
3"
SANDIA REPORT
SAND96-8214 UC-405
Unlimited Release
Printed February 1996

Process Control of Large-Scale Finite
Element Simulation Software

Paul Spence, Larry Weingarten, Kevin Schroder, Dave Tung, Don Sheaffer

a

I -

.

SF2900QB-81)

4

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, nor any
of the contractors, subcontractors, or their employees, makes any war-
ranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference nerein to any
specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government, any agency thereof or any of their contractors or
subconractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors or subcontractors.

c

Portions of this document may be illegible
in dectronic image products. Emages are
produced from the best available
dOCUUleIlL

SAND964214 UC-405
Unlimited Release

Printer February 1996

Process Control of Large-Scale Finite Element
Simulation Software

P. A. Spence
Thermal and Plasma Processes Department

L. I. Weingarten
Structural and Thermomechanical Modeling Department

K. Schroder
Exploratory Systems Department

D. M. Tung and D. A. Sheaffer
Telemetry and Digital Signal Processing Department

Sandia National Laboratories
Livermore, California 9455 1-0969

ABSTRACT

We have developed and demonstrated a methodology for coupling finite element software
with process control strategies. We have linked controllers to both the Sandia-developed
TACO thermal analysis code and the commercially available ABAQUS thermal-mechanical
analysis code. Communication between the physically-based simulations and the process
controllers was achieved using subroutine calls and UNIX system calls. The ability to
couple control design software with large-scale analysis software creates a virtual
environment for the concurrent design and testing of closed-loop systems. We have
applied this coupled software to the development of a rapid-thermal-processing (RTP)
chamber and its controller, The controller was designed using data from a detailed finite
element thermal model of the RTP system. We have evaluated both the hardware design
(i.e., sensor placement, lamp housing, and wafer support) and the controller design (linear
quadratic Gaussian) using closed-loop simulations.

3

ACKNOWLEDGMENT

The authors wish to thank Chuck Schaper of Microelectronics Control and Sensing, Inc.
(MCSI) and Curtis Elia, John Ebert, and Abbas Emami-Naeini of Integrated Systems, Inc.
(ISI) for their contributions in controller design.

This work was funded through the LDRD program.

- I

4

CONTENTS

1 Introduction .. 7

2 Methodology ... 9

2.1 Software Link Between TACO and Control Application 9

2.2 Software Link Between ABAQUS and Control Application 10

3 Application of the Developed Methodology 12

3.1 Closed-Loop Simulation of a Simplified CVD Diamond Reactor

3.2 Closed-Loop Simulation of a Rapid-Thermal-Processing (RTP)

using the ABAQUS software ... 12

Reactor using the TACO Software ... 13

4 Conclus ions ... 2 4

5 References ... 25

A Control Subroutine ... 2 6

B Subroutines for Socket I/O .. 32

C ABAQUS User Subroutines ... 4 0

5

LIST OF FIGURES

No.
1 .
2 .
3a .
3b .
4a .
4b .
5 .
6a .
6b.
6c a

6d .
7a .
7b .
7c .
8a.
8b .
9a .
9b .

Temperature of substrate during controlled simulation 12
Model of a rapid-thermal-processing (RTP) reactor 13
Lamp powers for an automated system identification
Temperature response at wafer ... 15
Comparison of FE model and 38-state linear model 16
Comparison of FE model and 5-state linear model 16
Schematic of the control design process utilizing a finite element model
Wafer temperature history during controlled simulation

Maximum temperature variation across wafer during controlled ramp

15

18
19

Lamp zone powers during controlled simulation 19
20

Radial temperature profile on wafer at time of peak AT during controlled ramp 20
Outer sensor at R=100 mm .. 20
Outer sensor at R=95 mm .. 20
Location of outer sensor has a large effect on radial temperature profile 21
Wafer temperature during controlled simulations with ramp rates of 40-75 "C/s . 22
Maximum temperature variation across the wafer during controlled simulations. 22
Maximum temperature variation across wafer during a 50 "C/s ramp 23
Power history for the outer lamp zone during a 50 "C/s ramp 23

6

Process Control of Large-Scale Finite Element
Simulation Software

1 INTRODUCTION

Application of physically-based computational models to the development of advanced
manufacturing equipment can lead to improved system performance while reducing the
development time. Typical computational simulation software is designed to run in an
open-loop mode, however, many manufacturing processes are operated under closed-loop
(feedback) control. To enhance our ability to simulate these closed-loop processes, we
have developed a methodology for driving our general-purpose finite element codes with
feedback control algorithms. We have demonstrated this approach using two independent
finite element analysis codes: the Sandia-developed finite element thermal analysis code
TACO [11, and the commercially available thermal-mechanical finite element code
ABAQUS [2]. Control design for this work was done using both the MATRIXx control
design software by Integrated Systems, Inc. [3] and the MATLAB/SIMWINK control
design software by The Math Works, Inc. [4].

The link between the analysis codes and the control software required the development of
input/output (YO) interfaces for data transfer. Our approach differed in how the interfaces
were implemented since we possessed the source code for one analysis package (TACO)
and did not for the other (ABAQUS). We were able to successfully link both analysis
codes with controllers; however, we found that having the source code available provided a
greater flexibility in what parameters we were able to control.

We have developed and tested two communication techniques for coupling controllers with
the analysis codes. The first (and simplest) technique is to compile the control algorithm as
a subroutine (either FORTRAN or C) then link it with the analysis code. This approach is
facilitated by automatic source code generation capabilities available with both the
MATLAB and MAT= control development software packages. The second
communication technique allows both the analysis code and the control-development code
to run as independent processes using UNIX system calls (sockets) to pass data between
them. The advantage of this approach is that the independent processes can run on
different computing platforms (e g , a CRAY and a SUN workstation) and the full power
of the controller-development software is available for interactive modifications and
evaluation.

7

We have applied this closed-loop simulation capability to two different models. A rapid-
thermal-processing reactor (which is used in a number of processing steps to fabricate
semiconductor integrated circuits) was modeled using the TACO thermal analysis code. A
controller was developed and linked to the TACO simulation to regulate the power to lamp
heaters such that the temperature of the silicon wafer followed a prescribed trajectory. A
second model was developed of a simplified diamond chemical-vapor-deposition (CVD)
reactor using the ABAQUS thermal-mechanical code. For this model, a controller was
developed and linked to the ABAQUS simulation to control the temperature of a substrate
by regulating the incident heat flux.

8

2 METHODOLOGY

Closed-loop analysis requires the development of both a system model and a process
controller. The system model must include actuators that can be regulated by the controller
and sensors to supply control feedback. It may not be necessary to model the physical
sensors, however, the system model must be capable of predicting the state of parameters
that are to be measured and controlled in the actual system. If a process controller does not
exist for the system, then it can be designed using data from the model. Closed-loop
simulations are performed by coupling the system model and the control algorithm such
that the model runs in a transient mode passing data to and from the controller at each
sample time. The sample rate for the process is determined prior to the design of the
controller. The simulation and controller must operate with the same clock. At each
sample time, the model predicts the value of sensed parameters (e.g., temperature) and
sends that information to the controller. The controller receives the sensor information and
updates the actuator values (e.g., heater power) which are returned to the model. The
model then continues marching in time (using the updated actuator values) until the next
sample rate is reached.

2.1 Software Link Between TACO and Control Application

To create a general link between the TACO finite element code and arbitrary process control
algorithms, modifications were made to the TACO source code. A TACO interface
subroutine was added that identifies the “process sensors” and updates the actuators
(controllable parameters). For the RTP simulation, the sensor output is represented by the
computed temperature at five finite-element-mesh nodes located on the wafer and the
actuators are the power inputs to each of the five lamp zones. From within the interface
subroutine, a call is made either directly to a control subroutine or to a communication
subroutine that opens a socket for data transfer with the control development software. The

I current value of each of the “process sensors” in the simulation is passed to the controller
and new values for the actuators are sent back. The actuator array is updated by the
interface subroutine and returned to the main TACO code, An example of an LQG
controller subroutine is listed in Appendix A. The socket communication subroutines are
listed in Appendix B.

All variable parameters supported by TACO have a curve number associated with them in
the TACO input file. To flag a parameter to be regulated by the controller, the associated

9

curve number in the input file is set to a value less than or equal to -800. TACO parameters
that can be controlled include material properties (heat generation, thermal conductivity and
specific heat capacity) and boundary conditions (convective heat-transfer coefficient,
ambient air temperature, surface emissivity, contact resistance, temperature, and heat flux).

Modifications were also made to the TACO time-step algorithm. The closed-loop
simulations are performed with a predetermined sample rate. The sample rate determines
the frequency that the controller updates the actuator values. The new time-step algorithm
provides variable time-step control while insuring that no sample time is overstepped. A
simple method to insure that the simulation time steps coincide with the controller sample
rate would be to use a fixed (constant) time step set equal to the controller sample interval.
In the event that large changes in the actuator values are required, however, the fixed time
step can result in loss of computational accuracy. The variable time step approach
determines the necessary time step size to maintain computational accuracy. Large
parameter changes during the simulation may result in several computational time steps
between calls to the control interface subroutine to update actuator values. The sample rate
for the process simulation is entered as the maximum allowable time step value (DTMAX)
in the TACO input file.

2.2 Software Link Between ABAQUS and Control Application

It is important to show that the techniques used to link TACO with process control
algorithms can be extended to commercially available general purpose finite element codes.
These are codes which have worldwide use, but, in general, users have no access to the
main source code. Due to their large customer base, usage of process control in these
codes has greater potential. To demonstrate the technique, the AB AQUS commercial code
was utilized. Recent work by researchers at the Massachusetts Institute of Technology also
utilize AB AQUS coupled with control algorithms to simulate a metal-forming process
[5,61.

Even though users normally do not have access to the source code of the program delivered
to customers, most commercial codes provide the capability of allowing the use of a
predefined set of user subroutines. In the case of ABAQUS, these subroutines give the
user many capabilities. Examples are user-defined friction algorithms, non-uniform flux
distributions, new elements, and new material constitutive models. The procedure to
implement process control in ABAQUS is in many ways similar to that outlined above for

TACO. This involves writing two user subroutines in addition to the control subroutine.
One of these subroutines, UVARM, obtains the “process sensor” variable after each
increment and provides it to an actuator subroutine. The variables read in UVARM can be
any of the element integration point variables. These include variables such as temperature
and strain. The actuator subroutine, usually one which can modify the model loading,
receives this variable and in turn provides it to the control subroutine. Based on the value of
this variable, the control subroutine returns a modifier for the actuator or loading.
Examples of the ABAQUS user subroutines for controlled simulations are shown in
Appendix C. The single-input single-output LQG controller used with ABAQUS is not
included, however, it is in many ways similar to the multi-input multi-output LQG
controller shown in Appendix A.

11

3 APPLICATION OF THE DEVELOPED METHODOLOGY

Two computational analyses are presented to demonstrate the controlled simulation
capability. A brief description is given of the application of the ABAQUS code to simulate
the closed-loop thermal response of a diamond CVD process, followed by a detailed
description of controlled TACO simulations applied to the design and evaluation of an RTP
system.

3.1 Closed-Loop Simulation of a Simplified Chemical-Vapor-Deposition
Diamond Reactor using the ABAQUS software

A simplified thermal model of a diamond 1200

e 800 e a
2
E
3

CVD reactor was formulated to demonstrate
the controlled simulation procedure. The
model consists of an axisymmetric graphite
substrate 1 .O inch thick and 7.0 inches in
diameter. The substrate is subjected to a heat
flux of Gaussian distribution centered on the

3

4 d

4oo

upper surface. The substrate is initially at 35 0
"C and throughout the subsequent loading the
lower surface is maintained at 35 "C. The
temperature at the center of the upper surface

0 5 10 15
time (s)

Figure 1. Temperature of substrate
during controlled simulation.

is quickly ramped to 1080 "C and maintained
for the duration of the simulation. This is accomplished by modifying the peak flux in the
Gaussian distribution by the control subroutine. As noted in section 2.2, the temperatures
are read by the UVARM subroutine and passed to the subroutine which imparts the flux
loading (DFLUX). The DFLUX subroutine calls the control subroutine, subsys-1, which
modifies the loading based on the present temperature ("process sensor" variable) of the
upper surface central coordinate. The results are shown in Figure 1. The temperature
initially overshoots by about 50 "C, but quickly decreases to the desired temperature of
1080 "C. The time step used for this simulation is 1 second,

12

3.2 Closed-Loop Simulation of a Rapid-Thermal-Processing (RTP) System
using the TACO Software

A concurrent-engineering approach was applied to the development of an axisymmetric
rapid-thermal-processing (RTP) reactor and its associated temperature controller. This
reactor is developed for commercial use by the microelectronics equipment supplier CVC
Products Inc. (CVC). Using a detailed finite element thermal model as a surrogate for
actual hardware, we have developed and tested a multi-input multi-output (MIMO)
controller. Closed-loop simulations were performed by linking the control algorithm with
the finite element code. Simulations show that good temperature uniformity is maintained
on the wafer during both steady and transient conditions. A numerical study shows the
effect of ramp rate, feedback gain, sensor placement, and wafer-emissivity patterns on
system performance.

3.2.1 System Description

The CVC RTP reactor is an axisymmetric
design with five independently controlled
lamp zones that heat the back side of a 200
mm wafer. Figure 2 shows a schematic
representation of the reactor geometry.
Each lamp zone contains an array of
tungsten-halogen bulbs arranged in a
circular pattern. Between each lamp zone is
a radiation partition which limits "cross-
talk1 between the zones for improved
control characteristics. The wafer rests
face-up on a support that is attached to a
rotation mechanism. Reactant gases are
delivered through a multi-zone showerhead
manifold from the top of the reactor. The
face of the showerhead is polished for high

showerhea
windo support

Figure 2. Model of a rapid-thermal-
processing (RTP) reactor

reflectivity, creating a condition that approaches the behavior of a black-body cavity, and
thereby reduces the sensitivity of the system to wafer front-side emissivity variations. A
quartz window separates the lamp housing from the reaction chamber and the wafer. The
chamber walls are water cooled. Deposition of reactants on the wafer back side and the

13

window during processing is prevented by the wafer support ring. The reaction chamber is
designed with a Modular Equipment Standards Committee (MESC) compatible interface.

3.2.2 Thermal Model

We have developed a finite element thermal model for design and evaluation of the CVC
RTP system using the Sandia-developed TACO software. Radiant heat exchange between
enclosure surfaces is based on the net radiation method [7]. View factors for the enclosure
radiation exchange are computed using the VIEWC software [8]. The thermal simulations
for this RTP system have approximately 1000 elements and 400 radiation surfaces. The
model includes the silicon wafer, lamps, semi-transparent window, chamber walls, and
showerhead gas injector. Heat is removed from the model through convective boundary
conditions that account for air cooling inside the lamp housing and for water cooling on the

outer chamber walls. Heat input to the model is through volumetric heat generation (W/m3)
in the lamp zones. An annular ring approximation is used to represent the discrete lamps of
each zone. The heat generation is controlled independently for each lamp zone. A more
detailed description of the model and its application to the design of the CVC RTP reactor
are discussed by Spence, et al. 191 and Kee, et al. [lo].

3.2.3 LQG Controller Development

System Identification

The availability of a thermal model of' the CVC RTP reactor provided us with the
opportunity to begin controller design before the hardware was fabricated. Using the
model in place of the actual hardware, temperature responses at five discrete radial points
on the wafer were predicted for a series of excitation signals to the control inputs (lamp
zone powers) of the simulation. The temperature response points were chosen to
correspond with the location of the pyrometers. Due to the nonlinear behavior of the
system, it was important to characterize the system over the entire operating range (Le.,
500 "C to 1100 "C). Obtaining system response data at numerous operating temperatures
through a series of open-loop simulations is a very time-consuming process. We were able
to expedite the system identification process by performing the step-test simulations in two
stages. First, one set of response data was obtained at a nominal operating temperature.
Using these data, a simple (yet stable) controller was designed for the system. This

14

controller was programmed to drive the simulation under closed-loop operation to a
specified temperature then switch to an open-loop step test sequence. Following the open-
loop test sequence, the controller switched back to closed-loop operation and brought the
system to the next temperature where the open-loop step-test was repeated. With this
controller driving the simulation, a complete system identification was done automatically.
This controller was designed with an interface that allows the test sequence parameters
(i.e., test temperatures, step size and duration, ramp rate between temperatures) to be easily
varied. Figure 3a shows the power inputs to five independently controlled lamp zones for
seven consecutive step tests. At each test temperature, the lamp zones are sequentially
pulsed with a step increase in power. The power excursions between each of the open-
loop test sequences in Fig. 3a are a result of the closed-loop controller as it drives the
simulation to the next test temperature. Figure 3b shows the wafer temperature response
corresponding to the lamp power inputs shown in Fig. 3a.

60
50

8 40

5 30

20

n

0

10

0

Figure 3a.

. . . . , , . . . - , .
step test at 1100 "C

- 4 I.--- --
r steD test at 500 "C I I

I . . . r . , , , . . L

0 500 1000 1500 2000

Lamp powers for an automated system ID between 500 "C to
time (s)

1100 O C .

0 500 1500 2000 1000
time (s)

Figure 3b. Temperature response at wafer for excitation signal shown in Fig. 3a.

15

Linear Control Model

The response data we obtained from the finite element model was used to develop a control
model of the RTP system. Using the state-space approach, a process is represented by a
system of first-order differential equations. The least squares method is used to derive a
plant model of the form

where x is the state vector, u is the input (power) vector, and y is the measured output
(temperature) vector. The control model is developed in two stages. First a high-order
model is developed. Next, a reduced-order model is obtained by eliminating the
unimportant modes thereby reducing the number of states in the high-order model. The
reduced linear model for our system has 5 states. Figures 4a and 4b show how the linear
models compare with the nonlinear finite element model in predicting the wafer response to
a step change in the power of the center lamp zone. The plots show that both the 5-state
and the 38-state linear models are in good agreement with the finite element model.
Reducing the model from 38 states to 5 states generates a minimal decrease in accuracy.

J

10:
08 :
06 i

11121 T

11
n 8 11
5 11 Q)

4d E 11
11

d 11
10981 . .

Q)

- %-state linear model

0 4 8 12 16
time (s)

Figure 4a. Comparison of FE model
and 38-state linear model in predicting
response to a step change in power of
the center lamp zone.

02
00

l 1 l 2 C ~ = ~ c m t
1110

E1108
f 1106
E 1104

n

4d

Q)
E1102
d 1100 - 5-state linear model

1098 L'
0 4 8 12 16

time (s)
Figure 4b. Comparison of FE model
and 5-state linear model in predicting
response to a step change in power of
the center lamp zone.

16

Design Process

We have designed a linear quadratic Gaussian (LQG) controller for the CVC RTP reactor.
The LQG control strategy is well suited for RTP because of its applicability to multivariable
and time-varying systems [1 11. The control design process includes design of a linear-
feedback controller (regulator) and design of a state estimator. The state estimator gives
estimates of the states from the observed outputs. The regulator drives the states of the
system while maintaining them within specified limits. The design of the regulator requires
an optimal gain matrix, Kr, to be computed that minimizes a specified cost function, V.
The cost function is expressed as the integral [121

ca

V = [xT(z)Q(7)x(z)+ u T (z) R (~) u (~)] d ~ (3)
0

where Q and R are symmetric weighting matrices. The goal in designing the regulator is to
minimize system response to noise or disturbances while avoiding saturation of the control
signals. This balance is achieved through a somewhat trial-and-error process of selecting
the weighting matrices (Q and R) that give the desired performance.

Since the regulator requires that all states of the system be available, an estimator (Le.,
Kalman filter) is also required. The goal is to find an estimate of the state vector which

minimizes the error between the actual state vector x and the estimated state vector 9 . An
optimal state-estimator gain matrix is calculated for the dynamic system. This gain matrix
is derived by minimizing the expected mean square of the error between the measured
output, y , and the output from the estimator, j . The estimator model accounts for the fact
that there may be some process noise within the system model itself as well as some noise
inherent in the device used to measure the outputs. The resulting state equation for the
estimator is [13]

where Ke is the optimal state-estimator gain matrix. Combining the equations for the plant,
the regulator, and the estimator results in the following equation for the LQG controller
[13]:

17

i = (A - K,C)P + (K,D - B)u + K,y

System excitation/ ,- Response data
(power, temp.)

where
u = -K$.

Fit data with high-

(set of ODE's)
- Reduce model to -- + + order model smaller set of ODE's

Figure 5 shows a schematic of the controller design process utilizing a finite element
model, The optimization loops represent the iterative process used to adjust the control
design parameters (i.e., weighting matrices). At the first level, the control parameters are
optimized using the high-order linear model to represent the plant. Next, the controller is
linked with the finite element model. At this level, both the control parameters and the
hardware design can be modified to optimize closed-loop performance. The final step is to
optimize the controller on the actual plant (Le., the RTP reactor).

.9 I+
a'
-3 I
-

Control Model Development
I , i 1

Implement controller * Design Kalman filter to
estimate model states on hardware

r - - - - -- - ----- - - -- SI

I -
' .E'
81

1 I Evaluate controller I, - Analyze controller

It
Design Linear Quadratic
Regulator (LQR)

Figure 5. Schematic of the control design process utilizing a finite element
model for response data and closed-loop evaluation.

~

' L e -

3.2.4 Closed-Loop Simulations

using high-order with nonlinear FE *. t-
model - linear model Control Design (LQG)

The LQG controller was linked with the finite element model to evaluate the behavior of the
closed-loop system. Running controlled simulations allows concurrent evaluation of both
the controller design and the hardware design. We have used the closed-loop model to
simulate a ramp from 800 "C to 1100 "C. Figure 6a shows the temperature history of the
five "sensor" points on the wafer during a controlled simulation. The model does not
include actual sensors; rather, specific points on the wafer that would be monitored by
sensors in the actual hardware were designated as the sensor points for the simulations.

The sensor points were located at the wafer center, the wafer edge, and three equally
distributed intermediate wafer points (R=2.5 cm, R=5.0 cm, and R=7.5 em). Note that the
five temperatures track so closely that they cannot be distinguished from each other in Fig.
6a. The reference temperature trajectory specified for the simulation calls for a smooth
curve at the start and finish of the ramp to minimize the temperature tracking errors and the
power spikes that will occur for trajectories with a discontinuity in the slope. Figure 6b
shows the power history for each of the five lamp zones corresponding to the ramp shown
in Fig. 6a.

3 I O O O l / t - 40 "C/s ramp

- "S" shaped ramp

.E 950 i?
900

E 850
c, 800 minimizes Dower mike

0 5 10 15 20 25

80

Y 8 60

5 40

20

n

5
0
CL

time (s) time (s)
Figure 6a. Wafer temperature
history during controlled simulation.

Figure 6b. Lamp zone powers
during controlled simulation.

Wafer temperature uniformity is an important criterion for performance evaluation.
Temperature gradients during high ramp rates can lead to stress fracture (slipping) of the
wafer while temperature non-uniformity during steady conditions leads to non-uniformity
of the process (e.g., chemical vapor deposition, oxide growth, or diffusion). Figure 6c
shows the wafer temperature difference predicted for the trajectory shown in Fig. 6a. The
dashed curve shows the maximum temperature difference as indicated by the five sensor
points. A significant advantage of using a simulation for controller evaluation is that the
model is not limited to information from the sensors. Temperature data is available over the
entire wafer. The solid curve in Fig. 6c shows the maximum temperature difference across
the entire wafer with a peak value of 6 "C which is almost twice that indicated by the
sensors. The radial temperature profile corresponding to the time at which the maximum
temperature difference occurs (time = 6 s) is shown in Fig. 6d. A slight overlap between
the wafer and the support ring creates an annular region at the wafer edge with a slightly
higher mass than the rest of the wafer. During high ramp rates, this high-mass region lags

19

behind the rest of the wafer resulting in the temperature dip seen at the wafer edge in Fig.
6d.

0 5 10 15 20 25
time (s)

Figure 6c. Maximum temperature
variation (AT) across the wafer during
a controlled 40 "C/s ramp.

924 wafer edge 4

0 2 4 6 8 1 0 1 2

Figure 6d. Radial temperature profile
on wafer at time of peak AT during
controlled ramp.

R (cm)

Sensor Location

The optimal sensor locations depend on reactor design, control strategy, and process
objectives, We investigate the effect of shifting the position of the outer sensor,
Determining the best position requires consideration of the transient temperature uniformity
requirements and the size of the exclusion region (i.e., annular area at the wafer edge
containing no die)

12
IO

a8 v

$ 4
5 6
L

g 2

0 5 10 I 5 28 25
time (s)

Figure 7a. Outer sensor a t R=100 mm.
Tight control on wafer edge increases
variation at inner regions of the wafer.

12
10

0 L a
5 6
f - 4

n

t,
"Q 5 10 15 20 25

time (s)
Figure 7b. Outer sensor at R=95 mm.
Removing wafer edge from the active
control zone significantly reduces AT
across 190 mm of a 200 mm wafer.

20

The primary difficulty in maintaining
wafer temperature uniformity during
the high ramp rates is the wafer edge
effect. If we design the controller to
minimize temperature variation over a
region that excludes the very edge of
the wafer, then temperature uniformity
over the inner portion of the wafer is
significantly improved. Figure 7a
shows the wafer-temperature variation
for a simulation in which the
temperature is controlled to the wafer
edge (outer sensor at R = 100 mm).

940
n
0
e 935 2! a
2 930

5 925

w

Q)
Q

w

. - - . - ,

': Sensor Q R=95 mm

f Sensor Q R=IOO mmJ\
\
I

0 2 4 6 8 1 0
wafer radius (cm)

Figure 7c. Location of outer sensor has a
large effect on radial temperature profile
during high ramp rates (50 OC/s shown).

Figure 7b shows the wafer-temperature variation for a simulation in which the outer 5 mm
of the wafer is excluded from the controlled zone (outer sensor at R = 95 mm). A
comparison of Figs. 7a and 7b shows that by moving the outer sensor in from the wafer
edge we degrade the overall uniformity, however, uniformity over the majority of the wafer
(190 mm diameter) is improved. This effect is illustrated in Fig. 7c which shows the wafer
temperature profiles during the time of worst case temperature non-uniformity during the
ramp. From this analysis we can conclude two important points: (1) Design of the interface
between the wafer and wafer-support ring should minimize variations in thermal mass, and
(2) the position of the temperature sensors for optimal uniformity depend on the accepted
exclusion region for the wafer edge.

 ram^ Rate Effects

The push for high ramp rates is generated by the need to reduce cycle time and thermal
budget. We investigate the effect of increased ramp rates on temperature uniformity and
cycle time. Increasing the ramp rate will reduce the transient time between setpoint
temperatures, however, temperature variation on the wafer will increase resulting in longer
stabilization times. The effect that ramp rate will have on the overall cycle time depends on
reactor design and control strategy.

21

1150
1100

9 Y 1050
2 1000
+, 950

850
.c, 800

750

3

E P 900

0 5 10 15 20 25
time (s)

Figure Sa. Wafer temperature
during controlled simulations with
ramp rates of 40,50,60, and 75 OC/s.

10

p3

s
5 6

2 4

2

0

L

0 5 10 15 20 25
time (s)

Figure 8b. Maximum temperature
variation across the wafer during
controlled simulations at ramp rates
of 40,50,60, and 75 "CIS.

We have repeated the controlled ramp at a number of different rates. Figure 8a shows the
wafer-temperature history of four ramps between 40 "C/s and 75 "C/s. The wafer-
temperature variation (over the entire 200 mm diameter) for each ramp is shown in Fig. 8b.
The challenge of maintaining temperature uniformity on the wafer becomes greater as the
ramp rate is increased. Both reactor design and controller design play a role in the
realizable temperature uniformity. As the ramp rate increases, the power resources required
to drive the states within the desired tolerance also must increase. Also, the higher ramp
rates may require a longer stabilization time which will reduce the impact on cycle time
reduction, If we impose the restriction that processing can begin only after the wafer
temperature variation has decreased below 3 "C, Fig. 8b shows that the higher ramp rates
provide little improvement in cycle time.

Feedback Gain

Weighting parameters in the controller define the balance between setpoint tracking and the
range of power control. We have included a simple tuning parameter (a) in our controller

to adjust the feedback controller gain. In this case, Q = agwhere is a weighting
matrix. (We note that a more appropriate procedure to improve performance involves
tuning the entire Q and R matrices.) As the value of a is increased, the control action for a

given tracking error (l ~ e f e n n e r - TmemUrrdl) is increased. Figure 9a shows the temperature

22

variation on the wafer during a 50 "C/s ramp followed by a stabilization at 1100 "C. This
simulation was run with tuning parameters of a=l and a=3. Note that as we increase a
from 1 to 3, the peak temperature variation on the wafer is reduced from 10 "C to 7 "C. The
cost of the improvement in temperature uniformity is an increase in required power
resources. Figure 9b, shows that we actually saturate power in lamp zone 5 (the outer
zone) for the simulation with a equal to 3. With a equal to 1, we have no problem with
power saturation, however, the controller now tolerates greater tracking errors resulting in
a more sluggish response.

10 :
ô e a :

6 :
& - 4 :

2 :
5

0 5 10 15 20 25
time (s)

Figure 9a. Maximum temperature
variation across wafer during a 50
"C/s ramp for two values of the
control parameter a.

0-
0 5 10 15 20 25

time (s)
Figure 9b. Power history for the
outer lamp zone during a 50 "C/s
ramp for two values of the control
parameter a.

23

4 CONCLUSION

We have developed a methodology for coupling large-scale numerical codes with process
control algorithms. Closed-loop simulations were demonstrated using the Sandia-
developed finite element thermal code TACO and the commercially available finite element
thermal-mechanical code ABAQUS. This new capability enables us to use computational
simulations for designing and prototyping advanced process-control systems. By testing
control algorithms on simulators before building and testing hardware, enormous time and
cost savings can be realized.

The need for a closed-loop simulation capability was demonstrated in a detailed design
study of a rapid-thermal-processing reactor under development by CVC Products Inc.
Using a thermal model of the RTP system as a surrogate for the actual hardware, we were
able to generate response data needed for controller design. We then evaluated the
performance of both the controller design and the hardware design by using the controller
to drive the finite element model. The controlled simulations provided data on wafer
temperature uniformity as a function of ramp rate, temperature sensor locations, and
controller gain. This information, which is critical to reactor design, cannot be obtained
from typical open-loop simulations.

24

5 REFERENCES

121

131
[41
[51

[71

W.E. Mason, TACO3D - A Three-Dimensional Finite Element Heat Transfer

Code, Sandia National Laboratories, (1983).
ABAQUS Standard Users Manual, Version 5.4, Hibbitt, Karlsson & Sorensen, Inc.,
Pawtucket, RI, 1994.
MATRIXx User’s Guide, Integrated Systems, Inc., CA, (1994).
MATLAB User’s Guide, The Mathworks, Inc., Mass., (1994).
H.B. Sim and M.C. Boyce, Finite Element Analyses of Real-Time Stability
Control in Sheet Forming Processes, J. Engng. Matls. and Tech., Vol. 114,
(1992), p. 180.
J. Cao and M.C. Boyce, Draw Bead Penetration as a Control Element of Material
Flow, Proceedings of SAE Symposium on Sheet Stamping, Detroit, MI, (1993), p.
145.
R. Siegal, J. Howell, Thermal Radiation Heat Transfer, Hemisphere Publishing,
New York, NY, (1981).
A.F. Emery, View Users Manual, Univ. of Wash., (1984).
P. Spence, W. Winters, R. Kee, A. Kermani, The Application of Computational
Simulation to Design Optimization of an Axisymmetric Rapid Thermal
Processing System, Proc. of the 2nd Int. Conf. on RTP, R.B. Fair and B. Lojek
(eds), Monterey, CA, Sept., (1994), p. 139.

[101 R. Kee, A. Ting, P. Spence, Understanding and Improving Materials Processing
Through Interpreting and Manipulating Predictive Models, Proc. of the Mat. Res.
SOC. Conf., Boston, MA, Nov., (1994).

Englewood Cliffs, NJ, (1984).

McGraw-Hill Book Co., New York, NY, (1986).

[1 11 K. h t rom, B. Wittenmark, Computer Controlled Systems, Prentice-Hall,

[12] B. Friedland, Control System Design - an Introduction to State-Space Methods,

[131 T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, (1980).

25

A Control Subroutine
(Four-input four-output LQG controller designed with MATRIXx software for an RTP
reactor)

---- AutoCodeIC Code Generator V3.3

-- Model File : controlxtf
-- Model Date : 15-Aug-94 11: 16

--

--
-- Generated File: contro1.e
--
-- Number of External Inputs : 4
-- Number of External Outputs: 4
-- Number of Internal States : 9
*/

#include <stdio.h>
#include <math.h>
#include "sa-systemh"
#include "sa-syntax.h"
#include "sa-types.h"
#include "sa-math.h"

#define OK 0
#define STOP-BLOCK 1
#define MATH-ERROR 2
#define STOPPED 3
#define UCB-ERROR 4
#define TIME-OVERFLOW -1
#define UNKNOWN-ERROR 100

#define IO-ERROR 1
#define EXIT-CONDITION 2
#define USERCODE-ERROR 3

void controller(IINF0, T, U, NU, X, XD, NX, Y, NY, R-P, I-P)
struct STATUS-RECORD *INFO;
RT-DURATION T;
RT-FLOAT U[l, X I , XWI, Y[1;
RT-INTEGER NU, NX, NY;
RT-FLOAT R-P[];
RT-INTEGER I-P[];

#define RP-OFT 0
#define IP-OFF 0

#define EPSILON 3.72529E-09
static const RT-FLOAT EPS = 4.0*EPSILON;

static RT-INTEGER GLOBAL-EXCEPTION = 0;

26

RT-FLOAT BUS[40];
RT-INTEGER I;

struct STATUS-RECORD INFO;
INFO.INIT = IINFO->INIT;

if (1NFO.INIT) {
/* No R-P values to initialize */
/* No I-P values to initialize */

1
if (1NFO.INIT) {

1

/* Pre-initialize all states to ZERO */
for (I=O; I<NX; I++) X[I] = 0.0;

/*-------------------------------- State Space System */
/* { control.controller.2} */

BUS[4] = -0.0360997 * X[O] + 0.0559576 * X[11 - 0.0357339 *
X[2] + 0.01 11592 * X[3] - 1.354634 * X[4] +
2.08484 * X[5] - 1.234865 * X[6] + 0.3101312 *
XVI;

BUS[5] = 0.037932 * X[O] - 0.0902785 * X[11 + 0.0635839 * X[2]
- 0.0181796 * X[3] + 1.223012 * X[4] - 2.917237 *
X[5] + 1.905031 * X[6] - 0.4231844 * X[7];

BUS[6] = -0.0135509 * X[O] + 0.0364134 * X[1] - 0.050265 *
X[2] + 0.01 15975 * X[3] - 0.2825409 * X[4] +
0.8602452 * X[5] - 1.370691 * X[6] + 0.2300479 *
W I ;

BUS[7] = 0.0053118 * X[O] - 0.0159889 * X[1] + 0.0263451 *
X[2] - 0.0223297 * X[3] + 0.1161253 * X[4] -
0.3819002 * X[5] + 0.67949 * X[6] - 0.5771485 *
X71;

TimeDelay */ /*
/* {reference generator.clock state. 1 } */

/*-------------------------------- General Nested Expression */
/* {reference generator.clock reset value. lo} */

General Nested Expression */ /*
/* { control.reference parameters.4) */

BUS[8] = X[8];

BUS[9] = 0.0;

BUS[lO] = 1.0;
BUS[11] = 1073.0;
BUS[121 = 1373.0;
BUS[131 = 20.0;
BUS[141 = 26.0;
BUS[151 = 50.0;
BUS[161 = 60.0;

/*-------------------------------- General Logical Expression */
/* {reference generator..5} */

if(BUS[S]<BUS[13]){

}else {
BUS[17] = 1.0;

BUS[17] = 0.0;

27

I
if(BUS[S]>=BUS[l3] && BUS[S]<BUS[l4]){

}else{

1
if(BUS[S]>=BUS[l4] && SUS[S]<sUS[15]){

}else {

1
if(BUS[8]>=BUS[l5] && BUS[8]<BUS[l6]){

}else {

1
if(BUS[S]>=BUS[161){

}else {

1

BUS[lS] = 1.0;

BUS[18] = 0.0;

BUS[19] = 1.0;

BUS[191 = 0.0;

BUS[20] = 1.0;

BUS[20] = 0.0;

BUS[21] = 1.0;

BUS[21] = 0.0;

General Nested Expression */ /*--------------------------------
/* { ControLdetrend output.97) */

BUS[22] = U[O] - 1178.99;
BUS[23] = U[1] - 1176.75;
BUS[24] = U[2] - 1173.5;
BUS[25] = U[3] - 1176.81;

/*-------------------------------- General Nested Expression */
/* {reference generator.clock update.6) */

/*-------------------------------- Data Path Switch *%
/* {reference generator.clock reset switch.4] */

BUS[26] = BUS[8] + 0.05;

if(BUS [101 > 0.0) {

} else {

1

BUS[28] = BUS[14] - BUS[13];
BUS[29] = BUS[16] - BUS[15];

BUS[27]= BUS[26];

BUS[27] = BUS[9];

General Nested Expression */ I*
/* {reference generator.compute divisos.2) */

Bounded Limiter *f f* ---_---_----_----_--__c_________

/* {reference generator.prevent divide by zero.99) */

/*-------------------------------- General Nested Expression */
/* {reference generator..3} *f

BUS[30] = MIN(10000.0, MAX(0.1, BUS[28]));
BUS[31] = MIN(10000.0, MAX(0.1, BUS[29]));

BUS[32] = BUS[11] + (BUS[8] - BUS[13])/BUS[30]*(BI
B u s r i i i):

21 -
BUS[33] = BU$[l2] + (BUS[8] - BUS[lS])/BUS[31]*(0.0 =

BUS[34] = 0.0;
BUS[12]);

Dot Product */ /*
/* {reference generator..98} */

28

BUS[35] = BUS[ll] * BUS[17] + BUS[32] * BUS[l8] + BUS[l2] *
BUS[l9] + BUS[33] * BUS[20] + BUS[34] * BUS[21];

/* ------ General Nested Expression */
/* { control.trend input.99) */

BUS[36]=BUS[4]+7.333333;
BUS[37] = BUS[5] + 19.0;
BUS[38] = BUS[6] + 28.0;
BUS[39] = BUS[7] + 37.0;

/* Bounded Limiter */
/* { control.limit output.7} *I

BUS[O] = MIN(100.0, MAX(0.0, BUS[36]));
BUS[l] = MIN(100.0, MAX(0.0, BUS[37]));
BUS[2] = MIN(100.0, MAX(0.0, BUS[38]));
BUS[3] = MIN(100.0, MAX(0.0, BUS1391));

Y[O] = BUS[O];
Y[11 = BUS[11;
Y[2] = BUS[2];
Y[3] = BUS[3];

/*-------------------------------- Collect Ext. Outputs into Y vector */

/* --- "/
/* State Space System */
/* { control.controller.2) */

XD[O] = 1.0 * X[O] - 1.0 * BUS[35] + 1.0 * U[O];
XD[1] = 1.0 * X[1] - 1.0 * BUS[35] + 1.0 * U[1];
XD[2] = 1.0 * X[2] - 1.0 * BUS[35] + 1.0 * U[2];
XD[3] = 1.0 * X[3] - 1.0 * BUS[35] + 1.0 * U[3];
XD[4] = -0.0003946 * X[O] - 0.0005087 * X[1] + 0.0000432 *

X[2] - 0.0003761 * X[3] + 0.5924984 * X[4] -
0.2501317 * X[5] - 0.0774687 * X[6] - 0.0551646 *
X[7] + 0.3776521 * BUS[22] + 0.2284378 * BUS[23] +
0.0852405 * BUS[24] + 0.0465561 * BUS[25];

XD[5] = -0.0000606 * X[O] - 0.0006783 * X[1] - 0.0000873 *
X[2] - 0.0004033 * X[3] - 0.2287926 * X[4] +
0.7298877 * X[5] - 0.1640016 * X[6] - 0.0901365 *

XD[6

XD[7

X[7] + 0.2284093 * BUS[22] + 0.2268715 * BUS[23] +
0.16261 17 * BUS[24] + 0.0832757 * BUS[25];
= -0.0001137 * X[O] - 0.0000289 * X[1] - 0.0006235 *
X[2] - 0.0004372 * X[3] - 0.0903641 * X[4] -
0.1557468 * X[5] + 0.7271194 * X[6] - 0.1944726 *
X[7] + 0.0844371 * BUS[22] + 0.1622539 * BUS[23] +
0.225916 * BUS[24] + 0.1898447 * BUS[25];
= -0.0000488 * X[O] - 0.000101 * X[1] - 0.0000525 * X[2]
- 0.001069 * X[3] - 0.0473771 * X[4] - 0.0833228 *
X[5] - 0.1878652 * X[6] + 0.5320755 * X[7] +
0.0452525 * BUS[221+ 0.0821656 * BUS1231 +
0.1883355 * BUS[24] + 0.416543 * BUS[25];

TimeDelay */ /*
/* {reference generator.clock state. 1 } */

XD[8]=BUS[27];

Exception
When EXIT-CONDITION :

IINFO->ERROR = STOP-BLOCK,
Breakexception;

29

Others 2
IINFO->ERROR = UNKNOWN-ERROR;
B reakexception ;

Endexception

1
void SR-SCHEDULER(init, t, u, nu, y, ny)

int *init;
RT-DURATION *t;
RT_FLOAT u[l, y[l;
RT-INTEGER *nu, *ny;

/*
This is a single rate scheduler used with MATRIXx user code blocks.
init is used to indicate that initialization is required.
Make sure to call the single rate scheduler with init=%
at least once before calling it with init=O.

init = 1 implies initialization.
init = 0 implies normal running of the ucb.

This single rate scheduler is set up to call the application
controller(), which contains application code.
*/

extern void controller();
{

static RT-FLOAT x[9], xd[9];
static RT-INTEGER nx;
static RT-INTEGER ipp[I];
static RT-FLOAT rpp[11;
static struct STATUS-RECORD info;
int i;

if (*init != 1) { /* Update the states and outputs. */
controller(&info, *t, u, *nu, x, xd, nx, y, *ny, rpp, ipp);

1
else { /* Initialize the application */

*nu = 4;
*ny = 4;
nx = 9;
info.ERROR = 0; /* Set flags to initialize application. *I
info.INIT = 1;
info.STATES = 0;
info.OUTPUTS = 0;
controller(&info, *t, u, *nu, x, xd, nx, y, *ny, rpp, ipp);
info.ERROR = 0; /* Reset flags for application execution. */
info.INIT = 0;
infoSTATES = 1;
info.OUTPUTS = 1;

I

/* Propagate the states. */
for (i=O;i<nx;i++) {

1
x[i] = xd[i];

RT-FLOAT
MIN (ARG1, ARG2)

{
RT-FLOAT ARG1, ARG2;

if(ARGl< ARG2){

}else {
return (ARG1);

return (ARG2);

RT-KOAT
MAX (ARG1, ARG2)

RT-FLOAT ARG1, ARG2;

if(ARGl> ARG2){

}else {

1

{

return (ARG1);

return (ARG2);

1
RT-INTEGER
NINT (R)
RT-FLOAT R;

if (R >= 0.0)

else

{

return ((RT-INTEGER) (R+O. 5)) ;

return ((RT-INTEGER)(R-0.5));
1

31

B Subroutines for Socket I/O

/* s0cket.c *f

/* Include standard libraries */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

/* Need to include to get socket communication and string interface */
#include "communicate.hl
#include "cntrl-string.h"

#define SERVERCLIENT 1

#define MAX 6

/* Global Variable */
int server = FALSE;

void SOCKET(init, t, u, nu, y, ny, fds, fdc, terminate)

int *init;
double *t;
double u[];
int *nu;
double y[];
int *ny;
int *fds;
int *fdc;
int *terminate;
{
int result, length;
char hostName[MAX-LENGTH] , imtheserver[MAX-LENGTH] ;
char buff[MAX-LENGTH],text[MAX-LENGTH];
int j,i;

printf("nu-skt = %dh",*nu);
printf("ny-skt = %dh",*ny);
printf("init-skt = %d\n",*init);
sprintf(hostName,"%s","beast");
if (*init)
{

#ifdef SERVERCLIENT
/* First You Must open up clienthewer socket */

if (!(*fds = sockethit(TRUE, imtheserver, PORTI))) /* Open Socket */
I
printf("Fai'led to open socket\n");

/* retum(TRUE);
*I
1
{
if (!(*fdc = sockethit(FALSE, hostName, PORT2))) /* Open Socket */

32

printf("Fai1ed to open sockethf);
/* return(TRUE);
*/
I
*ny = *nu;
for (i=O; i<*ny; i++) *(y+i) = *(u+i);

#else
if (!(*fdc = socketInit(FALSE, hostName, PORT1))) /* Open Socket */

printf("Fai1ed to open socketh");
{

/* return(TRUE);
*/
1
if (!(*fds = socketInit(TRUE, imtheserver, PORT2))) /* Open Socket */
{

/* return(TRUE);
*/
1
*ny = *nu;
for (i=O; i<*ny; i++) *(y+i) = *(u+i);

1

printf("Fai1ed to open socketb");

#endif

#ifdef SERVERCLIENT
length = GenDblString(text, u, *nu);
for (i=O; i<*nu; i++)printf("%f\n",*(u+i));
printf("%sb",text);
if (!(result = write(*fds, text, MAX-LENGTH)))
{

printf("Error on socket writeh");
/* return(-1);
*/

I
printf("bbSent Databh");

if (!(result = read(*fdc, buff, MAX-LENGTH)))

printf("Error on socket readb");
{

/* return(-1);
*/

I
#else

{

ParseDbl(y, buff);

if (!(result = read(*fdc, buff, MAX-LENGTH)))

printf("Error on socket readh");
/* return(-1);
*/

1
ParseDbl(y, buff);
length = GenDblString(text, u, *nu);
if (!(result = write(*fds, text, MAX-LENGTH)))

printf("Error on socket writeh");
{

33

/* return(-1);
*/

1
#endif

if (*terminate)
{
close(* fds) ;
close(*fdc);
I

1

/* communicate.c *I

#include "comunicate.h"

float byterev(float f)

char fbytes[4];
char *charptr;
int i;

{

charptr = (char *)&e
for(i=O;i<4;i++) fbytes [i]=* (c harptr+3 -i) ;
return(*(float *)fbytes);

1
{
int fullRead(int fd, char *buff, int amount)

int result;
while (amount >O)
{

result = read(fd, buff, amount);
if(resu1t <=O) return(-1);
amount -= result;
buff += result;

I
return(0);

1
int fullWrite(int fd, char *buff, int amount)
{

int result;
while (amount >O)
{

result = write(fd, buff, amount);
if(resu1t <=O) return(-l);
amount -= result;
buff += result;

1
re turn(0);

1
/* specify internet socket by defining TCP */

34

#define TCP 1

#ifdef TCP
#define SOCK-TYPE SOCK-STREAM
#else
#define SOCK-TYPE SOCK-DGRAM
#endif

/*static void fatal(char *msg);*/

static void fatal(char *msg)

perror(msg) ;
exit(1);

{

1
int socketInit(1ong int server,char hostName[], int port)

int s;
struct hostent *h;
s truc t sockaddr-in addr ;
int addrlen = sizeof(addr);
int i;

{

/* client takes remote host name as argument, server takes no
/* arguments. */

*/

/* create the socket */
if((s = socket(AF-INET, SOCK-TYPE, 0)) a 0) fatal("socket");

/* Initialize the address
addr.sin-family = AI-INET;
addrsin-port = htons(port);
addr.sin-addr.s-addr = INADDR-ANY;
if(server)

int f = s;
int got;

{

*/

/* bind socket to PORT
if(bind(s,(struct sockaddr *)&addr,addrlen) a 0)

*/

fatal("bind");

#ifdef TCP
/* make socket listen for connects
if(listen(s,5) < 0) fatal("1isten");

#endif

*/

/* Acceptlwait for a connection *I
if((f = accept(s,(struct sockaddr *)&addr,&addrlen)) e 0) fatal("accept");
printf("f = %d\n",f);
return(f) ;

35

1
else /* client */
{

char hame[1001;
int hnamelen = 100;
/* lookup remote host name in etckosts database
h = gethostbyname(hostName);
if(h == NULL) fatal("gethostbynameme");

*/

addr.sin-addr = *((struct in-addr *)h->h-addr);

/* connect socket to remote PORT
if(connect(s,(struct sockaddr *)&addr,addrlen) < 0) fatal("connect");
return(s) ;

*/

/* c0mmunicate.h * I

#ifndef COMMUNICATE
#define COMMUNICATE 1

/* Include Internet socket libraries */
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.b
#include <netinet/in.h>
#include <netdb.b
/* Include UNIX socket library */
#include <unistd.h>

/* Magic port number - change if necessary */
#definePORTl 4567
#definePORT2 4568
#define TRUE -1
#define FALSE 0
#define MAX-LENGTH 1024

/* function prototypes */
int socketInit(1ong int server, char serverName[], int);
int fullWrite(int fd, char obuffer[], int nbytes);
float byterev(float f);
int fullRead(int fd, char *buff, int amount);

#endif

/* cntrl-string.@

#include "cntrl-string.hv

int ReadLine(char *ps)

"/

36

char plocal[1OO],*pl;
int length;
pl = plocal;
while (%I' != (*pl = getc(stdin))) pl++;
*pl = j\O!;
length = strlen(p1ocal);
sprintf(ps, "%d%s" ,length,plocal) ;
return(1ength);

{

I
int GenFltString(char *ps, float *data, int length)
I
int i, strlength;
char tempstr[MAX-LENGTH] ,dumy[40] ;
for (i=O; iclength; i++)
I

sprintf(dummy,"%f$","(data+i));
strcat(tempstr,dummy);

I
strlength = strlen(tempstr);
sprintf(ps,"% s%d$%d$%s","FLT",strlength,length,tempstr);
return(strlength);

I
* int GenDblString(char *ps, double *data, int length)

int i, strlength;
{

char temps tr [M AX-LENGTH] ,dummy [40] ;
for (i=O; iclength; i++)

sprintf(dummy, I' %If$", *(data+i)) ;
{

strcat(tempstr,dummy);
I
strlength = strlen(tempstr);
sprintf(ps,"%s%d$%d$%s","FLT",strlength,length,tempstr);
return(str1ength);

I
int GenString(char *ps, char *psl)

int length;
length = strlen(ps1);
sprintf(ps,"%s%d%s","STR",length,ps 1);
return(1ength);

{

I
int ParseLine(char *string)

int check-length, len;
char nolen[101;
sscanf(string,"%d",&check-length);
sprintf(nolen, %d",check-length);
len = strlen(no1en);

{

37

strncpy(string ,string+len,check-length+ 1);
return(check-length) ;

1
int ParseFlt(float *pf, char *ps)

int 11,12, lenl ,len2,lt,i;
char nolenl [lO],nolen2[lo], *pstr,c,c 1 ,c2;
sscanf(ps+3 ,"%d%c%d%c" ,&11 ,&cl,&12,&c2);
sprintf(no1en 1 ,"%d",l 1);
sprintf(nolen2,"%d",12);
It = strlen(no1en l)+strlen(nolen2)+3;
pstr = ps+lt+2;
for (i=O;i<l2;i++)
{

1

{

sscanf(pstr,"%f%c",pf+i,&c);
while(*pstr++ != I$');

return(l2);
1
int ParseDbl(doub1e *pf, char *ps)

int 11,12, lenl ,len2,lt,i;
char nolenl[lO],nolen2[10], *pstr,c,cl,c2;
sscanf(ps+3,"%d%c%d%c",&ll,&cl,&12,&~2);
sprintf(nolen1 ,"%d",ll);
sprintf(nolen2,"%d",12);
It = strlen(nolenl)+strlen(nolen2)+3;
pstr = ps+lt+2;
for (i=O;i<l2;i++)
{

1

{

sscanf(pstr,"%lf%c",pf+i,&c);
while(*pstr++ != '$I);

return(l2);
1
void ParseString(char *psl, char "ps2)
{
int 11, len1,lt;
char nolenl[101, *pstr;
sscanf(ps 1+3,"%d",&11);
sprintf(nolen1 ,"%d",ll);
It = strlen(nolenl)+3;
strncpy(ps 1 ,ps2+lt,l1+1);

1

/* sntrl-string.h */

#ifndef CNTFU-STRING
#include <stdio.h>
#include <string.h>

38

#include <math.h>

#define CNTRL-STRING 1
#define MAX-LENGTH 1024

void ParseString(char *, char *);
int ReadLine(char *);
int ParseLine(char *);
int GenString(char *, char *);
int GenFltString(char *, float *, ht);
int GenDblString(char *, double *, int);
int ParseFlt(float *, char *);
int ParseDbl(doub1e *> char *);
#endif

39

C ABAQUS User Subroutines

C

C

C

C

SUBROUTINE DFLUX
(FLUX,TEMP,KSTEP,KINC,TIME,NOEL,NPT,COORDS, JLTY P)

This subroutine generates new flux based on elemental temperatures

INCLUDE 'AB A-PARAM.INC'
DIMENSION FLUX(2) ,TIME(2),COORDS (3)
DIMENS ION ETEMP(4,3 50)
DIMENSION U(2),Y(2)

t 1 1 is the element temperature used for control

COMMON /ETEMPE/t 1 1 ,t 13 1 ,ETEMP
character"256 dirout
save qpsave,icount

LXGENV is internal AE3AQUS subroutine that sets up output file definition

call lxgenv('OUTDIR', dirout, ldirout)
open (unit=5 1 ,file=dirout(l:ldirout)//'d55 1')
R=COORDS (1)
s =.01
tsp=lO80.0
u(2) = tsp
if(icount.ge.kinc) go to 197
if(kinc.lt.2) then

qpsave = L98e712.74
go to 197

endif
if (kinc.gt.1) then
u(1) = t l l

subsys-1 is control subroutine which calculates flux based on temperature t l f

call subsys-l (u,y)
qpsave = y(1y2.74

endif
179 icount = kine
197 QP = qpsave

c Flux distribution, FLUX(1)

FLUX(1) = QP*EXP(-O05*R"R/(S*S))
FLUX(2)=O.O
WRITE(5 1,102) kstep,kinc,noel,npt,qpsave,flux(l),tl 1
WRITE(5 1,103) coords(l),coords(2),time(l),time(2),
1 temp,u(l),u(2)

102 FORMAT(lX,4(15,1X),e12.5, Ix,e 12.5,lx,e12.5)
103 FORMAT(lX,7(e10.3,1~))

RETURN
END

40

SUBROUTINE UVARM(UVAR,DIRECT,T,TIME,DTIME,CMNAME,ORNAME,
1 NUVARM,NOEL,NPT,NLAYER,NSPT,KSTEP,KINC,NDI,NSHR)

c This subroutine reads temperatures from previous increment

INCLUDE 'ABA-PARAM.INC'
CHARACTER"8 CMNAME,ORNAME,FLGRAY(15)
DIMENSION UVAR(NUVARM),DIRECT(3,3),T(3,3),TIME(2)
DIMENSION ARRAY(15),JARRAY(15)
DIMENSION ETEMP(4,350)

c In this case, t l 1 is temperature which is to be controlled

COMMON /ETEMPE/t 1 1 , t 13 1 ,ETEMP
character*256 dirout
save ts131,tsll
JERROR = 0

c GETVRM is internal ABAQUS subroutine which holds element variables

CALL GETVRM('TEMP',ARRAY,JARRAY,FLGRAY,JRCD)
UVAR(1) = ARRAY(1)
if(noel.eq. 1.and.npt.eq. 1) then
ts l l = uvar(1)
t l l = ts l l

endif
if(noel.eq. 13.and.npt.eq. 1) then
ts131 = uvar(1)
t131 = ts131

endif
ETEMP(NPT,NOEL) = UVAR(1)

RETURN
END

41

DISTRIBUTION

INITIAL DISTRIBUTION
UNLIMITED RELEASE

0320 C. E. Meyers, 1011

0740 R.T. McGrath, 91 14
0826 W.L. Hermina, 91 11
0828 P. Hommert, 9100
0835 S.E. Gianoulakis, 9113

9001 T. Hunter, 8000
Am: J. B. Wright, 2200

A. West, 8200
W. J. McLean, 8300
R. C. Wayne, 8400
P. N. Smith, 8500
L. A. Hiles, 8800
D. Crawford, 8900

9004 M. E. John, 8100
9005 W. G. Wilson, 2204

9042
9042
9042

’ 9042
9042
9042
9042
9042
9042
9042
9042
9042

C. M. Hartwig, 8345
W.G. Houf, 8345
M.P. Kanouff, 8743
R. J. Kee, 8303
E. Meeks, 8345
C. D. Moen, 8345
P. E. Nielan, 8742
A.R. Ortega, 8743
J. Robles, 8743
J. Shon, 8345
P. A. Spence, 8345 (10)
L. I Weingarten, 8742 (5)

9054 W. J. McLean, 8300

9102 A. L. Hull, 8416
9102 D. M. Tung, 8416 (5)
9102 D. A. Sheaffer, 8416 (5)
9 103 G. A. Thomas, 8 11 1
9103 K. Schroder, 81 11 (5)

9401 M. L. Callabresi, 8743
9401 T. M. Dyer, 8700

9021
9021
8099 Technical Library 4414 (4)
9018

Technical Communications Department, 8815, for OSTI (10)
Technical Communications Department, 88 15fTechnical Library, MS8099,4414

Central Technical Files, 8950-2 (3)

42

	1 Introduction
	2 Methodology
	Software Link Between TACO and Control Application
	2.2 Software Link Between ABAQUS and Control Application

	3 Application of the Developed Methodology
	using the ABAQUS software
	Reactor using the TACO Software

	4 Conclusions
	5 References
	A Control Subroutine
	B Subroutines for Socket I/O
	C ABAQUS User Subroutines
	Temperature of substrate during controlled simulation
	Model of a rapid-thermal-processing (RTP) reactor
	Lamp powers for an automated system identification
	Temperature response at wafer
	Comparison of FE model and 38-state linear model
	Comparison of FE model and 5-state linear model
	Schematic of the control design process utilizing a finite element model
	Wafer temperature history during controlled simulation
	Lamp zone powers during controlled simulation
	Maximum temperature variation across wafer during controlled ramp
	Radial temperature profile on wafer at time of peak AT during controlled ramp
	Outer sensor at R=100 mm
	Outer sensor at R=95 mm
	Location of outer sensor has a large effect on radial temperature profile
	Wafer temperature during controlled simulations with ramp rates of 40-75 "C/s
	Maximum temperature variation across the wafer during controlled simulations
	Maximum temperature variation across wafer during a 50 "C/s ramp
	Power history for the outer lamp zone during a 50 "C/s ramp

