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1. Introduction 
Dramatic improvements have been made to the detonation modeling capability 

recently incorporated into MACH2. These improvements significantly improve the 
flexibility of the detonation model, allow for accurate depiction of real explosives, 
and permit highly efficient modeling of long, coaxial generators. In this document, 
we will first describe these improvements in some detail. We will then discuss 
the calibration of the detonation model to two explosive materials, PBX9501 and 
PBXN110. Finally, we will demonstrate the code’s capability for modeling long, 
coaxial magnetocumulative generators, 

2. Summary of Improvements to Detonation Modeling Capability 
Several improvements have been made to MACH2 which significantly improve 

its capability to  model explosively driven phenomena. These improvements fall into 
two categories: those dealing with the manner in which the code treats different 
materials and different equations-of-state, and those dealing with the manner in 
which the code manages the numerical grid. The former category, which we will 
discuss first, is important for all detonation modeling as well as manner other 
applications, the latter category, discussed second, is important for modeling long, 
coaxial magnetocummulative generators. But before discussing either of these, we 
give a brief review of the operation of the detonation model. 

A material designated as an explosive will detonate when certain conditions 
are met. Once these conditions are met, certain operations are performed on the 
material to simulate the action of detonation and t o  render the material incapable 
of detonating again. These conditions and operations are checked and applied on a 
cell-by-cell basis in each cell which contains material designated as an undetonated 
explosive. Undetonated explosive is distinguished from detonated explosive on the 
basis of the value of the variable con2. con2 = 0 denotes undetonated explosive, 
con2 = 1 denotes detonated explosive. Two conditions must be met before detonation 
is allowed. First, the internal energy in the cell must exceed some predetermined 
threshold value. Second, the artificial viscosity in the cell must be decreasing over 
time. Simultaneous satisfaction of both conditions ensures that detonation will occur 
only in response to the zenith of a strong shock. Once these conditions are met, 
two operations are performed. First, the variable con2 is changed from its previous 
value of zero to the new value of one. Second, the internal energy of the cell is 
incremented by a set, predetermined value. The characteristic of the detonation is 
most strongly affected by this parameter. Increasing the explosive energy release 
makes the detonation more intense, and causes it to  proceed at a greater rate. 
The detonation behavior is much less sensitive to  the threshold internal energy SO 
long as the value of that parameter is more than a percent or so greater than the 
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ambient internal energy and less than the sum of the ambient internal energy and 
the explosive energy release. 

The first category of improvements involves the treatment of material identities 
and the use of different equations-of-state. In our previous work on developing a 
detonation modeling capability [l], the manner in which different materials and 
different equations-of-state were handled was somewhat cumbersome. The principal 
difliculty was the tight coupling between material identity and block identity. Recall 
that MACH2 is a multiblock code, with logically rectangular sets of cells grouped 
into individual blocks. Previously, the material identity was synonymous with the 
block identity. There was one provision which allowed the identity of material in a 
block to be changed on a cell-by-cell basis, but this could be in operation in one and 
only one block. It was this provision which was co-opted for use in the detonation 
model. This restrictive treatment has now been improved significantly. 

The new treatment of different materials differs from the old primarily in that 
the coupling between block identity and material identity has been broken. Material 
identity is now on a strictly cell-by-cell basis. The one exception is in the initiation 
phase, where material identity is made on a blockwise basis, but this is largely a 
matter of convenience. The coupling between equation of state and designation of a 
material as an explosive has also been broken. Previously, the undetonated explosive 
was required to be governed by the Gruneisen equation of state, and the detonated 
explosive was required to be governed by the ideal gas equation of state. While 
this happens still to be the choice made now, it is a choice, not a requirement. Any 
material, whether governed by the ideal gas, Gruneisen, or Sesame tabular equation 
of state, can be designated as an explosive. Similarly, the spent explosive can be 
governed by any of these equations of state, as well. 

Another improvement is in our application of the Gruneisen equation of state. 
We have analyzed the properties of the equation of state more thoroughly than in 
our previous efforts. The Gruneisen equation of state can be quite useful in that 
it allows for negative as well as positive pressure. This allows for the modeling of 
solid bodies in that by properly initializing the pressure to zero, the solid body will 
not expand under its own pressure as would happen under the ideal gas equation of 
state. The Gruneisen pressure consists of two components: the cold pressure, and 
the thermal component. The former is a function of density, the latter of density and 
temperature both. The Gruneisen pressure is 
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where A is the species atomic weight, and nf is the number of free electrons per 
atom. p and T are the mass density and temperature of the material, respectively. 
c,, is referred to as the reference sound speed, and po is reference density, which 
is that density which at absolute zero results in zero pressure. To make use of the 
zero-pressure property to  model a static, solid material, one would like t o  determine 
what reference density is required to satisfy p = 0 at finite temperature. The 
resulting equation is cubic in po, and in principle can be solved analytically, but 
it is much more practical so solve the resulting equation numerically. We have 
written a simple Newton-Raphson root finder to do so, so that for given values for 
temperature, density, c,,, yo, and yl, the value of the reference density po required 
for vanishing pressure can be calculated to an accuracy of better than one part in a 
million in just a dozen or so iterations. 

The initiation of detonations has been improved t o  be more flexible. Any material 
which is designated as an explosive may be initiated in three different ways. One 
may choose to initiate in a single cell, a row of cells, or  a column of cells. The initiation 
can be made to occur a t  any time. The choices of time and place of initiation can 
be different for each material designated as an explosive. The manner in which 
these choices are communicated to the code is through the variables detloci (imat) , 
detlocj (imat), and dettimtimat), which are read in through the namelist matmdl. 
The variable imat is the material identifier. If one wishes to  initiate in a single cell, 
one sets the values of detloci (imat) and detlocj (imat) to the grid indices i and j ,  
respectively, which identify the desired cell. If one wishes to initiate a column of cells, 
Le., in a set of cells with the same grid index i, then one sets detlocj (imat) to  -1 and 
detloci (imat) to the desired value of i. Similarly, if one wishes to  initiate a row of 
cells, Le., in a set of cells with the same grid index j ,  then one sets detloci (imat) to -1 
and detlocj (imat) to  the desired value of j .  If no value is specified for dettim(imat), 
then initiation begins at time t = 0. To obtain initiation at any other time, one sets 
the value of dettim(imat) to the desired time. 

The second category of improvements deals with a new grid management tech- 
nique, which we call sliding grid. The idea behind this technique is that in the 
coaxial geometry of the magnetocummulative generator, all of the action takes place 
in the immediate vicinity of the axially propagating detonation front. The regions up- 
stream and downstream from the axially propagating detonation front can be safely 
excluded from the active numerical grid. For the downstream region, we expect no 
disturbances to propagate significantly ahead of the detonation front, and boundary 
conditions corresponding to the unperturbed materials are appropriate. For the up- 
stream region, we imagine that once the armature has closed to  the stator, no more 
phenomena of physical relevance occur. Thus, as depicted in Figure 1, a region of 
active grid is moved along with the detonation front. 
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Figure 1 Schematic of magnetocummulative generator and sliding grid technique. 

The upstream and downstream boundaries of the grid are constrained to be 
planes. These planes each are moved according to their own rule. The downstream 
plane is moved at a constant speed. The user must choose this speed to match the 
detonation speed, otherwise the detonation front can leave the active grid region. 
Inflow boundary conditions reflecting the unperturbed, predetonation states of the 
explosive, armature, and void are applied at the downstream plane. 

The upstream plane is moved according to a slightly more complicated rule 
which Figure 2 helps to illustrate. The repositioning rule is designed so that the 
armature/stator collision is avoided by keeping the upstream plane just ahead of 
that collision point. This is accomplished by capturing the outer edge of the armature 
when it closes to  within a certain, pre-set distance of the stator. The grid point, or 
vertex, which defines the intersection between the upstream plane and the outer 
edge of the armature plays the principal role in this process. Once this vertex has 
come to  within the minimum distance of the stator, the upstream plane is moved 
forward a certain distance, 2. As shown in Figure 2, 2 is found by projecting from 
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the current upstream plane a perpendicular ray which emanates from the point 
defining the minimum armaturehtator distance. The intersection between this ray 
and the line segment joining the first two vertices which define the outer edge of 
the armature is 2. Each vertex on the old upstream plane is moved forward to the 
new upstream plane along the line segment which joins it to its first downstream 
vertex neighbor. This helps to  preserve the radial spacing between vertex points on 
the upstream plane. 

The sliding grid technique causes the details of the collision between the armature 
and stator to be discarded in favor of boundary conditions. The hydrodynamic 
boundary condition applied at this upstream plane is the continuative boundary 
condition, Le. the values of the variables in the row of cells immediately adjacent 
to the upstream plane are simply copied into the ghost cells on the exterior side of 
that plane. 

Minimum radius 

Old plane location 

ertex moves along 
oining line to new plane. 

New plane location 
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Figure 2 Depiction of upstream repositioning rule. 
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The benefit of the sliding grid technique is that coaxial generators of arbitrary 
length can be modeled with a high degree of efficiency. Previously, the entire length 
of the generator had to be included in the simulation grid. For very long generators, 
this required using a large number of cells. Of course, the number of cells can 
be minimized by using cells which are long in the axial direction, but two factors 
reduce the degree to which this helps. The first is the requirement that the region 
of the detonation front be adequately resolved. This includes adequately resolving 
the region in which the armature is undergoing deformation, as well. The mesh 
generator can be directed to  concentrate cells in the axial direction in the vicinity of 
the detonation front, allowing longer cells can be used away from the front. But the 
second factor places a limit on how long these cells can be. The numerical algorithms 
in the code tend to exhibit instability when the aspect ratio of cells exceeds some 
critical value. Nominally, an aspect ratio of five is the largest one can use with 
confidence. Thus, even when all the most advanced adaptive gridding features of 
the code are applied, modeling generators with lengths on the order of meters still 
requires that a large number of cells be used. 

A rough estimate for the minimum number of cells can be made as follows. 
Consider a coaxial generator with outer radius of 15 cm. Suppose that adequate 
radial resolution is obtained using 20 cells. This gives an average radial cell 
dimension of 0.75 cm. The region in which the armature undergoes deformation 
is roughly 10 cm in axial extent. Suppose a bare minimum of ten cells in the axial 
direction is adequate to axially resolve this region. This leaves, for a generator with 
total length of 2 m, 190 cm to resolve axially. With 20 cells distributed over the 15 cm 
radial dimension, and with a limit on the aspect ratio of 5 ,  this implies a maximum 
axial cell length of 3.75 cm. This is too large, however, because by directing the mesh 
generator to concentrate cells into the detonation front region, cells away from this 
region will be elongated over their initial length. Thus, an initial aspect ratio of say 
4 should be used so that once the axial mesh concentration takes place, the resulting 
maximum aspect ratio will be the target value of 5. This gives a maximum cell 
length of 3 cm. Thus, the 190 cm not in the detonation front region requires 63 cells 
in the axial direction. This is still an underestimate because the mesh generator does 
not support abrupt transitions in cell aspect ratio. Thus, the transition from axially 
short cells in the detonation front region to longer cells in the less active upstream 
and downstream regions will cause roughly 50% more cells in the axial direction to 
be used than estimated so far (using fewer cells will result in cells with aspect ratios 
larger than desired in the upstream and downstream extremities). Thus, roughly 94 
cells in the axial direction are need to resolve the 190 cm away from the detonation 
front. This brings the total number of cells to (94 + 10)x20 = 2080 cells. While 
MACH2 can certainly run a simulation with this number of cells without exorbitant 
requirements on CPU time, a means of reducing this number of cells by, say a factor 
of five would allow five times as many simulations to  be run for the same cost. This 
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was the motivation for developing the sliding grid technique. 
Finally, the sliding grid technique requires that the circuit model be applied in 

a specific manner. Initially, the generator contains a certain amount of electrical 
inductance. If only a fraction of the generator's length is included in the initial grid, 
then some provision must be made to  include in the circuit model that part of the 
generator inductance corresponding to the portion of the generator not included in 
the initial grid. As the grid slides, the code will automatically reduce the inductance 
in accordance to the motion of the grid. For example, suppose that the initial grid 
has an axial extent of 20 cm, the generator has a total length of 200 cm, and the 
radial geometry produces an inductance of 1 nWcm. 180 cm of the generator are 
not included in the initial grid, so that 180 nH must be included explicitly in the 
circuit model. This is in addition to any inductance which is exterior to the coaxial 
portion of the generator. 

3. One-Dimensional Calibration 

A useful correspondence between simulation and experiment requires that the 
simulation be capable of reproducing two principal experimental observables: the 
detonation rate and the detonation pressure. The first governs how rapidly the 
detonation wave progresses through the explosive material, the second governs 
the strength of the detonation. A number of standard experiments have been 
devised over the years which allow these quantities to be inferred from the action 
of the explosive. One such experiment was chosen for purposes of calibrating the 
detonation model developed for MACH2. We will first describe that test, then 
describe the calibration of the detonation model to two different materials: PBX9501 
and PBXN110. 

I 

3.1 The Calibration Test I 
Rather than comparing directly t o  experimental results, our calibration efforts 

have involved comparing MACH2 results to results from a Los Alamos hydrocode. 
This code uses a programmed burn detonation model which allows the experimentally 
determined propagation speed of the detonation wave and the explosive energy 
release to  be input a priori. 

The calibration problem chosen for this work is a one-dimensional plate-push 
problem. A one-quarter inch thick copper plate is pushed into a void region by the 
detonation of two inches of explosive material. The detonation is initiated on the 
plane farthest from the copper plate, as indicated in Figure 3. The explosive is 
untamped, that is, an open boundary condition is applied at the initiation plane. 
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Figure 3 Geometry of plate-push calibration problem 

The MACH2 calculations used twenty cells to represent the explosive, four cells 
to represent the copper plate, and ten cells to represent the void. The Gruneisen 
equation of state was used for the undetonated explosive, the ideal gas equation of 
state was used for the spent explosive, and the Sesame tables were used for the 
equation of state of the copper. The parameters for the Gruneisen equation of state 
were chosen to ensure that at room temperature, the pressure of that material would 
be zero. This ensures no expansion of contraction in the absence of any other forces. 

Our goal was to match the speed of the detonation wave and to match the speed 
to which the copper plate was accelerated. The action of the explosive on the copper 
plate is to provide an accelerating force which is initially quite high, but decreases 
in time. This decrease has two causes. First, the movement of the copper plate 
increases the volume available t o  the spent explosive. Second, and more importantly, 
the untamped boundary condition gives rise to a rarefaction wave which chases the 
plate and relieves the pressure. The history of the pressure accelerating the plate 
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depends sensitively on the equation of state used for the spent explosive, particularly 
on the sound speed, and on the relation between internal energy and pressure. While 
we have been able to  match the speed of the copper plate, we have not matched 
the details of the plate’s trajectory in phase space. The Los Alamos hydrocode 
predicts a much flatter phase space trajectory than that observed in the MACH2 
runs. The Los Alamos code predicts a quick acceleration followed by a period of 
very gradually increasing speed. In contrast, MACH2 predicts a much more gradual 
acceleration. This indicates that the equation of state used for the spent explosive 
in the Los Alamos hydrocode gave a higher pressure and a higher sound speed than 
that given by the ideal gas equation of state used for the spent explosive in the 
MACH2 calculations. 

In order to match the speed of the detonation wave, we varied the reference sound 
speed in the Gruneisen equation of state for the undetonated explosive. To maintain 
zero pressure in the undetonated explosive, the variation in reference sound speed 
was accompanied by a variation in the reference density. The speed of the copper 
plate was vaned by adjusting the parameter 7 in the ideal gas equation of state: 

P = (7 - l ) p €  

where p is the pressure, p is the mass density, and E is the internal energy. 

3.2 PBX9501 

The relevant defining characteristics of PBX9501 are a density of 1.833 x lo3 kg/m3, 
an explosive energy release of 5.543 x lo6 Jkg, and a planar detonation speed of 
0.88 crdps. Figure 4 shows the variation in the copper plate phase space trajectory 
with the y of the spent explosive’s ideal gas equation of state. The variation of plate 
speed with this parameter is slightly sublinear. If it were not for the dependence of 
the sound speed on y, the dependence would be linear. 
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4 Copper plate phase space trajectory for PBX9501 calibration. 

Figure 5 shows the variation in the time required for the two-inch thickness of 
explosive to detonate with the reference sound speed of the undetonated explosive. 
Changes in this parameter have only a very small effect on the copper plate phase 
space trajectory. The data taken from MACH2 calculations are shown as points; the 
line is an approximate fit to these data. With a detonation speed of 0.88 c d p s ,  the 
time required for 100% detonation of the two inches of explosive is 

(2 in)(2.54 crnlin) 
= 5.77 ps 0.88 crn/ps 

(3) 

From the linear fit to  the data, this detonation time corresponds to a reference sound 
speed of 7770 d s .  Using this value yields a detonation time of 5.68 ps. Given the 
fact that the timestep used in these calculations was 0.1 ps, this represents a very 
good match to the required detonation time. 
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Figure 5 Data and curve-fit used to calibrate PBX9501 detonation speed. 

Choosing a value of 2.0 for the 7 of the detonated explosive and a value of 7770 
m/s for the reference sound speed in the undetonated explosive yields the copper plate 
phase space trajectory shown in Figure 6. Also shown in this figure is the copper 
plate trajectory obtained from the Los Alamos hydrocode calculation. The complete 
set of parameters used for this calculation is tabulated in Section 3.4 below. 
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Figure 6 Comparison of PBX9501-driven copper plate trajectory 
from MACH2 and Los Alamos hydrocode calculations. 

3.3 PBXNl10 

an explosive energy release of 5.203 x lo6 Jkg, and a planar detonation speed of 
0.83 c d p .  

Figure 7 shows the variation in detonation time with the reference sound speed 
used for the undetonated explosive equation of state. The data obtained from the 
MACH2 calculations would appear to  better fit with a concave function than with a 
line, but in the neighborhood of the required detonation time of 

The relevant defining characteristics of PBXNllO are a density of 1.672 x lo3 kg/m3, 

(2 in)(2.54 crnlin) 
0.83 on I p s  

= 6.12 ps (4) 

a linear fit is adequate. A value of 7200 d s  for the reference sound speed gives a 
detonation time of 6.17 ps. Figure 8 shows the copper plate phase space trajectory 
obtained using a value of 1.7 for the of the detonated explosive. The plate trajectory 
obtained from the Los Alamos hydrocode calculation is also shown. Note how, as 
mentioned previously, the Los Alamos result gives a much flatter trajectory than 
that calculated by MACH2. 
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Figure 7 Data and curve-fit used to calibrate PBX9501 detonation speed. 
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Figure 8 Comparison of PBXN110-driven copper plate 
trajectory from MACH2 and Los Alamos hydrocode calculations. 
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3.4 Parameter Summary 
Here we list the equation-of-state parameters required to obtain the results 

above. Appendix A contains a listing of the input file used to drive the one- 
dimensional calibration calculations. In the input file, the parameters 71, yo, and 
y are not input directly. Rather, one inputs these values decreased by unity as 
indicated in the table. The table indicates the name used in the input file for the 
corresponding parameter. 

5.543 5.203 Energy Release 

Density(kg/m3) 1.884 x lo3 1.672 x lo3 
(MJkg) 

~9~ (m2/s2) 60.37 x lo6 52.0 x lo6 

0.66667 0.66667 
(71 - 1)unezp loded  

1.6 1.6 
(70 - ' ) u n e z p l o d e d  

1.0 0.7 
(7 - 1 ) s p e n t  

x p l s i e  

r o i  

csqo 

gml(1) 

gmlO (1) 

gml(4) 

4. Two-Dimensional Generator Simulation 
As a demonstration of both the sliding grid technique and of the use of the cali- 

brated explosive model in a two-dimensional setting, we have performed a simulation 
of a coaxial magnetocumulative generator. The configuration chosen consisted of 
an aluminum armature of thickness 1 cm with inner radius of 10 cm. The region 
inside the armature, from the axis to  a radius of 10 cm was filled with PBX9501. 
Exterior to the armature is a void region with radial extent of 4 cm. The total gener- 
ator length is 40 cm, and the length of the initial grid is 20 cm. Appendix B contains 
a listing of the input file used to drive this simulation. 

The equations of state used in the simulation were for the aluminum armature, 
Sesame tables, and for PBX9501, the Gruneisedideal gas combination precisely as 

. 

I described in the previous section. The void was not a true vacuum, but was filled low 
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density gas (initial density was 2.7 x 
of state. 

kg/m3) governed by the ideal gas equation 

The magnetic field filling the void region was generated by a current of 550 kA 
flowing in the armature. The assumption is that this current has been built up by a 
driving circuit prior to the start of the simulation, and once the detonation begins, 
the generator’s coupling to this driving circuit is broken. At the downstream end of 
the generator, we imagine there is a resistor and an inductor in series with the rest 
of the generator. The value of the resistance was 0, and for the inductance, 
20 nH. The geometry is such that the inductance per unit length of the generator 
is 61.8 nWm. With a length of 20 cm of the generator not included in the initial 
grid, 12.36 nH of the total of 20 nH corresponds t o  the downstream portion of the 
generator, leaving 7.64 nH for the external portion of the circuit. 

The grid is directed to begin sliding a t  18 ps. The downstream grid plane is 
assigned a speed of 0.88 c d p s ,  a speed which matches the detonation speed of 
PBX9501. The minimum distance allowed between armature and stator is 1 cm. 

Figure 9 shows the initial grid. The cylindrical centerline is located at the left- 
hand side of the grid. The detonation is initiated in the row of cells at the top of the 
grid. The boundary condition there is that appropriate for a wall, i.e., the detonation 
is tamped. The grid and fluid velocity at 18 ps are shown in Figures 10 and 11, 
respectively. The variable used to distinguish between detonated and undetonated 
explosive, con2, is shown in Figure 12. Note that at this time, the detonation front has 
moved approximately 17.5 cm. This corresponds to a detonation speed of 0.96 c d p s ,  
which is significantly greater than the desired detonation speed of 0.88 c d p s .  The 
reason for the higher speed is that in this simulation, the detonation was tamped. 
Figures 13, 14, and 15 show the grid, fluid velocity, and temperature at 40 ps. The 
temperature and grid plots indicate that the detonation front has moved a distance 
of 17.5 cm in the 22 ps since t = 18 p. This corresponds to a detonation speed 
of 0.795 c d p s ,  which is below the one-d detonation speed. The detonation wave 
has slowed since t = 18 ps due t o  the increase in volume into which the detonation 
products may expand. The velocity and temperature plots show that the gas in the 
void region is being accelerated and shock heated as the volume it occupies shrinks. 
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Figure 9 Numerical grid at t = 0 ps for coaxial generator simulation. 
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Figure 10 Numerical grid at t = 18 ps for coaxial generator simulation. 
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Figure 11 Fluid velocity at t = 18 p s  for coaxial generator simulation. 

ZD -TIZLD COAX: PRQPXRTIXS ADJUSTED IOR PBX9501 
M a i l 2  v9302. 

T - 1.800%-05 CYCII - 194 
caicLNTuATIou w UTIRUL 2 

-- O.OZ+OO S- 2.02-01 D- 4.02-01 

?- 6.0%-01 E- B.OL-01 +- l .OJL+OO 

Figure 12 Detonatedhndetonated indicator at t = 18 ps for coaxial generator simulation. 
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Figure 13 Numerical grid at t = 40 /LS for coaxial generator simulation. 
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Figure 14 Fluid velocity at t = 40 ps for coaxial generator simulation. 
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Figure 15 Temperature at t = 40 ps for coaxial generator simulation. 

The grid and fluid velocity are shown at 60 ps in Figures 16 and 17, respectively. 
The detonation of the explosive material was complete at roughly 48 ps. Note that 
the grid now has an axial extent of just 3 cm. The compression of the gas trapped 
between the armature and stator has now caused that gas to become warm enough 
to be mildly conductive. Electrical current is no longer restricted to flow in just 
armature and stator, but can now flow through the gas in the void region, as shown by 
the contour plot of rBg shown in Figure 18. This represents a current-loss mechanism 
since the resistivity of the gas is low enough to  permit significant current flow, yet 
it is high enough to allow dissipation of that current. Analysis of the degree of this 
loss will require more detailed simulation and study. 
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Figure 16 Numerical grid at t = 60 /IS for coaxial generator simulation. 
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Figure 17 Fluid velocity at t = 60 p for coaxial generator simulation. 
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Figure 18 rB, contours at t = 60 p s  for coaxial generator simulation. 
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The current generated is shown in Figure 19. Neglecting resistive dissipation of 
magnetic flux and the time-rate of change of inductance, the ratio of final current 
to initial current ought to equal the ratio of initial inductance to final inductance. 
Initially, the inductance is 

L; = Lezt + -2ln PO (z) = 7.64nH + (200nH/m)(0.4m) In = 32.3nH (8) 
2a 

At 60 ps, the inductance can be estimated by assuming that all current flows in the 
armature and stator: 

L f  x Lezt + -lln PO (2) = 7.64nH + (200nH/m)(O.O3m) In (~;135?mm) = 8.2nH (9) 
2n 

The ratio of initial to  final inductance is 3.94. The maximum current achieved is 2.43 
MA, which is 4.41 times the initial current of 550 kA. The difference between this 
ratio and the ratio of inductances is likely due t o  overestimating the inductance of 
the final configuration. As can be seen in Figure 18, a substantial amount of current 
is flowing through the gas trapped between the armature and stator, which violates 
the assumption used in estimating this inductance. 

5. Conclusion 
The improvements reported here have significantly improved the detonation 

modeling capability of MACH2. Any material may be designated as an explosive, 
and the simulation can contain different explosive materials and different regions of 
explosive material at the same time. A single cell, a row of cells, o r  a column of cells 
may be chosen to initiate the detonation. The detonation may be initiated at any 
time. With these improvements, parameters corresponding to different explosive 
materials may be input so that the effect of different detonation characteristics 
can be assessed. We have determined parameter values which correspond to the 
explosives PBX9501 and PBXN110. The new grid management technique permits 
simulation of long coaxial generators without actually having to include the entire 
length of the generator in the numerical grid. This allows generator simulations to 
be performed on a much more efficient basis. This new grid management technique is 
complemented by appropriate modifications to the circuit model. These modifications 
allow the generator inductance which is not explicitly included in the numerical grid 
to be included in the circuit in an automatic, self-consistent manner. 

6. Acknowledgments 
W e  would like t o  thank Drs. Bob Reinovsky and Jim Goforth for their continued 

support for and interest in this work. We would also like to thank Dr. Stan Marsh 
for his efforts in performing the Los Alamos hydrocode calculations. 

22 



References 

[ll J. J. Watrous and M. H. Frese. A dynamic explosive model for MACH2. Technical 
Report 93-04, NumerEx, 1993. 

23 





Appendix A Input File for One-Dimensional 
Calibration Calculations 

CU-PLATE PUSH: 
f r i 1 5  

Scon t r l  

imns  = 150,  
twfn = 50.00e-06, 
d t  = 1.e-9, 
dtmax = 1.e-7, 

cy1 = 0, 

eoson = . t r u e . ,  
explon = . t r u e . ,  
con2on = . t r u e . ,  
hydron = . t r u e . ,  

omegah = 0.66 ,  
vo l ra tm = 0 . 8 ,  
courmax = 1 . 0 0 ,  
rmvolrm = 0.2 ,  
mu = 5.6,  

radiate = . f a l s e . ,  
fox  = 0.1 ,  

c i r o n  = . f a l s e . ,  

thmldif  = . f a l s e . ,  
f l x l m t  = 0 . 0 4 ,  

meshon = . t r u e . ,  
n igen = 0 ,  
n i t e r  = 3 ,  

magon = . fa lse . ,  
! t u r n  o f f  o l d  p o t e n t i a l  s o l v e r  
! i t p o t  = 0 ,  f o r  im2oct91991 i n  d i s s o l v  s u b d i r e c t o r y  

i t p o t  = 2 0 ,  
p o t r e l x  = 0.25 ,  

! magnetic d i f f u s i o n  i s  on 
b d i f f  = . fa l se . ,  

! there i s  no j o u l e  h e a t i n g  
jouhtmlt  = O . ,  
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! 

multgrd = .true., 
mgmode = ‘vcycle I , itmaxrd = 5000, 
mglmax = 2, 
sloconv = 0.9, 
ncorplv = 20, 
nvcycmx = 1, 

rdrelax = 0.5, 
rdtol = 1.e-5, 
cntrmin = 1.0, 

aresvac -5 3.e8, 
! aresfdg multiplies the anomolous resistivity 
! present value corresponds to ion plasma frequency timescale 

aresfdg = 0.e-2, 

$end 
$output 

! plots are generated every 100 ns starting at 1000ns; 25011s otherwise 
dtp = 1.e-6, 
dtrst = 2.e-5, 

intty = ‘edits,lO’, 

contyp (1) = ‘ log’, 
plot(5) = ‘con2’, 
plot (6) = ‘numvis’ , 
plot(7) = ‘sie‘, 
plot (8) = ‘mornden‘, 

kcon(1) = 11, 
intbound = .false., 

$end 
Sezgeom 

npnt: 

pointx (1) 
pointy (1 ) 

pointx (2 ) 
pointy (2) 

pointx ( 3 )  
pointy ( 3 )  

pointx (4) 
pointy ( 4  ) 

= 0.00e-2, 
= 0.00e-2, 

= 0.00e-2, 
= 5.08e-2, 

= 0.00e-2, 
= 5.715e-2, 

= 0.00e-2, 
= 14.00e-2, 
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pointx(5) = 1.00e-2, 
pointy (5) = O.OOe-2, 

pointx(6) = 1.00e-2, 
pointy(6) = 5.08e-2, 

pointx(7) = 1.OOe-2, 
pointy(7) = 5.715e-2, 

nblk = 3, 
corners(1,l) = 2, 6, 5, 1, 
corners(1,Z) = 3,  7, 6, 2, 
corners(l,3) = 4, 8, 7, 3, 

Send 
Sezphys 

icellsg = 2, 
jcellsg = 10, 
roig = 1.894e3, 
tempig = 2.5e-2, 

! sieig = 2.67eO5, 
gdvlg = 1.0, 

ang = 5.598417, 
awg = 10.980013, 

densityg = 1.894e03, 
gmlOg = 1.57, csqOg = 4.e06, 
tfusig = 1.e-3, hfusig = l.eO2, 
tvapg = 2.e-3, hvapg = 1.e02, 
tdissg = 3.e-3, hdissg = l.eO2, 
tionizeg = 8.e06, hiong = l.eO2, 

Send 
Smatmdl 

eosmodl(1) = 'grun', matnam(1) = 'he9501', 
siecrit(1) = 3.5e5, xplsie(1) = 5.543e6, 
density (1) = 1.84004e3, 
explosiv(1) = .true., 
csq0 (1) = 60.37e6, 
gml(1) = 0.6666667, 
gml0 (1)= 1.6, 
an(1) = 1.e-3, 
aw(1) = 10.416, 
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eosmodl(4) = ’idealgas’ matnam(4) = ‘spent’ , 
pl(4) = l., 
an(4) = 1.e-3, 
aw(4) = 10.416, 
density(4) = 1.2e3, 
csqO(4) = 4.e6, 
gm10(4) = 0.66667, 
explosiv(4) = .true., 

eosmodl(2) = ’tabular‘, sesanam(2) = ’cutI matnam(2) = ’cu’, 

eosrnodl(3) = ‘ idealgas’ , matnam(3) = I void’, 
aw(2) = 63.54, an(2) = 1.e-3, density(2) = 9.14e3, 

Send 
Sinmesh 

! gruneisen densities are determined so as to give zero pressure 
roi(1) = 1.833e3, matnami(1) = ‘he9501’, 
jcells(1) = 50, 
detloci(1) = -1, detlocj(1) = 1, 
hydbc (3,l) = flowthru’ , 
roflow(3,l) = 1.e-3, tflow(3,l) = 0.025, 

roi(2) = 8.96443e3, 
jcells(2) = 4, matnami(2) = ‘cu’, 

roi(3) = 2.7e-2, matnami(3) = ‘void’, 

Send 
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.. 

Appendix B Input File for Two-Dimensional 
Generator Calculations 

2d magnetized coax: p r o p e r t i e s  ad jus t ed  f o r  PBX9501 
monl2 

S c o n t r l  

t = 1.0e-11, 
twfn = 70.e-6, 
i m n s  = 60, 
d t  = 1.0e-9, 
dtmax = 1.e-7,  

hydron = . t r u e . ,  

eoson = . t r u e .  , 
conservh = O . ,  

explon enab le s  t h e  exp los ive  model 
explon = . t r u e . ,  

meshon = . t r u e . ,  
n igen  = 0,  
n i t e r  = 3, 

radmodl = "none" , 
radiate = . f a l s e . ,  

r adspl i t  = . f a l s e . ,  
r a d f l x l t  = . f a l s e . ,  

thmldif  = . f a l s e . ,  
t d t o l  = 1 . e - 4 ,  

b d i f f  = . t r u e . ,  
r d t o l  = 1 . e - 4 ,  
a r e s f d g  = 0.05, 

c i r o n  = . t r u e . ,  

con2on = . t r u e . ,  
s c r t c h ( 1 )  = 1.e-5, 

nsmooth = 4 ,  
wrelax = 0.25, 

cy1 = 1, 
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volratm = 0.8, 
courmax = 1.0, 
mvolrm = 0.2, 
itopt = 20, 
mu = 5.6, 
donor = .false., 
donormn = 1. , 
theb = 1. , 
eps = 1.e-3, 
conserv = O., 

mglmax = 1, 

$end 
$output 

ncychist = 1, 
dtrst = 1O.Oe9, 
dtn = 1000.0e-9, 
dtp = 2.e-6, 
contyp(1) = ‘log‘, 

plot(8) = ‘con2’, 
plot(9) = ‘numvis‘, 
plot(l0) = ‘sie’, 
plot (11) = ’momden’ , 

intty = ‘edits,lO’, 

intbound = .false., 
kcon(1) = 11, 

$end 
Scurnt 

circtype (1 = resind‘ , 
currentl(1) = 5.5e5, 
exres(1) = 1.e-5, 
exind(1) = 20.e-09, 

$end 
$e z ge om 

npnts = 8,  
pointx(1) = 0.00e-2, pointy(1) = 20.00e-2, 
pointx(2) = 10.00e-2,pointy(2) = 20.00e-2, 
pointx(3) = 10.00e-Z,pointy(3) = 0.00e-2, 
pointx(4) = 0.00e-2, pointy(4) = 0.00e-2, 
pointx(5) = 11.00e-Z,pointy(5) = 20.00e-2, 
pointx(6) = 11.0Oe-Z,pointy(6) = 0.00e-2, 
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pointx(7) = 15.00e-2,pointy(7) = 20.00e-2, 
pointx(8) = 15.00e-2,pointy(8) = 0.00e-2, 
nblk = 3, 
corners(1,l) = 1, 2, 3, 4, 
corners(l,2) = 2, 5, 6, 3 ,  
corners(l,3) = 5, 7, 8, 6, 

$end 
$e zma t s 

rofvacd = 1.e-5, 
rofjould = 1.e-1, 
rofd = 1.e-5, 
rofsiecd = 1.e-5, 

siecapd = 1. e9, 
and = l., 
awd = l., 

densityd = 1.894e03, 
gmlOd = 2.37, csqOd = 2.eO6, 
tfusid = 1.e-6, hfusid = 1.e-2, 
tvapd = 2.e-6, hvapd = 1.e-2, 
tdissd = 3.e-3, hdissd = l.eO2, 
tionized = 8.e06, hiond = l.eO2, 

$end 
Sezphys 

icellsg = 12, 
jcellsg = 20, 
roig = 1.894e3, 
tempig = 2.5e-2, 
gdvlg = 1.0, 

$end 
Smatmdl 

numregs = 4, 
eosmodl(1) = ‘grun’, matnam(1) = ,gelr, 

explosiv (1) = .true. , 
detloci(1) = -1, detlocj(1) = 20, 
siecrit(1) = 5.e5, xplsie(1) = 5.543e6, 
csqO(1) = 60.37e6, gmlO(1) = 1.6, density(1) = 1 
gml(1) = 0.66666667, 
an(1) = 1.e-3, 
aw(1) = 10.980013, 

84004e3, 

eosmodl(4) = ‘idealgas‘, matnam(4) = ,spent’, explosiv(4) = .true., 
gml(4) = l., 
an(4) = 1.e-3, 
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aw(4) = 10.980013, 

eosmodl(2) = ’tabular‘, matnam(2) = ‘al-new’ , 
resmodl(2) = ’constant‘, etaO(2) = 1.e-10, 

eosmodl(3) = ’idealgas’, matnam(3) = ’gas’ I 

$end 
Sinmesh 

klugbdy = .false., 

! densities are determined so as to give zero pressure 
roi(1) = 1.833e3, matnami(1) = ‘gel‘, 

roi(2) = 2.7e3, tempi(2) = 0.025, 
icells(2) = 4, matnami(2) = ’al-new,, 
probc (2’2) = ‘ interfac’ I 

roi(3) = 2.7e-2, matnami(3) = ‘gas’, 
icells(3) = 4, 
binit (3) = ‘nocurnt’ , 
magzbc (1,3) = ’ conductr’ I 
magzbc(3,3) = ‘insulatr’ I currcir ( 3 , 3 )  = 1, 
bzi(3) = 1.0, rnomfld = 1l.e-2, 
bxi(3) = 0.‘ byi(3) = 0.‘ 

gridbc (2,l) = ’ smthfix‘ 

gdvl(1) = 1.95, 
gdvl(2) = 1.95, 
gridbc(2’2) = ‘smthfix’, 
gridbc(4,2) = ’smthfix’, 

gdvl(3) = 1.95, 
gridbc(4,3) = ’smthfix’, 

$end 
Smodtim 

tmod = 18.e-6, 

$end 
Sinmesh 

klugbdy = .true., rstop = 14.e-2, 

gdvl(1) = 1.95, 
movbdry(3,l) = .true., 
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vbdmov (3,l) = -8.8e3, 
gridbc(3,l) = 'fixedgp', gdvlb(3,l) = 0.999999999, 
gridbc (2,l) = ' smthf ix' 

gdvl(2) = 1.95, 
gdvlb(3,Z) = 1.95, 
movbdry(3,Z) = .true., 
vbdmov(3,2) = -8.8e3, 
gridbc (3,Z) = ' fixedgp' , gdvlb (3,2) = 0.999999999, 
gridbc (2,Z) = ' smthfix' , 
gridbc (4,Z) = smthfix' , 

gdvl(3) = 1.95, 
movbdry(3,3) = .true., 
vbdmov (3,3) = -8.8e3, 
gridbc(3,3) = 'fixedgp', gdvlb(3,3) = 0.999999999, 
gridbc(4'3) = 'smthfix', 

probc (1'1) = ' contnutv' , velbc (1'1) = ' none' , 
probc(3,l) = 'specfied', velbc(3,l) = 'no slip', 

roflow(3,l) = 1.833e3, tflow(3,l) = 0.025, 

probc(1,Z) = 'contnutv', velbc(l,2) = 'none', 
probc(3,2) = 'specfied', velbc(3,Z) = 'no slip', 

roflow(3,2) = 2.7e3, tflow(3,Z) = 0.025,  

probc (1,3) = 'wall', velbc (1'3) = 'none', 
probc(3,3) = 'specfied', velbc(3'3) = 'no slip', 

roflow(3,3) = 2.7e-2, tflow(3,3) = 0 - 0 2 5 ,  

$end 
Smodtim 

tmod = 40.e-06, 

$end 
Sinmesh 

movbdry(3,l) = .false. 
movbdry(3,Z) = .false., 
movbdry(3,3) = .false., 

probc(3,l) = 'wall', velbc(3,l) = 'freeslip', 
probc ( 3 , Z )  = 'wall', velbc (3'2) = ' freeslip', 
probc (3'3) = 'wall', velbc (3'3) = ' freeslip', 

gdvlb(3,l) = 1.0, 
gdvlb(3,2) = 1.0, 
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gdvl(3) = 0.95, 
gridbc(3,3) = ‘normalgl’ , 
gdvlb(3,3) = 0.95, gdvlc(4,3) = 1.0, gridcc(4,3) = ‘fixed’, 
gdvlb(4,3) = 1.95, 

Send 
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