 
dispersed wave with all the dissipation from compaction work. Other dissi- 
pative mechanisms imply that the wave width is not determined solely by 
the compaction work. 
(v) The width of a compaction wave does decrease with wave strength but 
saturates at a value proportional to  the grain size. To achieve this effect pc 
would have to  increase with pressure. 

These discrepancies between the behavior of the hydrostatic model and 
the underlying micro-mechanical description should not be surprising. Poros- 
ity under compressive stress is made possible by material strength. The hy- 
drostatic model crudely accounts for material strength with the configuration 
pressure p(+) and the compaction rate equation (20). It can only describe 
accurately those wave properties which are not sensitive to  the details of the 
dissipation mechanism. 

6.2 Plasticity Model 
An inherent limitation of the fluid model is that it doesn’t account for the 

tensor character of either the stress or the strain. Experiments in powdered 
metals show that the mean stress differs for hydrostatic and uniaxial com- 
pression [32, Fig. 61. A simple equilibrium volume fraction or configuration 
pressure can not account for such a difference. In addition, for quasi-static 
compression experiments [15], which are used to measure the configuration 
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pressure of a granular bed, wall friction is a 40% effect. This indicates that 
shear stress is significant and should not be neglected. 

The stress-strain plots in Figs. 21-23 suggest that the average behavior 
of a granular bed might be described with a plasticity model. This has been 
proposed before, see for example [33, 34, 35, 36, 321. One reason it hasn’t 
been pursued is the lack of experimental data. Compaction wave experiments 
typically measure the velocity or the longitudinal component of stress uxx. 
It is a difficult experimental challenge to obtain data on the stress deviator 
in a compaction wave profile. 

Plasticity models have been developed for metals and typically assume 
that the plastic strain is volume preserving. This assumption is based on 
the underlying microscopic view that crystal plasticity is due to the motion 
of dislocations. The underlying structure of a granular material changes the 
plastic behavior. A plasticity model with the yield strength depending on 
pressure and an associative-flow rule would give rise to a plastic strain with a 
volumetric component [32]. The volumetric component of the plastic strain 
can be associated with the change in porosity. Thus, the flow rule for the 
plastic strain would replace the rate equation for the volume fraction in the 
fluid model, Eq. (20). 

Such a plasticity model, which has been developed in the field of soil me- 
chanics, is known as critical state theory- It has been applied to quasi-static 
deformations of granular materials [37] and to shear flow of a granular ma- 
terial approximated by a rigid-perfectly plastic material [38]. For the latter 
case, there are unstable flow regimes leading to shear layers. Dissipation 
along a shear layer resulting from such a mechanism is a potential source of 
hot spots. This would be worth pursuing since for an explosive it is important 
to understand all ignition mechanisms in order to predict with confidence the 
outcome of an accident scenario. 

However, it should be noted that there are two significant complications 
with applying a plasticity model to  compaction waves in a porous material. 
First, there is no conservation law for the plastic strain, and the porosity is 
not determined by a simple algebraic equation. Consequently, the Hugoniot 
jump conditions are not sufficient for determining the end state of a com- 
paction wave. Instead one would have to  resolve the wave profile for partly 
compacted waves. The Hugoniot conditions would be sufficient for strong 
fully compacted waves. The second complication stems from the relaxation 
of the stress deviators shown in Figs. 11 and 21. Possibly this could be 
accounted for with a strain softening, ie., lowering the yield strength with 
plastic strain. 
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Micro-mechanical simulations are a means of obtaining further guidance 
for developing better constitutive models of heterogeneous materials. The 
stress profile and fluctuations of a compaction wave are determined by the 
dissipative mechanisms. The dissipative mechanisms depend on the under- 
lying micro-structure. Since fluctuations are important for reactive flow, 
reactive flow is more sensitive to the micro-structure than is the flow of an 
inert material. 

7 Summary and Conclusions 
Compared t o  a homogeneous material, granular heterogeneities have sev- 

eral effects on a shock wave. For inert materials, the dominant effect is the 
additional degree of freedom associated with the solid volume fraction. This 
can be described with simple fluid like models, such as the P-a model or the 
two-phase Baer-Nunziato model. These models assume a hydrostatic stress, 
and postulate an equilibrium volume fraction or a configuration pressure to  
account for the effect of material strength that enables a granular bed t o  s u p  
port a non-zero porosity under compressive stress. This allows the models 
to  describe the volume change associated with the crush-up of the pores in 
a compaction wave. 

The end state of a compaction wave is largely determined by the porous 
Hugoniot locus. Fluid like models are adequate when the details of the wave 
structure are not of interest. The structure of the wave, such as the wave 
width or an elastic precursor, depends on the dissipative mechanism. Our 
micro-mechanical simulations are aimed at describing the wave profile. 

A major effect of heterogeneities, of importance for the initiation of an 
explosive, is the temperature fluctuations or hot-spot distribution. The hot- 
spot distribution is sensitive to the dissipative mechanism. Our compaction 
wave simulations have three dissipative mechanisms; plastic work, shear vis- 
cosity and artificial bulk viscosity. Plastic work results from the deformation 
of grains needed to decrease the porosity. Shear viscosity mocks up the ef- 
fect of friction between grains and along closed cracks. Artificial viscosity 
is needed for numerical stability of strong shocks. For the range of piston 
velocities we studied, the dispersive effects of the heterogeneities spread the 
compaction wave by a much larger amount than would be generated by the 
artificial viscosity in a homogeneous material. 

The yield strength determines the crush-up pressure needed to  fully com- 
pact a granular bed. For HMX, the yield strength inferred from hard- 
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ness measurements is 0.13GPa and from wave profiles in a single crystal 
is 0.3 GPa. Very likely the yield strength is affected by work hardening. This 
is an important quantity that should be experimentally determined more 
accurately. 

For weak partly compacted waves, plastic work is the dominate dissipa- 
tion mechanism in the wave profile. Plastic work is concentrated around the 
contact surfaces between grains and leads t o  hot spots. For HMX, at full 
compaction the plastic work is sufficient to bring hot spots up to the melting 
temperature. It is important to  note that the melting temperature increases 
with pressure and that the Arrhenius reaction rate is much larger for the 
liquid phase than for the solid phase. 

The simulations show that a 500m/s piston gives rise to hot spots with 
temperatures upwards of 600K. These hot spots would have an induction 
time on the order of loops. This compares with a bulk temperature of only 
425K, which is too low for appreciable burning to occur. Plastic work is 
limited by melting. Other dissipative mechanisms are the dominate source 
for hot spots above the melting temperature. Very likely hydrodynamic void 
collapse, studied in connection with shock initiation [2, Sec. 3.31, becomes 
the dominate source of hot spots as the wave strength is increased. 

Though our simulations display temperature fluctuations, the limited res- 
olution prevents us from presenting quantitative results. The qualitative 
trends are physically plausible, and the hot spots are in the regime (maybe 
slightly low) that would result in burning and affect ignition sensitivity. Com- 
putations on the more powerful ASCI computers should enable hot spots to 
be resolved and allow for quantitative results on the temperature distribu- 
tion. This is a prerequisite for including burn in the simulations. Also, the 
ASCI computers should allow for 3-D simulations, which are necessary to  
understand the effect of dimensionality needed t o  compare high resolution 
2-D simulations with physical experiments. 

Even with adequate resolution, a critical aspect of the simulations is the 
dissipative mechanisms included in the numerical model. One uncertainty 
arises from the coefficient of shear viscosity used t o  mock up frictional heating 
at grain interfaces. Properly accounting for frictional heating would require 
a good treatment of shear layers. In addition, the effect of crystal orienta- 
tion and rate dependent plasticity could be incorporated. Rate dependent 
plasticity would introduce another time scale and could lead to a grain size 
dependence of the hot-spot distribution for weak waves resulting from the 
plastic work. 
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The long-term goal of this work is to develop an improved burn model 
for continuum codes. This is our first attempt at using micro-mechanical 
simulations to  determine the hot-spot distribution from compaction waves 
and how it is affected by wave stength. Hot spots are sub-grain in size and 
require high resolution simulations. In addition, fluctuations are sensitive 
to the dissipative mechanism. Though plastic work is clearly important for 
weak waves, other dissipative mechanisms may also be important. Micro- 
mechanical simulations can also provide guidance for developing constitutive 
models of heterogeneous materials. 
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Appendix I: Mie-Gruneisen Equation of State 
The Mie-Gruneisen equation of state has the form 

(22) 
r 

P(V, e)  = Pref(V) + v (e - e r e m )  

where I' is the Gruneisen coefficient. Assuming that I' is independent of e 
amounts to linearizing the pressure in e about the reference curve. 

For many solids, high pressure data is available for the principal Hugoniot. 
Consequently, the principal Hugoniot is frequently chosen as the reference 
curve. It follows from the shock jump conditions: 

where us is the shock velocity and up is the particle velocity. These jump 
conditions together with a us(up) relation determine ph(v) and eh(V). Fre- 
quently, a linear relation, us = Q+S up, is a good approximation for pressures 
below the bulk modulus, p&. 
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The temperature and energy on the initial isentrope are determined by 
integrating the ODES 

d T  
( e )  = - (T) 

The temperature as a function of V and e is based on a constant specific 
heat 

(27) 
e - es(V) 

CV 
T(V,e)  = T"(V) + 

Finally, the thermal effect of melting can be incorporated by modifying the 
specific energy 

e - max[Q, C, (T - Tm)] if T > T,, i=( e otherwise, 

where Tm is the melting temperature and Q is the latent heat of melting. 
The pressure and temperature are then recomputed with e replace by E in 
Eqs. (22) and (27). The change in volume associated with melting is ne- 
glected. 

Appendix 11: Elastic-Plastic Model 
The strength model determines the stress deviator d = u - $Tr(u)l. 

In the range of interest we assume that (i) the stress depends only on the 
elastic strain, (ii) the material is isotropic, and (iii) the shear modulus is 
approximately constant. The stress rate can be expressed as 

d d d 
--a' dt = 2Gfdtd - d t ~ k )  , 

where e is the total strain and 
is based on von Mises yield condition 

is the plastic strain. The plastic strain rate 

and the associated flow rule 

For rate independent plasticity, the factor X is determined uniquely from the 
yield condition Eq. (30). 
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