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A TRANSPORT BASED ONE-DIMENSIONAL PERTURBATION CODE 
FOR REACTIVITY CALCULATIONS IN METAL SYSTEMS 

Tracy Renee' Wenz 

ABSTRACT 

A one-dimensional reactivity calculation code is developed using first order perturbation 
theory. The reactivity equation is based on the multi-group transport equation using the 
discrete ordinates method for angular dependence. In addition to the first order 
perturbation approximations, the reactivity code uses only the isotropic scattering data, but 
cross section libraries with higher order scattering data can still be used with this code. The 
reactivity code obtains all the flux, cross section, and geometry data from the standard 
interface fdes created by ONEDANT, a discrete ordinates transport code. 

Comparisons between calculated and experimental reactivities were done with the 
central reactivity worth data for Lady Godiva, a bare uranium metal assembly. Good 
agreement is found for isotopes that do not violate the assumptions in the first order 
approximation. In general for cases where there are large discrepancies, the discretized 
cross section data is not accurately representing certain resonance regions that coincide with 
dominant flux groups in the Godiva assembly. Comparing reactivities calculated with first 
order perturbation theory and a straight Ak/k calculation shows agreement within 10% 
indicating the perturbation of the calculated fluxes is small enough for first order 
perturbation theory to be applicable in the modeled system. Computation time comparisons 
between reactivities calculated with first order perturbation theory and straight Ak/k 
calculations indicate considerable time can be saved performing a calculation with a 
perturbation code particularly as the complexity of the modeled problems increase. 



CHAPTER 1 

INTRODUCTION 

Perturbation theory, when applied to nuclear reactor theory, provides a useful means to 

calculate the change in the multiplication factor, or reactivity, of a system. This system 

change can be in the form of a variation in geometry, material (e.g. addition, removal, or 

replacement), temperature (e.g. Doppler broadening), or other parameters affecting the 

neutron population of the system. Depending upon the order of the approximations used in 

deriving the reactivity equations from perturbation theory (Bell and Glasstone, 1970; 

Carmichael, 1970; Hansen and Maier, 1960; McDaniel, 1993; Weinberg and Wigner, 

1958), small or large system changes can be addressed. In this thesis, the system changes 

will be limited to small perturbations which are described by first order perturbation theory. 

First order perturbation theory was more widely used in the past when computers were 

much slower at performing calculations and the availability of machines to perform high 

speed computations was limited or nonexistent (Hansen and Maier, 1960; Ussachoff, 

1955; Weinberg and Wigner, 1958). By placing the constraint that the perturbation was 

small so that the perturbed flux did not differ much from the unperturbed flux over the 

entire system, the reactivity change could be calculated using only the unperturbed forward 

and adjoint neutron fluxes. Using this method, many reactivity calculations could be 

performed based on only two transport code calculations for a given system configuration. 

This reduction in the number of calculations and the amount of total computation time was a 

major advantage of perturbation theory. 

However, even with the advent of high speed serial computers (e.g. CRAY YMP 

computers and SUN SPARC workstations) and the development of more efficient transport 

algorithms (ONEDANT (ODell et al., 1989) and TWODANT (Alcouffe et al., 1992)), 

perturbation codes continue to be developed and used (Ahn et al,, 1993; Carmichael, 1970; 

Dean, 1988; George and LaBauve, 1988; Hopkins, 1971). One reason for this continued 
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interest is that there are still time and resource savings (Hopkins, 1971) obtainable with 

these codes, particularly as the complexity of the modeled problems increases. In general, 

adjoint calculations which form the basis of perturbation theory are particularly well suited 

for parametric studies or any analysis (Ahn et al., 1993) where there is the potential for 

performing many repetitive calculations. Examples of these calculations include, but are 

not limited to, reactivity calculations using first order perturbation theory where only the 

forward and adjoint unperturbed flux need be calculated and radiation dose calculations 

with a fixed source where a single adjoint calculation results in the detector response at 

various locations in the volume (Bell and Glasstone, 1970). 

Existing computer codes for calculating reactivity worths using perturbation theory are 

reported sparingly in literature. One of the earlier reported uses of perturbation theory was 

by Hansen and Maier (1953). Here a first order perturbation equation for reactivity worth 

calculations was derived based on the Boltzman transport equation using a P3 transport 

approximation (spherical harmonics expansion) and three neutron energy groups. This 

work was later reported (Hansen and Maier, 1960) using an Sn code and 16 energy group 

cross sections. 

Perturbation codes for more general use as production codes were also developed. 

Hardie and Little (1969) developed a reactivity code based on the two-dimensional 

multigroup diffusion equation. First order perturbation codes based on the Boltzman form 

of the transport equation for one (Carmichael, 1970) and two (Hopkins, 1971) dimensions 

were also developed at Los Alamos. 

More recent developments in fist order perturbation theory for reactivity calculations 

include the code by Dean (1988) which is based on the Boltzman transport equation 

discretized using spherical harmonics. The diffusion theory based reactivity code by 

Hardie and Little (1969) was upgraded by George and LaBauve (1988) to accept standard 

interface files (O'Dell, 1977) created by more current transport codes like TWODANT 

(Alcouffe et al., 1992). 
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In this work, a f i i t  order perturbation code based on the Boltzman transport equation 

using the discrete ordinates method is developed. This project was undertaken because 

such a code does not appear to be available that will readily accept flux data using the 

standard interface file format (ODell, 1977). Flux data obtained from ONEDANT (O'Dell 

et al., 1989) are used to calculate the reactivity worths for uranium metal systems. 

ONEDANT solves the one-dimensional steady state Boltzman equation using a multigroup 

energy structure and the method of discrete ordinates to handle the angular dependence. 

The binary data files generated by ONEDANT use the standard interface file format. 

The remaining chapters of this thesis discuss the development and use of this 

perturbation code utilizing ONEDANT binary files. Chapter 2 discusses the derivation of 

the reactivity equations using first order perturbation theory. Chapters 3 and 4 discuss the 

reactivity computer code and present results calculated using the code, and Chapter 5 

provides the conclusions from this work. 
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CHAPTER 2 

DEVELOPMENT OF PERTURBATION EQUATIONS 

This chapter discusses the derivation of the reactivity equation using first order 

perturbation theory. Specifically, the forward and adjoint transport equations are discussed 

along with the method used for calculating the adjoint operators. Next, the reactivity 

equation is derived in detail and compared with other formulations found in literature. 

2.1 Neutron Transport Equation 

The linear time-independent Boltzman transport equation is the starting point for the 

derivation of the first order perturbation equations. The general form of the Boltzman 

equation (Duderstadt and Hamilton, 1976; O'Dell et ai., 1989) is presented in Equation 2.1 

where Y is the angular flux. 

!2*VY(r,E,S1) + Xt(r,E)Y(r,E,i2) = 

Es(r,E'-+E,Q'-+Q)Y (r,E',SZ')dE'dQ' + 

mJj v(E')Ef(r,E')Y (r,E',Q')dE'dSZ' + Q(r,E,Q) 
4x 

The first two terms on the left hand side represent loss mechanisms for neutrons. The 

divergence term is the neutron loss due to leakage at the surface of the geometry, and the 

total macroscopic cross section term determines the neutron loss from all neutron 

interactions inside the geometry. The right hand side of Equation 2.1 contains the terms 

that contribute neutrons to the system. The first integral term represents neutrons that are 

scattered into a different energy group; thus the scattered neutrons act as a source for the 

new energy group E. The second integral term accounts for neutrons born into energy 

group E from fission assuming an isotropic distribution. Finally, the last term, Q(r,E,Q), 
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Figure 1. Location of the neutron direction vector, Q, and the 
surface unit vector, n, relative to a surface where 
the boundary conditions are defined. 
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includes the effect of neutrons present from external sources. External sources are neutron 

sources that are independent of the neutron flux, Y. 

The boundary condition used for this equation is that for a nonreentrant surface. This 

condition implies that once a neutron leaks from the geometry it will not be scattered back 

into the geometry (i.e. a vacuum boundary condition). The nonreentrant boundary 

condition (Duderstadt and Hamilton, 1976) is typically written as 

Y(rs,E,$2) = 0, if $2ms e 0 (2.2) 

As shown in Figure 1, rs is some location on the surface of the geometry, n, is a unit 

vector on the surface of the geometry pointing away from the surface, and $2 is a unit 

vector representing the direction the neutrons are traveling. If Qm, is less than zero, 

neutrons are entering the surface; similarly, if $2ms is greater than zero, neutrons are 

exiting the surface. 

We will also assume that there are no external neutron sources. The implication of this 

assumption is we are dealing with a critical system. As a result, the external source term in 

Equation 2.1 is set equal to zero. Equation 2.3 is the general form of the transport equation 

with its associated boundary conditions that will be used to derive the excess reactivity 

equation using first order perturbation theory. 

QeVY(r,E,Q) + XJr,E)Y(r,E,Q) = 

Es( r ,E '+E ,Q '+ $2)Y (r ,E' ,Q ')dE'd$2' + 

X O  kJJ vEf(r,E')Y(r,E',$2')dE'd$2' 
4n 

with Y(r,,E,R) = 0 if Q.n, e 0  
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Note that Equation 2.3 has an additional factor of l/k in front of the fission term. This 

factor is the eigenvalue for the equation and enables a nontrivial solution to be found 

(McDaniel, 1993). The inverse of the eigenvalue, k, is the effective multiplication factor 

for the system and indicates whether the system is critical (k=l), subcritical (k<l), or 

supercritical (k>l). 

The general procedure for deriving the reactivity equation (Bell and Glasstone, 1970; 

Carmichael, 1970; Duderstadt and Hamilton, 1976; Hansen and Maier, 1960; Hopkins, 

1971; Weinberg and Wigner, 1958) is to use the forward transport equation (Equation 2.3) 

with perturbed quantities substituted in for the angular flux, cross sections, and eigenvalue. 

Then multiply this equation by the adjoint flux. Next, the adjoint transport equation is 

multiplied by the perturbed forward flux and subtracted from the previous equation. At this 

point, certain terms may be neglected depending on the order of the approximation used in 

the calculation. The equation is then integrated over all phase space (position, dr; energy, 

dE, and direction, dn). Finally, the equation is solved for the change in the eigenvalue and 

thus the reactivity. This procedure is detailed in the remainder of this chapter. 

The first step in obtaining the reactivity equation is to deal with the energy and angular 

direction integrations on the scattering and fission terms in Equation 2.3. To remove the 

energy dependence, the multigroup approximation (Duderstadt and Hamilton, 1976; 

McDaniel, 1993; O'Dell et al., 1989; O'Dell and Alcouffe, 1987) is used. This 

approximation divides the continuous energy range of the neutrons into a finite number, 

NOG (number of groups), of energy groups. Integrating Equation 2.3 over each of the 

finite energy groups (see Equation 2.4) results in a system of NOG coupled equations as 

illustrated in Equation 2.6a. 



Q.VY(r,E,Q) dE + Et(r,E)Y(r,E,Q) dE = I 
5 mg 

Zs( r ,Et+ E,Q'+Q )Y (r ,E',Q t)dE'dQ' dE + J Jj  

vZf(r ,E')Y (r ,E',Q ')dE'dQ ' dE 

By definition, the angular neutron flux for energy group g is: 

Yg(r,Q) = A Y ( r , E , Q )  d E  

g 

(2.4) 

(2.5) 

Upon substituting Equation 2.5 into Equation 2.4, the multigroup neutron transport 

equation becomes: 

E ?v$'(r)Yg,(r,Q') dQ' g = 1, ... , NOG (2.6a) 
g' 

The group averaged parameters presented in Equation 2.6a for the total, scattering, and 

fission cross sections and the X distribution are defined as follows: 

(2.6b) 
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Zs(r,E'+E,Q'+R)Y (r,E',Q') dE' yd, 

J Y(r,E',Q') dE 

g' 
AE 

(2.6d) 

The angular integrals ,.I Equation 2.bd are acu-essed by first lookdg at the factors 

multiplying the angular fluxes in these two terms. Inherent in the fission term is the 

assumption that the fission process is isotropic, thus the factor of 1 / 4 ~ ,  so the factors 

multiplying the angular flux in the fission term can be pulled outside the integral. 

Second, only isotropic scattering is being considered in this derivation. This 

approximation is acceptable because the cross section library (Bell et al., 1963; Hansen and 

Roach, 1969) used in the reactivity calculations contains only isotropic (Po) scattering data 

and the total cross sections have had transport corrections applied to compensate for the 

anisotropic component in the scattering. The spherical harmonics expansion of the angular 

scattering term (ODell et al., 1989) is given by: 

(2.7a) 



For the case where only isotropic scattering (L = 0 and Po = 1) occurs, Equation 2.7a 

reduces to the angular independent form: 

(2.7b) 

Substituting Equation 2.7b into Equation 2.6a results in two angular independent 

factors that multiply the angular flux in the scattering term; these terms can also be pulled 

outside of the integral. 

In general, the integral over angle in Equation 2.6a can be calculated numerically (see 

Appendix A for details) as: 

MM 

m= 1 J -  

The transport code (Alcouffe et al., 1992; ODell et al., 1989) used in this work to 

calculate the unperturbed fluxes utilizes the method of discrete ordinates to handle the 

angular variables (a), so this method is used to handle the numerical integrations over 

angle in Equation 2.6a. With the discrete ordinates method, the continuum in which a 

neutron can travel is divided into MM discrete directions (Szm); the resulting discretized 

angular flux (ODell and Alcouffe, 1987) is defined as: 

where the quadrature weight, wm, represents the discrete area on a unit sphere 

corresponding to the direction Qm which is normalized by a factor of l / 4 ~  such that: 
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MM 
C W m  = 1 

m=l 

From this method, the scalar flux for group g, $ (r), is defined as: 
g 

MM 

(2.10) 

(2.1 1) 

and approximately equals the integral of the flux over all angles. In the limit of an infinitely 

small surface area, AA, the integral is exact. Thus by adding a factor of 1/4n and being 

selective on the choice for the finite areas (ODell and Alcouffe, 1987), the general 

numerical integration approximation is converted to a discrete ordinates approximation. 

Substituting the integral approximation from Equations 2.8 and 2.1 1 in the two 

integral terms of Equation 2.6a results in: 

NOG NOG 

g = 1, ... , NOG (2.12) 

Note that the two l/471: terms in the fission and scattering terms are no longer present in 

Equation 2.12. These factors were absorbed into the numerical integration approximation 

for the discrete ordinates method described in Equations 2.9 and 2.10. 

2.2 Adioint Transport Equation 

As stated earlier, the adjoint transport equation will be used in the derivation of the 

reactivity equation; henceforth, the theory of adjoints and their implications in neutron 

transport theory is discussed. 
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From the theory of linear algebra (Friedman, 1956), every bounded linear operator L 

has a corresponding adjoint operator L*. The adjoint operator can be found by calculating 

the inner (or scalar) product of two functions. This inner product is defined as: 

where dp represents all phase space. The adjoint operator must satisfy the following 

condition. 

In the above equation, <D is referred to as the adjoint flux that receives the adjoint operation, 

and cp is the forward flux operated on by the linear operator L. 

Specific operators that occur in the neutron transport equation in Equation 2.3 include: 

First, the adjoints of operators that do not result in the production of neutrons (Le. fission) 

or in energy or angular transfer (Le. scattering) will be calculated. Such operators include 

some sort of removal process, such as q or Or, and system wide constants. 

Constant operators 

For the operator Lcp = &(r,E)q(r,E,R), its adjoint is found as follows: 

= cp(r,E,l2){Z;t(r,E)@(r,E,R))dr dE dQ = (9, L*@) (2.15) 
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Since L operates on cp as a scalar multiplier, the commutative (AB = BA) and associative 

(A[BC] = [ABIC) laws of scalar multiplication are used to rearrange L so that it operates on 

0. In this case, L = &(r,E). = L*, so this operator is self-adjoint. In general, all constant 

operators are self-adjoint. This being the case, the term l/k is also self-adjoint since it is a 

system wide constant. 

Production operators 

This section discusses production operators which include those that produce neutrons 

by either creating them (fission) or redistributing them (scattering). These operators also 

fall into the category of constant operators because they act on the flux as scalar multipliers. 

An additional conversion step is required so that the variable notation on the adjoint flux 

conforms to the notation on the forward flux (Henry, 1975; Lewins, 1965). 

The calculation of the adjoint scattering operator: 

Lq = JjZp,Ef+E,Q'+ Q)q(r,E',Q') dE'dQ' (2.16) 

is shown in Equation 2.17 (Henry, 1975; Lewins, 1965). A change in variables and in the 

order of integration is performed in the last two lines, respectively, of this equation so that 

the adjoint flux is a function of the same variables as the forward flux. With changing 

variables in an integral, there is also a corresponding change in the limits of integration to 

reflect the new variables (Purcell and Varberg, 1984). This issue will not be addressed 

here because the information needed to determine the adjoint operator is the final form of 

the integrand after the forward operator is moved from the forward flux to the adjoint flux. 
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= (cp,L*@) (2.17) 

where 

L*@ = Jps(r,E+E',Q+Q')@(r,E',Q') dE'dQ' 

The adjoint of the fission operator, L v  = x(E) Jlv(E')z,(r,E')cp(r,E',Q')dE'dQ', is 

(Henry, 1975; Lewins, 1965): 

= k@F cp( r ,E$) v (E)Zf( r,E)fiR' IdE' x (E')@ (r ,E' $2') 

where 

L*@ = v(E)Z&r,E)Jjx (E')@ (r ,E', Q')dE'dQ' 

The adjoint operators for the production terms fall out more directly when the general 

perturbed reactivity equation is defined and an arbitrary weighting function is introduced 

into the equation. This weighting function, which turns out to be the adjoint function, is 
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set so that certain higher order terms drop out when a first order approximation is assumed 

(Henry, 1975; McDaniel, 1993). 

Leakage operators 

The adjoint for the leakage operator, L = QeV, can be calculated without specifying a 

specific geometry or number of dimensions; consequently, the generality of the derivation 

is maintained. Several mathematical tools will be useful in performing this derivation. The 

first is the use of Gauss' Divergence Theorem (Bell and Glasstone, 1970; Purcell and 

Varberg, 1984; Tuma, 1987) in Equation 2.19. This theorem converts a volume integral 

into a surface integral and will be useful when defining the adjoint boundary condition. 

V S 
Id3, V=A = J d S  n.A (2.19) 

Here, n is a unit vector normal to the surface of S ,  pointing outward from S (similar to n, 

in Figure 1). Last, variations of the following vector identity (Tuma, 1987) will come in 

handy where a is a scalar quantity and A is a vector quantity: 

V=(aA) = aV.A + A=Va (2.20) 

The steps for determining the adjoint of the leakage operator are detailed below: 

(2.21a) 

The omega vector can be put in the argument of the V operator because Q is not a 

function of the variables on which V operates (i.e. V.(Qcp) = Q.Vq + qV=Q = Q=V(p 

since the derivative of a constant, Q, is zero). 
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Using the identity in Equation 2.20 again, the function @(r,E,R) can be placed in the 

argument of the V operator with the functional arguments dropped to simplify the notation: 

In order to obtain the adjoint operator, the condition in Equation 2.14 must be satisfied. 

For this to occur, the first term in the above equation must go to zero; the second term is the 

adjoint operator. By applying Gauss' Divergence Theorem, the volume integral in the first 

integral of Equation 2 .21~  is converted into a surface integral as shown in Equation 2.21d. 

Applying the forward boundary condition and defining an appropriate adjoint boundary 

condition will result in this term having a value of zero. 

The first integral is split into two components so that the directions in which the 

boundary conditions are defined are explicitly implied in the equation: 

The first integral equals zero because the forward boundary condition states that 

cp(rs,E,R) = 0 for n.Q < 0 and the integral is evaluated over the surface which the 

boundary condition is defined. In order for the second integral to have a value of zero, the 

adjoint boundary condition can be defined such that @(r,,E,R) = 0 for nmR > 0. 

Applying both sets of boundary conditions removes the extra term in Equation 2.21d so 

that the condition in Equation 2.14 is satisfied which results in the definition of the adjoint 

leakage operator, L*= -LbV. The forward and adjoint leakage operators differ by only a 

minus sign for all geometries and dimensions. 
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Upon substituting all the adjoint operators derived above into the adjoint equation, 

results in the final form of the adjoint equation that will be used in the next section along 

with its corresponding adjoint boundary conditions. 

NOG NOG 

* 
where Yg(rs,Q) = 0 if nons > 0 and g = 1, ... , NOG (2.22) 

* * 
In Equation 2.22, the terms Yg and 9, represent the adjoint angular and adjoint scalar 

fluxes. In reactor theory, these also signify the neutron importance (Bell and Glasstone, 

1970) which indicates how a given neutron will affect future generations of neutrons. For 

instance, if a region of a core has a high neutron importance relative to another area, then a 

neutron in that area will be more likely to increase the neutron population (for instance by 

causing additional fissions) than one in the other area. One would expect the neutron 

importance to be low at the surface of an unreflected reactor because it is most likely a 

neutron at the surface will escape the reactor and not cause additional fissions. On the other 

hand, a thermal neutron at the center of the core would be expected to have a high neutron 

importance because (1) it is very unlikely it will leak from the reactor and (2) for the case of 

a thermal reactor, the fission probability is much higher at thermal energies. Neutron 

importance functions can be measured and calculated for non-fissioning materials as well. 

One possible use for this data would be for determining the best location to place a control 

rod in a thermal reactor. 
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2.3 Perturbation Equation 

With the forward and adjoint transport equations defined, we are ready to introduce a 

perturbation to the critical system. This system change can be in the form of a geometry 

effect (i.e. Q.V) or a material replacement of some sort (i.e. Es, v&, &, or x) .  The 

perturbation will also affect the neutron fluxes and the eigenvalue of the critical system. 

These changes can be represented as follows: 

(2.23) 

where the dotted terms on the left hand side of Equation 2.23 (note the slight notation 

change) represent the perturbed values and the 6 terms on the right hand side represent the 

amount a particular parameter is changed due to a change in the critical system parameter. 

Substituting the quantities in Equation 2.23 into Equation 2.12 results in the forward 

perturbed transport equation as shown below. 

NOG NOG 

g = 1, ... , NOG 
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Note that in Equation 2.24 the unperturbed chi factor, X ,  is used. An explicit 

perturbation on X is not included here because it is not a typical perturbation parameter (Bell 

and Glasstone, 1970; Engle et al., 1954; Hansen and Maier, 1960; Peterson, 1953), and it 

is not possible to use more than one value in a flux calculation (Alcouffe et al., 1992; 

ODell et al., 1989). 

With the adjoint (Equation 2.22) and perturbed (Equation 2.24) transport equations 

defined, it is now possible to proceed with the derivation of the reactivity equation. The 

general procedure for doing this is as follows (Bell and Glasstone, 1970; Carmichael, 

1970; Hansen and Maier, 1960; Hopkins, 1971; Weinberg and Wigner, 1958). First, the 

adjoint equation is multiplied by the forward perturbed angular flux. Similarly, the 

perturbed equation is multiplied through by the adjoint angular flux. These two equations 

are then subtracted from one another at which point the resulting equation is integrated over 

all phase space (dr, dE, and dQ). Finally, the equation is solved for the change in the 

eigenvalue which gives the reactivity. The remainder of this section provides some of the 

details that lead to the final reactivity equation. 

First, Equation 2.22 (the adjoint transport equation) is multiplied by the perturbed 

angular flux, Y'(r,Q), and Equation 2.24 (the perturbed transport equation) is multiplied 

by the adjoint angular flux, Yg(r,Q). Equation 2.25 shows the result after these two 

g * 

equations are subtracted from one another. 

* * * g o *  
Yg S2.VYi + Y; QeVY, + c;.gY; Yg - Et Y, Y, = 

NOG NOG 

g = 1, ... , NOG 
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Integrating Equation 2.25 will be delayed a few steps to simplify the notation. At this 

point, the primary simplifying assumption is introduced; the perturbation effect on the 

system is small so the perturbed fluxes are not appreciably different from the original 

unperturbed fluxes (see Equation 2.26). With this small perturbation constraint, the 

unperturbed fluxes can be substituted into Equation 2.25 in place of the perturbed fluxes 

with little error (Ussachoff, 1955). 

(2.26a) 

(2.26b) 

The assumptions in Equation 2.26 are the source of the name first order perturbation 

theory. If the perturbed flux was represented in the form of a Taylor expansion, the error 

term would be first order in AY (Appendix B illustrates this for another case). 

The next simplification is to expand the perturbed eigenvalue using a Taylor expansion, 

the result is shown in Equation 2.27 (see Appendix B for the details). This expansion is 

valid for small changes in l/k, but this requirement is all ready satisfied when using the 

flux approximation in Equation 2.26. 

(2.27) 

Substituting Equations 2.26 and 2.27 into Equation 2.25 results in Equation 2.28 after 

integrating this equation over all phase space. Note that the energy dependence has already 

been accounted for by applying the multigroup energy approximation earlier, so integrals 

over energy are not required. 
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f r  NOG 

g = 1, ... , NOG (2.28) 

In simplifying this equation, the first integral term on the left-hand side will be 

addressed first. This first term contains all the leakage operators and is eliminated by 

application of the forward (Equation 2.2) and adjoint (Equation 2.22) boundary conditions. 

Using Gauss' Divergence Theorem from Equation 2.19, the volume integrals that are 

operating on the leakage terms are converted into surface integrals over which the boundary 

conditions are defined. The result is shown in Equation 2.29. 

* JJ * 
(Yg Q.VYg -t Yg Q.VYg) drdQ = Q.VYgYg drdQ = 

* JJ * 
V*(QYgYg) drdQ = n.QYgYg dSdQ = JJ 

The integral in Equation 2.29 goes to zero because of the forward and adjoint boundary 

conditions: Yg(rs,Q) = 0 if Q.n, e 0 and Yg(r,,Q) = 0 if Q.n, > 0. The surface 
* 

over which the integration in Equation 2.29 is performed is the same surface on which the 
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boundary conditions are specified, and since the forward and adjoint angular fluxes are 

zero on the surface, the resulting integral is also zero. 

Now is a good time to perform the angular integrals on the remaining four integral 

terms in Equation 2.28. Note that the only factors dependent on angle in Equation 2.28 are 

the angular fluxes, so the angular integral can be pulled inside the summations on the 

scattering and fission terms such that the integrand contains only the angular flux. 

Recalling the approximation in Equation 2.1 1 where the integral of the angular flux roughly 

equals the sum of the angular flux times its appropriate weighting factor, and that this tern 

by definition is the scalar flux, removes the angular dependence from the scatter and fission 

terms. The numerical integration of the total cross section integral is essentially the same 

except there is no way to explicitly remove the angulas flux terms as was done in Equation 

2.1 1. For this case, the numerical integration looks like: 

(2.30) 

Equation 2.28 now looks like: 

g = 1, ... , NOG (2.31) 
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The total cross section term, the scattering cross section term, and part of the fission 

term can be simplified by using the definitions in Equation 2.23. Even though some of the 

indices do not match in the fission and scattering terms, when the series are written out, the 

terms reduce to those listed in Equation 2.32. 

g = 1, ... , NOG (2.32) 

Only two steps remain to derive the reactivity equation. The first step is to integrate 

each term over the entire volume of the system. This process is accomplished using the 

approximation in Equation 2.8. The only values that are not dependent upon position in 

Equation 2.32 are the factors involving k, the multiplication factor. The remaining values 

are position dependent, so they will end up with position dependent indices. In this case, 

the weighting factor will be the fine mesh volume at each calculation point which is 

determined by ONEDANT. The general numerical integration result over dr is shown in 

Equation 2.33 where IT is the total number of fine mesh spaces, V is the volume of each 

fine mesh space, and ox is some arbitrary position dependent group constant. 

(2.33) 

The last step is to solve the equation for Ak/k2 which is the reactivity, p. This result is 

shown in Equation 2.34 where there are three terms in the numerator and one term in the 

denominator of this equation. Equation 2.34 has units of fraction of reactivity; dividing by 

the effective delayed neutron fraction (peff) will convert the units to dollars of reactivity. 
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(2.34) 

2.4 Compariso n with Other Formulations 

In this section, Equation 2.34 is compared with other reactivity equations to confirm the 

validity of the derivation in the previous section. In particular, first order perturbation 

theory calculations by Bell and Glasstone (1970), Hansen and Maier (1960), and 

Carmichael(l970) are reviewed. 

Bell and Glasstone define the first order reactivity equation as follows: 

-I Au $$ t) dV dR dE + A[ofJ  $$ $ dV dQ' dE' dR dE 
- - - 1 (2.35) 
Ak 

k* - v o f $ l $  dV dR'  dE' dQ dE 
471: 

VOf 

4n 
where of = -+ oxfx ox = scatter cross sections 

CT E total cross section 

k* I perturbed eigenvalue 

Qt = adjointflux 
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Equation 2.35 matches Equation 2.34 except for two points: (1) the denominator in 

Equation 2.35 contains unperturbed cross sections whereas Equation 2.34 has perturbed 

cross sections and (2) the perturbed eigenvalue is present in Equation 2.35 whereas the 

unperturbed eigenvalue is used in Equation 2.34. The perturbed eigenvalue in Equation 

2.35 arises from the use of a different expansion technique for the perturbed eigenvalue 

(assuming k = l), in particular (Bell and Glasstone, 1970): 

-Ak + -  + - = -  1 1 1 1 - 1 

k* - k* - k k k kk* 
- - -  (2.36) 

However, the Taylor expansion in Equation 2.27 was used to obtain Equation 2.34. For 

small changes in k (less than lo%), the two approximations (Equations 2.27 and 2.36) are 

within 1% of each other. 

Based on the equations used by Bell and Glasstone to derive the reactivity equation 

(Equation 2.35), the perturbed value for the fission cross section should be used in the 

denominator. Since it is not included in the final form, the assumption was most likely 

made that, because the perturbation has such a small effect on the system, performing the 

integral over the entire volume with the perturbed cross sections will not differ much from 

the integral calculated using the unperturbed cross sections. This is a reasonable 

assumption given that experimental reactivity measurements are typically based on adding 

small quantities of material to a void rather than replacing fuel with the perturbation material 

(Engle et al., 1954; Peterson, 1953). Also, the requirement that the perturbation has a 

small effect on the flux distribution (see Equation 2.26) minimizes the effect regardless of 

whether void or fuel is displaced. 

Next, the reactivity derivation presented by Hansen and Maier (1960) is compared. 

The general form of their reactivity equation is: 
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(2.37) 

Y p A [ x v o f  + 03 Q? dr  dQ' dE' dQ dE - J Y p  A[o;l Qt dr  dQ dE 

where 

Y p  [ x v o ~ ] ~  q t  dr  dQ' dE' dQ dE 

o = scatter cross section 

kp I perturbed eigenvalue 

9' adjointflux 

Yp i perturbedforwardflux 

Note that in Equation 2.37, the perturbed cross sections are present in the denominator. 

After applying the assumptions for first order perturbation theory, Equation 2.37 takes the 

final form (Hansen and Maier, 1960): 

A k =  

4 A [ X v a f  + 03 Q t  dr  dl2' dE' dQ dE - Q A[ot] Q? dr  dQ dE 

(2.38) 

Q [ X V O ~ ]  Q? dr  dR' dE' dR dE 

Equation 2.38 is identical in form to Equation 2.35, thus the previous discussion also 

applies here. 

Last, the derivation by Carmichael (1970) is presented. Their final form of the 

reactivity equation is already discretized and has been simplified to correspond with the 

derivation in Equation 2.34 (i.e. no delayed neutrons and a single value for X )  as follows: 

(2.39) 
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where 

1 

= c c c k ", x$ (V"f)g,y$g,y$*g',y 
Y g g' 

In the above equation, y is the isotope index, g and g' are energy indices, n is the 

angular quadrature index, * indicates an adjoint parameter, 9 is the scalar flux, and Y is the 

angular flux. Again, unperturbed cross sections are used in the denominator as explained 

before. There also appears to be an extra factor of l/k in the denominator (the F term). 

However, if both sides of Equation 2.39 are multiplied by a factor of lk, the l/k factor 

cancels in the denominator and the left-hand side looks like 1Wk2 which is the same form 

found in Equation 2.34 when the Taylor expansion approach is used to remove the 

perturbed eigenvalue from the equation. 

Based on these three comparisons, it appears the formulation in Section 2.3 is 

consistent with the other references. 
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CHAPTER 3 

DISCUSSION OF PERTURBATION CODE 

This chapter discusses the incorporation of the reactivity equation derived in the last 

chapter into a computer code that uses the flux, cross section, and geometry data generated 

from ONEDANT. The computer code operation and limitations are discussed, and a 

sample problem is reviewed. 

3.1 Overview of Computer Code 

A computer code named REACT was written using FORTRAN (Etter, 1987) to 

calculate the reactivity using Equation 2.34. The necessary cross section, geometry, and 

neutron flux data for this program are supplied from the binary files generated from 

running ONEDANT. The specific perturbation data (e.g. perturbation location, 

replacement material, and delayed neutron fraction) are entered from the keyboard. The 

reactivity code gathers all the data, calculates the reactivity, and prints the results to the 

screen with the units of fraction and dollars of reactivity. 

The reactivity code can be run on any computer system that has a FORTRAN compiler, 

but to avoid problems with converting the binary files to different machine formats, it is 

recommended that it be run on the same machine as was ONEDANT. The arrays used in 

the reactivity program are not dynamically dimensioned, so there is the possibility that the 

machine may not have sufficient memory to create the executable file. However, this has 

not been a problem on a SUN SPARC station IPX. 

Performing a reactivity calculation experimentally requires two measurements: (1) of 

the unperturbed critical system and (2 )  of the perturbed critical system. The unperturbed 

system consists of the assembly without the replacement sample in place. The system is 

usually setup so there is an empty space in the location where the sample will go. In cases 

where the samples are in containers, an empty container is placed where the sample will go 
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for the unperturbed measurement. Once the critical condition has been achieved in the 

assembly for the unperturbed case, the replacement material is placed in the assembly for 

the perturbed measurement. The assembly is again brought to critical with the sample in 

the assembly. The change in control rod position between the perturbed and unperturbed 

measurements is a measure of the reactivity worth of the sample. A positive reactivity 

indicates the system was made supercritical by adding the sample. A negative reactivity 

indicates the system went subcritical with the addition of the sample. The reactivity 

measurement method describe here is just one way to do a reactivity calculation (Henry, 

1975) and is the one used in the Lady Godiva measurements (Engle et al., 1954; Engle et 

al., 1960; Hansen and Maier, 1960) that will be modeled shortly. 

The experimental reactivity calculation can be duplicated numerically using perturbation 

theory. With first order perturbation theory, only the unperturbed system needs to be 

modeled, but two calculations need to be performed: one for the unperturbed forward flux 

and one for the unperturbed adjoint flux as indicated by Equation 2.34. In most cases, the 

modeled system does not exactly match the actual experimental system because of 

geometrical limitations (i.e. spherical, cylindrical, or Cartesian) of the transport code used 

to calculate the neutron fluxes in the assembly. The next two sections discuss how the 

ONEDANT input file is setup and run for the flux calculations and how the reactivity code 

works. Finally, Section 3.4 goes step-by-step through a sample problem with the REACT 

code. 

3.2 Running ONEDANT code 

As stated previously, ONEDANT solves the one dimensional time independent 

transport equation using the multigroup energy approximation (Duderstadt and Hamilton, 

1976; O'Dell et al., 1989; O'Dell and Alcouffe, 1987) and the discrete ordnance 

approximation for the angular dependence (O'Dell et al., 1989; ODell and Alcouffe, 

1987). Position dependence is handled by using finite differencing techniques, and several 
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methods are used to accelerate the convergence of the fluxes and eigenvalues (ODell et al., 

1989). The input file to ONEDANT supplies the geometry, material compositions, and 

calculational parameters necessary to solve the problem. Appropriate cross section data 

must also be supplied either in the input file or in a separate file. 

As ONEDANT solves the transport equation, many binary data files (ODell et al., 

1989; ODell, 1977) are generated. These files contain the various code specifications, 

angular and scalar fluxes, macroscopic cross sections, etc. that will be used by the 

reactivity code. Table I lists the particular binary files that are needed by the reactivity 

code. The first column contains the name of the binary file, the second column gives a 

brief description of the file, and the last column indicates whether the file was created from 

a forward run (F) or an adjoint run (A) of ONEDANT. The data in column 3 will be 

discussed in detail later. Detailed file formats for all of the binary files are listed in either 

Appendix A of the ONEDANT manual (ODell et al., 1989) or in the report discussing 

standard interface files (ODell, 1977). 

Table I. ONEDANT binary files used by reactivity code. 
I 

File Name 

AAFLUX 

ATFLUX 

GEODST 

MACRXS 

RAFLUX 

RTFLUX 

SNCONS 

Contents 

adjoint angular fluxes 

adjoint scalar fluxes 

geometry data for problem: coarse mesh 
intervals, material assignments to mesh 
intervals, etc. 

material macroscopic cross sections 

forward angular fluxes 

forward scalar fluxes 

angular quadrature constants 

Run (F/A) 

A 

A 

F 

F 

F 

F 

F 



To use the REACT code, it is necessary to run the ONEDANT code in both the forward 

and adjoint calculational modes. Figure 2 illustrates a sample input file for ONEDANT. 

Additional information on how to setup this file is available in the ONEDANT manual 

(ODell et al., 1989). 

1 0 0 
Lady Godiva Model, unperturbed case 

/ 
/ *** block i *** 

igeom=sph ngroup=16 isn=16 niso=118 mt=3 
nzone=3 im=2 it=47 
t 

/ 
/ ***  block ii (geometry) *** 

xmesh=O. 0,O .7269,8.760 
xints=7 40 
zones=O 1 

t 
/ 
/ ***  block iii (cross sections) *** 

lib=bxslib 
t 

/ 
/ *** block iv (mixing) *** 

matls=fuel "235-yr" 0.044879 
" ~ 2 3 8 ~ "  0.003018; 

sl "235-yr" 0.047912; 
s2 "u238y" 0.047306; 

assign=matls; 
t 

/ 
/ *** block v (solver) *** 

ith=O ievt=l isct=O ibr=O raflux=l 
epsi=0.00001 epso=0.000001 

t 

Figure 2. Sample input file for ONEDANT: modeling the 
unperturbed Lady Godiva assembly. 

In Figure 2 the sample problem is a ONEDANT model of the unperturbed Lady Godiva 

critical assembly. Lady Godiva is a sphere of uranium metal with a radius of roughly 8.76 

cm. A one inch diameter glory hole runs through the center of the assembly where 

replacement samples, 1/2" x 1/2" right circular cylinders, are placed and packed around 

uranium metal inserts. The sample itself is placed inside a hollowed insert. Figure 3 is a 
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outer diam. 
17.52 cm 

glory hole diam. 
2.54 cm 

Figure 3. Simplified cross sectional drawing of the Lady G d i v a  critical assembly. 
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cross sectional drawing of the Godiva assembly illustrating some of these features. An 

effective density is used in the number density calculations to account for the presence of 

various voids in the assembly which are not modeled in ONEDANT. In the one- 

dimensional model listed in Figure 2, the cylindrical samples are modeled as spheres with 

the same volume and the glory hole is assumed to be completely filled with uranium metal 

inserts as was the case in the actual experiments. 

The XMESH statement in Block 11 lists the boundaries of the replacement sample 

(0.7269 cm) and the critical assembly (8.760 cm). The ZONES statement indicates that the 

first coarse mesh region is composed of a void, representing the location of the 

replacement sample for the unperturbed case, and the second coarse mesh region is fuel. 

Block IV is where the material compositions are supplied to ONEDANT. Both the 

unperturbed materials, those comprising the assembly: fuel, shielding, etc., and the 

replacement materials are defined here. The MATLS statement creates the material 

macroscopic cross sections from the isotopic microscopic cross sections supplied in Block 

111. The material cross sections are assigned zone numbers with the ASSIGN statement. 

These zone numbers are used by the ZONES statement in Block I1 to assign material cross 

sections to each of the coarse mesh intervals defined in the XMESH statement. The 

replacement materials will not be used in the flux calculation because they are not included 

in the ZONES statement in Block 11, but they will be supplied to the MACRXS file because 

they are included in the ASSIGN statement of Block IV. Based on the ASSIGN=MATLS 

statement used in the sample problem: 

Material 1 = Zone 1 E "fuel" 

Material 2 = Zone 2 = "sl" 

Material 3 Zone 3 = "s2" 

(3.1) 

NOTE: the ASSIGN=MATLS statement must be used when making the materials. 

Any mixing performed in the ASSIGN statement is not directly saved, only the mixing in 
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the MATLS statement is retained explicitly in the MACRXS file. REACT is not setup to 

handle remixing materials after the fact; therefore, all the material mixing must be done in 

the MATLS statement; consequently, the user is relied on to perform this calculation. 

There is no real limit on the number of materials that can be specified in the MATLS 

array provided there is enough computer memory to store all the data. The same is true for 

the REACT code. However, if more samples need to be calculated which were not 

included in the original MACRXS file, another file can be created from ONEDANT without 

running the entire flux calculation again. An example of an input file used in this situation 

is shown in Figure 4. 

1 0 0 
Lady Godiva Model, unperturbed case 

/ 
/ ***  block i *** 

igeom=sph ngroup=16 isn=16 niso=118 mt=3 
nzone=3 im=2 it=47 nosolv=l 

t 
/ 
/ *** block ii (geometry) *** 

xmesh=0.0,0.7269,8.760 
xints=7 40 
zones=O 1 

t 
1 
/ ***  block iii (cross sections) *** 

lib=bxslib 
t 

/ 
/ * * *  block iv (mixing) *** 

matls=fuel "235-yr" 0.044879 

sl "b" 0.14151; 
s2 "ni" 0.09130; 

"u238y" 0.003018; 

assign=matls; 
t 

Figure 4. Sample input file for ONEDANT for obtaining 
additional macroscopic cross sections without 
rerunning the entire code. 

Note the differences between the input file in Figure 2 from the one in Figure 4: 
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(1) The statement NOSOLV=l was added to Block I. This statement suppresses 

the running of the solver module. 

The replacement samples in Block IV are for different materials. The 

unperturbed materials, in this case the "fuel", should always be included. 

Only the replacement materials (i.e. "sl", "s2", ...) should be changed, 

added, or deleted. 

(3) Block V has been deleted from the input file. This last step in not necessary 

because the NOSOLV option prevents the solver module from executing. 

(2) 

After running ONEDANT with the abbreviated input file, two files, the MACRXS file and 

the GEODST file, need to replace the previous file versions. Both of these files contain 

information relevant to the number and type of materials that were created in Block IV. 

To obtain the forward and adjoint fluxes, the code has to be run twice. Once with the 

I T H  parameter set equal to zero (forward calculation) and once with ITH set equal to 1 

(adjoint calculation). Referring back to the last column in Table I, the files that are used for 

the reactivity code from the forward run are those with the letter F in the third column. 

Using the MACRXS and SNCONS files from the forward run eliminates several 

conversion steps relating to energy and angle order. Specifically, the energy order is 

reversed and the angular directions are reflected in the files from the adjoint run (ODell et 

al., 1989; ODell, 1977). It does not make a difference which run the GEODST file is 

pulled from, so the forward file was chosen and tested. Similarly, the files in Table I with 

an A in the last column should be taken from the adjoint run. 

Any multigroup cross section library with any scattering order can be used with 

ONEDANT to calculate the fluxes. In the reactivity calculation, REACT only uses the Po 

scatter cross sections; however, REACT can handle cross section libraries with higher 

orders of scattering; this information is simply not stored after it has been read in from the 

MACRXS file. The only concern in handling higher orders of scattering is that the SCAT 

array in REACT is dimensioned large enough to hold all the scattering data initially. There 
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is indeed a check to make sure of this fact and appropriate error messages are listed if the 

check fails. However, when running ONEDANT to obtain the forward and adjoint fluxes, 

use the highest order of scattering (ISCT) that results in the most reasonable eigenvalue. 

Using a lower scattering order in the flux calculation does not reduce the number of 

scattering cross sections stored in the MACRXS file; all the available scattering cross 

sections are included. Calculations illustrating the effect of scattering order on the 

calculated reactivity are included in the results section. 

A final note is presented on how ONEDANT handles changes to the X parameter that 

can be made on the input file. The ONEDANT manual indicates there are two locations in 

the input file where the value of X can be changed. One location is in Block I11 with the 

CHIVEC statement and the other is in Block V with the CHI statement. When the cross 

section file is in the form of a BXSLIB, a XSLIBB, or a MACBCD file, using the 

CHIVEC statement in Block I11 does not change the X values that are used in the flux 

calculation or that are written to the MACRXS file. The X values stored in the cross section 

file are still used. If the CHI statement in Block V is used to change the X values, the new 

values input in Block V are used in the flux calculation; however, these new values are not 

stored in the MACRXS file. The value stored in MACRXS is the X that was in the input 

cross section file originally. This can be a problem if the X ' s  stored on the cross section 

file are all zeros. 

To get around this problem, edit the cross section file directly, before running 

ONEDANT, to update the X values. If the cross section file is a binary file, do the 

following to create an ASCII file that can be edited. Run a ONEDANT input file with 

NOSOLV = 1 in Block I (as shown in Figure 4) and add WRITMXS = XSLIBB to Block 

111. This step creates an ASCII version of the BXSLIB file. Make the necessary changes 

to the X data which are located at the top of the XSLIBB file. Now, run the ONEDANT 

input file without the NOSOLV and WRITMXS statements and change the LIB statement 
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in Block I11 to LIB = XSLIBB. Now the new X data will be used in the flux calculation 

and written to the MACRXS file where it can be accessed by the reactivity code. 

3.3 &ration of Reactivitv Codg 

Once all the binary files are gathered and placed in a directory where they can be 

accessed, the REACT code can be executed. The only information that the user will have 

to supply is (1) the number of fine mesh locations undergoing a perturbation, (2) the 

number of each fine mesh interval with its corresponding replacement material number, and 

(3) the effective delayed neutron fraction for the system. The mesh interval and 

replacement material numbers are entered as single line, space delineated entry of the form: 

"FM# MAT#". The order in which the meshes are entered is not important. If the 

delayed neutron fraction is not known, simply enter a zero; the reactivity in units of dollars 

will not be calculated. Recall that the material numbers are based on the order in which the 

materials are listed in the MATLS statement (see the relations in Equation 3.1). Once all the 

data is entered, the calculation will proceed and the results will be printed on the screen. 

Finally, the option to do another calculation with the existing data files is presented. An 

affirmative answer prompts the user for the next set of perturbation data while a negative 

answer ends the program (see Figure 5). 

Figure 5 is a calculational flow diagram for REACT. REACT, indicated by the dotted 

box in Figure 5, is the driver code that calls the subroutines, indicated by the rounded 

rectangles in Figure 5, to do their assigned tasks. The order shown in Figure 5 is the order 

in which each of the subroutines is executed. Appendix C contains descriptions for each of 

the subroutines shown in Figure 5. Note that in case there is an error in reading one of the 

files, all the binary files are read before the user is prompted to enter the perturbation 

information from the terminal. 

Several checks have been implemented in the code to minimize erroneous 

computations. For instance, when the flux files are read, the number of dimensions is 
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Figure 5. Flow diagram of reactivity code REACT. The rectangular boxes 
are input files, the rounded rectangular boxes represent subroutines, 
and the outer dashed box represents the main program REACT. 
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verified not to be greater than one. This was added to ensure that files from TWODANT 

(Alcouffe et al., 1992), the two dimensional version of ONEDANT, were not used 

inadvertently. This is a possible concern because some of the file names used by 

TWODANT are the same as those used by ONEDANT. 

When data is stored in arrays, the number of data points stored in the array is compared 

with the maximum dimensions of the array to assure that the arrays are not undersized 

which could result in the loss of data. The maximum dimension (LIM) is set at 100 for all 

the arrays with the exception of the SCAT array located in the subroutine that reads the 

cross section data. This array is dimensioned at 1000 (NSLIM) because SCAT is a one 

dimensional array that holds all the scatter cross sections (Po and up) for all the materials of 

a given energy group when they are initially read from the binary file MACRXS. This can 

be quite a large number. Variables that are checked include: the number of energy groups 

(NOG), the number of fine mesh points (IT), the number of fine mesh boundaries (IT+l), 

the number of angular directions (MM), and the number of scattering terms. Whenever one 

of these checks fails, an error message listing the subroutine in which the error occurred 

and the type of error is printed on the terminal. The program then terminates so that the 

problem can be fixed. 

Another check is performed on the replacement material entered from the keyboard. If 

the entered material number is greater than the available material numbers, an error message 

is printed on the screen and the operator is asked to reenter both the mesh number and the 

material number again. A warning is also printed if the perturbation material and the 

original material are the same for a given fine mesh space. This occurrence does not cause 

a fatal error, but it may be an indication that data was not entered properly. The resulting 

calculated reactivity will include this data variation, so the result may be incorrect. Simply 

type "y" when asked to do another calculation and reenter the perturbation data again. This 

check is performed during the reactivity calculation, so nothing can be changed until the 

calculation is finished. 
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3.4 Samule Problem Using. Reactivitv Code 

In this section a specific calculation is stepped through from beginning to end. The task 

is to calculate the central reactivity worths in the Lady Godiva assembly for a pure metal 

sample of 23% and a pure metal sample of 23*U. Lady Godiva (Engle et al., 1954; Engle 

et al., 1960; Hansen and Paxton, 1969; Peterson, 1953; Wenz and Busch, 1994) is 

essentially a spherical uranium metal assembly which has a critical mass of 52.65 kg, an 

effective density of 18.7 g/cm3, and a 235U enrichment of 93.7 wt%. The radius of a 

sphere with these mass and density values is 8.76 cm. Reactivity worth measurements 

were performed in Lady Godiva (Engle et al., 1954; Engle et al., 1960; Peterson, 1953) by 

placing samples in the center of the core. Specifically, the glory hole was filled with 

uranium metal plugs. The plug at the center was hollow so that a cylindrical 1/2" by 1/2" 

sample could be placed inside it. For the unperturbed case, the plug at the center was 

empty; the plug was then filled with a given material for the perturbed measurement. 

Experimentally, the change in the control rod positions between the unperturbed and the 

perturbed systems was used to infer the reactivity of the sample based on previous control 

rod calibration measurements (Engle et al., 1954). 

The input file for this calculation, Figure 2, has been discussed previously. Based on 

this input file, there are seven fine mesh regions (see XINTS statement in Block 11) 

established in the first coarse mesh region that define the replacement sample. Since the 

material assigned to this region is a void (ZONE 0), this model is for the unperturbed 

system, as it should be. The order of the materials in the MATLS statement in Block IV 

corresponds to the material numbers that will be used when REACT is run (i.e. material 

number 1 is "fuel", material 2 is "sl", and material 3 is "s2"). 

The ONEDANT code is ready to be run in the forward and adjoint modes to obtain the 

necessary binary files. After running the first ONEDANT calculation, move the 

appropriate files (based on Table I) to another directory so that they will not be overwritten 
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when ONEDANT is run for the second time. Once all the files are generated, place them all 

together where REACT can access them. 

Now the REACT code can be executed. Appendix D contains the listing of the 

interactive session between the user and the program. The plain text shows the questions 

asked by the code, and the responses from the user are in bold text. In this example, the 

executable file is called "xpert." First the number of perturbed fine mesh spaces is entered: 

>7 

Next, the fine mesh number followed by the replacement material number are entered: 

>1 2 <ret> 

>2 2 <ret> 

U 
>7 2 <ret> 

Last, the effective delayed neutron fraction is entered 

>0.0065 

The reactivity fraction and the reactivity in units of dollars are then printed to the screen. 

When asked to do another calculation, the response is yes, so the code requests new 

perturbation data again. The entries are the same as before except material 2 is replaced 

with material 3. The perturbation information is the only data read in again. Upon 

completion of the calculation, the code execution is ended. Appendix E summarizes the 

steps necessary to do a reactivity calculation with the REACT code as illustrated by the 

previous example. Last, Appendix F contains listings of all the source code including the 

subroutines and the driver program. 



CHAPTER 4 

NUMERICAL RESULTS 

This chapter summarizes the results from calculating reactivities using the REACT 

computer code and compares them with experimental values. The effect scattering order 

has on the reactivity calculation is illustrated, and a brief study of code execution times is 

provided. 

4.1 Calculations Usiw Reactivitv Code 

Central reactivity worths for a number of different materials have been determined 

experimentally in Lady Godiva (Engle et al., 1954; Engle et  al., 1960; Peterson, 1953). 

These are compared with values calculated numerically using the reactivity equation derived 

in Section 2.3 and implemented in a FORTRAN computer code called REACT. Two cross 

section libraries are used in these calculations: the Hansen-Roach library (Bell et al., 1963; 

Hansen and Roach, 1969) and the MENDF library (Little, 1987). The Hansen-Roach 

library is a 16 energy group library containing Po cross sections for all its isotopes plus Pi 

cross sections for hydrogen and deuterium. Multiple cross sections exist for each of the 

fissionable isotopes in the library to account for different amounts of resonance self- 

shielding through the calculation of a potential scattering cross section (Busch and ODell, 

1991). The MENDF library is a 30 energy group library with a maximum scattering order 

of P4. The resonance integrals for the fissionable isotopes are calculated for an infinitely 

dilute system (the opposite of a metal system). However, this library is suitable for 

calculations with the Lady Godiva assembly because the energies of the dominant fluxes in 

Godiva are well above the resonance energies in 23% and 238U (Eres < 100 keV, Wenz 

and Busch, 1994). 

Figure 6 is a plot comparing the energy group boundaries for the two cross section 

libraries for groups with energies greater than 0.1 MeV. The MENDF library has roughly 
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MENDF: 30 neutron groups 

HANSEN-ROACH: 16 neutron groups 

.1 1 10 

Neutron Energy (MeV) 

12 

Figure 6. Comparison of energy group structures for the Hansen-Roach 
(lower data) and the MENDF (upper data) cross section libraries. 
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three times as many energy groups as the Hansen-Roach library in this energy range. This 

increased energy definition may account for some of the trends in the upcoming tables. 

Column two in Table I1 shows the results of reactivity calculations using the REACT 

code with the Hansen-Roach library. The third column of Table I1 lists the experimentally 

determined reactivities along with the experimental uncertainty for the cases where that 

information was available. The last column lists the ratio of the calculated reactivity to the 

experimental reactivity. 

Table 11. Central reactivity worths (cents/mole> 
calculated i 

Material 

H 

D 

Be 

B 

C 

Al 

Fe 

c o  

Ni 

cu 

CU-OR 

Th 

235u 

238u 

239Pu 

240Pu 

(Sn= 16) 

55.5 

21.7 

10.0 

-6.4 

4.0 

1.2 

0.18 

0.58 

-4.4 

-0.09 

-1.4 

1.5 

137 

21.6 

260 

167 

-Roach librar 
Experiment 

(Ref. 9, 10, 16) 

47.8 

17.8 

7.3 f 1.1 

-6.9 k 0.3 

2.4 k 0.3 

0.5 f 0.3 

-0.2 & 0.3 

-0.6 f 0.3 

-4.4 f 0.3 

-1.8 f 0.3 

-1.8 k 0.3 

-1.4 rt 0.3 

149 

24.3 

285 

170k 17 

REACT 
EXP 

1.16 

1.22 

1.37 

0.93 

1.67 

2.40 

-0.90 

-0.97 

1 .oo 
0.05 

0.78 

- 1.07 

0.92 

0.89 

0.91 

0.98 
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Most of the calculated reactivities in Table I1 are well within a factor of two of the 

experimental values with the exception of iron, cobalt, and thorium which are also off by 

the sign of the reactivity change. The reactivity worths for the low atomic mass isotopes 

are overestimated compared to measured values. This trend may be a result of the isotropic 

scattering treatment for these forward scattering isotopes. Beryllium has the added effect of 

(n,2n) reactions that may skew the calculation towards more positive reactivity values, and 

carbon has some slight resonance activity in the scattering cross section at energies greater 

than 1 MeV that may account for the high calculated value as well. 

Thorium-232 is an example of an isotope with a fast fission threshold cross section. 

This cross section increases by several orders of magnitude across the four highest energy 

groups of the Hansen-Roach library, so the limited number of energy groups in this range 

may be overemphasizing the fission cross sections in some of the energy groups resulting 

in a more positive reactivity effect compared to the experimental value. However, the 

experimental reactivity for thorium is found to be negative contrary to what the cross 

section data suggests and the spontaneous fission and (a ,n)  rates suggest. Calculations in 

this thesis and other reports (George and LaBauve, 1988) all indicate a positive reactivity 

effect as well. The thorium sample is quite small; experimentally, the change in reactivity is 

on the order of 0.001 dollars using a change in control rod position measurement 

technique. This measurement method may not be precise enough to measure the small 

change in reactivity and may indicate the experimental uncertainty is larger than what is 

reported. 

Several of the cross sections on the Hansen-Roach library are marked as having 

unknown origins indicating they are not directly traceable to either of the original reports 

(Bell et al., 1963; Hansen and Roach, 1969) documenting the data. Consequently, these 

cross sections should be used with this fact in mind. The copper cross section used to 

calculate the first copper reactivity in Table I1 is the only one that falls into this category. A 

new version of the Hansen-Roach library (ODell, 1994) has been released which contains 
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data for 167 isotopes. The added cross section data comes from Oak Ridge in a Hansen- 

Roach format. Performing the same copper calculation with the Oak Ridge copper data 

resulted in much better agreement with experiment (see Table 11, "Cu-OR"). An average 

calculated reactivity to experiment ratio of 0.78 was found as compared to 0.05. So, 

inconsistently derived cross section data may also be affecting the reactivity result for this 

particular isotope. 

In general, isotopes with calculated reactivities differing markedly from measured 

reactivities have cross section issues that are responsible for the discrepancy. The presence 

of resonances in the dominant flux energy groups (e.g. Al, Fey Co) or cross section values 

that are changing by orders of magnitude in a single energy group (i.e. Th) which are not 

well represented in a finite energy group structure are two examples of such issues. It is 

interesting to note that the calculations performed by George and LaBauve (1988) using a 

diffusion based perturbation code with an 80 energy group cross section library also 

resulted in large discrepancies between calculated and experimental reactivities for iron, 

aluminum, and thorium, just to name a few. Their calculated reactivity for thorium also 

had a sign error, and it was the only isotope that had such an error. 

Table 111 contains the same information as Table I1 for reactivity calculations made with 

the MENDF library. With this library, the reactivity worths for the low atomic mass 

isotopes are underestimated compared to the measured values (e.g. H, D, C, and Al). In 

Table III, the only case in which the calculated sign does not agree with the experimental 

sign is for thorium-232. The calculated-to-experiment reactivity ratio tends to be closer to 

1.0 and fewer sign errors occur for the MENDF library when compared with results from 

the Hansen-Roach library. Much of this improved precision can be attributed to the greater 

energy definition in the 30 group library as illustrated in Figure 6. 
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Table III. Central reactivity worths (centdmole) 
F library. 
Experiment 

calculated 7 

Material 

H 

D 

Be 

B 

C 

Al 

Fe 

co  

Ni 

c u  
Th 

235u 

2 3 8 ~  

239Pu 

240Pu 

:h the MEh 
REACT 
(Sn = 16) 

37.3 

16.1 

7.9 

-7.4 

1.8 

0.06 

-0.66 

-0.55 

-4.1 

-1.3 

1.6 

137 

23.1 

265 

167 

(Ref, 9, 10, 16) 

47.8 

17.8 

7.3 f 1.1 

-6.9 f 0.3 

2.4 f 0.3 

0.5 k 0.3 

-0.2 k 0.3 

-0.6 & 0.3 

-4.4 f 0.3 

-1.8 f 0.3 

-1.4 k 0.3 

149 

24.3 

285 

170k 17 

REACT 
EXP 

0.78 

0.90 

1.08 

1.07 

0.75 

0.12 

3.30 

0.92 

0.93 

0.72 

-1.14 

0.92 

0.95 

0.93 

0.98 

4.2 Effect of Scattering Order on Reactivitv Calculations 

Two sets of calculations were run to illustrate the effect cross section scattering order 

has on the calculated reactivities. The scattering order affects the calculated reactivity 

through the fluxes and the eigenvalue calculated from ONEDANT since only Po scattering 

data is used in the reactivity calculations. This stipulation also implies a transport corrected 

total cross section is not used in the reactivity calculation even though one is used in the 

flux calculation as indicated below. 
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Flux data were obtained from ONEDANT using the MENDF library for cases where 

ISCT = 0 and ISCT = 3 with TRCOR = DIAG (a transport correction to the total cross 

section; ODell et al., 1989). Running ONEDANT with ISCT = 3 and TRCOR = DIAG 

results in essentially the same eigenvalue as if ISCT = 4 were used except less computation 

time is required. Table IV lists the reactivities calculated with the two flux cases plus the 

ratio of the two calculations. The Po calculations (ISCT = 0) underestimate the reactivity 

particularly for isotopes where scattering is a significant interaction. 

Table IV. Central reactivity worths (centdmole) 
calculated with the MENDF library as a function 
of scatterinf 

Material 

H 

D 

C 

235u 

238u 

239Pu 

xder used i 

ISCT = 0 

25.3 

9.3 

0.27 

126 

15.2 

253 

flux caicuk 

ISCT = 3 

36.1 

15.6 

1.7 

135 

22.5 

263 

on. 
ISCT = 3 
ISCT = 0 

1.43 

1.68 

6.30 

1.07 

1.48 

1.04 

Including the effect of anisotropic scattering in the flux calculations has the effect of 

decreasing the scattering cross section. The spherical harmonics expansion of the 

scattering term in Equation 2.7a results in Legendre polynomials, PL(Q'*Q), that produce 

negative values for quadrature angles less than 0.5 (which happens for quadrature orders 

greater than two). The negative polynomials result in a reduction in the scattering cross 

section as defined by Equation 2.7a. Comparison of the forward and adjoint fluxes 

calculated with isotropic (ISCT = 0) and anisotropic (ISCT = 3, TRCOR = DIAG) 

treatments of the scattering term reveal, in general, that the isotropic fluxes are larger in 

magnitude than the anisotropic fluxes. Also, the effective multiplication factor is larger for 
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the isotropic case than it is for the anisotropic case. Going from an isotropic to an 

anisotropic model indicates the neutrons are not being redistributed (moderated) as 

effectively to energy groups that are more likely to cause more production (fission). 

This decrease in moderator effectiveness for anisotropic scattering is expected. The 

kinematics of an elastic scattering collision between a neutron and a target atom indicates 

two trends (Duderstadt and Hamilton, 1976): (1) more neutron energy is lost per collision 

as the atomic mass of the target nucleus decreases and (2) the smaller (more forward) the 

scattering angle between the scattered neutron and the target nucleus, the less energy that 

will be transferred from the neutron to the target atom (in other words, a backscatter event 

causes the greatest energy loss in the neutron). It is primarily the second trend that is 

affecting the flux distributions for the two scattering models. Isotropic scattering implies 

there is an equal probability for a neutron to scatter in all directions. Anisotropic scattering 

says that the scattering is biased in a particular direction. For neutrons in the laboratory 

system, the bias is in the forward direction; as a result, the effectiveness of a target atom to 

moderate a neutron is reduced. This is evident in the decreased neutron fluxes and effective 

multiplication factor for the anisotropic calculation. 

Table IV indicates the reactivity for a given material increases for the anisotropic 

scattering case which is the opposite effect based on the above discussion. Now, we need 

to look at the parameters that are affected in the reactivity calculation. In Equation 2.34, the 

cross sections and the volumes remain unchanged, but the fluxes and the eigenvalue are 

reduced. The reduced flux population increases the effect the denominator has on the 

reactivity because dividing by a smaller number is equivalent to multiplying by a larger 

number. The addition of a given material to a system with a smaller neutron population (in 

this case caused by the anisotropic scattering model) will have an overall larger effect on the 

system as indicated in Table IV. 
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4.3 Run Time Compariso nS 

Several flux calculations were performed with ONEDANT and TWODANT to 

determine code execution times for some simple and more complex geometries. The results 

from these tallies help illustrate the usefulness of perturbation codes for reducing computer 

calculation time. These calculations were run on two machines: (1) a SUN SPARC station 

IPX, a common machine used for computations at Los Alamos, and (2) a VAX 6000-320, 

a machine used for computing at the University of New Mexico. Both the Hansen-Roach 

library and the MENDF library with multiple scatter orders were used in these calculations 

when possible. 

Table V lists the execution times from ONEDANT for computing the fluxes in a one- 

dimensional sphere of uranium metal. From these calculations, one-dimensional problems 

require minimal calculational time even for higher order scatter problems, so application of 

a perturbation code may not be as time effective except, possibly, for problems with large 

mesh structures. 

Calculation Description 

Execution Time (sec.) 

SUN VAX 

I 3*7 I 20-o 
40 mesh, 16 energy groups, ISCT = 0 

I 7.6 
40 mesh, 30 energy groups, ISCT = 0 68.9 

40 mesh, 30 energy groups, ISCT = 3 I 12.8 I 117 

Table VI lists the flux computation times from TWODANT for a two-dimensional 

uranium metal cylinder on the two computers. It is really with the more complicated 

problems that the utility of perturbation codes becomes evident. Execution times are now 

up to an hour for a 40 x 40 mesh calculation with 30 energy groups and P3 scattering 

order. For the case where multiple hour runs are required, a perturbation code could 
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reduce the computing time significantly because only two transport calculations would be 

required and the execution time of the perturbation code is minuscule in comparison to the 

transport code run times. Data are not available for the VAX with the 30 group, 40 x 40 

mesh problems because of memory limitations, but scaling the known VAX data in Table 

VI by the ratio of the SUN to VAX execution times gives approximate times on the order of 

three to ten hours. Here, use of a perturbation code could save days of computation time. 

Calculation Description 

40x40 mesh, 16 energy groups, ISCT = 0 

Execution Time (min.) 

SUN VAX 

10.6 74.8 

20x20 mesh, 30 energy groups, ISCT = 0 

40x40 mesh, 30 energy groups, ISCT = 0 

40x40 mesh, 30 energy groups, ISCT = 3 

60.7 
6*3 I 
21.7 

66.2 

As an example, to calculate 10 reactivities for a given system two transport calculations, 

one forward and one adjoint for the unperturbed case, would be required for a reactivity 

calculation using perturbation theory. Using a 40 x 40 mesh with 30 energy groups and 

isotropic scattering, the execution time on the SUN would be -45 minutes and -6 hours on 

the VAX. Now, if this calculation were done using the Ak/k equation, 11 transport 

calculations, 10 perturbed and one unperturbed, would be required taking -4 hours on the 

SUN and -33 hours on the VAX. This example clearly shows the reduction in execution 

times possible with perturbation codes. Another factor to consider is the times quoted in 

Tables V and VI represent the amount of CPU time required for the calculation, not the 

amount of elapsed time which could be more. If each of the ten reactivity calculations is for 

a different system then the same number of transport calculations is required for both 

methods. Based on time considerations, perturbation theory may not be the preferred 
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calculation method but it definitely would be if all the calculations were being done on the 

same system. 

Finally, a comparison of reactivities calculated using perturbation theory and those 

calculated using a straight Ak/k calculation where both perturbed and unperturbed effective 

multiplication factors are used is shown in Table VI1 for selected isotopes. The second 

column is the reactivity calculated with perturbation theory using the REACT code, and the 

third column is the reactivity calculated with the formula Ak/k. In these calculations, the 

same angular quadrature, meshing, and cross section files were used. The results show 

there is close agreement between the two calculational methods indicating the small flux 

perturbation assumption is valid for these isotopes. 

Table VII. Comparison of reactivity calculations 
(centdmole) using perturbation theory, and the 
Ak/k equation. 

Material 

Be 

B 

C 

Al 

Fe 

co 

Ni 

235u 

2 3 8 ~  

REACT 

10.0 

-6.4 

4.0 

1.2 

0.18 

0.58 

-4.4 

137 

21.6 

10.1 

-6.8 

4.1 

1.2 

0.19 

0.60 

-4.3 

147 

20.4 

REACT 
Ak/k 

0.99 

0.94 

0.98 

1 .oo 
0.95 

0.97 

1.02 

0.93 

1.06 
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CHAPTER 5 

CONCLUSIONS 

The reactivity calculations using the REACT computer code based on the equation 

derived in Chapter 2 agree well with experimental values. Of the two cross section libraries 

used in these calculations, the MENDF library which has the greater energy definition in 

the dominant flux groups for the modeled Lady Godiva assembly resulted in reactivities 

that agreed the best with experiment. Materials that still exhibited large differences between 

calculation and experiment tend to have cross section data that vary greatly over small 

energy ranges. These energy ranges are much smaller than the width of the energy group 

structures in either of the cross section libraries and, consequently, are difficult to model 

accurately. The resonances in iron and the fast fission threshold in thorium are just two 

examples of such data. This limited energy resolution is a problem in any code that uses 

discretized cross section data. 

The overall agreement between reactivities calculated using perturbation theory and 

those calculated using the Ak/k formulation is on the order of 10% for materials that do not 

violate the small perturbation assumptions. Section 4.3 shows how the use of perturbation 

codes can greatly reduce the amount of time spent performing calculations. A simple two- 

dimensional 40x40 mesh problem using 30 energy groups and three orders of scattering 

takes over an hour to run on a SUN SPARC station IPX. Reactivity calculations for 10 

materials could take days to run using a hklk approach to the calculation, where as using a 

perturbation code could reduce the time to a single afternoon. Even if all the materials will 

not satisfy the assumptions of the reactivity code, any portion that do could save 

considerable computation time, particularly as the complexity of the modeled problem 

increases. 

Another feature of reactivity codes in general is their ability to provide a more direct 

means to determine the effect of slight variations in cross section data on a system. Since 
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the replacement material is not being homogenized with other components, any change in 

the calculated reactivity is due directly to the change in the cross section data of the 

replacement material. Thus, uncertainty analysis in cross section data is well suited for this 

calculational method along with the fact that many calculations can be run within a short 

period of time. 

One issue that has not been addressed in detail is the range in which perturbation 

calculations are valid. There is no simple formula to indicate whether a calculation is valid 

or not. In fact, most papers and text books that deal with perturbation theory are rather 

vague on this subject. Most authors say that if the resulting reactivity is large, then the 

calculation should be considered suspect because the small flux perturbation assumption 

may no longer be valid. McDaniel (1993) placed a value of one dollar of reactivity (in 

either direction) as being large. This is a reasonable upper limit because a reactor is prompt 

critical at one dollar above delayed critical. If the reactivity level remains below prompt 

critical, the neutron population will grow slowly such that it can be controlled well within 

the time scale of human response times implying a small perturbation has been made to the 

system. The possibility of maintaining a steady state (or quasi-steady state) flux 

distribution is much more likely for this situation. If the system exceeds prompt critical the 

neutron population will grow without bound on a much shorter time scale, and the 

assumptions used in first order perturbation theory will, no doubt, be violated 

Such a loose criterion for determining situations in which first order perturbation theory 

is valid puts a great deal of responsibility on the user of this (or any) reactivity code to 

make sure the results of the calculation are reasonable. Of course, a perturbed flux 

calculation could be performed and compared with the unperturbed case to verify the flux 

perturbation is small, but this would somewhat defeat the purpose of using a perturbation 

code in the first place. However, by simply looking at the system being modeled (flux 

distributions) and knowing the behavior of the cross sections of the perturbation materials, 

the user should be able to estimate whether a particular calculation will violate the 
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assumptions of the code. For instance, placing a small boron sample in a fast reactor will 

probably not have a large effect on the local flux distribution around the sample. However, 

if this same measurement were performed in a thermal reactor, like the AGN-201, the 

change in the local flux distribution about the sample would probably be large enough to 

invalidate a reactivity calculation done with a first order perturbation code because of the 

large thermal absorption cross section boron possesses. 

One final note is the application of this reactivity code is not strictly limited to 

unreflected metal systems, the case for which the code was tested. This code could be 

readily used for reflected metal systems and even thermal systems provided that the 

boundary conditions for which the reactivity equation was derived are satisfied (i.e. 

vacuum boundary condition). Reflected systems are readily applicable to this cock because 

the continuity boundary conditions at material interfaces are inherent in the finite 

differencing scheme used to numerically calculate the fluxes (O'Dell and Alcouffe, 1987; 

ODell et al., 1989). The only major limitation would be the use of isotropic scattering 

cross sections in the reactivity calculations. 
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APPENDIX A 

Notes on Numerical Integration 

m 

I 
I 

I 
I 
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I 
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I 
I 
I 
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I 
I 
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By talung the integral of an analytic function over a specified domain, the area 

underwhich the function is defined is calculated. This area can be calculated numerically 

using a Riemann sum (Purcell and Varberg, 1984) as given by Equation A. 1. 

The Riemann sum simply divides the area under the function f(x) in the domain [a,b] 

into a finite number of rectangles so that the area can be calculated for each rectangle and 

summed. In Equation A.l ,  h i  is the width of the rectangle at i and f(Xiave) is the value of 

the function evaluated at the center of the rectangle. All of these quantities are illustrated in 

Figure 7. As the width of the rectangle is decreased, the numerical calculation approaches 

the analytic value. 

a xi 

< h i ,  

b 

Figure 7. Area representation for numerical integration. 
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APPENDIX B 

Taylor Series Expansion of Perturbed Eigenvalue 

The general procedure for determining the Taylor series expansion of a function is 

discussed here with specific application to the function ljk' which is used in Equation 2.27 

of Chapter 2. The general expression for determining the Taylor series expansion (Purcell 

and Varberg, 1984; Tuma, 1987) of a function about some point a is: 

If n is allowed to go to infinity, the right-hand side exactly equals the left-hand side. The 

above equation can also be written as f(x) expanded about some small change Ax (Ferziger, 

1981; Tuma, 1987). This is the more common form used in deriving finite difference 

formulas for numerical differentiation and is the form that will be used here. 

Ax2 Axn 
f(x+Ax) = f(x) + AX f(x) + f"(x) + ... + n! P(x) 

Expanding x about some small Ax as applied to the l/x function when using the f i s t  

order approximation of the Taylor series expansion gives: 

1 
f(x) =- 

X 

-1 
f(x) = - 

X 2  

1 A x  
x x2 

f(x+Ax) = f(x) + AX f(x) = - - -  

Changing the above to the k notation yields 

f(k+Ak) = f(k) + Ak f(k) 

where 
1 

f(k+Ak) = - 
k' 

1 
f(k) = f; 

(B.3) 

(B.4) 

-1 
f(k) = 3 

Substituting the values into Equation B.4 leads to the following first order approximation 

which is the form listed in Equation 2.27 of Chapter 2. 
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When using the Taylor expansion, the point that is being expanded about is k. In this 

analysis, k represents the effective multiplication factor for the critical unperturbed reactor, 

so k is equal to 1, the critical condition. Because of the small change in flux assumption 

(Equation 2.26), there is a corresponding small change in k. k is therefore bounded 

roughly between [0.9,1.1] and will not approach zero (where a singularity in the function 

l/x exists). 
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APPENDIX C 

Description of Computer Program and Subroutines 

The following is a list of the subroutines in the reactivity program REACT along with a 

description of the functions they perform and the variables that are supplied to the main 

program. The order in which the subroutines are presented here is in the same order that 

they are listed in Figure 5. 

REACT 

FAFLX1 

FSFLX 1 

AAFLXl 

ASFLXl 

This is the main (driver) program that executes all the 

subroutines that contribute to the reactivity calculation. It also 
controls whether another calculation is performed (as indicated 

in Figure 5). 

This subroutine reads the angular quadrature data fiom the 

SNCONS file. It supplies the quadrature weights (wm), the 

number of dimensions, and the error flag to the main program. 

This subroutine reads the 1-D forward angular fluxes located at 

the mesh point boundaries from the RAFLUX file. The mesh 

centered angular fluxes, the effective multiplication factor, and 
the error flag are sent to the main program. 

This subroutine reads the 1-D mesh centered forward angular 

fluxes from the RTFLUX file and sends them and the error flag 

to the main program. 

This subroutine reads the 1-D adjoint angular fluxes at the mesh 

boundaries from the AAFLUX file. The mesh centered anguli& 

fluxes and the error flag are sent to the main program. 

This subroutine reads the 1-D mesh centered adjoint angular 

fluxes from the ATFLUX file and sends them and the error flag 

to the main program. 
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GEOM This subroutine reads in all the coarse mesh geometry data and 

the material assignment data from the GEODST file. From this 

information, the fine mesh volumes are calculated in Cartesian, 

cylindrical, or spherical geometries. The original (unperturbed) 

material assignments are also determined by fine mesh interval. 

Last, the fine mesh volumes (Vi), the original material 

assignments, the number of fine mesh spaces (IT), and the error 

flag are sent to the main program. 

XSECT This subroutine reads in the macroscopic cross section data from 

the MACRXS file. This data is based on the ASSIGN=MATLS 

statement from the ONEDANT input file and includes both the 

original (unperturbed) and replacement (perturbed) data. Only 

PO scattering data is retained. The scattering, total, and fission 

cross sections, the number of energy groups (NOG), and the 

error flag are sent to the main program. 

PERTDAT This subroutine reads in the data entered from the keyboard 

regarding the number of fine mesh spaces undergoing a 

perturbation, the locations of the fine mesh spaces along with the 

number of the corresponding replacement material, and the 

effective delayed neutron fraction. All of this data is supplied to 

the main program. 

CALCRHO This subroutine calculates the reactivity based on all the 

information supplied from the previous subroutines and prints 

the results to the screen. 
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APPENDIX D 

Output from Sample Run Discussed in Chapter 3 

The following text is a listing of the input and output generated from the running of the 

reactivity program REACT. The bold text is the data that was entered by the user from the 

terminal. Typing the first line starts the execution of the code. The data supplied to the 

program was based on the ONEDANT input file shown in Figure 2. The seven mesh 

points undergoing a perturbation are the total number of fine meshes that make up the fmt 

coarse mesh interval in the input and correspond to the locations of the replacement sample. 

Material 2 is the 235U ("235-yr") sample, and material 3 is the *38U (W38y") sample, per 

Figure 2. 

critical< 194>xpert 

Enter the number of fine mesh spaces that are undergoing 
a perturbation. 

7 

Now enter the cell number for each fine mesh that will 
be perturbed followed by the replacement material number 
(Press return after each entry). eg. "12 3" 

1 2  
2 2  
3 2  
4 2  
5 2  
6 2  
7 2  

Enter the effective delayed neutron fraction, B-eff, 
for the system. (Enter zero if it is unknown.) 

0.0065 
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*** that's all the input *** 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The reactivity due to the perturbation is: 

0.11389E-02 (reactivity fraction) 

0.17522E+00 (reactivity in dollars) 

Beff = 0.006500 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Calculate another reactivity using the same flux and cross section data? (y/n) 
Y 

Enter the number of fine mesh spaces that are undergoing 
a perturbation. 

7 

Now enter the cell number for each fine mesh that will 
be perturbed followed by the replacement material number 
(Press return after each entry). eg. "12 3" 

1 3  
2 3  
3 3  
4 3  
5 3  
6 3  
7 3  

Enter the effective delayed neutron fraction, B-eff, 
for the system. (Enter zero if it is unknown.) 

0.0065 
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*** that's all the input *** 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
The reactivity due to the perturbation is: 

0.17782E-03 (reactivity fraction) 

0.27356E-01 (reactivity in dollars) 

Beff = 0.006500 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Calculate another reactivity using the same flux and cross section data? (y/n) 
n 

critical< 1 9 5  
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APPENDIX E 

Checklist for Running REACT Code 

1. Model the unperturbed assembly with ONEDANT and create an input file. 

Select the geometry (Cartesian, spherical, or cylindrical) that will best model the 
assembly. Make any simplifying assumptions to the model that are necessary to 
accommodate the chosen coordinate system. 

Define the unperturbed materials (those materials that make the structure of the 
assembly: fuel, reflectors, etc.) in the MATLS statement in Block IV of the input file. 
These materials may or may not change from one perturbation calculation to the next 
and should always be included in the input file. 

Define the replacement materials (these correspond to the replacement sample 
materials) in the MATLS statement in Block IV. These materials may change for each 
set of reactivity calculations run. 

Use the ASSIGN = MATLS form of the material assignment statement in Block IV. 

2. 

3.  

Select an appropriate cross section library for the calculations. 

Run ONEDANT in the forward calculational mode (ITH = 0 in Block V). 
Store the following binary files from this run in another directory so they will not be 
over written: 

GEODST 
MACRXS 
RAFLUX 
RTFLUX 
SNCONS 

4. Run ONEDANT in the adjoint calculational mode (ITH = 1 in Block V). 
Store the following binary files from this run in the same directory as the other binary 
files: 

AAFLUX 
ATFLUX 

5 .  Setup symbolic links or do whatever is required so the REACT code can access the 
binary files. 

6. Run the REACT code by typing the name of the executable file. Be prepared to enter 
the following data: 

Total number of fine mesh spaces undergoing a perturbation 

The particular fine mesh number of a mesh undergoing a perturbation and the 

The effective delayed neutron fraction. If this value is not known, simply 

material number of the replacement material being put in this location. 

enter a zero and the unit conversion will not be performed. 
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7. If more replacement materials need to be run with the existing flux data, just add the 
statement NOSOLV=l to Block I and make the necessary additions, deletions, or 
changes to the replacement materials in Block IV. Leave the unperturbed materials as 
they are. 

Now rerun the input file in the forward calculation mode only (ITH=O in Block V). 
Replace the old MACRXS and GEODST binary files with the ones just created. 

Run the REACT code with the new replacement material data. 
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APPENDIX F 

Listings of REACT Subroutines and Driver Program 
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c read  a n g u l a r  f l u x e s  a t  f i r s t  dimension boundar i e s .  Note t h a t  t h e  
c ene rgy  g roups  and a n g u l a r  d i r e c t i o n s  have t o  be r e a d  i n  reverse 
c o r d e r  (as  i n d i c a t e d  i n  LA-6941-MS) for them t o  correspond w i t h  t h e  
c group and d i r e c t i o n s  f o r  t h e  forward c a l c u l a t i o n  and w i t h  
c t h e  a d j o i n t  v a l u e s  p r i n t e d  o u t  in t h e  0DNOUT.DAT f i l e .  
c----------------------------------------------------------------------- 
C 

d o  50 l=ngroup , l , -1  
r e a d ( l 1 )  ( ( a f a d j i ( l , m , i ) ,  m=nd i r , l , -1 ) ,  i = l , n b d r y i )  

50 c o n t i n u e  
C 

C ( t h e  r ema in ing  d a t a  i n  t h e  f i l e  i s  n o t  needed.)  
C c a l cu la t e  a n g u l a r  f l u x e s  a t  t h e  c e n t e r  of t h e  mesh 
C 

d o  52 l = l , n g r o u p  
do 52 m=l ,nd i r  

d o  52 i = l , n i n t i  
a f a d j i  ( l , m , i )  = ( a f a d j i ( l , m , i )  t 

6 a f a d j i ( l , m , i t l ) ) / 2 . 0  
52 c o n t i n u e  

C 
c----------------------------------------------------------------------- 
C 

500 format ( / / ,  



50 

do 50 m=l,nblok 
j l  = (m- l )* ( (ng roup- l ) /nb lok  t 1) 
jup = m*((ngroup- l ) /nb lok  t 1) 
ju = minO (ngroup, j u p )  

r e a d ( 1 1 )  ( ( f a d j ( j , i ) ,  i = l , n i n t i ) ,  
con t  l n u e  



4 
P 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 

s u b r o u t i n e  c a l c r h o  ( p e r t m a t ,  b e f f  ,vo l ,or igmat  ,wm, a f a d  j ,  
h 
h ngroup,sfreg,sfadj,qmat) 

a f r e g ,  e f f k ,  fmat,mmat, n p e r t ,  n d i r , n i n t i ,  n i n t j ,  

Note: * m u l t i p l e  sample p e r t u r b a t i o n s  can be run provided  
t h e  same f l u x ,  geometry and c r o s s  s e c t i o n  d a t a  are 
used (i.e. no new d a t a  can be r e a d  i n ) .  

. . . . . . . . . . . . . . . . . . . .  D e f i n i t i o n s  . . . . . . . . . . . . . . . . . . . .  
d i r e t a  - d i r e c t i o n  c o s i n e  i n  t h e  e t a  d i r e c t i o n  
dirmu - d i r e c t i o n  c o s i n e  i n  t h e  mu d i r e c t i o n  

dirwgt  - q u a d r a t u r e  weight  
ndim - number of  d imens ions  
n d i r  - number of  q u a d r a t u r e  d i r e c t i o n s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i m p l i c i t  i n t e g e r  ( i , j , k , l , m , n )  
Darameter (lim=100. 9i=3.1415926543 

C 
do 72 i = l , n i n t i * n i n t j  

i f  (per tmat  (i) .ne.-1) t h e n  
i f  (or igmat  (i) . eq .per tmat  (i)) w r i t e ( * , 7 2 0 ) i  
do 74 j = l , n g r o u p  
do 74 k=l ,ngroup 

i f  (per tmat  (i) .eq.O) t h e n  
dmmat ( j, k, i) = -mmat ( j, k, or igmat  (i) ) 
d f m a t ( j , k , i )  = - f m a t ( j , k , o r i g m a t ( i ) )  
dqmat ( j , i )  - -qmat ( j , o r i g m a t  (I)) 

) = m a t ( j , k , p e r t m a t ( i ) )  
) = fmat ( j ,k ,per tmat  (i)) 
= qmat ( j , p e r t m a t  (i)) 

e l s e i f  (or igmat  (i) .eq.O) t h e n  

) = m m a t ( j , k , p e r t m a t ( i ) )  - 
) = f m a t ( j , k , p e r t m a t ( i ) )  - 
= q m a t ( j , p e r t m a t ( i ) )  - 

mmat ( j , k , o r i g m a t  (i)) 

fmat ( j ,k ,or igmat  (1)) 

qmat ( j ,o r igmat  (i) 1 





C 

do 90 l = l , n g r o u p  

c o n t i n u e  
r e a d ( l 2 )  ( ( a f r e g i  ( l , m , i ) ,  m = l , n d i r ) ,  i = l , n b d r y i )  

90 
C 

c ( t h e  r ema in ing  d a t a  i n  t h e  f i l e  is no t  needed)  
c c a l c u l a t e  a n g u l a r  f l u x e s  a t  mesh c e n t e r  
C 

do 92 l = l , n g r o u p  
d o  92 m=l.ndir  

do 92 i = l , n i n t i  
a f r e g i ( l , m , i )  = ( a f r e g i ( l , m , i )  t a f r e g i ( l , m , i t l ) ) / 2 . 0  

92 c o n t i n u e  



4 
4 

900 format (/ / ,  'FSFLXl:*** error reading rtflux file * * * I ,  

910 format(//,'FSFLXl:**** arrays undersized for number of I ,  

& 8x,'the number of dimensions is greater than l',//) 

& 'energy groups',//,l4x, 
& 'NGROUP = ',i5,4x,'LIM = ',is,//) 

c----------------------------------------------------------------------- 
C 
91 close (unit=12) 

return 
end 

C 
read (12) ndim, ngroup, ninti, nint j, nintk, iter,effk,power, nblok 
if (ndim.gt.2) then 

write (*, 900) 
iflag - 999 
go to 91 

endif 
C 

C 
do 90 m=l,nblok 

j1 = (m-l)* ((ngroup-1) /nblok t1) t 1 
jup = m* ((ngroup-1) /nblok t 1) 
ju = minO (ngroup, jup) 
read(l2) ((freg(j,i), i=l,ninti), j = j l ,  ju) 

90 continue 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

subroutine geom(vol,origmat,ninti,nintj,iflag) 

This program reads the binary file GEODST produced from either 
ONEDANT or TWODANT in order to calculate cell volumes. The cell 
volumes are based on the fine mesh intervals. The zone numbers 
for each region are read in and converted to zone numbers for 
each fine mesh. Since the ASSIGN=MATLS statement is used in the 
code, the zone numbers relate directly to material numbers and 
thus the original material assignments. 

File format obtained from LA-6941-MS, "Standard Interface Files 
and Procedures for Reactor Physics Codes, Version IV", RDO. 

S 
S 

22 



do 23 ii=l, i f i n t s  (i) 
m = m t l  
origmat (m) - nznr (mr (i, j )  ) 

23 continue 
end i f  

end i f  
C 



s u b r o u t i n e  p e r t d a t  (nmat,pertmat,beff,npert) 
C 

C T h i s  s u b r o u t i n e  r e a d s  which mesh s p a c e s  w i l l  b e  p e r t u r b e d  and  
C t h e  number of t h e  replacement  m a t e r i a l  based  on t h e  o r d e r  i n  t h e  
C "ASSIGN=" s e c t i o n  o f  t h e  ONEDANT/TWODANT inpu t .  

C . . . . . . . . . . . . . . . . . . . .  Subrou t ine  D e f i n i t i o n s  . . . . . . . . . . . . . . . . . . . .  
C matnum - replacement  mater ia l  number f o r  f i n e  mesh "nmesh" 
C nmat - t o t a l  number o f  m a t e r i a l s  
C nmesh - number o f  p e r t u r b e d  f i n e  mesh i n t e r v a l  
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 

i m p l i c i t  i n t e g e r  (i, j ,  k, 1, m, n )  
parameter (lim=100) 
i n t e g e r  pe r tma t  ( l i m )  

C 
c----------------------------------------------------------------------- 
c i n i t i a l i z e  a r r a y  t o  no p e r t u r b a t i o n  s t a t u s , i e .  -1 
c----------------------------------------------------------------------- 
C 

do 60 k = l , l i m  
p e r t m a t ( k )  = -1 

60 c o n t i n u e  
C 
c----------------------------------------------------------------------- 
c r e a d  i n  p e r t u r b a t i o n  in fo rma t ion  from t h e  t e r m i n a l  
c----------------------------------------------------------------------- 
C 

write (*, 600) 
write (*, 605) 
r e a d  (*, * )  n p e r t  
w r i t e  (*, 610) 
d o  62 k = l , n p e r t  

65 r e a d  (*,*)nmesh,matnum 
i f  (matnum.gt.nmat) t h e n  

wri te  (*, 640)matnum 
go t o  65 

e n d i  f 

00 
0 

p e r t m a t  (nmesh) = matnum 
62 c o n t i n u e  

w r i t e  (*,620) 
r e a d  (*, * )  beff 
write (*, 630) 

C 
c----------------------------------------------------------------------- 
C 

60 0 format(/////,24('*-','*'),'"') 
60 5 f o r m a t ( / , ' E n t e r  t h e  number o f  f i n e  mesh s p a c e s  t h a t  a r e ' ,  

610 format  (/, 'Now e n t e r  t h e  c e l l  number f o r  each  f i n e  mesh' ,  
6 ' undergo ing ' , / , '  a p e r t u r b a t i o n .  I , / )  

& ' t h a t  w i l l ' , / , '  be p e r t u r b e d  fo l lowed  by t h e ' ,  
h ' replacement  m a t e r i a l  number ' , / ,  
6 ' (Press r e t u r n  a f t e r  e a c h  e n t r y ) .  eg.  " 1 2  3"'  

620 fo rma t  (/, ' E n t e r  t h e  e f f e c t i v e  d e l a v e d  neu t ron  fractio;,", . .  
h ' 8 - e f f , ' , / ,  
h ' f o r  t h e  system. ( E n t e r  z e r o  i f  it is unknown.) ' , / )  

63 0 format  ( / / ,Ex,  I * * *  t h a t " s  a l l  t h e  i n o u t  * * * I . / / )  



C 

C 
C 
C 

C 
C 

C 

C 
C 
C 
C 

C 

C 
C 
C 

C 

s u b r o u t i n e  quad (dirwgt ,  ndim,ndir,  i f l a g )  

T h i s  program r e a d s  t h e  b i n a r y  f i l e  SNCONS produced from e i t h e r  
ONEDANT or TWODANT i n  o r d e r  t o  o b t a i n  t h e  q u a d r a t u r e  we igh t s .  

F i l e  format  o b t a i n e d  from LA-6941-MSr "Standard I n t e r f a c e  F i l e s  
and P rocedures  f o r  Reactor Phys ic s  Codes, Ver s ion  I V " ,  RDO. 

. . . . . . . . . . . . . . . . . . . .  D e f i n i t i o n s  . . . . . . . . . . . . . . . . . . . .  
d i r e t a  - d i r e c t i o n  c o s i n e  i n  t h e  e t a  d i r e c t i o n  
dirmu - d i r e c t i o n  c o s i n e  i n  t h e  mu d i r e c t i o n  

d i rwg t  - q u a d r a t u r e  weight  
ndim - number of dimensions 
n d i r  - number of q u a d r a t u r e  d i r e c t i o n s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i m p l i c i t  i n t e g e r  ( i , j , k , l , m , n )  
pa rame te r  (lim-100) 
r e a l  d i rwg t  ( l i m ) ,  d i rmu(1im) 
c h a r a c t e r * 6  hname, huse ( 2 )  

- 
open ( u n i t = l l ,  f i l e - '  sncons ' , form=' un fo rma t t ed '  , s t a t u s = ' o l d '  ) 

C 
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C 
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C 

C 
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C 

C 
C 

C 
C 
C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 

00 
h, C 

program r e a c t  

Dr ive r  program t h a t  c a l c u l a t e s  t h e  r e a c t i v i t y  f o r  a g iven  sys t em 
using f i r s t  o r d e r  p e r t u r b a t i o n  t h e o r y .  

. . . . . . . . . . . . . . . . . . . .  Subrou t ine  D e f i n i t i o n s  . . . . . . . . . . . . . . . . . . . .  
a a f l x l  - sub  t h a t  r e a d s  i n  1 D  a d j o i n t  angu la r  f l u x e s  
a a f l x 2  - sub  t h a t  r e a d s  i n  2D a d j o i n t  a n g u l a r  f l u x e s  
a s f l x l  - s u b  t h a t  r e a d s  i n  1 D  a d j o i n t  s c a l a r  f l u x e s  
a s f l x 2  - s u b  t h a t  r e a d s  i n  2D a d j o i n t  s c a l a r  f l u x e s  
c a l c r h o  - s u b  t h a t  c a l c u l a t e s  t h e  r e a c t i v i t y  and p r i n t s  ou t  

f a f l x l  - s u b  t h a t  r e a d s  i n  1D forward  a n g u l a r  f l u x e s  
f a f l x 2  - s u b  t h a t  r e a d s  i n  2D forward  a n g u l a r  f l u x e s  
f s f l x l  - s u b  t h a t  r e a d s  i n  1 D  forward  s c a l a r  f l u x e s  
f s f l x 2  - s u b  t h a t  r e a d s  i n  2D forward  s c a l a r  f l u x e s  
geom - s u b  t h a t  c a l c u l a t e s  f i n e  mesh volumes and r e a d s  i n  

p e r t d a t  - sub  t h a t  r e a d s  i n  p e r t u r b a t i o n  in fo rma t ion  from t e r m i n a l  
quad - s u b  t h a t  r e a d s  i n  q u a d r a t u r e  weights  
x s e c t  - sub  t h a t  r e a d s  i n  c r o s s  s e c t i o n  d a t a  and p u t s  it i n  t h e  

. . . . . . . . . . . . . . . . . . . . .  V a r i a b l e  D e f i n i t i o n s  . . . . . . . . . . . . . . . . . . . . .  
a f a d j  - a r r a y  ho ld ing  t h e  a d j o i n t  a n g u l a r  f l u x  
a f r e g  - a r r a y  ho ld ing  t h e  forward  a n g u l a r  f l u x  
b e f f  - de layed  neu t ron  f r a c t i o n  f o r  t h e  sys tem 
e f f k  - kef f  from forward,  unpe r tu rbed  c a l c u l a t i o n  
fmat - mat r ix  s t o r i n g  f i s s i o n  c r o s s  s e c t i o n  d a t a  
i f l a g  - v a r i a b l e  i n d i c a t i n g  pgm needs t o  be t e r m i n a t e d  because  

a r r a y s  a r e  underdimensioned o r  some o t h e r  l o g i s t i c  e r r o r .  
mmat - mat r ix  s t o r i n g  s c a t t e r i n g  c r o s s  s e c t i o n  d a t a  
nmat - t o t a l  number o f  m a t e r i a l s  s p e c i f i e d  i n  problem 
qmat - mat r ix  s t o r i n g  t o t a l  c r o s s  s e c t i o n  d a t a  
ndim - number o f  geomet r i c  d imens ions  
n d i r  - number o f  a n g u l a r  d imens ions  ( r e l a t e d  t o  n i n  s n )  
ngroup - number of  neu t ron  ene rgy  groups  used i n  c a l c u l a t i o n  
n i n t i  - number of  f i n e  mesh i n t e r v a l s  i n  x d i r e c t i o n  
n i n t j  - number of f i n e  mesh i n t e r v a l s  i n  y d i r e c t i o n  
npe r t  - number of  f i n e  mesh i n t e r v a l s  w i th  p e r t u r b a t i o n s  
or igmat  - a r r a y  s t o r i n g  o r i g i n a l  m a t e r i a l  ass ignments  t o  each 

per tmat  - a r r a y  s t o r i n g  p e r t u r b a t i o n  m a t e r i a l  ass ignments  f o r  

qmat - mat r ix  s t o r i n g  t o t a l  c r o s s  s e c t i o n  d a t a  
s f a d j  - a r r a y  ho ld ing  t h e  a d j o i n t  s c a l a r  f l u x  
s f r e g  - a r r a y  ho ld ing  t h e  forward  s c a l a r  f l u x  
vo l  - a r r a y  s t o r i n g  f i n e  mesh volumes 
wm - a r r a y  s t o r i n g  q u d r a t u r e  weight d a t a  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

i m p l i c i t  i n t e g e r  (i, j ,  k, l ,m,n)  
parameter  ( l i m - 1 0  0) 
i n t e a e r  o r i ama t  ( l i m ) ,  Dertmat ( l i m )  

t h e  r e s u l t s .  

o r i g i n a l  m a t e r i a l  a s s ignmen t s  

form o f  t h e  F and M m a t r i c i e s  

f i n e  mesh i n t e r v a l .  

each  f i n e  mesh i n t e r v a l .  
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s u b r o u t i n e  x s e c t  (fmat,mmat,qmat,ngroup, nmat, i f l a g )  

Th i s  program r e a d s  t h e  macroscopic  c r o s s  s e c t i o n  d a t a  f o r  e a c h  
material  s p e c i f i e d  i n  t h e  MATLS= s t a t e m e n t  from t h e  b i n a r y  f i l e  
MACRXS. The d a t a  is t h e n  p u t  i n t o  t h e  a p p r o p r i a t e  form f o r  t h e  
F and M matricies which a r e  t h e n  s e n t  t o  t h e  main program. 

Note: * t h e  t o t a l  c r o s s  s e c t i o n  i n  p o s i t i o n  j = 3  is used 
* h i g h e r  o r d e r  s c a t t e r i n g  c r o s s  s e c t i o n s  a r e  r e a d  i n  b u t  

c u r r e n t l y ,  t h i s  r o u t i n e  cannot  hand le  d a t a  w i t h  
o n l y  t h e  PO ( I S C T = O )  d a t a  i s  used.  

0 
7 
9 
m 

00 
P 

C 
C 

C 

C 
C 
C 

C 

C 

C 
C 

u p s c a t t e r ;  

a n g u l a r  

C however, it can be e a s i l y  mod i f i ed  t o  do so. 
C * removal c r o s s  s e c t i o n  i s  no t  used because  s i g - t  needs  

C f l u x  wh i l e  sig-s is m u l t i p l i e d  by t h e  s c a l a r  f l u x  
C 

C 

C 
C 

C 

C 

C 

C 

C 
C 

C 

F i l e  format  o b t a i n e d  from LA-9184-MI Rev. "Revised User's Manual 
f o r  ONEDANT ...", RDO, e t  a l .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  D e f i n i t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . .  
fmat - m a t r i x  ho ld ing  f i s s i o n  cross s e c t i o n  d a t a  ( c h i * n u * s i g f )  

mmat - m a t r i x  ho ld ing  s c a t t e r i n g  c r o s s  s e c t i o n  d a t a  
amat - m a t r i x  h o l d i n a  t o t a l  c r o s s  s e c t i o n  d a t a  
islim - max a r r a y  s i z e  f o r  "scat" a r r a y  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

r e a d ( l 1 )  ngroup,nmat,nord,ned, i d p f ,  lng,maxup,maxdn,nprinli21pl 
ned t  = ned t n p r i n  

r e a d  (11) (hmat (1) , i=1, nmat) , (hmat ( j )  , j=1, ned t  ) , 
L ( v e l  (n)  I n = l ,  ngroup)  , ( v e l  (n)  , n=l ,  ngroup) I emin 

C 

h 

24 

do 22 k= l ,ng roup  
r e a d ( l 1 )  ( ( c ( i ,  j ,  k )  , i = l , n m a t )  , j =  
i f  (nord.gt.O) t h e n  

r e a d ( l 1 )  ( ( n g p b ( 1 ,  j ) , l = l , n o r d )  
( ( i f s g ( 1 ,  j ) , l = l , n o r d )  

n t a b  = 0 
do 24 i=l,nmat 
do 24 j = l , n o r d  
n t a b  = n t a b  t n g p b ( j , i )  
i f  ( n t a b . g t  . ns l im)  t h e n  

write(*,200)ntabInslim,k 
i f l a g  = 999 
ao t o  21  

endi-f 
r e a d ( 1 l )  ( s c a t ( j ) ,  j = l , n t a b )  

, ned t  ) 

j = l , n m a t ) ,  
j = l  I nmat) 

C 

c e x t r a c t  PO c r o s s  s e c t i o n  (m=l) and pu t  i n  t h e  p r o p e r  form o f  t h e  
c M m a t r i x  f o r  u s e  i n  t h e  r e a c t i v i t y  c a l c u l a t i o n  
C 

21 

n c n t  = 0 
do 26 l = l , n m a t  

do 21 m=l,nord 
do 27 n= l ,ngpb(m, l )  

ncn t  = n c n t  t 1 
i f  (m.eq.l)  m a t  ( k , k t l - n , l )  = s c a t  ( n c n t )  

c o n t i n u e  

28 
c o n t i n u e  fma t ( j ; k ; i )  c ( i , l ,  j ) * c ( i , z , k )  
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