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Abstract 
For a wide range of subtances, extending well beyond the regime of 

corresponding states behavior, the contour in the temperature-density plane along 
which the compressibility factor 2 = P/pkT is the same as for an ideal gas is 
nearly linear. This 2 = 1 contour, termed the Zen0 line, begins deep in the liquid 
region and ascends as the density decreases to the Boyle point of the supercritical 
fluid, specified by the temperature TB for which (dz/dp)T = 0 as p + 0; 
equivalently, at TB the second virial coeffcient vanishes. The slope of the 2 = 1 
line is -B3/(dB2/dT), in terms of the third vinal coefficient and the derivative of 
the second, evaluated at TB. Previous work has examined the Zen0 line as a 

means to extend corresponding states and to enhance other practical 
approximations. Here we call attention to another striking aspect, a strong 
correlation with the line of rectilinear diameters defined by the average of the 
subcritical vapor and liquid densities. This correlation is obeyed well by 
empirid data for many substances and computer simulations for a Lennard-Jones 
potential; the ratios of the intercepts and slopes for the Zeno and rectilinear 
diameter lines are remarkably close to those predicted by the van der Waals 
equation, 8/9 and 16/9, respectively. Properties of the slightly imperfect fluid far 
above the critical point thus implicitly determine the diameter of the vapor-liquid 
coexistence curve below the critical point. 
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I. Introduction 
For a high-density liquid in equilibrium with its low-density vapor, the 

shape of the coexistence curve in the temperature-density plane exhibits two 

features with intriguing generality, recognized empirically for more than a 
century.l According to the "law of rectilinear diameters," the average density 'j 
= ( p ~  + pv)/2 varies almost linearly over a substantial temperature range below 
the critical point. In contrast, the density difference Ap = p~ - pv is governed 
by a characteristic fractional exponent, Both and Ap become singular as the 
critical temperature is approached.13 The modem theory of phase transitions 
has shown these features to be much more general than corresponding states 
behavior. Provided the forces are repulsive at close distances, become attractive 
further out, and vanish sufficiently rapidly at long range, both the critical 
exponent and the approximate rectilinearity of the average density are 
independent of any quantitative aspects of the intermolecular forces, - 

Much less well known is another striking feature located well outside the 
liquid-vapor coexistence region, a nearly linear empirical relation stretching 
over a wide domain of the temperature-density plane. This is the contour with 2 
= 1, termed here the Zen0 line, along which the compressibility factor 2 = P/pkT 
is the same as for an ideal gas. The 2 = 1 line extends from the dense liquid 
region to t'ime Boyle point of the dilute fluid, where the density p + 0 and the 
temperature TB is such that the second virial coefficient B2 vanishes, The slope 

t 

of the 2 = 1 line is detennined by the ratio of the third virial coefficient B, to 
dBz/dT at T,. 

It seems first to have been 
recognized in 1893 by Amagat,4 but independently rediscovered in 1906 by 

This line has a long and curious hi~tory.~ 
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Batschinski? in 1963 by Morsyp in 1967 by Holleran,' in 1983 by Powles: and 
probably by others (as well as the present authors).. Applications include 
extended treatments of corresponding ~tates?,~o analysis of internlatiom among 
vinal  coefficient^,^^,^^ and improved approximations for equations of state.l3914 
The nomenclature has remained unsettled, however. Terms previously used 

include "unit compressibility law" or line7 (awkward, especially since the 
compressibility factor is meant, not the compressibility); "zero order 
characteristic" curve l4 (uniformative); and "Boyle line" or curve* (invites 
confusion with the accepted name for a quite different locus1s defined by 
(aZ/aP)T = 0). We suggest the name "Zen0 line" (derived from 2 = one), This 
emphasizes the paradoxical character of the arrowlike linearity, which implies 
that properties of the low density fluid somehow dictate the balance of repulsive 
and attractive forces even at quite high densities. 

Our chief aim in this paper is to call attention to another paradoxical aspect 

of the Zen0 line. We fiid a strong correlation with the line of rectilinear 
diameters, accurately obeyed by empirical data for many substances and computer 
simulations for a Lennard-Jones potential. The ratios of the intercepts and slopes 
of the Zen0 and rectilinear diameter lines are close to values predicted by the van 
der Waals equation, 8/9 and 16/9, respectively. This correlation indicates a 
remarkable kinship among the Boyle point, which pertains to supercritical dilute 
gas, and both the subcritical two-phase region and the liquid domain. 

In Sea 11 we note some heuristic aspects and illustrate the Zen0 contour with 
data for s e k d  representative substances; this considerably augments previous 
examples798 and offers a modest complement to the extensive documentation 
available for the rectilinear diameter line.l6 In Sec, III we exhibit the 
Zeno-diameter correlation, as exemplified by empirical data, computer 
simulation results for the knnard-Jones potential, and the van der Waals 
equation. In Sec. IV we illustrate some applications of this correlation. 
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II. Hard and Soft Fluid Regimes 
Many aspects of the modem theory of fluids affirm the venerable view of 

van der Waals, which contrasted the roles of repulsive and attractive forces.17918 
In the gas phase at low p and modest T, initial deviations h m  the ideal gas limit 
result chiefly from attractive forces, whereas as Q and T increase repulsion 
becomes dominant. In the liquid phase at high p and low T, repulsive 
hard-spheres offer a good zeroth order model for the major excluded volume and 
packing effects; the attractive forces provide a uniform cohesive background but 
have little influence on the liquid structure or dynamics. However, the attractive 
forces become much more prominent when the vapor-liquid coexistence region 
and particularly the critical point are approached. 

In particular, the competition between repulsive and attractive f o e  is 
exemplified in vibrational fiequency shifts of molecules induced by solvation or 
pressure. Studieslg of such shifts as a means to determine effective hard sphere 
diameters and attractive force constants led us to examine approximation schemes 
suitable for hard fluid and soft fluid regimes, corresponding to dominance of 
repulsive or attractive forces, respectively. This suggested considering the 
compressibility factor as a criterion, since 2 > 1 when repulsion is dominant and 
2 e 1 when attraction is dominant. 

Figure 1 shows the typical pattern of isotherms for 2 as a function of 
density.20 For temperatures below the Boyle temperature Tg, the isotherms 
initially swmp below 2 = 1 but eventually climb steeply above as the density 
increases. At the Boyle temperature, the slope (auap), vanishes for p + 0 and 
at higher temperatures the isotherms lie entirely above the 2 = 1 asymptote. For 
the locus of points (T, p) where 2 = 1 the attractive and repulsive contributions 
balance and the fluid imitates an ideal gas. 

This 2 = 1 locus, the Zen0 contour, is analogous to the "glory" trajectory 
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familiar in elastic scattering of molecules, for which long-range attraction and 
short-range repulsion balance and produce no net deflection of the relative 
velocity vector.21 Replotting 2-isotherms versus p-'I3 allows a heuristic 
comparison with the intermolecular potential. Figure 2 illustrates this: At high 
density (small r), both 2 and the intermolecular potential V(r) increase steeply, 
exhibiting harsh repulsion. At low density (large r), both 2 and V(r) flatten out, 

displaying the long-range attraction and approaching isolated molecule 
asymptotes. At inkmediate densities (and moderate temperatures) 2 like V(r) has 
a minimum. The density at which 2 = 1 is seen to correspond to a radius rzeno 
appreciably larger than the core radius Q for which V(Q) = 0 and as T increases 
rzno  moves outwards; likewise, the mimimum in Z lies well outside that in the 

potential. 
A. Empirical Results 
Figure 3 shows the reduced density-temperatun phase diagram of methane. 

In addition to the familar regimes of vapor, liquid, solid and phase coexistence, 
we indicate the hard and soft fluid regimes. Several constant 2-contours are 
drawn through experimental points. The striking linearity of the 2 = 1 contour is 
evident as well as the drastic "peeling away" of the neighboring Z-contours. This 

diagram is qualitatively typical for many substances and quantitatively a good 
approximation for some exhibiting corresponding states behavior. Three kinds 
of fixed points have special roles: (i) the triple point(s), at which vapor, liquid, 
and solid COexist with distinct densities but a common pressure and temperature; 
(ii) the ai&& point, above which there is no vapor-liquid phase transition; and 
(iii) the Boyle point, at which the second vinal coefficient of the fluid vanishes. 
To a fair approximation,2*16 the rectilinear diameter line connects the critical 
point to the mean of the vapor and liquid triple points; likewise, the Zen0 line 
stems from the Boyle point down to the vicinity of the mean of the liquid and 
solid triple points. The linearity indicates that the balance between repulsive and 
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attractive contibutions is somehow maintained in a uniform fashion between the 

dilute fluid regime and the dense, condensed phase ngime. 

Figure 4 shows some representative data.2* 
Many other examples of linear or nearly linear Zen0 lines have been found. 

The most extensive data are 
available for argon and show that the 2 = 1 contour is remarkably linear al l  the 
way from the triple point temperature to the Boyle point. The linearity is also 

very good for N2, CH4, and n-alkanes, whereas sright negative curvatuxe appears 
for H20. Table I lists the slope and intercept for least-square fits of Zen0 lines 
to the data; correlation coefficients are typically 0,9990, but 0.99997 for Ar and 
0.997 for H20. Since in Figs. 3 and 4 we have scaled temperature and density to 

the critical point, the Zen0 line (and other 2-contours) should be the same for 
substances obeying corresponding states, such as Ar, Nz, and CH4. The Zen0 
lines indeed overlap quite closely for Ar and CH4, less so for Ar and N2, and 
differ considerably for the other pairs of substances. The near linearity of the 
Zen0 line thus appears to be a typical property for a wide range of substances, 
extending well beyond the regime of corresponding states behavior. 

B. Relation to viFial coefficients 
In the low-density region, the general pattern of the Z-contom seen in Fig. 

3 and the special status of 2 = 1 may be derived from the virial expansion, 
2 = 1 + B2p +B3p2 +... (1) 

The where the virial coefficients Bk are functions of temperature. 
thermodynamic relation 

(amp),  = - (auaph/(az/aT), 
yields 

(aT/ap)z = - w2 + 2B3p + ...I /[B'~P + B',p2 + ...I (2) 

where the primes denote temperature derivatives, Blk = dBk/dT. On eliminating 
B, by use of Eq.(l), we find the slope as p + 0 is given by 

(aT/ap)z = - [(Z - l)/p2 + B3 + 2B4p + ...]/B'2 (3) 



7 
.. 

. 
Thus, for all contours of constant 2 on a T-p diagram, the slope will become 
singular as p + 0, except for the 2 = 1 contour, for which the slope is -B3/B2', 
evaluated at TB. The temperature derivative B', is positive (except for 
temperatures far above TB, not considered here). Hence on approaching the Q = 
0 axis, a contour with 2 > 1 will exhibit a steeply negative slope, with positive 
curvature, whereas a contour with Z < 1 will exhibit a steeply positive slope and 
negative curvature. This accounts for the "peeling away" pattern seen in Fig. 3 
and the lonely approach of the Zen0 line to the p = 0 axis. 

Table II lists intercepts and slopes evaluated from TB and virial coefficients. 
Because very few Bg values are available, for this tabulation we used 
Lennard-Jones results, with potential parameters determined from B2 data.= The 
TB(LJ) values may be compared with the results listed in Table I, obtained from 
experimental B2 coefficients or from the inkrcepts of the Zen0 lines; this serves 
to indicate which substances deviate substantially from the W potential. Figure 5 
compares the intercepts and slopes obtained from vinal coefficients with the 
results of Table I. The agreement is surprisingly good, considering that the 
vinal analysis pertains solely to properties of the lowdensity gas. -The empirical 
Zen0 intercept is typically within & 2% of the TB obtained from the experimental 

B2. The empirical slope correlates much less well with the W vinal results; 
typically the agreement is within about +lo %, but far worse in some cases (e.g., 
for C02 and GHd due to the inadequacy of the LJ potential. 

I 

In. Kin&@ of Zen0 and Rectilinear Diameter Lines 
As illustrated in Fig. 3, extrapolating the rectilinear diameter (RD) line into 

the supercritical fluid region typically gives an intercept on the p = 0 axis 
somewhat below that for the Zen0 line whereas the slope of the RD line is always 
much steeper. Table I includes these parameters and Fig. 6 shows that good 

linear correlations hold for both the intercept and slope. The data for the 13 
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systems included represents all cases for which we have thus far obtained both 

vapor-liquid equilibrium data and empirical Zen0 lines. Least-squares fits give 
0.866 and 1.802, respectively, for the ratio of intercepts and the ratio of slopes, 
RD to Zem. The correlation coefficients are 0.990 and 0.996, respectively. 

Note that in Table I and Fig. 6 the Zen0 and RD lines were evaluated using 
absolute temperatures and densities, before normalizing to the critical parameters. 
This was done to avoid introducing uncertainties due to errors in the Tc and pc 
values. Accordingly, the RD lines obtained are not constrained to pass through 
the critical point. That constraint requires the s u m  of the slope and intercept, in 
reduced units, to equal unity. For the unconstrained data, the mean slope + 
intercept is 1.01, with f 0.06 as the standard deviation. This is pertinent. also in 
comparing our RD lines with an approximation derived by Guggenheimz from a 
corresponding states analysis, (6 - 1) = 0.75[1 - (T/Tc)]. From Table 1 we 
find that the coefficient, given by the negative reciprocal of our slope, has an 
mean value of 0.83 with a . 1 4  as the standard deviation. Values ranging from 
0.68 to 1.09, with a mean of 0.94 are found for 27 substances compiled by 
Partington. 16 

Table I also includes parameters determined from extensive Monte Carlo 
The = 1 contour is computer simulations for a Leanard-Jones ~ o t e n t i a l . ~ ~ ~ ~ ~  

quite linear over a wide T-p range; the correlation coefficient is 0.9995 for the 
least-squares fit. (Incidentally, we find that the much more limited simulation 
data26 for a two-dimensional L-J potential yields, within its scatter, the same Zen0 
line.) The ptraSe diagram obtained is very similar to Fig. 3 and the corresponding 
ratios for the intercepts and slopes are 0.875 and 1.823, respectively, RD to Zeno. 

The van der Waals equation yields explicit formulas (derived in the 
Appendix) for the (rigorously linear) Zen0 line: 

T/Tc = 2718 - (9/8)p/pc, (4) 
and (a nominally linear approximation) for the rectilinear diameter line: 
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T/Tc=3 - 2p'/pc. (5)  
The ratio of intercepts and slopes thus is 8/9 = 0.889 and 16/9 = 1.778, 
respectively. These values are close to the empirical and Lennard-Jones results, 
although the van der Waals equation is quantitatively extremely poor except for a 
very dilute gas. The correspondence is especially striking in the density 
intercepts (at T = 0), given by 4/53 in the notation of Table I. For the 13 
systems, the ratio of these density intercepts is 2.01 f 0.10,Zeno to RD, whereas 
the van der Waals result is exactly two. This congruence in the ratios suggests 
that the Zen0 and rectilinear diameter lines can for many purposes be regarded as 
equivalent. 

Figure 7 compares the Zeno and rectilinear diameter lines for the . 

Lennard-Jones potential and the van der Waals equation. Also shown are 
computer simulation results for a hard core + square well p0 ten t i a~83~  these 
data are more sparse and noisy, but indicate the 2 = 1 contour has appreciable 
curvature. The Zen0 l i e s  for the LJ and SW potentids (shown solid) are not 
Stted to the point. but rather computed from virial c~ef€icients,~~ to provide 
another comparison. Curiously, at large densities the square well results appear 
to approach the van der Waals lines, both for the 2 = 1 contour and the 
rectilinear diameters. The square well potential is doubtless qualitatively 
unrealistic, but serves to show that the position of the Zen0 contour, its linearity, 
and its correlation with rectilinear diameters al l  indeed reflect the shape of the 

intennoleedm interaction potential. 

IV. Discussion 
As reliable empirical regulaIlrlzs spanning a wide range of temperature, 

density, and molecular structure, both the Zen0 and RD lines deserve attention as 
means to extend corresponding states and to enhance other practical 
approximations. Very little experimental data is required to fix these lines and it 



can come from properties of either the dilute gas or the dense fluid or liquid. In 
particular, the correlation of Fig. 6 enables use of the extensive vapor-liquid 
equilibrium datal6920 to predict properties of the supercritical fluid. For 
instance, the Boyle points of larger or more strongly interacting molecules are 
often unavailable, since these tend to fall above lo00 OK, where the molecules 
decompose. Here we illustrate two other applications of this cornlation, to obtain 
estimates for the critical density or the triple point liquid density. There are 
many other options, exemplified in previous discussions of the Zen0 line.7-15 

A. From Zen0 or RD to Critical Density 
The critical density is much more difficult to measure than the critical 

temperature. Often tabulated values of p i  show large scatter or are missing 
altogether. For instance, for methane the tabulated pc varies as much as 15% 
from the value accepted as best?() whereas for Tc the standard deviation is only 
0.1%. In such cases, it is useful to estimate pc from Tc and the rectilinear 
diameter line. The correlation with &e Zen0 line allows this even in the absence 
of data for the vapor-liquid equilibrium. For example, fkom the Zen0 line for 
methane in Table I and the correlation of Fig, 6 we obtain 

I m  = 0.866Iz = 438 OK and S m  = 1.802s~ = -42.3 K nm3 
for the intercept and slope of the rectilinear diameter line. Then with Tc = 190.5 
OK we find pc = 5.83 This estimate is withii 4% of the accepted value, pc 
= 6.05 nm-3, despite the modest accuracy of our estimates of I m  and Sm, which 
differ by 3 s  and 9%, respectively, from the values of Table I obtained directly 
from vapodiquid data. 

B. From RD or Zeno to Triple Point Liquid Density 
As seen in Fig. 3, the 2 = 1 line passes near the liquid triple point. It 

cannot pass through that point, as shown by the following argument. The vapor 
phase in equilibrium with the liquid at P, and T, is a low density, nearly ideal gas, 
so &(vap) = 1. For the liquid phase, however, pt is of the order of 1000-fold 
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greater; thus, since P, and T, are fixed, G(liq) = 10-3. Table III lists triple 
point data. We find that the density of the liquid on the Zen0 line at T, is about 
5-1096 above the triple point liquid density. Since the density of the solid at Tt is 
about 15% higher than the liquid, this makes the density for 2 = 1 roughly 
comparable to the mean of the liquid and solid triple points, although the Zen0 
line exhibits a discontinuous density jump at the liquid-solid transition.10 

0 

Inspection of the phase diagram suggests a simple means to estimate pt(liq) 
h m  the RD and/or Zen0 lines. Since p,(vap) is negligibly small compared with 
@q), the latter density lies on a line with intercept Im and slope S&. We 
refer to this as the "TPL line." The liquid density at the triplepint thus may be 
estimated h m  ' 

pt(liq) = 2(T, - IRD)BRD (6) 
As seen in Table III, estimates from this formula are in 3 of the 4 examples 
within f1.596 of experimental values for the triple point liquid density. 

Finally, we note another striking aspect linking the Zen0 and RD lines to the 
TPL line. For the examples at hand, the density intercept (at T = 0) for the TPL 
line appears to coincide with that for the Zen0 line. Since these intercepts are 
given by '2IRD/SRD and -Iz/Sz, respectively, this result is equivalent to the 
observation that the density intercept of the Zen0 line is twice that for the RD 
line. As noted in the discussion of Fig. 6, for all the systems in Table I th is  holds 
within S% (and exactly for the van der Waals equation). Accordingly, the 
liquid triple point lies on a line ('ill) connecting the density intecept of the Zen0 
line with $Ihc temperature intercept of the rectilinear diameter line. On each of 

these three Wed lines, which mark out a stylishly distorted letter "Z1 on the T-p 
diagram, there resides one of the major characteristic points: the liquid triple 
point, the Boyle point, and the critical point, respectively. 

It is tantalizing that these straight lines, stretching over much of the phase 
diagram, are governed to a surprisingly good approximation just by properties of 
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the slightly imperfect gas, TB and the vinal coefficient ratio B3(TB)/B12(TB). 

There appears to be a curious conspiracy among the higher virial terms to 
maintain these hear kinships, in accord with the proverb: "as the twig is bent, so 

grows the tree." 
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Appendix: Zeno and RD Lines from vdW Equation 
The rigorous linearity of the 2 = 1 contour in the T-p plane for the van der 

Waals equation was shown in 1906 by Batschinski5 and later by others798 but for 
convenient reference we include this as a preliminary to evaluating the rectilinear 
diameter line. The van der Waals equation in its customary form is 

Z=PV/nRT= (1 - bp)-1 - (a/RT)p ( A 0  
where b is the excluded volume parameter and a the attractive energy density 
parameter. This may be recast as 

Z = 1 + fb - (II(RT)Ip + b2p2/(1 - bp) (A2) 
The second term is now the second virial coefficient, which vanishes at the Boyle 
temperature, so TB = a/bR. Along the 2 = 1 contour, 

[I - ( T B ~ I  + bp/(l - bp) = 0 
and this gives the linear relationship, 

T = (1 -bp)T~. 
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At the critical point, T, = (8/27)T~ and pc = 1/3b; thus we obtain Eq.(4) of the 
text. 

Likewise, from the criterion (aZ/ap), = 0, we fmd the locus of minima for 
the 2-isotherms (as in Fig. 1) is parabolic 

T = (1 - bp)2TB 
and the corresponding minimum on the isotherm is 

2 = Cr,/Tp[2 - (TB/T)ln] 

but these relations hold only for T 2 Tc. 
The rectilinear diameter line is nut rigorously linear for the van der Waals 

equation. Table IV gives the vapor and liquid densities for the coexistence 

curve? the corresponding values of 2 on the curve, and the mean density = (pL 
+ pv)/2. The nominal approximation for the rectilinear diamekr line is defined 
by the density intercept (T = 0, p/p, = 3/2) and the critical point; this gives 
Eq.(5) of the text. As seen in Table IV, the actual locus of p versus T deviates 
from linearity by up to about 1.4% (at TDc = 0.7); thus this locus is slightly 
bowed toward the vapor branch of the coexistence a w e .  
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Figure Captions 

Fig. 1. Density dependence of isothenns for the compressibility factor 2 of 
methane at various reduced temperatures, derived from experimental 
data.*() Dashed curve pertains to Boyle temperature. 



Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

16 

Comparison of Lennard-Jones (6,12) potential for methane (ordinate 
at left, in OK) with compressibility factor (ordinate at right) 
isotherms. 
Phase diagram for methane, with experimental points for several 
2-contours. Also shown is the line of rectilinear diameters in the 
vapor-liquid coexistence region, and its extrapolations (short-dashed 
lines). 
Zen0 lines for Ar, N2, C02, H20 (at right) and normal alkanes (at 
left). Points are experimental data.2o Ordinates for successive lines 
are displaced upwards by 0.5 units to avoid crowding. Solid lines are 
least-square fits, with intercept and slope given in Table Ir; dashed 
lines show Ar result for comparison. 
Correlation of parameters for Zen0 lines. Empirical intercept 
(right ordinate scale, from least-square fits to Fig. 4 given in Table I) 
compared with Boyle temperature (lower abcissa, from second virial 
coefficient, TB given in Table I); for line shown ordinate is 1.03 
times abcissa and correlation coefficent is 0.9997. Empirical slope 
(left ordinate scale, from Table I) compared with Lennard-Jones 
vinal result (upper abcissa, from Table II); for line shown ordinate 
is 1.01 times abcissa and correlation coefficient is 0.97. 
Cornlation of parameters for Zen0 and rectilinear diameter lines. 
Points from least-square fits given in Table I: lines described in text. 

- Comparison of Zen0 and rectilinear diameter lines for van der Waals 
equation, Lennard-Jones (6,12) potential, and hard core + square well 
potential. Points are from computer simulations cited in text; crosses 
pertain to two-dimensional case; solid lines computed from virial 
coefficients. ~ 
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: .  
Critical Constants, Boyle Temperatures, 
Zen0 and Rectilineat Diameter Linesa 

sub% Tc Pc PC *B IRD S R D  Iz $2 

Table L 

44.4 14.4 27.2 Ne 123 
277 

113 
253 

4.71 
153 

123 
277 

249 
0310 

Ar 150.9 8.08 48.6 408 
2.70 

355 
235 

25.1 
135 

408 
270 

14.5 
0.777 

Kr 209.4 6.52 54.8 573 
2.74 

492 
2.35 

43.0 
134 

569 .. 
2.72 

24.7 
0.769 

791 
2.73 

44.3 
0.775 

775 
268 

632 
2.18 

70.2 
L23 

Xe' 289.7 5.07 58.8 

126.3 6.68 33.9 N2 325 
257 

291 
231 

24.5 
130 

321 
2.54 

13.1 
0.693 

CD 1329 6.47 35.0 342 
2.57 

298 
225 

25.3 
L23 

341 
251 

15.2 
0.739 

709 
233 

28.1- 
os91 

570 
1-87 

421 
0.89 coz 304.2 6.40 73.9 697 

2.29 

190.6 6.05 46.2 506 
2.66 

425 
223 

38.9 
l o 2 4  

505 
2.65 

23.5 
0.744 

305.4 4.07 49.1 
' ?  

* I  

7432 
2.56 

110 
159 

762 
250 

50.6 
0.674 

902 
2.44 

80.7 
0.673 

370.0 3.09 42.7 834 
2.26 

152 
lo24 X '  

C4Hlo 425.2 2.33 38.0 

CsHlz 469.6 1.98 33.6 --- 
912 
2.15 

205 
Ll3 

1017 
2.39 

1073 
2.29 

114 
0.625 

949 250 
2.02 LO3 

142 
0.598 

1327 
2.05 

230 

35.0 
0.588 

0.728 

%O 647.3 10.9 2212 57.5 
0.968 

130 

1638 
2.53 

2.60 2.60 

a Units arc O K  for tcmpuaturc, looO/A3 for density, bar fg pressme. Quanti~~ in boldface are 
dimensionless r e d u c e d  parameters obtained by normalization to nominal T p d  pc values. I 
denotes intercept, -S negative of slope. For $0 both the Zen0 and RD lines show appreciable 
curvanrre; parameters represent best linear fit. 

bParaa3eters for Lennard-Jones (6,12) potential, derived from computer simulations cited in text. 



Table II. Boyle Point and Zen0 Slope fiom Lennard-Jones Parameters.a 

subs. bw T&J) -f&J> 

Ne 

,Ar 

Kr 

xe 

N2 

co 

275 

3.41 

3.68 

4.07 

3.70 

3.76 

*2 3.9 1 

CF& 3.82 

q i 6  3.95 

c4H10 4.97 

LJ 

sw 

36 

119 

167 

225 

95 

100 

203 

148 

243 f t  

242 

297 

120 
2.70 

408 
2.70 

571 
2.73 

769 
265 

325 
2.57 

342 
2.57 

694 
2.28 

506 
2.66 

831 
2.72 

828 
2.24 

1016 
2.16 

2.63 

221 

2.24 
0.728 

14.1 
0.775 

24.9 
0.776 

45.4 
0.794 

14.4 
0.762 

15.9 
0.774 

36.3 
0.764 

24.7 
0.789 

44.8 
0.646 

130 
1.07 

109 
0.449 

0.713 

0.520 

a Units and m&m as in Table I, except for radius parametcto, which is in A. 
Values of a aad E finin Ref. 23, derived from second virial coefficient data. 
Boyle tanperamre TB and Zen0 slope Sz computed from theoretical virial 
coefficients for W potential or (bottom line) square well potential. 



Ar‘ 83.78 
0.555 

0.688 0.0619 21.32 
0 . m  2.64 

23.82 
2% 

2236 
2.76 

21.61 
2.66 

N2 63.15 
0500 

0.125 0.0145 18.65 
0.0222 2.79 

19.89 
2.97 

19.68 
294 

18.60 
2.78 

90.68 
0.476 

0.117 0.0094 16.94 
0.0215 2.78 

18.22 
2.99 

17.63 
232 

17.19 
2%3 

216.58 5.185 0.192 16.12 
0.7120 0.03oO 2.52 

17.49 16.79 
2.74 2.60 

aUnits andnotation as in Tables I and% data from Ref. 20. 

r ’  

... , 



c 

1 

0.98 

0.95 

0.9 

0.8 

0.7 

0.5 

0.3 

0.2 

0 

1 

0.7267 

OS790 

0.4257 

0.2397 

0.1280 

0.0217 

O.OO40 

O.oo00 

0 

1 

1.289 

1.462 

1.651 

1.933 

2.140 

2259 

2.704 

2.810 

3 

0.375 

0.485 

0.554 

0.633 

0.750 

0.839 

0.959 

0.999 

1.OOO 

1 

0.375 

0.274 

0219 

0.163 

0.0933 

0.0491 

0.0125 

0.0025 

0.0008 

0 

1 

1.008 

1.021 

1.041 

1.086 

1.134 

1.239 

1.352 

1.405 

1.5 

1 

1.010 

1.025 

1.050 

1.100 

1.150 

1250 

1.350 

1.400 

1.5 


