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ABSTRACT Probabilistic uncertainty is a phenomenon that 1. INTRODUCTION 
occurs to a certain degree in many engineering applications. 
The effects that this uncertainty has upon a given system 
response is a matter of some concern. Techniques which pro- 
vide insight to these effects will be required as modeling and 
prediction become a more vital tool in the engineering design 
process. As might be expected, this is a difficiilt proposition 
and the focus of many research efforts. The purpose of this 
paper is to outline a procedure to evaluate uncertainty in 
dynamic system response exploiting Gauss-Hermite numeri- 
cal quadrature. Specifically, numerical integratbn techniques 
are utilized in conjunction with the Advanced Mean Value 
(AMV) method to efficiently and accurately estimate 

Certain response characteristics of structural dynamic 
systems exhibit behavior that can only be quantified to within 
some level of uncertainty. An example of this phenomenon is 
found in manufacturing, where ensembles of nominally iden- 
tical structures exhibit unit-to-unit variation. This manifests 
itself via important measures of engineering behavior, such 
as frequency response functions, modal frequencies, and 
mode shapes. Among the sources of this variability is uncer- 
tainty due to manufacturing tolerances. These uncertainties 
are often incorporated into system models as parametric 
quantities, such as material and geometrical properties. 

moments of the response process. A numerical example 
illustrating the use of this analytical tool in a practical frame- 
work is presented. 

NOMENCLATURE 

A previous paper [5] developed a technique for the analysis of 
this class of uncertainty using a probabilistic approach where 
the system parameters are assumed to be random variables 
with known probability distributions. The technique is based 
on the AMV method, an approach that was developed specif- 

Advanced Mean Value 
Operator of mathematical expectation 
Probability Density Function (PDF) of Y 
Cumulative Distribution Function (CDF) of Y 
Fast Probability Integration 
Memoryless deterministic function 
Linearized form of g( .) 
Number of terms in quadrature formula 
Number of AMV runs 
Moment to be calculated 
Number of elements in random vector 
Number of terms in CDF,PDF approximation 
Probability of an event 
Rosen blatt transform 
Realizations of X, Y ; function argumerits 
Random variables 
Realization of 2 
Standard normal random variable 
Distance vector from origin to design point in stan- 
dard normal space 
Operator denoting a finite perturbation of associated 
variable 
CDF of a standard normal random variable 
PDF of a standard normal random variable 
Mean and standard deviation of random variable X 

ically for application to system reliability analysis by Wu and 
Wirsching [7]. AMV is strongly motivated by the fact that the 
functional relationship mapping the random parameters to the 
response quantity of interest need not be known analytically. 
Finite element analysis proves to be an ideal application 
because this information is communicated via a limited 
number of function evaluations (finite element code runs, for 
example). The number of these evaluations required for 
execution of AMV is far fewer than is necessary for sampling- 
based probabilistic techniques. 

Though the AMV approach is a very efficient approach for the 
computation of cumulative probabilities of measures of 
system response, it has certain shortcomings. Specifically, its 
output is cumulative distribution function (CDF) values, not 
the statistical characteristics of the output quantity, and they 
are given at abscissa locations which differ from those speci- 
fied by the user. Therefore, it is not well suited to the direct 
approximation of CDFs and probability density functions 
(PDFs) at arbitraly abscissa locations and, as a result, is not 
well suited to the approximation of the moments of response 
variables. 

In this paper, a technique for approximating a probability 
distribution based on arbitrary CDF data is presented. The 
approximation can be used to smooth estimates or to create a 
PDF estimate at arbitrary abscissa locations. This approxima- 
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tion is then used with efficient quadrature rules to estimate 
statistical moments for the associated response random 
variables. 

In Section 2, a brief review of the AMV method is given. In 
Section 3, the methodology for establishing smoothed CDF 
approximations is developed, and the procedure for deriving 
the associated PDF is shown. Finally, in Section 4, standard 
quadrature methods are employed in conjunction with this 
approximation to estimate statistical moments. A simple 
numerical example is then presented, followed by concluding 
remarks. 

2. THE ADVANCED MEAN VALUE (AMV) METHOD FOR 
PROBABILISTIC SYSTEM ANALYSIS 
Let Y be a scalar random variable defined as follows: 

Y = g ( x > ,  (1) 
where X is an n -variable random vector with arbitrary joint 
probability distribution, characterized by the joint PDF, 
f x ( x )  , and g( .) is a deterministic function. The probability 
distribution of the random variable (r.v.) Y can be character- 
ized with the CDF of Y ,  F Y ( y ) ,  for various values of the 
arbitrary scalar y . By definition 

where the fact that the random vector X is n-dimensional 
has been used. The exact solution is an n -fold improper inte- 
gral of the joint PDF f x ( x )  over a subset of the domain of 
definition of the underlying r.v. The integral can only be 
solved in closed form for a very limited number of cases, and 
many more general numerical approximaticns are quite 
expensive. In view of this, it is clear that less cumbersome, 
approximate solution approaches are particularly attractive. 

For any value of y in Eq. (2), the AMV method approximates 
the solution in the following way. First, a linear approximation 
to the function in Eq. (1) is defined using a truncated Taylor 
series: 

where the px = E [ X ]  is the expected valLe of X ,  and 
Ag/A.r; are finite difference approximations to the partial 
derivatives. Evaluation of the coefficients in Eq. (3) requires 
n + 1 analysis runs, or function evaluations, which are used 
to evaluate the problem output measure of interest, Y ,  where 
n is the number of r.v. comprising the vector X , Note that it is 
this approximation step that circumvents the need for a 

closed-form expression for g( .) . In addition, the explicit spec- 
ification of a second argument in g L  indicates the point in 
design space about which the Taylor series is expanded. 

Using Eq. (3), AMV approximates the problem stated in Eq. 
(2) with 

(4) 

At this stage, a second approximation is employed which 
systematically replaces the n -dimensional integral associ- 
ated with Eq. (4) by a one-dimensional integral in a well- 
known probability space. This process is a so-called fast 
probability integration (FPI) technique, which transforms the 
random vector X into the space of uncorrelated, standard 
normal random variables, where a design point is subse- 
quently found. This procedure is defined as follows. Let 

z = T(x)  x = 2%) (5) 
denote the fomard and inverse Rosenblatt transforms (see 
161). The forward transform uniquely maps realizations of the 
random vector X into the space of realizations of uncorre- 
lated, standard normal random variables, Z , and the inverse 
transform performs the inverse mapping. The point z in the 
transformed space where llzll is minimum subject to the 
constraint 

gL(T-'(z), Llx) - y = 0 (6) 

is known as the design point for the problem, and is denoted 
zI* . This point can be obtained rapidly because the linear 
approximation in Eq. (3) precludes the need for additional 
analysis code results. Let p, = llzl*ll. 
Next, approximate the probability of the response as 

(7) 

where 2 is a single standard normal r.v. This approximate 
solution is known as the "mean value" solution. (Note that we 
use the plus sign (c) in the final term in Eq. (7) when y is 
greater than the mean of gL(X, p X ) ,  and the minus sign (-), 
otherwise.) Rather than using the approximation of Eq. (7), 
the point in the space of the original variables x that corre- 
sponds to the design point zl* is updated using the inverse 
Rosenblatt transform 

Based on this value, a new abscissa for the response is 
determined 

Y, = g(x , * ) ,  

and yields the final AMV approximation 

(9) 
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P(Y I yl) 7 @(kpl>. (1 0) 

Two important facts must be noted about the result in Eq. 
(10). First, it does not yield the result sought in Eq. (2), the 
CDF of the random variable Y at the point y . Rather, it esti- 
mates the CDF of the random variable Y at y1 . This is due to 
the fact that the transformation and operations that lead from 
g ( X )  = Y in Eq. (2) to the design point following Eq. (6) are 
different from those leading back from the design point to x I *  
and y, in Eqs. (8) and (9). Second, the fact thid the result in 
Eq. (10) is only an approximation to the exact CDF of Y at y ,  
is reemphasized. There are many reasons for this. The 
design point is not as accurate as it might be if it were 
obtained using a more time-consuming approach. More 
important, the probability evaluation in the normal space is 
based on a linear approximation of the design surface (the 
transformed constraint that reflects the conditilm g(x) I y in 
Eq. (2)). 

3. CDFPDF APPROXIMATION 

The fact that the abscissa location y1 differs, in general, from 
the point y , precludes approximation of the CDI' or PDF at an 
arbitrary point. To overcome this difficulty, we propose to use 
an interpolating and extrapolating approximation first 
suggested by Wu and Bumside [8]. The form of the approxi- 
mation is 

FY(i)'*[ 5 cj(-yy], 
j = O  

where a(.) is, as above, the CDF of a standard normal 
random variable, a is an arbitrary constant, b is an arbitrary 
nonnegative constant. The c . ,  j = 0, ..., N ,  3re constants I that can be identified using a linear least squares approach. 

Assume that the AMV approach has been used to approxi- 
mate the CDF of Y at a collection of abscissa locations, yi , 
i = 1 ,  ..., rn . Then the following relation holds. 

yi-a  j N 

*-l[Fy(y;)lr c j ( T )  , i = 1, ..., rn. (12) 
j = O  

If N + 1 < m then the c j  , j = 0, ..., N can be identified using 
a linear least squares approach. 

Once the c j ,  j = 0, ..., N are identified, Eq. (1 1) can be used 
to interpolate or extrapolate the CDF of Y at any value of y . 
Further, the PDF of Y can be approximated. It is the deriva- 
tive of Fy(y)  with respect to y 

where $( .) denotes the standard normal PDF function. 
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Some comments can be made about this approach. First, one 
should exercise caution when using Eq. (11) or Eq. (13) to 
extrapolate the CDF or PDF approximation, particularly since 
it is based, indirectly, on a polynomial approximation. 
Second, the choice of basis functions in Eq, (11) (ie., the 
powers of y )  can cause ill-conditioning of the governing 
equations in the least squares problem [2]. To remedy this, 
basis functions that form an orthogonal system can be used. 
One example is the orthogonal set of Hermite polynomials, 
and will be the subject of future work 

4. NUMERICAL INTEGRATION TECHNIQUES 

With this approximation to fy(y) ,  the moments of Y can be 
calculated directly utilizing some numerical integration 
scheme. 

Consider a weighted quadrature formula of the form 

K rh(T)W(r)dT a = w k h ( 7 I.) +EK(f)v (14) 
k =  1 

where h is the function to be integrated, and W is a nonneg- 
ative continuous weighting function assumed integrable over 
[a, P I .  The wk and T~ terms, which depend on the type of 
weighting function W used, are discrete weights and nodes, 
respectively, for the kth term in the sum. E K ( f )  is the 
remainder or error involved in using this quadrature 
technique. 

When considering most 'real-world" systems, the output 
random variable is generally defined for all real values -- T < m . Hence, Gauss-Hermite quadrature is a logical 
choice, because the weighting function is 

w ( T )  = e-'-, --<T<-. (1 5) 
The corresponding discrete weights and nodes on the right- 
hand side of Eq. (14) involve the orthogonal set of Hermite 
polynomials, described by 

Ho(T) = 1 ,  HI(T) = 2 T ,  

Hk+l(T) = 2 T H , ( T ) - 2 k H k _ , ( T ) ,  k = 1,2, .._. (16) 

The weights are then given by 

where T~ is the k th node of H,(T) [3]. 

To apply this numerical integration technique to compute the 
moments of Y = g ( X ) ,  form the M th moment of Y as 

E [  Y " ]  = p y'Wfy(?.)dy . 
4 



After careful study, it was determined that Eq. (14) converges 
quickly only if h ( ~ )  has decayed to near zero for 1.51 > 3.  For 
this reason, consider the Mth moment of i i  normalized 
variable 

A closed-form expression for the CDF of Y, 

Iny - c1 

E [ V M ]  = j- vMfv(v)dv,  v = y-u , 
-OD W 

was derived in 15). It follows from this that the PDF of Y is 
(1 9) 

where u is an estimate of the mean of Y ,  and w is used to 
ensure the integrand in Eq. (19) decays to zei'o sufficiently 
fast. Using Eq. (14), it can be shown that 

(23) 

where c1 and c2 depend on the numerical values for the 
mean and standard deviation of XI and X ,  . 

E [  V'] = { eV2wvMfy(wv + u )  e-' dv = (20) To derive closed-form expressions for the moments of Y, 
note that by definition, a random variable X is lognormal if 
1nX is normal. Assume InX is normal with mean px and 
standard deviation ox.  The PDF of X is then given by [l] 

-OD l 2  
K 

L h ( v ) W ( v ) d v e  Wkh(Vkl 

k =  1 

The inverse transformation of Eq. (1 9) can then be applied to 
this result to give the M th central moment of Y. 

Note that inhetrent in Eq. (14) is an assumptaon that h(v) 
decays as e-' for v+--m, v+-m [2]. Therefore, we can 
expect large remainder terms when considering PDFs that do 
not exhibit this characteristic. 

where 

1 2  I .  = E(lnX) = lnp x 2  --5 and 

( 21 5. EXAMPLE PROBLEM 2 { = Vaar(lnX) = In I + -  . 
This example illustrates the operation of AMV arid the compu- 
tation of moments based on the AMV approximation, for a 
simple function, and compares the results to analytically 
obtained results. Let 

With this knowledge, it can be shown that 

Graphically, this mapping is shown in Fig. 1 In addition, 
assume the random variables XI and X, to be independent 
and lognormally distributed, with means p x ,  = px and stan- 
dard deviations ox, = oX2.  

00 

E [ X M ]  = j x M f x ( x ) d x  = exp[iM(MS2 + 2 h ) ] .  (27) 
0 

The M th moment of Y is then 

because X I  and X, are independent. 

The M th central moment of Y can be expressea in rems or 
EIYM1 (see 141) n 6 

2 
- 4  M 

@ 2  

0 

E[(Y - P y l M I  = c (3-l)rp;E[YM-r1. (29) 
r = O  

Y 
W 

Using the analytical expressions of Eqs. (27) through (29), 
the first M central moments of Y can be found. 

Shown in Table 1 are the first four central moments of Y for 
the simple example of Eq. (21), assuming px, = px2 = 1.0 
and ox, = ox? = 0.1 . Also shown are the moment calcula- 

0 

x2 
Figure 7: Scalar function of random vector, X . 
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Moment Exact 

P y  = E[YI 1.0303 

E[(  Y - pY),] 5.41 48e-2 

E [ ( Y  - 8.6825e-3 

Table I :  Central moments of Y = &XI, Xz> with 
ox, = ox* = 0.1 using numerical quadrature 

technique. 
tions using the Gauss-Hermite quadrature approach 
introduced in $4. Table 2 lists the identical information for the 
case of px, = px, = 1.0 and ox, = ox, = 0.5. 

Results indicate that the numerical quadrature technique 
does a very good job estimating the first four moments for the 
case of ox, = ox, = 0.1 ; the error is much less than 5% for 
each of the first four moments. In fact, errors remain small for 
M = 10. When the variance in the underlyinc random vari- 
ables is increased, however, the quadrature scheme can 
become highly inaccurate. The estimate of the mean of Y is 
adequate, but estimates of the higher-order moments are 
unacceptable. These discrepancies can be explained by 
examining the two major assumptions made while formulating 
the problem: (1) that the PDF approximation of Eq. (13) is 
able to adequately capture the behavior of a general distribu- 
tion function, and (2) that the numerical quadraiure formula of 
Eq. (14) is accurate for a general distribution function. 

As illustrated in Figs. 2 and 3, when X, and Jl, exhibit little 
variance from the mean, the PDF approximatim of $3 does 
an adequate job. In addition, the tails of fYQ) decay rapidly. 
In contrast, with the variance of X, and X, milch larger, the 
PDF approximation is poqr. Also, note that the exact PDF of 
Y does not decay as e-!- near y = 0 .  With these observa- 
tions is mind, we can expect poor performalice using the 
quadrature technique to estimate moments of :<. 

Moment Exact I Quadrature 

py = E [ Y :  I 1.9531 1 1.8182 I 6.3.:; 
Et(Y-py) I 7.8268 4.0612 

E [ (  Y - py) 1 1.5845e+2 8.9474 94.35 

Table 2: Central moments of Y = g(X , ,  X,) with 

ox, = ox, = 0 5  usingnumericalquadrature 
technique. 

, . . . . . . . 
Approximation 

0 6  

0.4 

, . . . . . . . 
Approximation 

0 6  

0.4 

Figure 2: The CDFand PDF of Y with ox, = ox, = 0.1 . 

Some simplifying assumptions have been made to facilitate 
this example. First, the random variables X, and X, are 
specified independent to simplify the analytical expressions 
for the moments of Y ;  the quadrature method of $4 is not 
restricted to problems with independent underlying random 
variables. Second, as discussed in 51, AMV was developed 
to address problems where no explicit knowledge of the func- 
tional relationship Y = g(x )  exists. The Gauss-Hermite 
quadrature method to compute moments also functions in 
this situation, making it an ideal tool to be used in conjunction 
with finite element analysis to estimate the statistical nature of 
systems with uncertain parameters. 

Exact 

Approximation 
. . .. . . . . 

-2 0 2 4 6 10 12 14 

-1 0 1 2  3 4 5 6 7 0 y 

Figure 3: The CDFand PDFof Y with ox, = ox2 = 0 5 .  
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6. CONCLUSIONS AND FUTURE WORK 

A technique for using Gauss-Hermite numerical quadrature 
coupled with the AMV method for the computation of the 
moments of the response of mechanical and other analytical 
systems has been developed. The method has tieen applied 
to an example problem in a practical framework with prom- 
ising results. Furthermore, these techniques iire efficient, 
accurate, and well-suited for use with general finite element 
analysis codes. 

Some areas for future work include: (1) applying these 
methods to a system where the functional relationship 
between random parameters and response quantities is not 
explicitly known (e.g., finite element analysis), (2) further 
investigating the convergence and error properties of Gauss- 
Hermite quadrature, and (3) considering alternative CDF 
approximation methods to the one presented in $3. 
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