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Abstract 

The micreinstabilities driven by a pardel velocity shear, and a temperature gradient of 

ions are studied in toroidal plasmas with negative magnetic shear. Both the fluid and the 

gyrekinetic formulations are investigated. It is found that for a broad range of parameters, 

the linear growth rates of the modes are lower, and the threshold temperature gradient q k  is 

higher €or plasmas with negative magnetic shear compared to plasmas with p‘ositive magnetic 

shear of equal magnitude. The reduction in the growth rate (with negative shear), although 

not insigdicant , does not seem to be enough to account for the dramatic improvement in the 

confinement observed experimentally. Other possible physical mechanisms for the improved 

confinement are discussed. 

“)Permanent mation: Southwe&em Institute of Physics, P.O. &ar 432 Chengdu, People’s Republic of 
China. 
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I. Introduction 

Recent theoretical studies have shown, that the three key conditions for an economi- 

c d y  attractive steady state tokamak fusion reactor, namely, high normalized beta, , f 3 ~  = 

P/(l /a&),  stabilization of the most dangerous MHD and micrdnstabilities, and a high 

fraction of self-sustained bootstrap current, may be achievable simultaneously in an opti- 

mized discharge Here, P N (p)/Bz is the ratio of the plasma kinetic pressure 

to the magnetic field pressure, and is a measure of fusion reactivity and, therefore, of the 

efficiency of a fusion reactor. Also I is the total plasma current, a is the plasma minor radius, 

and BO is the toroidal magnetic field. 

One of the crucial features of such a scenario is that there exists a region in the core of the 

plasma, where the magnetic shear is reversed (dq/dr < 0, with q being the safety factor, and 

r being the amrdinate in the direction of the minor radius). A negative magnetic shear has 

several connected beneficial effects. It stabilizes the n = 00 ideal MHD ballooning instability 

and therefore removes the constraint on the pressure gradient imposed by such modes. A 

high pressure gradient is necessary for a large ratio of the self-sustained bootstrap current 

to the total plasma current, which, in turn, helps to create a negative magnetic shear region 

close to the center of the plasma column. In addition, the negative magnetic shear is found 

to suppress the trapped electron which is believed to be one of the instabilities 

responsible for the anomalous transpok in tokamaks 

Recent experiments on the Joint European Torus (JET): the Tokamak Fusion Test 

Reactor (TFTR): and DIII-D' have demonstrated that particle and energy confinements 

are significantly improved resulting in higher ion density and temperature in a reversed 

magnetic shear region. Careful optimization of the discharge, through procedures such as 

pellet injection, neutral beam injection and current rampup, is needed to obtain the desired 

2 



plasma 

The ion temperature gradient (ITG or qi = dlnTi/dlnni) driven drift-like instability is 

currently the most plausible candidate for explaining the anomalous ion energy transport 

in tokamak plasmas. Numerous studies on this mode have been carried out theoretically 

and experimentally in the last decade. Most of these investigations, however, have been 

confined to plasmas with positive magnetic shear because negative magnetic shear plasmas 

are a comparatively new phenomenon. 

In recent theoretical studies, it was reported' that the ITG mode is stabilized in a por- 

tion of the negative magnetic shear region for a proposed discharge with optimized plasma 

temperature, density and current profiles. However, the parametric dependence of the mode 

for a negative shear system is quite unknown and one needs to undertake a systematic 

investigation of the ITG mode in this new regime. 

Motivated by the earlier experimental d i s m v d g  of a Parallel Velocity Shear (PVS) 

layer in the edge transport barrier region of tokamak plasmas (with the standard positive 

magnetic shear), momentum and energy transport from turbulence driven by PVS and ITG, 

have been studied for a sheared slab codiguration.8 On DIII-D high toroidal 

velocity shear is obsemd in the region where the confinement is improved with negative 

shear . The effects of negative magnetic shear on the instability driven by PVS is a new area 

of investigation. Although the mode characteristics are well understood and documented for 

a positive magnetic shear in a slab, not much is known for the negative shear case. It will be 

discussed in Sec. I1 that the sign of the magnetic shear does not affect the eigenvalue (either 

the real frequency or the growth rate) of the modes driven by PVS or ITG in a sheared 

slab. It is only in the toroidal configuration that the modes are sensitive to the sign of the 

magnetic shear. 

In this work, the instabilities driven by PVS and ITG are first studied using a fluid 
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theory in a toroidal plasmas with both positive and negative magnetic shear. The results 

are valid for long wavelength perturbations in relatively low temperature plasmas. For short 

wavelength perturbations in high temperature plasmas, the gyrokinetic theory, which takes 

into account the full parallel transit and the finite ion Larmor radius effects, has to be 

applied. In recent year~,~*-l~ several such codes have been developed and documented for 

the linear instability studies. In this work, the integral dispersion equation for low frequency 

toroidal drift-like modes, derived and given in detail in Ref. 12, is applied to study the effects 

of the negative magnetic shear on the kinetic ITG mode. The parametric dependence of the 

instability is investigated systematically. Particular attention is given to those features of 

the mode which depend solely on the sign of the magnetic shear. 

The contents of this work are organized as follows. In Sec. I1 a general theory for the slab 

modes, with arbitrary sign for the magnetic shear, is presented. This part of the work shows 

the necessity for adopting a toroidal geometry to reflect the differences between systems with 

positive and negative shear. In Sec. 111, the fluid dmpersion equation in the toroidal geometry 

for the study of PVS and ITG driven instabilities is derived, and numerically solved. The 

results from the integral dispersion equation are presented in Sec. IV, and Sec. V is devoted 

to conclusions and discussion. 

11. Fluid theory in slab geometry 

The magnetic shear, defined as ŝ  = rdq/qdr (q is the safety factor, and T is h e  radial 

coordinate ), is a measure of the relative radial change of the pitch of a magnetic field 

l ie .  For a slab configuration, the magnetic field takes the form B = &[2 + ( z /Ls )9 ] ,  

with L, = Rq/3 displaying the reflection symmetry about the mode rational surface 5 = 0. 

This feature has important consequences as shown through a proper analysis of the linear 

eigenmode equation governing the behavior of the instabilities driven by PVS and ITG in a 
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slab geometry. The normctlized equations for these modess are 

where 

A w  T, Lndmll , 7'- $11 = -> w = -  
w+, ly 

and is the electron diamagnetic drift frequency. The variable x in Eq. (1) is normalized 

to ps = cs/Q with c, being the sound speed and SZ beingthe ion gyrofrequency. The magnetic 

shear S, has also been redefined for the slab case as Ln/L,. Both ŝ  and the variable z appear 

as squared quantities in Eq. (1) when = 0. As a result, the eigenvalue zi is independent 

of the sign of S, and the eigenfunction #(x) is symmetric in this case. It is apparent, that 

the solution may depend on the sign of the magnetic shear S when # 0. It does deet the 

eigehction, but not the eigenvalue. This can be readily seen by examining the solution of 

equation (1). The eigenvalue condition obtained from Eq. (1) is 

The corresponding eigenfunction is 

where Hn is the Hennite function of 

2G 
i'sl(x + ""I ' 

(3) 

lrder n and 

(4) 

Only the n = 0 mode will be discussed hereafter. Equation (2) clearly reveals that the 

eigenvalue is independent of the signs of both the magnetic as well as the velocity shear. 

However, the sign of 3 does affect the eigenfunction +(z) as is indicated in Eqs. (3) and (4). 

The asymmetry introduced by a finite A, a shift of the position of the maximum t$(')((z) 



from the mode rational surface (z = 0), depends on the sign of 3. A is a real shift in x space 

in the cold ion approximation (K -+ 0). In general, A is complex and induces a deformation 

in addition to a mere translation. 

It is clear from the previous discussion that the mode frequency in the slab geometry 

depends only on the magnitude of the shear parameter and is insensitive to its sign. Let us 

now reconsider the fluid theory of PVS and ITG modes in toroidal geometry to investigate 

the possible effects of the negative magnetic shear. A similar study for the kinetic equation 

(Ref. 13 ) will also be undertaken. 

The major relevant effects introduced by the toroidicity of the magnetic configuration 

are contained in the drifts induced by the gradient, and the curvature of the magnetic field. 

These are proportional to 

uE= (cosk+SICsink), (5)  

where the first and the m n d  terms come from the principal, and the geodesic curvatures, 

respectively, and IC is the extended poloidd angle of the well-known ballooning representation. 

The function & ( I C )  is plotted in Fig. 1 for five Merent d u e s  of Z. It is clearly shown that 

the sign of the magnetic shear 3 introduces a dramatic change in the toroidal drifts. The 

change comes mainly from the geodesic curvature drift. The biggest effect is expected to 

take place for the modes localized around IC - 2 where the dependence of the drift frequency 

& on the magnetic shear is the strongest. A clear physical picture of the effect of negative 

shear on curvature driven modes has recently been presented in Ref. 14. 

111. Fluid theory in toroidal geometry 

The eigenmde equation for the PVS and ITG driven fluid instabilities in toroidal plasmas 

is, 

{A-&+BZ+C ” f$(IC)=O, 
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where 

1 2 

c = (--) 9&? [G(B - 1) + (6s)2G(G + K) p+ i.) + a!2qwf,(G + K ) ]  , (9) 

L& is given in Q. (5),  Q = LJR, R is the major radius, and is normalized to p;’. 

A factor a! has been put in the front of the last term in Eq. (9) to explicitly identify the 

toroidicity effects; CY = 0 corresponds to the slab, and a! = 1 to the toroidal case. It is worth 

pointing out that the toroidal term is proportional to Q as it should be. It is also clear that 

Eq. (6) is the Fourier transform of the 5 space equation (1) which is used to study the same 

instabilities in a slab: i.e. when cy = 0. 

Introducing 

with 

where 

(13) G - 1  2Q * 
ij + K % +  + &l+ W) + CY--WD. G aO, I C )  = qG + k)2 

Again Eq. (12) reduces to the equation studied numerically and analytically in Ref. 15 

when the velocity shear and the ion temperature are taken to be zero, i.e. = K = 0. 

Taking the PVS and the ITG effects into account, Eq. (12) is solved numerically with a 

shooting code. The results are presented in the next four subsections. 
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A. Cold ion limit 

In Fig. 2(3), the normaliid growth rate and the real frequency of the mode, driven by a 

PVS (i&) in the cold ion limit (Ti << T') are plotted as function of the magnetic shear for 

ŝ  > 0 (3 < 0). The other plasma parameters are = 1, and en = 0.2. Figures 2(a) 

and 3(a) show that for a given IS1 the growth rate scaling with the magnetic shear is different 

for ŝ  c 0 and ŝ  > 0. The growth rate decreases monotonically with decreasing ŝ  for ŝ  e 0 

while for S > 0, it first increases in the range 0 5 ŝ  < 1, and then decreases for B 2 1. 

Generally speaking, the stabilizing effect of the magnetic shear is always stronger for the 

negative sign, ŝ  < 0, for the plasmas studied here. However, it is only in the intermediate 

range 0.5 < 14 < 1 that the differences can be substantial. For high (14 N 2) as well as 

low (14 - 0.1) shear, the growth rates tend to be dose. For example, when q = 1.5, the 

growth rate for S = 0.1 is 7/uh = 0.265 and for S = -0.1, the growth rate is 7/uh = 0.237. 

For 14 = 1, however, the growth rates are respectively 0.36 and 0.09 for the positive and 

the negative shear. Another clear message of Figs. 2(a) and 3(a) is that the stabilization 

brought about by negative magnetic shear is stronger for laver g plasmas. For q 2 4.5, the 

dependence of the growth rates on magnetic shear is very weak. The real frequency, on the 

other hand, increases slowly with the decrease in 14 for S < 0, while it decreases almost 

linearly with 3 up to S - 0.75 and becomes independent of shear for ŝ  > 1 (Figs. 2(b) and 

= 0.1, 

3(b)). 

B. Finite ion temperature and ITG effects 

The finite ion temperature (E  = Z) and ITG (q = 1, 4) effects are considered in this 

subsection. The mode growth rate, and the real frequency are plotted in Fig. 4 for B = 1 and 

-1 with g = 3, Gll = 1 when the toroidicity parameter varies from 0.05 to 0.6. Again, the 

mode is less unstable for ŝ  < 0 than it is for B > 0. The difference in the growth rates (for fixed 
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plasma parameters) for equal magnitude positive and negative magnetic shear increases with 

the toroidicity parameter 6. For example, the growth rates (q = 4) are r/w*= = 0.73 and 

0.59 for ŝ  = 1 and -1 for = 0.05, and they respectively rise to 2.4 and 1.8 for en = 0.6: all 

other parameters remain unchanged. The real frequencies increase approximately linearly 

with %, and hardly change when the magnetic shear is reversed (Fig. 4(b)). The mode 

propagates in the electron diamagnetic drift direction in a cold ion plasma. The direction 

of propagation changes to the ion drift direction when finite ion temperature and finite ITG 

effects are included and e- is not too small. The direction of propagation is also a strong 

function of qi. 

C. Toroidicity drive 

The strength of the toroidal term in Q. (6) is proportional to a; a=O implies no toroidal 

effects while a=1 corresponds to the full inclusion of toroidal drifts. In Fig. 5, we plot 

the mode growth rate, and real frequency as a function of a for both 3 = -1, 1, and 

= 0, r = 1, q = 2. 

We had seen in Sec. 11, that sign of ŝ  becomes relevant only when the toroidicity is taken 

into account; the eigenvalues are the same for ŝ  = -1 and ŝ  = 1 when a = 0 (for a slab). 

The difference between the growth rates for the opposite signs of the shear for the same 

14 increase apprmimately linearly with the toroidicity factor a, and reaches a maximum at 

cy = 1. The real frequency behaviour is a bit more complicated. The frequency in a torus 

is lower than it is in a slab for ŝ  = 1, while it is higher than the slab value for ŝ  = -1, for 

= 0.4. For a different t = 0.2, the real frequency changes little for 3 = -1 as o increases 

from zero to one. However for S = 1, the real fiequency decreases to one half its value as we 

sweep a from zero to one. 

h 

= 0.2, 0.4 when the others parameters are kg = 0.1, % = 5, 

It is important to point out that the entire previous discussion pertains to the slab-like 

branch and not to the toroidicity induced one. The mode studied here has a well-defined slab 

9 



limit. In addition, from the previous discussion, we have all the reasons to predict that the 

sign of the magnetic shear may have a very strong effect on the toroidicity induced branch. 

D. Structure of eigenfundion 

The typical eigenmode structures in the ballooning space &k) are shown in Fig. 6 for 
A 

k$ = 0.1, $11 = 0, Q = 7, r = 1, e,, = 0.2, q = 3, and s^= -1, 1. The widths of the real 

part of the wavefundions are very similar for the two cases, while the imaginary part for 

s^= 1 is approximately twice as wide as the imaginary part for s^= -1. The eigenmodes are 

trapped in the region of -1.5 < k < 1.5 where the difference between the toroidicity drifts 

for ŝ  = -1 and 1 is not significant (see Fig. 1). 

IV. Gyrokinetic analysis 

In the fluid theory presented in the last section, the kinetic effects such as Landau damp- 

ing and finite Larmor radius of the ions were neglected. In this section, the integral gyroki- 

netic eigenmode equation, which includes the full ion dynamics, except the bounce motion 

due to toroidicity, is used to investigate the kinetic ITG mode in a toroidal plasma with 

negative magnetic shear. The equation has been derived and described in detail in earlier 

worklZ*ls and will not be repeated here. We shall now numerically solve Eg.(12) of Ref. 12 

for negative shear, ŝ  < 0, systems and compare the results with the standard positive shear, 

s^> 0, case. 

A. Magnetic shear variation 

Here we compare growth rates for 3 > 0 and S <  0 while other plasma parameters are 

kept unchanged. The normalized growth rate of the kinetic ITG mode in toroidal plasmas 

is plotted, in Fig. 7, as a function of ŝ  for q = 2.5, T,/T, = 1, b p i  = 0.5, Q = 0.25, 4 = 

1.5, 2.0, 2.5, and 3. As in the fluid case, the growth rate decreases monotonically with 
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increasing 14 for negative magnetic shear (Fig. 7(a)). For 3 > 0 (Fig. 7(b)), the growth rate 

first increases, reach= a maximum at ŝ  - 0.5, and then decreases with increasing 8 The 

maximum growth rate for g = 3, and ŝ  = 0.5, r/U*e - 0.48 is just a bit greater than the 

growth rate r/% - 0.4 for q = 3, ŝ  = -0.5 Similar to what was found in the fluid theory 

for the PVS mode in cold plasmas, the stabilizing effects of the negative magnetic shear are 

strongest for lower q plasmas. For example, for q = 1.5, 7/w+, - 0.4, at ŝ  = 0.5 while - 0.2 for ŝ  = -0.5. On the other hand, the growth rates for g = 3 and IS1 = 0.5 are 

respectively 0.46 and 0.36 for the positive and the negative shear. Thus it seems that the 

negative shear has a SignisCSnt stabilizing effect only for rather low q plasmas. 

B. variation 

The normalized ITG eigendues, as a function of the parameter q, are presented in 

Fig. 8, where the open symbols are for b p i  = 0.5, the closed ones are for b p i  = 0.75; the 

circles are for 14 = 0.5, the squares are for 14 = 1, and the triangles are for 14 = 1.5. The 

other parameters are !C/X = 1, e,, = 0.2, q = 2; B < 0 in Figs. 8(a) and 8(c), and ŝ  > 0 

in Fig. 8(b). The comparison of Fig. 8(a) and Fig. 8(b) shows that the mode growth rate 

is dways lower for ŝ  < 0 than that for ŝ  > 0 for otherwise identical plasmas (including the 

magnitude of S). In addition, we find that the lowest threshold values are: q h  - 0.9 for 

ŝ  = 0.5, bpi = 0.5, and '~;~icr - 1.2 for ŝ  = -0.5, icepi = 0.75. For qi close to qe, the 

normalized growth rate for the fastest growing modes may be approximated as 

where IC = 0.2 for B < 0, and n = 0.3 for B > 0 ; the qk's  are given above. The highest 

values found here are 1.6 for B = -1.5, and 1.7 for ŝ  = 1.5, respectively. However, 

even for those parameters (lq = 1.5, b p i  = 0.75) the growth rate increases faster in the 

positive shear case than it does in the negative shear case when Q increases. The graph of 
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real frequency versus Q for ŝ  < 0 is given in Fig. 8(c). Similar results, for ŝ  > 0, are readily 

available in literatures.12 Generally speaking, for a given plasma, the real frequency for ŝ  < 0 

is a factor of 1.52 lower than that for ŝ  > 0. 

C. kepi spectrum 

We begin with a case of low toroidicity, em = 0.2. For this case, the mode growth rate, 

and the real frequency normalized to w&/bpj are plotted , in Fig. 9, as functions of kepi. 

The open symbols are for ŝ  = 1 , the closed ones are for ŝ  = -1; the circles are for vi = 3 

while the squares are for Q = 2; other relevant parameters are g = 2, Te/x = 1: It is 

clear from Fig. 9(a) that the difference between the growth rates for positive and negative 

magnetic shears are large for long wavelength perturbations ( b p ,  - 0.3) and small  for short 

wavelength perturbations b p ,  2 1. Again, the real frequencies of the mode (Fig. 9(b)) are 

lower for ŝ  < 0 than that for ŝ  > 0 if plasmas with the same I f l  and other parameters are 

compared. It is evident from Fig. 9 that there is no significant difference between either 

the eigenvalues or the unstable b p i  range for positive and negative magnetic shears in this 

parameter regime. 

We have already learnt that the sign of the magnetic shear becomes signiscant when the 

toroidicity parameter E,, increases. We illustrate this situation by increasing the toroidicity 

for the graphs of Fig. 10 where we plot the normalized growth rates $epi/w*, versus the 

normalized poloidal wave vector b p i  for Q = 0.3, and 0.45. The open symbols are for 

s^= 0.5 while the closed ones are for s^= -0.5; the squares are for E,, = 0.45 and the circles 

are for G = 0.3. The other parameters are q = 2.5, g = 1.5, T'/z = 1. For the same 

plasma conditions, the maximum growth rate for ŝ  < 0 is less than one half of that for ŝ  > 0. 

F'urthermore, the unstable b p I  region for negative shear is considerably smaller than that 

for a positive shear when = 0.45. A combination of toroidicity with kinetics does bring 

out the fact that the negative shear plasmas are more stable to the well-known ITG mode. 
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V. Conclusions and discussion 

The micro-instabfities driven by PVS and ITG are investigated using both the fluid, and 

the gyrokinetic theories. The correct fluid eigenmode equation, Eq. (6), which has both the 

PVS and ITG modes, is derived for toroidal plasmas. This equation is solved numerically 

for a wide range of plasma parameters for both positive and negative magnetic shear. It is 

found that for a given plasma (including the shear magnitude), the growth rates of both the 

PVS and ITG modes, are lower for ŝ  < 0 than that for ŝ  > 0. The differences occurs because 

the toroidal terms in the mode equation are sensitive to the sign of the magnetic shear. 

A numerical solution of the integral gyrokinetic dispersion equation (with toroidicity) for 

the ITG mode shows not only lower growth rates but also higher values for critical qi for the 

negatively sheared plasmas. Toroidal plasmas with negative shear are found to be definitely 

more stable than the standard positive shear plasmas. 

The stronger stabilization effect of a negative magnetic shear, compared with a positive 

shear in both the fluid and gyrokinetic theories, mainly cornea from the geodesic curvature 

drift, which changes direction when the magnetic shear changes sign. The differences between 

the mode growth rates for positive and negative magnetic shears increase significantly when 

the toroidicity parameter Q increases or the safety factor q decreases. 

There is now experimental evidence that particle and ion energy confinements are signifi- 

cantly improved, and higher ion density and temperature are achieved in a reversed magnetic 

shear The results reported k this paper are in qualitative agreement with these 

experimental observations. The lower growth rates and higher threshold values for PVS and 

ITG driven instabilities in plasmas with negative mapetic shear, ŝ  < 0, may play some role 

in improving conhnement in the regions of reversed magnetic shear. But a serious caveat is in 

order, here. Our theoretical estimates show that the differences between the strengths of the 

instabilities for positive and negative magnetic shears are perhaps not sufficient to account 
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for the experimentally observed dramatic improvement in confinement. In all likelihood, 

other more effective mechanisms have to be invoked to understand such severe reduction in 

transport. 5-7 

We must also remember that there is a finite transition region where the magnetic shear 

is close to zero. Most of the existing theories are not valid for this important and interesting 

region. Brand new mode equations, valid in the zero shear region , will be needed to develop 

a believable micro-instabiiity theory. It is only then that a definite verdict on the connection 

between improved confinement and the mode stabilization in the new shear regime can 

be given. Experiment show that the best confinement region is in the neighborhood of 

zero  hear.^^^ We speculate that zero magnetic shear region contributes essentially to the 

experimentally observed confinement improvement. Detailed investigation is in progress and 

the results will be published later. 

It may be pertinent, here, to note that, in a region of low magnetic shear, the perpen- 

dicular velocity shear dE induces a dramatic stabilization of the ITG and PVS modes.13 

This effect becomes even more interesting when one notices that PVS enhances the ITG 

instability in plasmas (with or without finite dE) with intermediate to high magnetic shear; 

while it has a stabilization effect on the ITG modes when the magnetic shear is low and 

d', is non-zero. All these observations definitely indicate that a serious investigation of the 

low shear regime is strongly warranted in order to understand the 'improved confinement' 

expekents. 
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Figure Captions 

1. Toroidal drift frequency as function of the extended poloidal angle k for ŝ  = -1, , -0.5, 0, 0.5, 

and 1. 

2. (a) Mode growth rate and (b) real frequency versus magnetic shear B > 0 for q=1.5, 

2, 3, and 4.5 from the fluid theory with cold ions. The other parameters are b, = 

0.1, Gl = 1, en = 0.2. 

3. The same as Fig. 2 but for ŝ  < 0. 

4. (a) Mode growth rate and (b) real frequency versus Q for B = -1, 1 and = 1, 4 from 

the fluid theory. The other parameters are b# = 0.1, q = 3, g,, = 1, and T,/Z = 1. 

5. (a) Mode growth rate and (b) real fresuency as functions of tomidicity factor a for 

3=-1 ,  l ,ando=0.2 ,  0.4. theotherparametersareb.=O.l, q i = 5 ,  $,,=(I, q = 2 ,  

and Te/ z  = 1. 

6. The eigenmode structure in k space for B = -1, 1, b, = 0.1, vi = 7, Te/z  = 1, en = 

= 0. The curves reaching the maxima 1 at k = 0 are the real parts 0.2, g = 3. 

while the curves having maxima 0.7 are the imaginary parts. 

7. Mode growth rate as function of magnetic shear ŝ  for (a) 3? < 0 and (b) $ > 0. The 

= 0.25, b p s  = 0.5, and q = 1.5,2,2.5 other parameters are Q = 2.5, Te/x = 1, 

and 3. 

8. The growth rate for (a) 3 < 0 and (b) ŝ  > 0, and (e) the real frequency for ŝ  < 0 versus 

q. The other parameters are Te/Z = 1, = 0.2, g = 2, b p i  = 0.5, and 0.75. 

9. (a) The normalized growth rate and (b) the real frequency versus bpi  for ŝ  = -1, 1. 

The other parameters are Te/z  = 1, g = 2, = 0.2, 9 = 2, and 3. 
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10. The normalized growth rate versus b p i  for ŝ  = -0.5, 0.5. The other parameters are 

= 0.3, md 0.45. q = 2.5, T,/Z = 1, q = 1.5, 
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