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ABSTRACT ~“—–-

This work combines focused ion beam sputtering and ultra-precision machining for
microfabrication of metal alloys and polymers. Specifically, micro-end mills are made by Ga ion
beam sputtering of a cylindrical tool shank. Using an ion energy of 20keV, the focused beam
defines the tool cutting edges that have submicrometer radii of curvature. We demonstrate 25~m
diameter micromilling tools having 2, 4 and 5 cutting edges. These tools fabricate fine channels,
26-28 microns wide, in 6061 aluminu~ brass, and polymethyl methacrylate. Micro-tools are
structurally robust and operate for more than 5 hours without fracture.

INTRODUCTION

Currently there is a desire for alternative microfabrication
existing processes such as photolithography/etching LIG& and

techniques that complement
laser drilling. In particular,

techniques are required to fabricate a more diverse set of materials, including metals; alloys and
plastics. These techniques must pattern high aspect ratio features and three-dimensional
structures. Such techniques would be used for prototyping or production of microcomponents
and MEMS-type devices.

In this work focused ion beam (FIB) sputtering is combined with ultra-precision machining
for microfabrication. Using focused ion beam sputtering we fabricate small cutting tools which
are capable of milling complex fatures in a host of materials. An advantage of focused ion
beam systems for fabrication is their precise control over feature size [1]. Typically, the beam is
a fraction of a micrometer in diameter, allowing for small featires with sub-grn tolerances. A
beam can be rastered across a target sample in a number of odd-shaped two-dimensional
patterns. Furthermore, a sample can be positioned or rotated with respect to the beam to produce
a filly three-dimensional object. This has found use in several applications, most frequently for
cross sectioning[2] of integrated circuit electronic devices for failure analysiskeverse
engineering. Also, focused ion beams are used to make sharp scanning probe microscope tips
[3-5] and diamond indenters for hardness testing [6].

Typical ion currents used in commercial FIB systems are low, leading to small-volume
production. Nanoamperes of current generate relatively slow material removal rates compared
with other microfabrication techniques even when chemical assist processes are used. Typicall y
1-5 atoms are removed per incident ion depending on the target material, ion energy and other
geometrical parameters. In this work we offset this slow rate by making tools which can be used
repeatedly. Previous work by Vasile et. al.[7] and others [8] demonstrates various micro-tools
shaped by focused ion beam sputtering. In this proceedng we show several different micro-end
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mills and demonstrate their usefulness by machining metal alloys. All micro-tools made in this
study successfully mill for hours without breaking.

EXPERIMENT

The focused ion beam system [9] consists of a liquid metal ion source, beam deflectors,
sample stage, and channelplate detector for imaging. The ion gun produces an energetic beam of
Ga+ ions. The beam intensity is roughly Gaussian with a fill-width at half-maximum diameter
of 0.4 y.m. Currents are typically 2 nanoamperes giving a current density of about 0.5 Amp/cm2.
The beam is deflected by a digitally driven vector scan system with sub-micron resolution. A
computer controls stage motion with 1pm accuracy, and samples can be rotated by 0.15 0 per
step with an external controller. The Ga+ source chamber is ion pumped and maintains a
pressure of 10-9Torr. The target chamber is oil diffusion pumped with working pressures of 10-8
Torr during sputtering. A small aperture separates the two chambers for eflicient differential
pumping.

Tool blanks are purchased born a commercial vendor and are made of M42 cobalt high
speed steel. Blanks are 5.3 cm long and have a 2.28 mm diameter. One end of each tool is
tapered by diamond grinding. This end is approximately 25 ~m in diameter and cylindrical over
a length of- 90 ~m. Once mounted inside the FIB syste~ the tapered end is first shortened to
85 ~m by sputtering. Facets are then fabricated into the cylindrical length by ion beam
sputtering. The sharp edges of facets are designated as cutting edges for ultra-precision mil1ing.
All sputtering involves energies of 20 keV.

Ultra-precision machining with FIB fabricated micro-tools requires a high precision milling
apparatus. In this study, a Boston Digital milling system uses laser interferometry to mntrol x y
and z position to 0.5 pm resolution- Spindle speeds for this study are 10,000 or 18,000 rpq and
f~d rates are 2 mm/minute unless otherwise specified. For milling the radal runout of a tool is
less than 2 pm and the axial depth of cut is 0.5 or 1.0 micron per pass. Samples machined by
micro-tools are cleaned tierwards by rinsing with methanol. Different lubricants are used during
ultra-precision machining depending on the workpiece material.

RESULTS

Several micro-tools are made using FIB sputtering as shown in Figure 1. These micro-end
mills have 2, 4 or 6 facets with 2, 4 or 5 cutting edges, respectively. With the tool stationary,

Figure 1. SEM micrographs of micro-end mills made with focused ion beam sputtering.
Tools have 2,4 and 5 cutting edges.
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facets are patterned into an initially cylindrical stock with the ion beam impinging normal to the
cylinder axis, but tangential to the circufierence [10]. This ion-solid geometry is chose%
because it produces one edge per facet that is sufficiently sharp for cutting. The edge of a facet
closest to the ion source is rounded. This rounding arises due to the Gaussian intensity of the
beam; although a pattern boundary is defined for ion beam milling by the operator, the tails of
the intensity distribution emend outside of this boundary leading to a curved surface. Typical]y
this deviation is on the order of 1.0 micrometer. Nevertheless, continued ion beam sputtering
with this particular geometry makes the edge firthest from the ion source sharp. A sharp edge is
produccx+ because the ion beam has a truncated intensity distribution tail at the fw side of a facet
due to shadowing by the tool. The radius of curvature of the sharp edges is less than a micron.

As shown in Figure 1 the facet normal direction is perpendicular to the tool axis. We avoid
making a conventional spiral flute geometry for several reasons. First, three-dimensional
micromachining of curved surfaces is complicated by a variation in sputter yield with the
ion/solid angle of incidence[ 11]. A spiral flute requires a distribution of angled features, thus
complicating tool fabrication. Also, rigidity is required for cutting, and we desire to minimize
fabrication time. In general, a small amount of material is removed from the tapered end to
define the cutting edges and provide clearance for chip removal during machining. The rate of
sputter removal for high speed tool steel is - 0.5~m3/sec. Fabrication of individual micro-tools
takes approximately 2 hours depending on the design.

Multiple facets are made by rotating a tool to different orientations with respect to the
beam. Rotation of a tool between sputtering steps can result in all but one sharp edge if desired.
For example, the tool shown in Figure 1 c. (with 6 facets) has 5 sharp cutting edges and one
round edge. In general, tools can be made to cut in a clockwise or a counter-cloclnvise rotation
(or both) for ultra-precision milling. Although the sharper edge of each facet is designated for
milling the rounded edge of micro-end mills may also cut metals.

Micro-tools made by focused ion beam sputtering are tested on a variety of materials.
Ultra-precision machining with micro-tools fust involves poiymethyl methacrylate (PMMA).
All tools shown in Figure 1 successfi,dly machine this plastic. An example of a channel
micromachined by a FIB fabricated micro-tool is displayed in Figure 2. The charnel shown in
this plan view micrograph is 25 pm deep, 28.6 pm wide and 4.0 millimeters long. Compared
with the tool diameter (26.2 ~m), the channel width is slightly larger. We expect this difference
is due to the radial runout of the tool, measured to be -2pm or less. Viewing in cross section, we
find that the slope of the channel walls is approximately 88 degrees.

Figure 2. PMMA micromachined using a
micro-end mill. Plan view optical
micrograph.
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In additio~ FIB fabricated micro-tools are tested on two metal alloys, 6061 Al and brass.
The results of rnicrornilling 6061 Al with a five edge tool are shown in Figure 3. These
micrographs show a channel which is milled -4.5 mm long. As shown in this figure, the channel
is -25 ym deep and approximately 28.2 pm wide. The diameter of the tool used for this test,
26.2 ~m, is slightly smaller than the channel width. Again, this difference is most likely due to
the small radial runout of the tool during machining. For the channel shown in Figure 3, Al is
machined at a feed rate (rate of movement in the plane of the workpiece) of 2mrn / minute and an
axial depth of cut equal to 1.0 yrrdpass. It is clear that micro-end mills made by focused ion
beams can operate at higher feed rates. The four facet tool shown in Figure 1.b. machined a
number of 25~m deep channels in 6061 Al using different feed rates ranging from 2 mm/minute
to 5 cm/minute (axial depth of cut = 0.5 ~m/pass). Machining of the Al alloy totaled
approximately 5 hours and the tool did not fracture. Furthermore, observation with a video

Figure 3. 6061 Al micromachined using micro-end mill.
Plan view and edge-on SEM micrographs. Image on right
shows exit point of micro-tool from edge of workpiece.

microscope during micromachining of 6061 Al (without lubricant) demonstrates that these tools
CUEnot burnish. We observe chip removal for f=d rates of 2mrn/minute and 18,000 rpm using
2-facet micro-tools.

Machining of channels in brass using a 6-facet micro-end mill is demonstrated in Figure 4.
Using a tool with a diameter of 26.6 ~~ a channel is milled 26.5 mm long. It measures 28.7 ~m
wide (at half depth). However, SEM analysis of the channel shows a large amount of material
accumulation at the top edge compared with the machining of 6061 Al and PMMA. It is
possible that these micro-tools burnish brass.

Figure 4. Brass micromachined with micro-end
mill tool having 6 facets. Plan view SEM
micrograph.
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CONCLUSIONS

This work demonstrates that focused ion beam sputtering can be used to extend
conventional machining processes to the microdomain. Several micro-end mills are fabricated
having different numbers of cutting edges. A particular ion beam – sample geometxy described’
herein permits fabrication of cutting edges having submicrometer radii of curvature.., All tools
fabricated by FIB sputtering successfully machine various materials, including at least two metal
alloys. Trenches that are 25 microns deep and millimeters long are approximately 26-28 microns
wide - closely matching the tool diameter. Micro-end mills cut metal alloys for hours without
tool fracture. This suggests that other cutting tools (e.g., drills, scalpels) of similar dimension
may iimction at micron length scales.

Future work will determine the optimum micro-end mill design for ukra-precision
machining of different materials. In additioq we will explore additional materials for tool
fabrication. Attempts to enhance the rate of material removal by chemical assisted sputtering
will be made, provided that edge sharpness is not compromised. It is expected that additions of
commonly used zsist gases containing Cl and F increase the rate of FIB sputtering [12],
particularly for tools made of steel and tungsten carbide. We expect that even smaller micro-
tools can be fabricated and operate successfully.
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