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Abstract 

Lagrangian symmetries and concomitant generalized Bianchi identities associated 
with the relabeling of fluid elements are found for hydrodynamics and magnetohydrody- 
namics (MHD). In hydrodynamics relabeling results in Ertel’s theorem of conservation 
of potential vorticity, while in MHD it yields the conservation of cross helicity. The 
symmetries of the reduction from Lagrangian (material) to Eulerian variables are used 
to construct the Casimir invariants of the Hamiltonian formalism. 

Introduction 
It is well known that one can find continuous symmetries of the Lagrangian for a physical 
system that lead to conservation laws according to Noether’s (first) theorem. Many familiar 
physical systems have actions that are invariant under infinitesimal space-time translations, 
space rotations, and Galilean boosts, elements of the ten-parameter Lie group called the 
Galilei group. These symmetries lead to the conservation laws of energy, linear and angular 
momenta, and uniform motion of the center-of-mass. One also has the possibility, especially 
in field theories, that the action is invariant under infinitesimal transformations of an in- 
finite continuous group parametrized by arbitrary functions. For such symmetries one has 
generalized Bianchi identities (Noether’s second theorem) in addition to the usual statement 
of Noether’s first theorem. In this letter we explore the consequences of both Noether’s 
theorems for the ideal compressible fluid. 

After presenting Noether’s first and second theorems in the next section, we find a sym- 
metry of an infinite continuous group for the ideal, compressible fluid Lagrangian in Sec. 
3 and for MHD in Sec. 5. These symmetries give rise to Ertel’s theorem [l] for the fluid 
case and the conservation of cross helicity for MHD. The first discussion of such symmetries 
seems to have been made in [2], where they were called exchange symmetries. Since both, [2] 
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and 131 connect Lagrangian symmetries to Kelvin’s circulation theorem, we point out that 
the circulation theorem can be derived from Ertel’s theorem. More recently, Ertel’s theorem 
has been connected to fluid element relabeling [4, 51, however om treatment is more general 
than [4] and differs from [5]. 

The symmetries here involve only a continuous transformation of the fluid element labels, 
hence we follow [5] in naming them “relabeling symmetries.” Conservation of cross helicity 
in MHD has previously been linked to Lagrangian symmetries [6] ,  but not to fluid element 
relabeling. In Sec. 3 it is also shown that the potential energy functional obtained by expand- 
ing about a stationary equilibrium possesses a Bianchi identity and relates to spontaneous 
symmetry breaking, which gives rise to null eigenfunctions. 

In Sec. 4 we are concerned with the Hamiltonian framework and show that the map 
from Lagrangian variables (which are synonymously called material variables) to Eulerian 
variables for a fluid has the same relabeling symmetry. This symmetry is then used to 
directly construct the Casimir invariants for the noncanonical Poisson bracket [7, 81 for the 
fluid in Eulerian form. This rounds out the usual picture of reduction from Lagrangian to 
Eulerian variables (see e.g. [8, 91). Later we do the same for MHD in Sec. 5 ,  which results in 
the familiar cross helicity invariant for barotropic flows. Other symmetries of the reduction 
from material to Eulerian variables give rise to Casimir invariants too, including a family of 
invariants which incorporates magnetic helicity as a special case. 

2 Noether’s theorems 
Here we briefly outline the derivation of Noether’s first and 

The action for a classical field theory may be written as 
r 

second theorems [lo, 111. 

(1) 

where L is the Lagrangian density and q(z) = (q1,q2,  ... ,q”)  are the fields which depend 
on the variables z = (zo, zl, . e ,  zn) - zo may be regarded as the time variable - and dq 
denotes the derivatives of the fields with respect to the variables. 

Under point transformations, 

!?%I, 4 7 (2) 22 = 2i.i@)) $ = 

the action transforms to 
S[4] := 1. L(4) 84, 2) dn2 = S[q] , 

V (3) 
where the second equality expresses covariance of the action and implies that the Lagrangian 
density must transform as 

where a(x)/d(ii) stands for the Jacobian of the transformation. Furthermore we seek trans- 
formations that leave the form of the Euler-Lagrange equations invariant, i.e. we seek (a 
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. subset of) symmetry transformations. Evidently, for such transformations S[4] = S[@], which 
implies 

where A is a vector with zero flux across the boundary of 6. (Repeated indices are summed 
throughout this paper.) Such transformations, for which the Lagrangian density differs at 
most by a divergence, are called invariant transformations. In particular, if &Ao = 0, i.e. the 
divergence is only spatial, the Lagrangian is invariant and if the divergence term is altogether 
absent, the Lagrangian density is invariant. 

We now consider invariant point transformations that have the following infinitesimal 
form: 

L(G, S i ,  2 )  - L(G, Si,?) = &Ai , ( 5 )  

iii = xi + S X ~ ( X ) ,  d ( i )  = q j ( x )  + A$(q, 2 ) .  ( 6 )  
Derivatives of the fields change accordingly: 

where A ( a j q i )  is defined to be the first order piece of Sj$ - djqi. Finite transformations can 
be constructed by iteration of such infinitesimal ones. Up to f i s t  order, S d  and Aqi may be 
considered functions of either the new or the old variables and the Jacobian may be written 
as 

d ( i t ) / d ( ~ )  = 1 + ai axi 4 

The differential form of Eq. ( 5 )  is thus 

where 8L is defined to be the first order piece of L(ij,&j, 2 )  - L(q, dq, x )  and A2 is written 
as SAi to indicate that it is also of first order. For convenience we define, to f i s t  order, 

Thus while Sqi is the change in the field at a fixed point, Aqi is the change relative to a 
transformed point. Equation (9) may now be written as 

where Si’s denote functional derivatives of the action with respect to qi’s, that is, 

and the current, 

(13) 

3 



We now note that when the equations of motion are satisfied, i.e. Si 3 0 ,  we are left 
with 

aiSJ i  = 0 .  (14) 
The conservation law expressed by Eq. (14) may be recognized as the usual expression of 
Noether's (first) theorem. 

Another possibility is to integrate Eq. (11) to get 

s, si sqi d"x = 0 . 

Consider, for example, transformations which have the form [12] 

Sxi = ~ ( z )  xi(.) , Aqi = ~ ( x )  @(z) + a j ~ ( x )  q!P(q, x) 

where ~ ( x )  is an infinitesimal, arbitrary function of x. (In general there can exist a set of 
independent symmetries, in which case one may wish to add a subscript to the E'S . )  For such 
transformations 

where we have used Eq. (10) to express 6qa and integrated by parts to get rid of the derivative 
on E .  The arbitrariness of 6 allows us to choose it so that the boundary terms disappear. 
And since the integral in Eq. (17) vanishes for arbitrary ~ ( x ) ,  the Dubois-Reymond lemma 
then implies 

si [# - ( d j d ) ~ ' ]  - aj(Sigj> = 0 .  

Note that when the equations of motion are satisfied the terms Si [@ - (i3jqi)xj] and aj(S&'j) 
vanish separately (and trivially); this is replaced by the weaker condition, Eq. (18), when 
the equations of motion are not necessarily satisfied. Equation (IS), which depends crucially 
on ~ ( x )  being an arbitrary function of x rather than a constant parameter, is an example of 
the identity of Noether's second theorem, also referred to as a generalized Bianchi identity. 
It is particularly interesting since it is satisfied independently of the equations of motion and 
its existence indicates that not all Euler-Lagrange equations of motion are independent. For 
this reason it is also called a strong conservation law as opposed to the weak conservation 
law expressed by Eq. (14) which requires the equations of motion. 

It is also noteworthy that for such transformations, with an arbitrary E ( $ )  as in Eq. (16)' 
the weak conservation law itself splits into more than one statement. This follows from E(Z) 

and its derivatives being independent, hence terms multiplying them must vanish indepen- 
dently. 

3 Relabeling symmetry in hydrodynamics 
We now apply the discussion of the previous section to the case of an ideal fluid Lagrangian. 
The variable zo of the previous section is replaced explicitly by time, t ,  and three other 
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components of x are to be interpreted as the labels, a, of the Lagrangian fluid elements; e.g. 
these could be the initial positions of the fluid elements, q(t = 0). The variables q(a, t )  keep 
track of the position of the fluid element labeled a. At any time the mapping between q 
and a is an invertible mapping of a domain, D, and to simplify matters, D is assumed time 
independent ah hough the fluid is compressible. 

The fluid Lagrangian density, .C, may be written as [14, 13, 151 

where po = po(a) is the initial density distribution and Q denotes the time derivative of q 
keeping the label fixed. The internal or potential energy per unit mass is denoted by U and 
is assumed to be a function of two thermodynamic quantities, viz. the density, p and the 
entropy, s. Additional forces on the fluid can be accounted for by including a potential, @ ( q ) .  

In what follows the following determinant identities (see e.g. [16]) will be found of use. 
The cofactor, A23, of the transformation matrix element, @q2,  can be written as 2A,3 = 
e,ke eJmn &qk &qe and satisfies 

where 3 is the determinant of the transformation matrix, i.e. the Jacobian, d(q ) /d (a ) ,  of 
the time dependent map q ---f a. The identity 

is of particular use in converting from Lagrangian to Eulerian variables. The volume and 
surface elements transform as 

where dooj denotes the area element in the j t h  direction in label space while dai denotes the 
area element in the ith direction in configuration space. 

We also assume adiabaticity, that is s = so(a) only. Conservation of mass implies p d3q = 
po d3a and hence from the first of Eqs. (22) we have 

We now seek an infinitesimd reEabeZing transformation & = a + Sa(a, t ) ,  Aq := i(&, t )  - 
q(a, t )  E 0 which leaves the Lagrangian density invariant. Evidently, relabeling means that 
each component of q transforms as a scalar. The transformed Lagrangian density can be 
expressed using Eq. (4) and, up to first order, leads to 
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which is invariant if 

V . ( p o S a ) = O ,  Sa.Vso=O and S u = O .  (25) 

These requirements assure that the relabeling does not alter the mass, lies within isentropic 
surfaces, and does not change the velocity field. They are met by 

vso x V E O  Sa = 7 

Po 

where EO = E O ( U )  is an infinitesimal, arbitrary function of the label alone and hence is 
advected. 

For this symmetry, Noether’s first theorem, Eq. (14), gives us 

- at d [&V * (EoVqi x Vso)] + V  * [sVso x v (; - u - d ) ]  P = o ,  (27) 

where p(p, so),  the pressure, is defined by p2aU/dp. Since the conserved current in the above 
equation is not unique, we integrate Eq. (27) over the label space. The divergence term then 
vanishes and integration by parts allows us to isolate E ~ ( U ) ,  giving 

/ E O ( U )  Vqi * Vqi x VSO d3a = 0 .  dt D 

The arbitrariness of E ~ ( u )  then leads us to the material conservation law, 

Using the chain rule to convert a derivatives to q derivatives and using Eq. (21) yields the 
corresponding Eulerian expression, 

In obtaining the above equation we hwe also made use of Eq. (23) and noted that po(a) has 
no time dependence. Here the gradient operator in q space is denoted by V, the velocity is 
v(q,  t )  := Q(a(q, t ) ,  t ) ,  the entropy s(q,  t )  := so(a(q, t ) ) ,  the density p(q, t )  := p(a(q, t ) ,  t ) ,  and 
d/dt denotes the Lagrangian or material derivative, 

The lack of arbitrariness in time of ~ o ( a ) ,  which arose due to the last condition of Eqs. (25) 
and can be traced to the kinetic energy term, prevents us from using Eq. (15) directly. (In 
essence this is because Hamilton’s principle for particles is not parameterization invariant.) 
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Instead we integrate the equ 
generalized Bianchi identity 

a 
at - (Vqi 

valent of Eq. (11) over the label space (not time) to get the 

It can be verified that the above equation is satisfied for any q ( a , t )  by using the explicit 
form for Si, ~ 

When the equations of motion are satisfied Si E 0 and Eq. (31) reduces to Eq. (29), as might 
be expected. 

Note also that Eq. (27) can be expressed in Eulerian form by substituting  EO(^) := erO(a), 
where ro(u) is an arbitrary function of the label. Then we have the expression 

Si = -PO q i  - Ai3 a j p  - PO d@>ldqi . (32) 

d ( l v r . u x v s  dt  P ) =-vr*v  ;- -(; - - - ( p U ) - Q )  aaP x v s ,  (33) 

where r ( q ,  t )  := rO(a(q, t ) )  is an arbitrary advected quantity. Clearly, even if such an observ- 
able, advected quantity that does not affect the potential energy exists (dye, perhaps), the 
above equation is not elegant as Eq. (30). In Eq. (30), the quantity, Qs,  defined by 

(34) 
1 -  
P 

Qs := -V s * v x v  

is called the potential vorticity associated with the advected quantity, s, and Eq. (30), which 
expresses the advection of Qs, is called Ertel’s theorem of conservation of potential vorticity. 

The conservation of potential vorticity was derived from a (different) Lagrangian sym- 
metry in [4] for incompressible stratified flows. In [5] conservation of potential vorticity is 
derived from a constrained variational principle. The transformation used has a time depen- 
dence in contrast to the symmetry used here, which must be time independent to qualify as 
a symmetry. In [2] and [3] relabeling symmetry is related to Kelvin’s circulation theorem. 
The treatment in [3] expresses the symmetry in terms of q rather than a. We can easily 
make correspondence by using the one-to-one mapping between q and a, which implies 

The use of relabeling symmetry seems to have been made first in [2] where a relabeling 
symmetry is found for an incompressible, ideal fluid without internal energy, U. 

We now proceed to  show the connection of Ertel’s theorem to Kelvin’s circulation theo- 
rem. Integrating Eq. (29) over a volume, V, fixed in label space and contained in the domain, 
D ,  and using Gauss’ divergence theorem gives 

f so v q i  x vqa . duo = 0 , dt c 
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- -  

where C is the surface enclosing V and dao is the infinitesimal surface element. Now if V 
is chosen to be any volume sandwiched between parts of two surfaces of constant entropy 
separated by a small value, SSO, the contribution to the integral from the sides is small and 
one has 

SSO 5 / Vqa x Vqi * do0 = 0 ,  (37) dt s 
where S is a part of any surface of constant SO. Using the second of Eqs. (22) we can thus 
write for non-zero 6so 

2 / V x v .  do = 0 .  
d t  3 

In the above equation da is an infinitesimal surface element in q space and the isentropic 
surface, S, which was fixed in label space is now considered to be an isentropic surface in 
Q space which evolves in time but is made up of the same fluid elements. Equation (38) is 
Kelvin’s circulation theorem and is true on surfaces of constant entropy. 

For a hornentropic fluid, or equivalently for barotropic flows, instead of Eq. (27) we simply 
get 

(39) 
a ,(0qz x Vqi) = 0,  

which implies 

for any advected quantity, r ( q , t )  := ro(a). It is thus quite clear that Kelvin’s circulation 
theorem holds on any material surface for barotropic flows. 

In the stability analysis of stationary fluid equilibria (in particular MHD) one often 
considers the second variation of energy functionals. As an example consider the potential 
energy functional: 

:= Po[u(P,  + @(q)]  d3a 7 (41) 
The equilibrium qe is considered to be an extremal point of W and the second variation is 
checked for definiteness at the equilibrium. Noting that W possesses the same symmetry 
as expressed earlier by Eq. (26) (but without any restriction on the time dependence since, 
here, the integral is only over space), leads to a generalized Bianchi identity: 

(42) 

The functional derivatives of W ,  which are set to zero to obtain the extremal point, are thus 
not all independent of each other. 

The existence of the symmetry also relates to spontaneous symmetry breaking and Gold- 
stone’s theorem, concepts of field theory (See e.g. [17]; in the context of noncanonical Hamil- 
tonian theory see [HI.) We describe this for static equilibria, but a more general development 
exists. For the potential energy functional the analogue of (15) is 

6, W = v 6 , q i  SW d 3 a = 0 , 
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P 

: 

where S,q  is given by Eq. 

S,”W = 

(35). Taking a second variation of (43) yields 

(44) 

where this second Sq is arbitrary and the dot indicates that the operator on the left acts on 
the quantity to the right. Evaluating (44) on an equilibrium point qe yields 

Since (45) vanishes for arbitrary S q ,  it follows that 

There are two ways to solve (46): either (i) S,qt = -(aqt/auj)S,uj = 0, which implies that 
the equilibrium point has the same relabeling symmetry as W [a notably trivial case since 
q e ( s g ( a ) ) ] ,  and no symmetry is broken, or (ii) S,q: # 0, which implies that S2W[qe]/Sq2S$ 
has S,qe as a null eigenvector, and symmetry is ((spontaneously broken.” Observe that S*qe 
is a zero frequency eigenfunction of the linearized equations of motion written in Lagrangian 
variables. 

Since relabeling is a symmetry group, it is obvious that one can make a finite displacement 
from the equilibrium point and remain on the same level set of W .  This can be seen by 
iterating the above variational procedure. For example, the next variation of (44) gives 

d S q i  .S2W[q] S$ Sqk - 2-S*a3- - S q k  d3a = 0, (47) S3 w [a1 1 aa? SqkSq= 
S*3w = ( 6*qi [ SqkSqjSqi 

which when evaluated on qe yields 

This procedure is analogous to Taylor expanding a potential energy function about an equi- 
librium of a finite system that lies in a trough. This was worked out explicitly to all orders 
for the special case of toroidal geometry in [19]. Although in terms of Lagrangian variables 
the equilibria that are connected by the relabeling transformation are distinct, it is evident 
by the definition of relabeling that in the Eulerian description these equilibria are identical. 

4 Symmetry of the Eulerian variables 
We now consider the Hamiltonian formulation of hydrodynamics (e.g. [SI). Expressed in 
Lagrangian variables the Hamiltonian has the form 
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which together with the canonical Poisson bracket, 

produces the ideal fluid equations of motion. On making the transformation ii = a+6a(a, t ) ,  
Aq := @(&, t ) -q(a ,  t )  = 0 and An := ?t(ii, t ) - r ( a ,  t )  = ( S a . V p o ) ( r / p o )  (so that A(n/po) 0) 
it is seen that, up to first order, 

for the same relabeling symmetry, viz. that given by Eq. (26). Thus for the same form 
of the Poisson bracket in the new variables, the form of the equations of motion is left 
unaltered under such a relabeling. The existence of this symmetry of the Hamiltonian 
density indicates that one may be able to obtain an alternative formulation of the dynamics 
in terms of variables which inherently possess this symmetry. This is indeed the case for the 
reduction (see e.g. [8], [9] and references therein) to Eulerian variables, which is conveniently 
represented by the following: 

When one considers variations of the Eulerian variables p, cr, and M ,  that are induced by 
relabeling, we see that 

- V * ( p o 6 ~ )  S(r - q(a, t ) )  d3a .  6 M = s , i  (57) 

The conditions for vanishing of these variations, together with the constraint, ?T = po q , are 
the same as those of Eqs. (25). Thus the relabeling given by Eq. (26) is also a symmetry of 
the map from Lagrangian to Eulerian variables. 

In the framework resulting from the reduction to Eulerian variables, we are naturally 
interested in functionals which can be expressed in terms of the Eulerian variables, F[q, n] = 
F[p, CT, Ad]. Evidently, this is not possible for all F[q, n]. But note that F[p, CT, M ]  has the 
relabeling symmetry mentioned above since p, CT and A4 have it. Therefore, at the very 
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least, one demands that F[q,.rr] display the same symmetry. This consideration gives rise 
to a scheme for obtaining Casimir invariants, special invariants that arise in the Eulerian 
framework, from knowledge of the symmetry. Since the variation of F must vanish when the 
variations Sq and S7r arise from the relabeling symmetry, Sa, we demand 

It is clear that if there exists a functional, C,  such that 

its Poisson bracket with any F belonging to the class of functionals satisfying Eq. (58), 
vanishes. This will be the case when the Poisson bracket is expressed in terms of Eulerian, 
noncanonical variables [7] and therefore, by definition, C is a Casimir invariant. Obviously, 
Casimir invariants are constants of motion for any dynamics with a Hamiltonian that can 
be expressed in terms of Eulerian variables. 

As might be expected from Eq. (28)) and easily checked, the functional, C, defined by 

c[q, .rr] := L Eo(a) V (E) . Vqz x V s o  d3a, 

is the generator of the symmetry, i.e. it satisfies 

The Eulerian expression for the Casimir invariants, C, yields 

where f is arbitrary and s(q, t )  := a(q, t ) / p ( q ,  t )  = so(a(q, t ) ) .  
Evidently, the Poisson bracket of a functional, C, with any F also vanishes if 

This is true when the integrand of C is an arbitrary function of the labels and independent 
of q and i7. There exists no Eulerian representation for most such 6's; however 
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does survive the Eulerianization, where f is arbitrary. A general expression for the Casimir 
invariants in Eulerian form is then given by 

where C is an arbitrary function of both arguments. 

conditions: 
In the noncanonical Hamiltonian formulation of the fluid, a Casimir has to satisfy the 

V . ( p & ) = O ,  oM.v(%)=O SC and 

- sc - sc 
Sa 

Mj v- 
The equivalence of these conditions to the symmetry conditions, Eqs. (25), is seen when one 
notes that if C can be expressed as a functional of p, a,  and M ,  then 

Sa 
sc sc 
6~ SM 
-= -  (69) 

The use of Eqs. (61) and (62) then leads to Eqs. (67) and (68) when Sa satisfies Eqs. (25) 
and vice versa. Note that for Casimirs satisfying Eq. (64), the conditions reduce down to 

sc - sc sc 
SM 6P Sa 
-- - 0 = p v -  + OV-. 

For barotropic flow, Eq. (40) is true for any advected T. Therefore one can use QT to 
generate yet another advected quantity, Q Q ~  and so on; from one advected quantity we can 
generate an infinite family of advected quantities. Thus the Casimir has the form 

where f ( ~ ,  Q7, QQ7, .) is an arbitrary function of the arguments. 

5 Relabeling symmetry in MHD 
The Lagrangian density for MHD [15] is given by 

where C is the fluid Lagrangian density given by Eq. (19) and @(a)  are components of the 
magnetic field as a function of the labels, e.g. the initial magnetic field. 
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Thus the MHD counterpart to Eq. (24) has the following additional 
relabeling transformation: 

terms due to a 

It can be verified that the above expression vanishes if 6a is any function of the labels 
multiplying Bo. But we also require that the conditions obtained previously, Eqs. (25), be 
satisfied; this leads to overspecification and consequently there is no relabeling symmetry, 
Sa,  that satisfies all the requirements. A solution can, however, be found if one eliminates the 
second of Eqs. (25) by considering a barotropic flow, i.e. U and hence p depend only on the 
density, p .  (A solution can also be found without imposing the restriction of barotropicity in 
the case where the entropy, so, is a flux label, i.e. Bo. VSO = 0.) Then one has the symmetry 

BO 
= 4x01 Yo)- , 

Po 
(73) 

where ~ ( a )  and go(a) are flux labels. In other words, the initial magnetic field is expressible 
as Vxo x Vyo. However the existence of flux labels ~ ( a )  and yo(a) is not crucial; if they do 
not exist one simply thinks of 6 as an infinitesimal constant parameter. 

For this symmetry, Noether's (first) theorem gives 

a i2 dU 
- at (qj  Bo - V q j )  + V .  bo (- 2 - U - p d p  -a)] = 0 .  (74) 

Integrating over the domain and passing over to the Eulerian form using the relation, Bt & = 
3 BZ ai, we get the conservation law 

where C[w, B] is commonly referred to as cross helicity. Prior to this work conservation of 
cross helicity was derived from a Lagrangian symmetry involving Clebsch potentials and the 
polarization in [6]. (See also [20].) 

The discussion in the previous section leads us to expect the existence of Casimirs, in 
the Hamiltonian formulation, which satisfy Eq. (64) and which may be expressible in terms 
of p, s, w, and B. It is easily verified that B - V r / p  = Bo - V ~ o / p o ,  where r(q, t )  := .ro(a) is 
an arbitrary advected quantity, and leads to the Eulerian expression: 

where g is an arbitrary function of its arguments. This form for the Casimirs is given in [21]; 
we obtain a more general expression next. 

The Lagrange-Euler map for the magnetic field, 

13 



and its corresponding vector potential representation, 

lead to the conclusion that A - B/p = A0 - Bo/po, within a gauge restriction. We note 
that in Eq. (78), one may add to Ao(a), the gradient of a gauge, $o(a, t )  , which leads to 
a corresponding gauge choice, $(T, t )  := $o(q-'(r, t ) ,  t )  , for A(T, t )  . But for the validity of 
A B / p  = A0 Bo/po, we must restrict the gauge to be advected, $(T, t )  := #o(q-'(r, t ) )  , 
which is equivalent to demanding that all explicit time dependence be removed from Ao. 
With this choice it can be seen that the vector potential in Eulerian coordinates satisfies the 
equation 

dA - = w x B - V ( A  w) . at 
(This gauge choice and the corresponding invariant is discussed in [ZZ].) Thus, more gener- 

I 

, (79) 

ally, the Casimir invariants are expressed by 

where B is understood to be an abbreviation for V x A .  Operating within the restricted 
choice of gauges mentioned earlier, we note that the addition of a gauge, A t A + V#, 
changes A . B/p  by the term B . V$/p,  which is also advected. The numerical value of 
C[p,  s, A] thus depends on the gauge, but after the initial choice of the gauge has been made, 
it nevertheless is a constant of the motion. It is clear that magnetic helicity, j A B d 3 a ,  is 
a special case of this family of invariants. 

For the barotropic case, the Casimir is written most generally as 

where f is an arbitrary function of its argument. In the case where flux labels exist globally, 
the Casimir is given by 

where f is an arbitrary function of the flux labels, z(q,t) := zo(a(q,t)) and y (q , t )  := 
Yola(& t>>. 

6 Conclusions 
We have described the consequences of Noether's theorems associated with the relabeling 
transformation for the ideal fluid and MHD. The action and Hamiltonian were seen to be 
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invariant under such a transformation and it was seen that the same transformation was 
required for invariance of Eulerian variables. Consequently, the Hamiltonian is expressible 
entirely in terms of Eulerian variables, as can the Poisson bracket. This provides a way 
to understand the reduced Hamiltonian description of the fluid, in terms of the Eulerian 
variables, from the viewpoint of symmetries of the action. In addition Ertel’s theorem, 
the Kelvin circulation theorem, cross and magnetic helicity, and other Casimir invariants, 
including a little known family of invariants in MHD, were discussed. 

The formalism described is quite general and applies to a large class of ideal fluid models. 
More exotic fluids such as the Chew-Goldberger-Low model and gyroviscous fluids [2] possess 
a similar development. 

This research was supported by the U.S.D.O.E. under contract DE FG05 80ET53088. 
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