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ABSTRACT 

We investigate the reliability of a rechargeable battery acting as the energy storage component in 

a photovoltaic power supply system. A model system was constructed for this that includes the solar 

resource, the photovoltaic power supply system, the rechargeable battery and a load. The solar resource 

and the system load are modeled as siochastic processes. The photovoltaic system and the rechargeable 

battery are modeled deterministically, and an artificial neural network is incorporated into the model of the 

rechargeable battery to simulate dariage that occurs during deep discharge cycles. The equations 

governing system behavior are solved simultaneously in the Monte Carlo framework and a frrst passage 

problem is solved to assess system reli,ibility. 

1. Introduction 

A rechargeable battery energy storage system is an enabling component for making the power from a photovoltaic 

system dispatchable. A photovoltaic-based power supply system is sized to satisfactorily service the system load, and to 

charge the energy storage sub-system (typicallj a lead-acid battery), that will supply the system load when the photovoltaic 

system is not generating power. Optimal sizing of the system must account for the facts that the power generated by the 

photovoltaic system and, perhaps, the load E ,  well, are stochastic processes, and that prolonged deep discharge of the 

batteries diminishes their available capacity. A predictive capability for the performance of the battery under various 

system designs and operating options is needed to optimize the system for the best tradeoff among cost, load requirements, 

and battery life. 

The present investigation extends and improves the techniques and results developed in a previous study (see 

Urbina et al., 1998). That study modeled the solar resource using a Markov chain, the photovoltaic system as deterministic, 

and incorporated an artificial neural network (ANN) to simulate damage in the battery caused by deep discharges-that is, 
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discharge of the battery below a threshold state-of-charge for a time duration beyond a threshold. It modeled the load as 

deterministic. The study performed probabilistic analysis in a Monte Carlo framework, and solved some preliminary 

problems in the probabilistic characterization of system behavior. 

The present study extends the previous one in several ways. First, it incorporates a technique for estimation of the 

Markov chain transition probabilities (based 01 measured data) that is more accurate and much more efficient than the 

rudimentary technique used in the previous study. Second, it models the system load as a stochastic process. Clearly, any 

realistic analysis of system reliability must have the capability to incorporate random loads. Finally, the present study 

estimates system reliability via analysis of the first passage probability, below a failure threshold, of the maximum potential 

capacity of the rechargeable battery. 

The following sections recapitulate some of the fundamental assumptions and ideas of Urbina et al., (1998). The 

theory and algorithms that augment previous dwelopments are presented in full. A numerical example that exercises the 

current developments is presented, and conclusions are offered. 

2. Mathematical Model of a Power SupplyIS torageLoad System 

We develop a mathematical model and use it to simulate the operation of a renewable energy supply and storage 

system. The system model consists of four parts: a solar resource model, a photovoltaic power conversion model, a 

rechargeable battery energy storage model, and a load model. The following sections provide the details of these individual 

sub-models, then combine them into a model of the overall system. The solar resource is modeled as a random process, and 

we develop the capability to generate realizations of the solar radiation from the random source. These realizations are used 

as the system input, along with a load modeled as a stochastic process, which drives response in the battery storage system. 

Equations that permit simulation of battery behavior are solved for specific load and insolation inputs, and the results are 

used in a Monte Carlo framework to characterii.e system performance and reliability. 

The Solar Resource Model 

The first component to be modeled is the power source of the photovoltaic system: the sun. The amount of solar 

energy available on a given surface area is particularly important. This is the solar insolation, and it is measured in units of 

power per area4.e. units of W-hr/m2, BTU-hrrft2, etc. There exist many sets of measured data that are readily available 

from local, state, and federal agencies. These data include values of global, direct and diffuse solar radiation (either 

measured with a pyranometer or calculated) 2nd can be used to calculate the solar energy received by a solar collector 

(National Renewable Energy Laboratory, 19!)4), or to guide the development of an insolation model. A model was 



developed to calculate the solar energy received by a flat plate collector tilted at a specified angle and located at arbitrary 

latitude. Equation 1 identifies fundamental quanlities and their relation: 

E, = Ebc +E,, + E ,  (1) 

where E ,  is the total solar energy received by an inclined plane, Ebc is the direct beam contribution, Egr is the ground 

reflected energy, and Ed is the diffuse (or sky) energy (National Renewable Energy Laboratory's Analytic Studies Division, 

1994). Each term along with its relation to more fundamental quantities is developed in the following. 

The direct beam contribution (E&) is de ined by Equation (2): 

= E& cos(e) 

where Edn is the direct normal solar radiation (hourly values available in databases) as measured with a pyranometer; it is 

defined as that radiation received within a 5.7" fidd of view centered on the sun, and 8 is the incident angle of the sun's rays 

to the collector (National Renewable Energy Laboratory's Analytic Studies Division, 1994). The incident angle is a 

function of the latitude at which the collector is located, its tilt angle and the position of the sun in the sky. A detailed 

explanation of how this value is obtained can be found in Kreider and Kreith, (1981). 

The diffuse radiation model is describecl by Equation (3): 

OS(1-  F, )(1+ cos P)+ F, - + F2 sin p (3 )  

where Ed is the diffuse (sky) radiation, Edh is thc diffuse horizontal solar radiation (hourly values available in databases) as 

measured with a pyranometer. Edh is defined as that radiation received from the sky (excluding the solar disk) on a 

horizontal surface, F1 and F2 are coefficients asjociated with the condition of the sky, a and b are functions of the position 

of the sun in the sky, and p is the tilt angle of th: collector (as measured from the horizontal). Equation (3) is also referred 

to as the Perez Model. A detailed explanation of its development and further discussion of the various parameters can be 

found in Perez et al., (1990). 

The final component in Equation (1) is represented by Equation (4): 

E,, = 0.5pEh (1 + cos p) (4) 

where Egr is the ground reflected radiation, p is the surface reflectivity or albedo, and Eh is the global horizontal solar 

radiation. Eh is defined as the total radiation4.e direct and diffuse received on a horizontal surface, and P is the tilt angle of 

the collector (from the horizontal). Albedo valies range from 0.2 for green vegetation and some soils, 0.35 for old snow 

and up to 0.95 for dry new snow (National Renewable Energy Laboratory's Analytic Studies Division, 1994). 



Because the ground reflected radiation could be characterized as a function of the direct normal radiation and the 

diffuse horizontal radiation-that is, evaluating Eq. (2)  at W" then adding Edh to it, gives E* which is ultimately used in Eq 

(4) to find E,,,- we model the latter two in the fcllowing. 

Synthetic Generation of Solar Data Using a Markov Process 

It was argued in Urbina et al., (1998) that the random variables representing direct normal solar radiation and 

diffuse horizontal radiation are dependent, and that their joint probability distribution is non-Gaussian. Substantial evidence 

confirming these arguments was presented. Because of this, a bivariate Markov chain was chosen to model the solar 

radiation phenomenon. It was explained that the Cartesian space of direct normal solar radiation and diffuse horizontal 

radiation can always be subdivided into a rectangular grid like the one shown in Figure 1. The data points are 310 

realizations of direct solar radiation and diffu;e horizontal radiation, and the individual rectangles group the radiation 

realizations into states of the Markov chain. 
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Figure 1: Cartesian :,pace of direct normal and diffuse horizontal radiation 

At any time, the solar radiation stochsstic process occupies a state, and there is a probability mass function that 

describes the chance that each of the states is occupied. This is the state probability mass function, denoted p,, and defined 

as: 

P ( X j  = Si) 

P ( X j  = s, ) 

I (  P ( X j  i = SJ 
j = 0, ..., n - 1 

where P ( . )  indicates the probability of the event described in parentheses, X j  is a random variable in the random process 

{ X,, j = 0, . . . n - 1 } that is the bivariate Markov chain, and the s,, i = 1 ,. . ., N ,  are the system states. 



The probability, that the solar radiation random process state, transitions from sil at analysis time j ,  togi2 at 

analysis time j+l is given by the conditional probability mass function P ( X j + l  = s i 2 1 X j  = s i l ) ,  and the collection of all 

these transition probabilities is the transition mamix: 

pj+il j 

j = 0, ..., n - 2 (6) 

This transition probability matrix and the state probability mass function at time zero are sufficient to establish the 

probability mass functions for states at all times because of the following relation: 

Pj+l = P j + i l j ~ ,  j =0, ..., n - 2  (7) 

Because the solar radiation random process citn be started at night when radiation is certain to be zero, p o  is trivially 

specified. Though the method for obtaining the transition probabilities from measured data was not detailed in Urbina et al., 

(1998), the technique was simple and direct, but not very efficient. We outline in the following a much improved technique. 

Our objective is to use measured solar radiation data to estimate the transition probability matrices of Equation (6). 

Let the data representing realizations of the system state at a particular hour, and during a particular month, and the 

corresponding data measured during the following hour be denoted by x,, y,, j = 1, . . . m, respectively. If data measured over 

a period of 10 years are used here, and the month under consideration is January, then m = 3 10. For example the x, might be 

two-element vectors; the first element represeni s the direct normal radiation and the second element represents the diffuse 

horizontal radiation at 9:OO AM on a January day. The yJ represent the same quantities one hour later. (We assume that the 

data have been normalized prior to this analysis.) The joint probability density function (PDF) of the source of these two 

dependent quantities can be approximated using the kernel density estimator (KDE): 

For details on the KDE see Silverman, (1986). Likewise, the marginal PDF of the random variable that is the source of the 

x j , j = O  ,..., m , can be approximated with the KDE: 

- - m < x < =  (9) 



Now, the conditional PDF of the random variable y given the random variable x is defined as: 

And the conditional cumulative distribution function (CDF) of y given x can be obtained by integrating the conditional 

PDF: 

F()k) Gi I x 1 = Jib. f,k (0 I x)de - m < y < m  (1 1) 

In view of this, the KDEs of Equations (8) and (9) can be used to approximate the conditional CDF ofy given x. It is: 

where a(.) is the CDF of the standard normal random variable, and E is the smoothing factor of the KDEs. This approach 

can be used, along with the definition of the st:.te boundaries to approximate the transition probability matrices. 

As in the previous study, we use the Markov chain model in a Monte Carlo framework to generate as many 

realizations of the random process as desired. 

The Photovoltaic Power Sumlv Model 

The power to this system is supplied tiy a photovoltaic array that transforms the solar insolation into dc current at a 

specified voltage. Because of the complex be iavior of these polycrystalline silicon arrays, a number of models have been 

proposed to relate the insolation input to the expected output of the arrays. Some of these models take into account the 

cell's physical characteristics-i.e. temperature, chemical composition, etc.-and the location's ambient conditions. For this 

project, a specific type of photovoltaic array was selected and its maximum rated current output was used to determine the 

current produced at a particular time. In othx words, given the maximum rated current of the photovoltaic array, Z,,, 

(which we will consider a constant) and the sol x insolation, Eo(t) at time t, the current produced by the array is given by 

I ( t )  = I,, .Eo(t)lCo (13) 

where Co is the energy per square meter applied to the collector over a computational time increment, at which the current 

Imp is generated. A time history of hourly current values can be obtained by using the output of Eq. (1) in Eq. (13). 



The Load Model 

The load model appropriate to the malysis of a particular system depends on the particular use that the 

photovoltaic power supply system is intended to serve. The current demanded by the load at a specified voltage is denoted 

ZL (t) and we choose to introduce the potential for random loads in this investigation. During nighttime hours the load is 

modeled as constant, I ,  . During daylight hours, the load is modeled as a uniformly distributed, band-limited, white noise 

random process. That is: 

1, (tl = 1,) . w(t) t E (daylight hours) (14) 

where I,, is a constant (for this project, this value was taken as 75% of the maximum Z L l ) ,  and w(t) is a uniformly 

distributed, band-limited, white noise random process with values in [0,1]. 

The Rechareeable Battery Model 

The focus of this investigation is to characterize the reliability of rechargeable batteries, which are recharged from 

a renewable source that provides power in random increments. Further, we narrow our focus more by concentrating on the 

damage that can accumulate in rechargeable t atteries, specifically lead-acid batteries, when they are subjected to deep 

discharge use cycles. In particular, it is known that when lead-acid batteries are used at a low state of charge, the maximum 

potential capacity can be significantly diminished. This may eventually lead to battery failure. In view of this, we develop 

a framework to model battery state of charge and maximum potential battery capacity as functions of time. We introduce 

the damage effect that occurs during deep dixharge via a non-positive function of deep discharge duration and depth. 

Because the form of this function is unknown, we model it with an artificial neural network (ANN) whose parameters are to 

be trained with experimental data. (This training has not yet been accomplished, so for now the ANN model has been 

trained with data we consider plausible.) O’Gorman et al., (1998) first demonstrated the use of A N N s  to simulate battery 

performance. 

We introduce notation for the current jemanded from the battery, ZB( t ) ,  and the recharge current available to the 

In terms of these quantities, the state of battery, ZR(t), for use in the development of thc: system’s governing equations. 

charge in the rechargeable battery system can be expressed: 

c(t)= 
hrc (t) otherwise 



The function Mcft) is the maximum potential battery capacity at time t. The function y(t)  is the recharge efficiency that 

establishes the effective rate at which recharge can occur. In general, as a rechargeable battery nears its maximum potential 

capacity y ( t )  approaches zero, and at lower Lwels y( t )  is near one. Battery testing would be required to establish the 

specific form and parameters of this function. F'or present purposes we arbitrarily take the function to be: 

(1 'c(t)lMc(t)<a, a€ (OJ) 

Because the function Mc(t) tracks the maximum potential battery capacity as a function of time and because we 

take damage to a rechargeable lead-acid battcry (when used in photovoltaic application) caused by deep discharge as 

irreversible, M d t )  must be a monotone non-incIeasing function. We choose the following as the form for Mcft):  

The function 6, ( t )  must be non-positive and must indirectly characterize damage to the maximum potential capacity of the 

rechargeable battery during deep discharge. Fclr present purposes we assume that 6, (t)  is a function of the time duration 

of a discharge beyond a threshold, T(t), and the depth of discharge above a threshold, D(t). Therefore, we write 

6,(t>=g,(T,D) (18) 

We specify that g,(T,D) is zero for T(t) below its threshold value or D(t) below its threshold value, but beyond 

this we do not know the form of g, (T,D) . It is anticipated that an explicit form for g, (T,D) cannot be easily derived, so 

we choose to model the function using an ANN. Any of a number of robust forms can be used here including, for example 

the layered perceptron ANN (see Freeman and Skapura, 1991), or the radial basis function ANN (see Moody and Darken, 

1989). In the numerical example to follow, we use a particular form of the layered perceptron ANN to model g, (T, 0). 

The advantage in use of an ANN here is that gii en sufficient training data, it learns rapidly. Further, A N N s  are accurate and 

efficient. The ANN used to model g, (T, 0)  ir this investigation is shown in Figure 2. This model will be only applicable 

to the particular type of battery used in this proj :ct. 

There are two practical issues that must be resolved before the equations governing battery behavior can be 

implemented. First, as deep discharge of the rechargeable battery occurs, a smoothing must be applied to the state of charge 

in order for sensible realizations of the function g ,  (T, 0)  to be modeled. We choose to apply a one-day moving average of 

the state of charge in our definition of D(t). Sec ond, we seek to keep track of the maximum potential capacity of the battery 

at all times; however, when the system is in h e  midst of a deep discharge cycle, the ultimate duration of the cycle is 



unknown. To accommodate this fact, once a deep discharge cycle has commenced, we estimate its ultimate duration by 

noting the present state of the system and assuming that the state of charge will recover at the average rate of recharge. 
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Figure 2: ANN model of battery damage 

Auxiliarv Equations 

Two additional equations relating photovoltaic production and load demand, to battery recharge and discharge are 

required to simulate the behavior of the overall system. Previously, ZL(t) was defined as the current demand at the load, 

Zpdt} was defined as the current available from the photovoltaic system, and Zs(t} was defined as the current demand on the 

battery. These quantities are related via Equati~in (19): 

m= H[zL(t)-zPv(~)~I~(t)-zP" (t>> (19) 

where H[.] is the Heaviside unit step function. This indicates that the current demand on the battery is a linear function of 

the excess of the load demand beyond capabiliiy of the photovoltaic system to supply it. The current demand on the battery 

is zero when the load does not exceed the photovoltaic supply. 

The quantity ZR(t) was defined as the r1:charge current available to the battery. It is expressed: 

IR( t )=  H[IP" (t)-zL(t)~zPv(t)-z~(t)> (20) 

It is proportional to the excess of the photovoltaic system supply beyond the load demand, when this quantity is positive, 

and zero when this quantity is negative. 

We combine Eqs. (19) and (20) witk Eqs. (1) through (7) describing the solar resource, Eq. (13) and Eq. (14) 

describing the photovoltaic power supply and the load respectively, and Eqs. (15) through (18) describing battery behavior, 

to simulate the system. The following numerical example shows the results of some simulations. 



3. Numerical Example 

Because the current analyses are being run in the Monte Carlo framework, any of a number of probabilistic 

characterizations of system behavior can be developed. Since we are interested in performing reliability analysis, we choose 

to perform a first passage probability analysis on the response. The first passage probability distribution of a random process 

is the chance that the random process passes bcyond a barrier of interest, for the first time, at or before a time t. Here, we 

will estimate the first passage probability of M,.(t) ,  the maximum potential capacity, below a barrier that is a fraction of its 

initial value. The first passage problem is defined as follows. Let (Y,, j = 0, ..., n - 1) be a random process, with discrete 

time indexj, and let T, be a random variable denoting the first time index at which the state of the random process passes 

into the set S. Then the CDF of the random variable T, is the first passage probability distribution of the random process 

k,, j = 0, ..., n - 11, with reference to the set of states S. 

We estimate the CDF of the random t ariable T, using the realizations of j = 0, ..., n - 1) generated during the 

Monte Carlo analysis. Denote these realization:; y y ' , j  = 0, ...,n- 1,k = &...,A4 , where M is the total number of realizations 

generated during the Monte Carlo analysis. We estimate, for each realization, the time at which the signal first passes into 

the set S. (We accomplish this, for example, siinply by tracking the response time history.) Denote by t("),k = 1, ..., M , the 

time at which the (k)" realization passes into the state S. (Some realizations may not pass into the state S, within the time 

indicesj = 0,. ..,n-1. For these, the quantity t@)  ~ might be set to some value that is large relative to the time indexj = n. For 

such a case, the first passage probability distribution will not reach a value of one by j = a-1.) The ensemble of values 

t (k) ,k  = 1, ..., M can now be used in the kernel cumulative distribution function estimator to approximate the CDF of the 

random variable T, . This is: 

where a(.) is the standard normal CDF, and E is the smoothing factor of the kernel CDF estimator. 

The first test case to be analyzed here (denoted as system #1) is based on an insolation model developed from data 

measured in Albuquerque, New Mexico (latitude -35" North). It assumes the use of a non-concentrating, non-tracking 

array, tilted at an angle equal to the latitude. Ezch module of the array is rated at 2.3 amps (at standard test conditions) and 

three modules are connected in parallel for a tot 31 of 6.9 amps. The system includes a rechargeable battery rated at 12 volts 

and 105 Ah (which is M,(b) in Eq. 17) and a constant, nocturnal load of one 18-watt lamp with an operational current of 

1.9 amps and a random daytime load calculated with Eq. (14). This combination applies an average load of -30 Ah per day. 



One hundred one-year long simulations were gcnerated and analyzed using these parameters. First passage probability 

distributions are estimated for maximum potential capacity values that are 99, 95, 85 and 75 percent of the initial maximum 

potential capacity. 

Because the first passage probability distribution is a CDF, it is monotone non-decreasing. This characteristic is 

reflected in the graph of Figure 3. However, it may appear peculiar that there is much increase at the beginning of the curve, 

then later, at the end of the curve. The reason is lhat the analysis was started on January 1 and the collector was tilted at an 

angle that maximizes the yearly energy output. The weather during that time of year tends to be cloudy, and batteries tend to 

operate in a state of deep discharge, yielding an i icreased probability of damage. The weather late in the calendar year also 

tends to be cloudy, again, leading to battery damage. This is the reason for the increase at the end of the graph. If we change 

the parameters of the analysis (such as the tilt angle of the collector), the results will differ. The effect of changing the tilt 

angle is shown in Figure 4. In system #2 the tilt angle was changed to 50" (which is the latitude angle plus 1 5 O ) .  This 

change skews the energy production toward the winter months. The other parameters are left unchanged. It can be seen 

from the figure that most batteries survived (witk out damage) the cloudy weather in January. In addition it is noted that a 

small percentage (-6%) of the cases, survived the entire year with a capacity of 99% (of their initial maximum potential) or 

higher. 
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Figure 3: CDF for system #1 
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Figure 4: CDF for system #2 

4. Conclusions 

A technique for the analysis of reliabil ,ty of rechargeable batteries in photovoltaic power supply systems was 

developed. The present analysis introduces sever a1 improvements over previous studies. Among these is an accurate and 

efficient technique for the estimation of transition probabilities of the Markov chain used to characterize the battery state of 



charge and maximum potential capacity. Beyond this, a stochastic load was introduced into the model, and a first passage 

probability analysis was introduced into the ;tnalysis of the results. The parameters of the model developed here can be 

adjusted to investigate a wide variety of systems, yielding practical reliability analyses of rechargeable batteries in a 

photovoltaic power supply system. 

The artificial neural network used .o characterize damage in the rechargeable battery, and developed in the 

previous study, was used again in this investig,ition. Experiments remain to be performed that specify the precise parameters 

of the neural network. Further, a worthwhile goal of future investigations is the transition of the current analysis from the 

Monte Carlo framework to a direct analysis framework. 
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