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ABSTRACT 

We developed a model for the probabilistic behavior of a rechargeable 
battery acting as the energy storage component in a photovoltaic power supply 
system. Stochastic and deterministic models are created to simulate the behavior 
of the system component;. The components are the solar resource, the 
photovoltaic power supply system, the rechargeable battery, and a load. 
Artificial neural networks ire incorporated into the model of the rechargeable 
battery to simulate damag: that occurs during deep discharge cycles. The 
equations governing system behavior are combined into one set and solved 
simultaneously in the Moiite Carlo framework to evaluate the probabilistic 
character of measures of battery behavior. 

INTRODUCTION 

A rechargeable battery energy storage system is essential for making the power from a 
photovoltaic system dispatchable. A photovoltaic-based power supply system sizes power 
generation to satisfactorily service I he system load (if, indeed, load exists while the photovoltaic 
system generates power) and chargc an energy storage system (typically, a lead-acid battery) that 
will service the system load when the photovoltaic system is not generating power. The system is 
optimally sized when, over the long term: (1) The photovoltaic component generates sufficient 
power to service the load and simultaneously generate sufficient stored energy to service the load 
when it is not operating, and (2) the rechargeable battery has sufficient capacity to avoid lengthy 
periods of time at a low state of charge. Discharge cycles that drain lead acid batteries below a 
threshold level for a time duration beyond a threshold value accumulate damage in the batteries. 
This damage is manifest by a diminution of maximum possible battery capacity. Cost constraints 
and the variability of the photovoltaic output, depending on weather conditions, make it 
impractical to overdesign the system sufficiently to entirely avoid periods of deficit charging. A 
predictive capability for the perforniance of the battery under the various design options is needed 
to optimize the system for the best Iradeoff among cost, load requirements, and battery life. 
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The present investigation creates a model for maximum battery capacity and cycle life 
using an artificial neural network 1:ANN). Specifically data obtained either experimentally or 
synthetically are used to create an ensemble of data that serves as exemplars for training the 
ANN. These ensembles contain various discharge profiles, including periods of deep discharge, 
for a particular type of battery. The ANN is used to reckon damage to potential maximum battery 
capacity caused by deep discharge. In summary, battery damage is modeled as deterministic. 

The power supplied by the photovoltaic system is modeled as a stochastic process. 
Because solar insolation vanes randomly as a function of time and is equal to or less than some 
theoretical maximum value, the sto1:hastic process, typically, does not have a probability density 
function that is symmetric in its statcs and, therefore, is not modeled as Gaussian. In this work an 
approach that employs a Markov pi-ocess is used to simulate components of the solar data. The 
load is modeled as deterministic in ihis study. 

All these elements are combined into a single framework to yield a stochastic model for 
the photovoltaic power supply and energy storage system. The model is operated on the Monte 
Carlo principle to yield realization; of the stochastic processes characteristic of the operational 
phenomena, and these can be analyzed using the tools of classical statistics and random signal 
analysis to infer the probabilistic behavior of the system. Ultimately the model can be used to 
design and optimize the power sup€ ly system. 

Mathematical descriptions of subsystem behavior are presented in the following section 
along with some relations required to describe system interactions. Next a numerical example is 
presented. Finally, some conclusioiis are drawn and presented. 

MATHEMATICAL MODEL OF A POWER SUPPLY/STORAGE/LOAD SYSTEM 

Our objective is to model and simulate a renewable energy supply and storage system. 
The particular system consists of four parts: a solar resource model, a photovoltaic power 
conversion model, a rechargeable battery energy storage model, and a load model. We provide 
the details of the individual subsysi.em models then combine the components into a model of the 
overall system. The solar resouxe is modeled as a random process, and we develop the 
capability to generate realization,; of the solar radiation from the random source. These 
realizations are used as the system input, along with a deterministic load, that drives response in 
the battery storage system. Equations that permit simulation of battery behavior are solved for 
specific load and insolation input;, and the results are used in a Monte Carlo framework to 
characterize system behavior. 

The Solar Resource Model 

The first subcomponent to be modeled is the power source of the photovoltaic system: the 
sun. The amount of solar energy available on a given surface area is particularly important. This 
is the solar insolation, and it is ineasured in units of power per area-i.e., units of W-hr/m2, 
BTU/ft2-hr, etc. There exist many sets of measured data that are readily available from local, 
state, and federal agencies. These data include values of global, direct, and diffuse solar radiation 
(either measured with a pyranometer or calculated) and can be used to calculate the solar energy 
received by a solar array (or collector) (1) or to guide the development of an insolation model. A 
model was developed to calculate the solar energy received by a flat plate collector tilted at an 
angle and located at arbitrary latitude, Equation 1 identifies fundamental quantities and their 
relation: 



where E, is the total solar energ:{ received by an inclined plane, Ebc is the direct beam 
contribution, Egr is the ground reflected energy, and Ed is the diffuse (or sky) energy (2). Each 
term, along with its relation to more Fundamental quantities, is developed in the following. 

The direct beam Contribution (Eb,) is defined by Equation 2: 

where Edn is the direct normal solar radiation (hourly values available in data bases) as measured 
with a pyranometer; it is defined as h a t  radiation received within a 5.7" field of view centered on 
the sun, and 0 is the incident angle of the sun's rays to the collector (2). The incident angle is a 
function of the latitude at which the collector is located, its tilt angle, and the position of the sun 
in the sky. A detailed explanation of how this value is obtained can be found in Kreider and 
Kreith (3). 

The diffuse radiation model is described by Equation 3: 

E, = E, 0.5(1- F, 11 + cos P)+ F, (9)' F, sin p] i r31 

where Ed is the diffuse (sky) radia:ion and Edh is the diffuse horizontal solar radiation (hourly 
values available in data bases) as measured with a pyranometer. Edh is defined as that radiation 
received from the sky (excluding thc solar disk) on a horizontal surface, Fl and F2 are coefficients 
associated with the condition of the sky, a and b are functions of the position of the sun in the sky, 
and p is the tilt angle of the collector (as measured from the horizontal). Equation (3) is also 
referred to as the Perez Model. A detailed explanation of its development and further discussion 
of the various parameters can be foLnd in Perez et al. (4). 

The final component in Equation (1) is represented by Equation (4): 

Eg, = OSpE, (1 + cos p) r41 

where Egr is the ground reflected ndiation, p is the surface reflectivity or albedo, and E,, is the 
global horizontal solar radiation va ues. Eh is defined as the total radiation-i.e., direct and diffuse 
received on a horizontal surface; and p is the tilt of the collector (from the horizontal). Albedo 
values range from 0.2 for green vegetation and some soils, 0.35 for old snow, and up to 0.95 for 
dry new snow (2). 

Because the ground reflec1.ed radiation can be characterized as a function of the direct 
normal radiation and the diffuse hoiizontal radiation, we model the latter two in the following. 

Svnthetic Generation of Solar Data Usiw a Markov Process 

Consideration of the meas x-ed insolation data indicates that the direct normal radiation 
and the diffuse horizontal radiation are random processes that are statistically dependent and non- 
Gaussian. We reach these conclusions through consideration of, for example, the data in Figure 
1. This is a plot of 310 joint realizations of diffuse horizontal radiation versus direct normal 
radiation at 11:OO AM on 310 separate January days. 



Direct Normal Radiation (Wh/m*) 

Figure 1: Joint realizations of diffuse and direct radiation 

The fact that the joint rea1i;:ations are not distributed within a circular or elliptical area 
combined with our intuition about the physics of the problem lead to the former conclusion-that 
is, the random processes are statistically dependent. Figures la  and 1b are the kernel density 
estimators (KDE) of the diffuse horizontal radiation and the direct normal radiation, respectively. 
The fact that these estimated probability density functions (PDF) are far from normal leads to the 
second conclusion: that the random processes are non-Gaussian. [For more information on KDEs, 
see Silverman, (5 ) ] .  
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Figure la: KDE of the diffuse: radiation 

Direct Normal Radiation (Wh/m2) 

Figure lb: KDE of the direct radiation 

To accommodate these facts and to reflect our belief that the dependence of the random 
processes upon their histories can ke accounted for using one-step-memory, we choose to model 
the joint behavior of the random processes with a bivariate, first order Markov chain. [See 
Isaacson and Madsen (6), for example, for an introductory discussion of Markov chains.] A 
Markov chain is a special type O F  Markov random process with discrete states and discrete 
parameter. The parameter is, in this case, time index. The bivariate state of the random process 
is the joint values of diffuse horizontal radiation and direct normal radiation. The underlying 
framework for the Markov chain creates bins for the joint values of the diffuse horizontal 
radiation and the direct normal radiation at each hour and identifies the system state according to 
the bin occupied by the radiation value at that hour. The probability mass function (PMF) 
specifying the chance that the system state occupies a particular bin at a particular hour is known 
as the state probability. The objective in use of the Markov chain is to determine the state 
probabilities at all times, for all measures of behavior of interest, for the system under 
consideration. This is accomplished, in the Markov chain framework, by specifying the initial 



state PMF, estimating (or otherwise deriving) the transition PMF (to be described in the sequel), 
and using the two to propagate state probabilities through time. 

Consider Figure 2 for a hint i s  to how the construct described in the previous paragraph 
can be developed. It shows the same data as Figure 1 but, in addition, separates the data into 
bins. The bin sizes are arbitrary and spatially disjoint. They cover the entire set of measured 
data. The location of radiation data within each bin can be approximated as the bin centroid 
location. Each bin can be indexed, lor reference purposes for example, by starting at the lower 
left comer and moving up the columns. Figure 3 shows 310 joint realizations of diffuse 
horizontal radiation and direct normal radiation at 12 noon on the same 310 days represented in 
Figure 2. Each datum in Figure 3 coiresponds to a particular datum in Figure 2-that is, each joint 
realization at 11:OO AM propagates into a joint realization at 12 noon. The data in Figure 3 are 
binned as the data in Figure 2 were, but the bin boundaries differ, as they must, to cover the 
different range of all the joint realizations. There are as many bins in Figure 3 as there are in 
Figure 2. 
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Figure 2: Bins for data at 11:OO AM 
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Figure 3: Bins for data at noon 

It is clear that any of a numtier of statistical estimation approaches can be used to find the 
probability that the joint realization of the diffuse horizontal radiation and the direct normal 
radiation random process moves from a particular state to any other state during the course of an 
hour. Though a simple statistical estimation procedure was used in this study, its description is 
beyond the scope of this paper. In addition, an initial state PMF can be easily identified; the joint 
state always starts the day with joint radiation of zero. 

The Markov chain is formally constructed as follows. Denote the vector random process 
under consideration as {Xj, j = 0, . . . n - 1 }, where j is the time index. In this particular case each 
vector random variable in the random process, Xi, consists of two random scalar variables: the 
diffuse horizontal radiation and the direct normal radiation at time index j .  The state probabilities 
of the Markov chain are denoted pi, j = 0, . . . n - 1 and contain the following information. 

where P(.) indicates the probability of the event described in parentheses, and the si, i = l,.. ., N, 
are the states of the Markov chain-i e., for example, the centroids of the bins in Figure 2 or Figure 
3. The PMF of initial states isPo. 



The probabilities that the bi lrariate Markov chain evolves from any state at time index j to 
the same state or any other at time iiidexj+l-Le., during the course of an hour-are encapsulated in 
the transition probability matrix, denoted Pj+lu. This matrix contains the following information. 

j = 0, ..., n - 2 

where P(X j + ,  = s , ~  X ,  = s ) is the conditional PMF denoting the chance that the system moves 

to state i2 at time index j+l ,  given that it occupied state il at time indexj. As mentioned above, 
these conditional probabilities can be estimated from measured data, but the procedure for doing 
so will not be presented here. We will simply add that the data are used to establish hour-to-hour 
transition probabilities, and this is done on a monthly basis. So with ten years of data, 310 
realizations of hour-to-hour transitions are available for days in January, and these can be used to 
estimate hour-to-hour transition probabilities for January days. The other months are treated 
similarly. 

I '1 

Some attractions of the N:arkov chain framework for analyses are: (1) that the state 
probabilities need not follow a norrnal law and (2) that the procedure for propagation of the state 
probabilities is simple, fast, and efikient. To establish the state probabilities at time index j+l, 
we use the formula 

p . = P . . p .  J + I  J + ~ ) J  J j = O  ,..., n-2 [71 

Clearly then knowledge of the initid state PMF and the transition probability matrices in Eq. (6) 
is sufficient to compute the state probabilities at time indices j=1,. . .,n-1. 

We choose to use the Markw chain model in a Monte Carlo framework in the analyses to 
follow. This means that realizations of the bivariate random process that models the diffuse 
horizontal radiation and the direct normal radiation must be generated. To accomplish this, we 
select a starting state at random, fAlowing the PMF of initial states, from among the potential 
starting states. To do this, we generate a uniformly distributed random variate in [0,1] and select 
the starting state as the one whose xmulative probability corresponds to the random variate. We 
then set all the values in po to ze-o, except for the state that is the chosen starting state; that 
probability is set to one. We then pre-multiplypo by Pllo to obtainpl, the state PMF at time index 
1. We select a realization from among the possible states by generating a uniformly distributed 
random variate in [0,1] and selixting the state as the one whose cumulative probability 
corresponds to the random variate. We continue this process throughout the n-step duration of the 
random process to obtain a realization of the diffuse horizontal radiation and the direct normal 
radiation. As many realizations of the random process as desired can be generated in this way. 

The Photovoltaic Power Supply Model 

The power to this system is supplied by a photovoltaic array that transforms the solar 
insolation into dc current at a spxified voltage. Because of the complex behavior of these 
polycrystalline silicon arrays, a number of models have been proposed to relate the insolation 



input to the expected output of the arrays. Some of these models take into account the cell’s 
physical characteristics-i.e. temperalure, chemical composition, etc.-and the location’s ambient 
conditions. For this project a specific type of photovoltaic array was selected, and its maximum 
rated current output was used to de:ermine the current produced at a particular time. In other 
words, given the maximum rated current of the photovoltaic array, Zmp, (which we will consider a 
constant) and the solar insolation, &:t) at time t, the current produced by the array is given by 

Z ( t )  = I ,  *Eo(t) lCo 

where Co is the energy per square meter applied to the collector over a computational time 
increment, at which the current Imp is generated. A time history of hourly current values can be 
obtained by using the output of Equation (1) in Equation (8). 

The Load Model 

The load model appropria1.e to the analysis of a particular system depends on the 
particular use that the photovoltaic power supply system is intended to serve. It could vary from 
a very simple deterministic system to a complex stochastic power distribution grid. The load 
used in this investigation is defined its a lighting system operated only during the nighttime. ‘ The 
current demanded by the load at a specified voltage is denoted ZL (t). 

The Rechargeable Batterv Model 

The focus of the overall investigation is to characterize the probabilistic behavior of 
rechargeable batteries that are recharged from a renewable source that provides power in random 
increments. Further, we narrow mr focus more by concentrating on the damage that can 
accumulate in rechargeable batteries, specifically lead acid batteries, when they are subjected to 
deep discharge use cycles. In particular it is known that when rechargeable batteries are used at a 
low state of charge, the maximum p 3tential capacity can be diminished. This may eventually lead 
to battery failure. In view of thes: things, we develop a framework to model battery state of 
charge and maximum potential battery capacity as functions of time. We introduce the damage 
effect that occurs during deep discharge via a non-positive function of duration of deep discharge 
and depth of deep discharge. Because the form of this function is unknown, we model it with an 
artificial neural network (ANN) whose parameters are to be trained with experimental data. (This 
training has not yet been accomplislied, so for now the ANN model has been trained with data we 
consider plausible.) O’Gorman et al . ,  (7) first demonstrated the use of A N N s  to simulate battery 
performance. 

We introduce notation for 1 he current demanded from the battery, Is(t), and the recharge 
current available to the battery, Z,?(t), for use in the development of the system’s governing 
equations. In terms of these quantities, the state of charge in the rechargeable battery system can 
be expressed 

r91 

The function Mc(t) is the maximurn potential battery capacity at time t. The functiony(t) is the 
recharge efficiency that establishes the rate at which recharge can occur. In general, as a 
rechargeable battery nears its maximum potential capacity, y(t)  approaches zero, and at lower 



levels y(t)  is near one. Battery testing would be required to establish the specific form and 
parameters of this function. For present purposes we arbitrarily take the function to be 

(1 C ( t ) / M ,  (t)< a, a €  (OJ) 

a I C(t)IM, (t)r 1 c 101 

This function has the graph shown in Figure 4 for a = 0.85 

Figure 4: Recharge efficiency curve 

Because the function Mc(t) tracks the maximum potential battery capacity as a function 
of time and because we take damage to a rechargeable battery (when used in photovoltaic 
application) caused by deep discharge as irreversible, Mc(t) must be a monotone non-increasing 
function. We choose the following as the form for Mc(t): 

The function S,(t) must be noii-positive and must indirectly characterize damage to the 
maximum potential capacity of the rechargeable battery during deep discharge. For present 
purposes we assume that S,(t) is a function of the time duration of a discharge below a 
threshold, T(t), and the depth of discharge below a threshold, D(t). Therefore, we write 

We specify that gs(T,D) is zero for T(t) below its threshold value or D(t) below its 
threshold value, but beyond this we do not know the form of gs(T,D).  It is anticipated that an 
explicit form for g, (T, 0) cannot tie easily derived, so we choose to model the function using an 
ANN. Any of a number of robust forms can be used here including, for example the layered 
perceptron ANN (see Freeman and Skapura, 1992 (8)) or the radial basis function ANN (see 
Moody and Darken, 1989 (9)). In the numerical example to follow, we use a particular form of 
the layered perceptron ANN to model gs(T,D).  The advantage in using an ANN here is that 
given sufficient training data, it learns rapidly. Further, A N N s  are accurate and efficient. The 
ANN used to model g,(T,D) in tkis investigation is shown in Figure 5. This model will be only 
applicable to the particular type of sattery used in this project. 



Figure 5: ANN model of battery damage 

There are two practical issues that must be resolved before the equations governing 
battery behavior can be implemented. First, as deep discharge of the rechargeable battery occurs, 
a smoothing must be applied to the state of charge in order for sensible realizations of the 
function g, (T, D) to be modeled. 'Ne choose to apply a one-day moving average of the state of 
charge in our definition of D(t). Second, we seek to keep track of the maximum potential 
capacity of the battery at all times; iowever, when the system is in the midst of a deep discharge 
cycle, the ultimate duration of the cycle is unknown. To accommodate this fact, once a deep 
discharge cycle has commenced, WE estimate its ultimate duration by noting the present state of 
the system and assuming that the state of charge will recover at the average rate of recharge. 

Combined Mathematical Model 

Upon the addition of two equations relating photovoltaic production and load demand to 
battery recharge and discharge, the equations governing subsystem behavior can be combined 
into a single, simultaneous set of equations to simulate the behavior of the overall system. 
Previously ZL(t) was defined as the current demand at the load, Ipdt) was defined as the current 
available from the photovoltaic system, and IB(t) was defined as the current demand on the 
battery. These quantities are related via Equation (13) 

where 23.1 is the Heaviside unit :,tep function. This indicates that the current demand on the 
battery is a linear function of the excess of the load demand beyond capability of the photovoltaic 
system to supply it. The current demand on the battery is zero when the load does not exceed the 
photovoItaic supply. 

The quantity ZR(t) was defined as the recharge current available to the battery. It is 
expressed 

It is proportional to the excess of the photovoltaic system supply beyond the load demand, when 
this quantity is positive, and zero when this quantity is negative. 



We combine Eqs. (13) and (14) with Eqs. (1) through (7) describing the solar resource, 
Eq. (8) describing the photovoltaic power supply, and Eqs. (9) through (12) describing battery 
behavior to simulate the system. The following numerical example shows the results of some 
simulations. 

NUMERICAL EXAMPLE 

To demonstrate the methodology described in the previous sections, a test case was 
simulated. This test case is based on an insolation model developed from data measured in 
Albuquerque, New Mexico (latitude -35" North). It assumes the use of a non-concentrating, non- 
tracking array, tilted at an angle equal to the latitude. Each module of the array is rated at 2.3 
amps (at standard test conditions), aid three modules are connected in parallel for a total of 6.9 
amps. The system includes a rechargeable battery rated at 12 volts and 105 amp-hours, and the 
load consists of one 18-watt lamp wii h an operational current of 1.9 amps. The load is applied for 
an average of 13 hours in the winter itnd 12 hours in the summer. 

The analyses performed in this investigation were done within the Monte Carlo 
framework-that is, simulations of the random processes of interest were performed, and 
realizations were generated and sl.ored. Statistical analyses were then performed on the 
realizations. The fundamental sub-process modeled as random in this study is the insolation 
random process. The randomness included in this sub-model causes most simulated quantities of 
interest in the overall model to also behave randomly. 

The direct normal radiation and the diffuse horizontal radiation were modeled as 
components of a bivariate, first orde- Markov chain, as described above. We chose to model the 
system with 5x4=20 bivariate statis; therefore, each joint realization of the direct normal 
radiation and the diffuse horizontal radiation could occupy any of 20 bins, and the two values 
would be represented as the values of the centroids of the bins. To check the accuracy of the 
model, we generated 100 one-year-long simulations and compared them to the raw, measured 
data. Figure 6a shows the measured total hourly insolation for January 1990, and Figure 6b 
shows a simulated total hourly insolation sequence of 31 January days. Their general character is 
similar; therefore, the simulation is plausible. (We should not expect the measurement and the 
simulation to be the same because they are simply two separate realizations from the same 
random source.) 
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Figure 6a: Measured total hourly 
insolation for January 1990 
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Figure 6b: Simulated total hourly 
insolation for 3 1 January days 

There is a statistical means .'or comparing the simulations to the measurements, however. 
The measurements and the simulations were used to estimate the means, variances, and standard 



deviations, as a function of time, on a January day and on a September day. The means minus 
one standard deviation, the means, and the means plus one standard deviation are shown in 
Figures 7a and 7b for the January day and the September day, respectively. The agreement 
appears satisfactory. 
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Figure 7a: Meankl standard deviation for 
January (solid-measured; dashed-simulated) 
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Figure 7b: Meankl standard deviation for 
Sept. (solid-measured; dashed-simulated) 

The simulated insolation anc, the load profile serve as inputs for the rechargeable battery 
model. Through solution of the sim iltaneous governing equations, we generate 100 realizations 
of the charge/discharge cycle and aLlo of the maximum potential capacity. Two sets of plots are 
shown in Figures 8a, 8b and 9a, and 9b of two of the time histones generated with this model. 
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Figure 8a: Chargejdischarge cycle for a 
battery that survived the entire year 
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Figure 8b: Maximum potential capacity 
for the system in Figure 8a 
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Figure 9a: Charge/discharge cycle for a 
battery that survived a fraction of the year 
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Figure 9b: Maximum potential battery 
capacity for the system in Figure 9a 

From the resulting simulations the KDEs of the maximum potential capacity were 
obtained for two arbitrarily selected hours of the year (hours 1000 and 6000). These are shown in 
Figures 10a and lob. 
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Figure loa: KDE for the maximim potential 
capacity ( @ hour 100 3) 

Figure lob: KDE for the maximum potential 
capacity (@ hour 6000) 

Figures 10a and 10b indicate a trend that shifts the probability mass of the maximum 
potential capacity toward zero. This occurs because as time progresses, some batteries fail. The 
fact that there is trough in the middle of the KDE in Figure lob indicates that when a battery 
starts to fail, it progresses rapidly to total failure, M,(t) = 0. This behavior is confirmed by 
Figure 9b. This shifting, and th: rate at which it occurs, are characteristic of the power 
supply/storage/load system. Modification of system parameters would result in modification of 
the probabilistic character of the response measure. 

CONCLUSIONS 

We have developed a framework for the probabilistic analysis of a power 
supply/storage/load system. In particular a solar resource and a rechargeable battery storage 
system have been modeled. The solar resource has been modeled as a bivariate random process 
using a Markov chain. The 
rechargeable battery was modeled using a combination of classical equations and an artificial 
neural network. The simulations of battery behavior appear plausible but need to be validated. 

Realizalions were generated in the Monte Carlo framework. 



Several steps need to be completed before the model can be implemented for practical 
system design. Most important, tests of rechargeable batteries need to be performed to calibrate 
the damage model embodied in the artificial neural network. Beyond this, the need for Monte 
Carlo simulation might be eliminated to yield a more efficient, direct analysis with the Markov 
chain model. 
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