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Abstract 

Terahertz Time Domain Interferometry of a 
SIS Tunnel Junction and a Quantum Point Contact 

by 

ChanduKaradi . 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Joseph Orenstein, Chair 

We have applied the Terahertz Time Domain Interferometric (THz-TDI) technique to 

probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting 

(SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique 

involves monitoring changes in the dc current induced by interfering two picosecond 

electrical pulses on the junction as a function of time delay between them. Measurements 

of the response of the Nb/AlO,/Nb SIS tunnel junction from 75-200 GHz are in full 

agreement with the linear theory for photon-assisted tunneling. Likewise, measurements 

of the induced current in a QPC as a function of source-drain voltage, gate voltage, 

frequency, and magnetic field also show strong evidence for photon-assisted transport. 

These experiments together demonstrate the general applicability of the THz-TDI 

technique to the characterization of the dynamic response of any micron or nanometer 

scale device that exhibits a non-linear I-V characteristic. 

Aofessor Joseph Orenstein 
Dissertation Committee Chair 
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Chapter 1 

Introduction 

1.1 Terahertz Spectroscopy 

The terahertz, or far-infrared, region of the electromagnetic spectrum is of critical 

importance in the spectroscopy of condensed matter systems. For example, the electronic 

properties of semiconductors, superconductors, and metals are greatly influenced by bound 

states (excitons, Cooper pairs) with binding energies in the meV range, which corresponds 

to frequencies in the terahertz regime. Terahertz frequencies are also well matched to 

typical quasiparticle scattering rates and barrier traversal times. In addition, confinement 

energies in artificially synthesized 2-dee and 1-dee nanostructures, like quantum wells and 

quantum point contacts, also lie in the terahertz regime. 

In spite of its importance, terahertz spectroscopy has been hindered by the lack of 

suitable tools. Swept frequency synthesizers for millimeter and submillimeter-waves are 

limited to below roughly 100 GHz, with higher frequencies only available with discrete 

sources. On the other hand, Fourier transform infrared (FTR) [1.1] spectroscopy 
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applicable above 100 GHz is hampered by the lack of brightness of incoherent sources. In 

addition, FTIR methods are inherently incoherent and are not applicable to time domain 

pump-probe spectroscopy. Lastly, JTIR methods are not useful if the real and imaginary 

parts of the response functions of a material must be measured simultaneously at each 

frequency. 

However, recent developments in Terahertz Time-Domain Spectroscopy (THz- 

TDS) have overcome these drawbacks in a radical way [1.2]. The advantages of this new 

technique have resulted in a rapid expansion of research in terahertz spectroscopy. In the 

last few years, the field has grown from a handful of electrical engineers with expertise in 

ultrafast lasers to an entire cadre of researchers in a spectnun of disciplines extending from 

chemistry to materials science to physics. The THz-TDS method is based on 

electromagnetic transients generated opto-electronically with the help of femtosecond 

(1 fs = 10-15 s) duration laser pulses. These transients are single-cycle bursts of 

electromagnetic radiation with pulse duration ranging from less than 1 ps to 10 ps. The 

pulse duration may be adjusted by suitable choice of source dimensions. The pulse spectral 

density spans the range from below 100 GHz to more than 5 THz. Optically-gated 

detection allows direct measurement of the terahertz electric field with a time resolution of a 

few picoseconds. With this measurement technique, both the real and imaginary parts of 

the dielectric function of a medium may be extracted without having to resort to the 

Kramers-Kionig relations. As we will discuss in Chapter 2, the brightness of the THz 

transient greatly exceeds that of conventional thermal sources and the gated detection is as 

sensitive as a liquid helium cooled bolometer. 

Recent developments in the field have shown that THz-TDS also has capabilities far 

beyond linear far-infrared spectroscopy. Because the THz transients are perfectly time- 

synchronized with the optical pulses that generate them, THz-TDS is ideally suited for 

"visible pump, THz-probe" experiments C1.31. In these measurements, the optical pulse is 

used to excite the sample and the THz pulse probes the change in the dielectric function as a 



function of time delay after optical excitation. Another powerful nonlinear probe is the 

detection of THz emission following pulsed laser excitation [1.4]. In many cases, these 

nonlinear techniques are proving even more powerful than linear THz-TDS. 

Beyond the characterization of new materials and the study of basic physical 

phenomena, the impact of THz spectroscopy in the commercial world is growing. 

Promising applications include industrial process control, contamination measurements, 

chemical analysis, wafer characterization, and remote sensing. At a recent conference, Hu 

and Nuss [1.5] demonstrated that the THz-TDS technique, due to its exceptionally high 

signal to noise ratio and the ability to focus the THz beam to the diffraction limit, is 

especially well suitable to imaging applications. They showed THz images' of an IC 

package, a leaf, and a slice of bacon. Their results indicate that the THz-TDS technique has 

the potential to be applied to safe "X-Ray" inspection, food inspection, medical tissue 

diagnosis, and biomedical imaging. 

1.2 Historical Development 

THz-TDS is a relatively young field which began in the early 1980's. Unlike other 

spectroscopic techniques that have evolved more incrementally, we can clearly identify the 

technological breakthroughs that have enabled this technique to flourish. First and 

foremost, femtosecond laser sources within the last few years have become widely 

available commercially and can now be easily operated by a non-specialist in laser 

technology. In the past, only dye lasers were capable of generating optical pulses of 

roughly 100 fs duration. The industry workhorse of that time was the colliding pulse 

mode locked laser (CPM) [1.6] which could easily produce 100 fs pulses with an average 

power in the range of 25 mW. The CPM system, although reliable, required a research 

group to invest a substantial amount of time in developing expertise in laser technology. 

Today the situation has changed dramatically with the advent of solid state lasers like the 

Ti-Sapphire laser [ 1.71 which easily delivers 100 fs pulses at wavelengths near 800 nm. 

, 
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This system has largely displaced the CPM systems of the past. This development is 

mainly due to the fact that the Ti-Sapphire laser is practically a turn-key system, delivers 

average power levels in excess of 500 mW, and does not require the mixing of toxic dyes. 

A second technological breakthrough has been in the development of new materials such as 

low-temperature GaAs [ 1.81 and poled polymers doped with chromophores [ 1.91 which 

have helped to cross fertilize research in the area.of optics and electronics. Lastly advances 

in micro and nhofabrication have allowed the development of transmission line structures 

which minimize the loss of bandwidth of propagating optoelectronic signals [ 1. lo]. 

The union of these enabling technologies has been dubbed Ultrafast Optoelectronics 

[ 1.1 13. -.Initially, electrical pulses were generated and detected on transmission lines using 

photoconductors excited by laser pulses [ 1-12]. Picosecond microwave pulses in free 

space were first generated by coupling these electrical pulses to a microwave antenna 

[ 1.131. Simultaneously with the development of shorter and shorter laser pulses, advances 

in VLSI lithographic techniques allowed the fabrication of smaller radiating structures and 

consequently higher frequency electromagnetic radiation. This development culminated in 

the generation of terahertz bandwidth single-cycle pulses by photoconducting dipole 

antennas [ 1.141. Although these devices are broadband, they are marginally useful because 

they radiate isotropically. A breakthrough came with the addition of a substrate lens to 

couple the radiation in and out of the photoconducting dipole chip. The lens dramatically 

improved the directionality and efficiency [1.15] of the dipole antenna. This opened the 

way to terahertz beaim which could be collimated and focused as eaiily as light beams in 

a spectrometer [1.2]. 

It is interesting to note that in parallel to the development of THz bandwidth 

photoconductive dipole antennas, THz electromagnetic transients were also generated by 

optical rectification in electro-optic crystals like LiTaO3. These crystals also allowed for 

simultaneous electro-optic detection of the terahertz transients [ 1.161. Because of the 
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difficulty of coupling the THz radiation in and out of the electro-optic crystals, this 

technique has been completely displaced by the photoconductive antenna approach. 

1.3 Terahertz Time-Domain Interferometry (THz-TDI) 

Prior to the work described in this thesis, most research groups focused on the use 

of the THz-TDS technique to probe the dynamics of electronic devices. The most powerfid 

aspect of this technique is the ability to time resolve the picosecond electrical pulse. By 

time resolving both the input pulse and the output pulse, the real and the imaginary parts of 

the device response function can be measured. This technique has been applied to probe 

the high speed properties of transistors in the 100's of GHz regime [ 1.171. Although those 

experiments were highly successful, there are a number of technical obstacles which are 

difficult to overcome when studying novel devices which operate at ultra-low temperatures 

and at high magnetic fields. The fundamental obstacle to the THz-TDS method is the need 

to deliver a focused pulsed laser beam into a cryogenic environment. 

To overcome this fundamental problem we have pioneered a new technique, 

Terahertz Time-Domain Interferometry (THz-TDI). This technique, a hybrid between 

THz-TDS and FTIR spectroscopy, is described in Chapter 2. This method is conceptually 

the same as FTIR in that two beams, with a variable time-delay between them, are 

combined with a beam-splitter and imaged onto a sample. The simplest form of a THz-TDI 

uses a Michelson interferometer as an FTIR. Greene et al. first used this technique to 

characterize the spectrum of terahertz pulses generated by optical excitation of a semi- 

insulating InP wafer [ 1.181. Although it possible to time resolve the terahertz pulse with 

the THz-TDS technique, the measured pulse shape will depend on the response function of 

the receiving antenna and the photoconductive switch. Thus the true bandwidth of the 

terahertz pulse in free space can only be inferred with the THz-TDS technique. To fiid the 

spectral density of the terahertz source directly, Greene et al. substituted the thermal source 

in a conventional Michelson FTlR spectrometer with the terahertz source. The recombined 
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beam from the interferometer was imaged onto a 4He-cooled bolometer. The bolometer 

served as a square law detector with a flat frequency response throughout the terahertz 

regime. As the movable mirror of the Michelson is translated, the bolometer records an 

"interferogram", whose Fourier transform yields the product of the spectral density of the 

source and the response function of the detector. This experiment was able to verify that 

radiation from terahertz sources extends to frequencies as high as 5 THz. 

Our main interest is to apply the THz-TDI technique to probe the response of 

conventional low temperature superconducting-insulating-superconducting (SIS) tunnel 

junctions [1.19] and mesoscopic systems [1.20]. Our interest in studying the SIS system 

is motivated by the need to make broadband measurements of the admittance of these 

devices. Knowledge of the frequency dependent admittance is crucial in the practical 

application of SIS devices as highly sensitive microwave detectors. The SIS junction has 

an effectively voltage tunable band gap in the meV range making it an ideal candidate for 

terahertz spectroscopy. In contrast to the SIS system, experimentalists have only recently 

started to probe the frequency dependent response functions of mesoscopic systems. 

These systems, like the SIS junction, have a number of interesting energy scales in the 

terahertz regime. Due to electrostatic confinement on the nanometer scale, energy gaps on 

the multi meV scale are formed. Another important energy scale is set by the barrier 

traversal time as defined by the Buttiker and Landauer [1.21]. This time scale is expected 

to be in the picosecond range making it ideal for probing with THz-TDI. Lastly collective 

excitations may also appear in mesoscopic devices in the THz regime. 

Our approach to study these systems is a form of photocurrent spectroscopy. We 

replace the bolometer in the method used by Greene et al. [1.18], by the device under test. 

The device under study is, contacted and biased so that its dc current can be monitored. At 

the same time the structure is irradiated with high frequency terahertz pulses. An antenna 

is placed on the device to maximize the couplingof the radiation from free space since the 

wavelength of the radiation typically greatly exceeds the size of the device. If the radiation 
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is resonant with the excitations of the device, its dc current undergoes a change. An 

interferogram is then recorded by measuring the dc current as a function of time delay 

between the two arms of the interferometer. The Fourier transform of the interferogram 

will once again lead to a spectrum which is the product of the spectral response function of 

the device and the spectral density of the incident pulses. By normalizing out the spectral 

density of the incident pulses, we can directly probe the dynamic response of the system. 

The main advantage of the THz-TDI technique over the THz-TDS technique is that 

we do not need to bring the laser beam directly to the device. The device resides in a 

cryogenic environment which is highly sensitive to heating. Since the terahertz beam has 

an average power level on the pW scale as compared to the laser with average powers on 

the ten mW scale, it is highly advankgeous to only deliver the THz beam to the device as 

opposed to the laser beam. An additional difficulty with the THz-TDS technique is that it is 

technically difficult to focus the laser beam to the required spot size of 5 pm inside the 

cryostat. For such a small spot size, focusing optics must be placed in the cryogenic 

sample space, making experimental adjustments extremely difficult. For the terahertz 

beam, the focusing requirements are much less stringent, since we only need to focus the 

beam to a spot size of a few mm. For the terahertz beam, the focusing optics may be 

placed outside the cryostat, greatly facilitating the experimental procedure. These technical 

advantages of the THz-TDI technique over the THz-TDS technique make it the method of 

choice for probing nanoscale devices in ultra-low temperature environments. The main 

disadvantage of the THz-TDI technique is that we lose phase information. To obtain the 

real and imaginary parts of the response function of the device we need to apply the 

Kramers-Kronig relations . 
In Chapter 3 we describe the application of the THz-TDI technique to make the first 

measurements of the broadband response of an SIS junction [1.22] The photocurrent in 

these devices results from photon-assisted tunneling of quasiparticles from one side of the 

junction to the other. The threshold for observing photocurrent is 2A-eV, where ZA is the 
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energy gap and V is the applied voltage. By tuning V, the threshold for photon absorption 

can be vaned. Our results are in full agreement with the linear theory for photon assisted 

tunneling. In addition, our results confirm the importance of the quantum susceptance in 

determining the linear response. 

We have also applied the THz-TDI technique to make the first measurements of the 

photocurrent spectra in a quantum point contact (QPC) E1.231. These results are described 

in Chapter 6. The QPC [ 1.241 is a narrow nanometer scale constriction separating two 

regions of electron gas. The QPC was formed by defining narrow metallic gates above the 

two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterojunction. The QPC in the 

region of the constriction can be thought of as a one-dimewional wire with a tunnel barrier 

in the middle. We can adjust the energy of the electrons in the wire by applying a source 

drain voltage across the barrier. In addition we can change the barrier height by adjusting 

the gate voltage. Strong evidence for photon-assisted transport in these structures was 

found by making measurements as a function of source-drain voltage, gate voltage, and 

magnetic field. In addition to photon-assisted transport, we also observed spectral lines 

when the applied radiation was resonant with the magnetoplasmon excitations of the 

2DEG. 
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Chapter 2 

The Terahertz Technique 

This Chapter provides the information needed to design terahertz pulsed sources 

and describes how these pulses can be used in a Terahertz Time Domain Interferometer 

(THz-TDI) to characterize the dynamic response of devices. We will go through the 

fabrication of these sources and the theory of their operation. In addition, we will discuss 

the design constraints for maximizing the power output of these sources. We will also 

describe a method for fully characterizing the temporal and power characteristics of these 

sources. Lastly we will discuss how these sources can be applied to the characterization 

of the response of an arbitrary nonlinear device in the terahe& regime. 

2.1 Terahertz Source 
It is vital to choose the right source for your specific spectroscopic application. 

The frequency scale of interest for our experiments range from approximately 100 GHz 

to a few THz. This frequency scale is set by the physical fact that most of the phenomena 

that we are interested in probing only appear at a relatively low temperatures. Typically 

we require frequencies which are much greater than KbT, where Kb is Boltzmann's 
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constant. Thus for a temperature range of one to five Kelvin, we requires frequencies in 

excess of 20 GHz to 100 GHz. 

The most common broadband source for this frequency range is the hot lamp 

(black body) source. Typical radiators range from Globars and Nernst glowers to 

nichrome coils and high pressure mercury lamps [2.1]. The Globar works well above 

3 THz, but below this range a mercury lamp is mandatory. The advantages of a black 

body source is that a single bulb can cover a wide frequency range. The main drawback, 

though, is that the source is fairly low power. These black body sources operate in the 

Rayleigh-Jeans limit. In @is limit the power per unit bandwidth into a single mode is 

simply given by KbTs where Ts is the temperature of the source [2.2]. For a source 

temperature of 2000 K and a 1 THz bandwidth, the output power of a single mode is only 

27 nW. 

Rather than use a mercury source, we have chosen to use a novel source 

developed by David Auston. The main advantages of these sources is that they are 

broadband, bright,. and allow for time resolved experiments. An excellent review of the 

field is given by Auston [2.3]. The fundamentals of the source are based on the "Auston 

Switch" which consists of a small piece of damaged semiconductor which bridges the 

leads of a biased antenna structure. Figure 2.l.(a) shows a diagram of a typical antenna 

source. The antenna is connected to a long transmission line which is biased with a 

battery (typically 50 V to 100 V). The resistance of the silicon switch is high when it is 

unilluminated. In this state the gap charges up to the applied biased voltage, VA. The 

switch is then closed with a short 100 fs optical pulse allowing a fast picosecond current 

transient to pass across the gap and through the antenna terminals. The current transient 

excites the antenna and leads to the emission of single cycle sine wave with a period 

which depends on the length of the antenna. A typical 300 pm long antenna produces a 

bipolar pulse with a duration of roughly 6 ps. This pulse has a center frequency of 



180 GHz and a bandwidth of 150 GHz. We will go through the details of the switch 

performance later, but first let us consider the steps necessary in fabricating the source. 

2.2 Source Fabrication: 

In this subsection we will go through a detailed description of the fabrication 

process. Figure 2.l(b) shows a detailed diagram of our antenna source. We will begin 

with a discussion of the photolithographic steps in processing the silicon box and the 

metallic lines. This will be followed by a description of the silicon damage process. 

There are a number of different types of photoconductors that can be used to form 

the switch. Typical materials are damaged GaAs [2.4], low temperature (LT) GaAs C2.51, 

and damaged silicon on sapphire (SOS) C2.61. We use a silicon photoconductor grown on 

a sapphire wafer following a fabrication process developed by Ketchen et al. [2.7]. Four 

inch wafers of silicon on sapphire are obtained from Union Carbide. They deposit a thin 

0.5 pm epitaxial layer of silicon (100) on a 0.5 mm thick wafer of sapphire. Sapphire has 

excellent dielectric properties with exceptionally low absorption up to a THz [2.8]. 

As shown in Fig. 2.l(b), the metallic lines are grown on top of boxes of silicon. 

Thus the first step will be to etch the silicon, after which the metallic lines are added. The 

silicon is etched everywhere, except for small 50 pm square pads which bridge the leads 

of the antenna. By etching the silicon, we eliminate any dark currents which might flow 

across the transmission lines which feed the antenna. To etch the silicon we use standard 

optical photolithography techniques. First we spin on a thin (=.7 pm) layer of photoresist 

on the wafer. The wafer then undergoes a soft bake for two minutes on the 7OoC hot 

plate. Then we use an optical mask and expose the photoresist with UV light for ten 

seconds. The wafer is exposed eve-rywhere except above the places where we want the 

silicon to remain. The wafer is then placed in solution of 50% Kodak developer and 50% 

deionized @I) water for sixty seconds. After this time the wafer is immediately placed in 

a second bath of pure DI water to quench the developer. This process removes the 
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exposed photoresist leaving behind 50 pm square boxes. The wafer is then placed in a 

120°C oven for a 20 minute hard bake. Now the wafer is placed in a standard silicon wet 

etch which removes everything except the 50 pm square boxes which were protected by 

photoresist. The photoresist is then washed off with acetone. 

The next step is to lay down the aluminum antenna and the transmission line 

using standard lift off techniques. The orientation of the dipole antenna relative to the 

sapphire substrate is important. Sapphire is a birefringent material and typically the 

wafers obtained from manufactures are R-cut. R-cut is defined such that the C-axis of the 

crystal is at an angle of 56 degrees from the plane of the wafer. We orient the dipole 

antenna so that it is perpendicular to the C-axis. This ensures that the antenna mostly 

excites the ordinary ray in the sapphire. 

Once the proper orientation is found, the surface of the wafer must be thoroughly 

cleaned with TCA and baked in a 90°C oven for 20 minutes to drive off any water. Once 

again photoresist is spun onto the wafer, after which the wafer is immersed in 

cholorobenzene (highly toxic) for 10 minutes. The wafer then is soft baked for two 

minutes on the 70°C hot plate. Next the wafer is again exposed to UV light, but-this time 

with a negative mask for the antennas. The wafer is then soaked in developer which 

removes the photoresist from the area you want the metal to stick. This time since the 

wafer was soaked in cholorobenzene, a ledge is formed in the photoresist as shown in 

Figure 2(a). 

The next step is to deposit the metallic aluminum lines. We use an electron beam 

(E-Beam) evaporator to deposit the aluminum. Before the wafer is placed in the E-Beam 

evaporator, it is soaked for five seconds in a weak solution of 10% hydrofluoric acid. 

This removes any dirt or oxide layer on the silicon. Next the wafer is placed in an E- 

Beam evaporator. We evaporate two thin aluminum layers of 0.3 pm each to give a total 

of 0.6 pm. A ten minute cooling period between the two depositions ensures that the 

photoresist does not get too hot which would lead to poor lift off. After deposition, the 
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edge profile of the wafer should look like that in Figure 2.2(b). This figure illustrates the 

importance of the ledge. The aluminum cannot coat the walls of the photoresist. This 

allows for easy separation between the metal line and the metal on top of the photoresist 

in the subsequent liftoff process. Liftoff is achieved by soaking the wafer in acetone. 

The photoresist along with the metal on top comes off leaving behind a metal line as 

shown in Figure 2.2(c). It is clear from Fig 2.2(b) that too thick a layer of aluminum 

would impede the lift off process. 

' 

The silicon on the wafer now needs to be damaged with high energy ion 

implantation to reduce the free carrier lifetime in silicon. Undamaged silicon due to its 

indirect bandgap has a radiative lifetime ranging from 10's of milliseconds to 

nanoseconds [2.9]. Ion implantation introduces defects in the silicon which act as traps 

and recombination centers. Typically a dosage of 100 KeV O+ ions at an areal density of 

1015 cm-2 will result in a carrier lifetime of 0.6 ps [2.10]. We use two doses, one at 100 

KeV, 1015 cm-2 and another at 200 KeV, 1015 cm-2. During damage, the wafer is cooled 

by a water cooled plate so that the defects are not annealed by heating from the intense 

ion beam. Two doses ensure that the damage is uniform throughout the depth of silicon. 

This is of critical importance since we want all the carriers in the silicon to recombine at 

the same rate. If there are regions of low damage, then some carriers will recombine with 

a long carrier lifetime leading to a long tail in the turn off of the switch. After the 

implantation step, the individual antennas are diced from the wafer with a diamond saw 

into small chips, 5 mm x 10 mm. 

It is important to note that we damage the switch after the wafer is metalized as 

opposed to before. From a processing perspective, it might appear more convenient to 

damage the wafer before metalization. We did try this approach, but those antennas 

produced a signal ten times smaller than those made with the damage after metalization 

process. One possible reason for this is that a large Schottky barrier forms between the 

metal and the silicon when the wafer is damaged first. Thus'most of the voltage drop 
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across the switch will appear across the metal semiconductor contact and not across the 

silicon. It is the field which appears in the silicon that accelerates the free carriers and 

leads to the observed current transient. In the case where we damaged after, though, we 

typically find an ohmic contact between the aluminum and the silicon. This .leads to a 

more uniform electric field distribution across the switch. 

We have also tried to use ion-implanted GaAs switches but they were fraught with 

a number of problems. The GaAs wafer is 0.5 mm thick so it serves as both a substrate 

and a switching layer. The wafer is damaged with ion implantation, but only a thin 

0.5 pm layer on top is damaged. This layer can have a fast picosecond carrier lifetime. 

Unfortunately, the optical radiation can penetrate below the damaged layer and excite 

free carriers which have carrier lifetimes exceeding a nanosecond. This leads to a long 

tail in the turn off of the switch. This problem is not encountered in the SOS switches 

since the entire 0.5 pm thick epi layer of silicon has been uniformly damaged. The other 

problem with damaged GaAs is that the transmission lines are placed directly on the 

GaAs substrate which is conductive (semiconductor) as opposed to sapphire which is an 

insulator. This means that current can flow between transmission lines on GaAs without 

passing through the switch. This results in large dark currents which limit the maximum 

voltage that can be placed across the lines. We found that the damaged GaAs switches 

tended to blow out at a relatively small voltages of 30 V across a 5 pin gap antenna while 

the SOS switches could hold off 120 V across the same gap. 

2.3 Theory of Source Operation: 

The operation of the Auston switch is relatively straight forward. Figure 2.3 

shows a schematic of the silicon switch. First a short 100 fs optical pulse is focused with 

a 1OX or 5X objective onto the silicon switch. This injects free carriers into the silicon 

switch. The pulses are generated by a Lexel 480 self modelocked Ti-Sapphire laser 

C2.111, centered at 780 nm with a 100 MHz repetition rate and an average power of 
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500 mW. The beam is split and attenuated so that the average power on a single switch 

is 150 mW. Since the optical pulse is short compared to the lifetime, T, of carriers in 

silicon we can treat the optical pulse as a delta function. The number of carriers 

generated initially is then given by, 

u 
Aw 

no =-(~-~)[~-exp(-crw)] 
12-11 

Here U is the energy in the incident pulse, Aw is energy of the incident photon, R is the 

reflectivity of silicon, and a is the optical absorption coefficient. The first term in the 

product corresponds to the number of photons in the incident pulse, the term in 

parenthesis corresponds to the fraction of photons coupled into the silicon, while the term 

in brackets gives the fraction of absorbed photons. This initial burst of carriers will lead 

to a current, 

Here pe and pp are the electron and hole mobilities respectively, VA is the voltage placed 

across the silicon, and G is the length of the gap. This initial current will decay 

exponentially with a time constant T which for damaged silicon is 0.6 ps [2.10]. It is 

important to note that the current is linearly proportional to the applied voltage, VA, and 

the incident pulse energy or laser power. Both these parameters can easily be adjusted 

during an experiment. 

Expression { 2.2) shows explicitly that we obtain the maximum photoresponse 

when the full voltage applied to the switch appears across the silicon. As mentioned 

previously, if instead of ohmic contacts between the aluminum and silicon there were 

Schottky barriers, then most of the voltage would be dropped across the Schottky barriers 

and very little would be dropped across the silicon. This would lead to a greatly reduced 

current pulse. As a curious side note, there does exist another type of switch based on 
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undamaged GaAs in which it is believed that the main mechanism for current"pu1se 

generation is due to carriers injected into the Schottky barrier region [2.12]. 

This initial current in { 2.2) will decay exponentially with a time constant T which 

for damaged silicon is 0.6 ps. This time varying current will drive the dipole antenna. It 

is a difficult numerical problem to compute exactly the shape of the voltage transient 

emitted by the dipole antenna in response to the current pulse. In order to obtain a 

physical understanding of what the emitted pulse should look like, let us consider the case 

of the short dipole antenna. By short, we mean that the length of the dipole antenna is so 

short that its corresponding resonant frequency is well above the frequency components 

in the excitation current pulse. This is just the case of the elementary Hertzian dipole 

C2.131 in which the emitted spherical wave is given by, 

A& &(t) e-jLr 

4n at r 
E(r,t) = ---, (2.3) 

where I(t) is applied current transient, A is the length of the antenna, k is the wavevector, 

r is the distance to the observation point, and po is the permeability of free space. For an 

excitation current I(t) which turns on quickly and decays exponentially with the electronic 

carrier lifetime, we would expect to see a bipolar emitted pulse. The bipolar pulse will be 

asymmetric with a sharp peak on the initial lobe followed by a more slowly varying 

negative lobe. The net area under the time profile of E(t) should be identically zero since 

it is impossible to radiate a dc electric field into the far field. This is seen explicitly in 

(2.3) since the time derivative of I(t) has no dc component. We typically see 

approximately single cycle behavior in our electric field pulses. 

The Hertzian dipole approximation applies to our short 30 pm long dipole 

antennas. For all the experiments, though, discussed in this thesis we use 300 pm long 

dipole antennas which, cannot be considered short. First let us estimate the resonant 

frequency, fo= c/2Ane~, of this dipole antenna where neff is effective index of refraction. 

Since the antenna appears at the interface between air and sapphire, a good approximation 
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for neff is the square root of the average dielectric constant of air and sapphire r2.141. For 

the frequency range of interest the dielectric constant of the ordinary ray in sapphire is 9.4 

[2.8] corresponding to an fo = 220 GHz. This is in rough agreement with our 

experimentally determined value of 180 GHz. 

The driving pulse actually has comparable frequency components above and 

below this center frequency. This can bee seen by looking at the magnitude of the 

Fourier transform of the driving pulse, II(o)l= [T-2+(2@2]-”2. The driving pulse has 

equal strength Fourier components extending from dc up to the 3 dB comer frequency of 

265 GHz which is above our resonant frequency. In addition, this expression for II(o)l 

also explains why we find experimentally that the low frequency 300 pm dipole antennas 

are more powerful then the 30 pm dipoles. 30 pm dipoles have a resonant frequency at 

2.2 THz. At this high frequency there is very little current to drive the antenna. In fact, 

I(2.2 THz) is over six times smaller than I(220 GHz). 

From this discussion it should be clear that the size of signal should decrease as 

the resonant frequency is pushed to higher frequency. However, the situation is reversed 

as we push to lower frequencies. From the expression for the Fourier transform of our 

driving pulse, there is no low frequency limit to the available frequency components. 

Thus there is no real low frequency limit to our antenna sources. The only limitations 

come from diffraction effects. As the frequency is lowered, the size of the optics must be 

increased beyond practical limits. The lowest frequency system obtained in our lab with 

3.5 inch collimating optics had a center frequency at 50 GHz. 

To actually compute the shape of the emitted pulse requires rather involved 

numerical calculations. Our needs are fairly modest, so making such exact calculations is . 

not justified. We only need to know the approximate center frequency and the width of 

the emitted pulse. The above analysis allows us to estimate the center frequency of the 

emitted pulse. Finding the pulse width is more difficult. Experimentally we find a pulse 

width corresponding to only one oscillation at the center frequency. Apparently a dipole 
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antenna is a very broadband radiator. It has a center frequency on the same order as its 

bandwidth. This surprising result can be understood by looking at numerical calculations 

[2.15] of the frequency dependent complex impedance of a dipole antenna. These 

calculations show that the impedance of a dipole is not sharply peaked at the resonant 

frequency as one might guess. Instead the impedance varies relatively slowly about the 

center frequency. The real part of the impedance resembles a Loretzian function with the 

width of the central peak roughly equal to the center frequency. The slowly varying 

impedance means that we can couple radiation out of the antenna over a broad frequency 

range. This broadband response results in the observed single cycle radiated pulse. 

Since the antenna appears at the interface between sapphire and air, it is important 

to know in which direction most of the radiation is emitted. It turns out that much more 

power is radiated into the dielectric than into the air. The power is divided according to 

the ratio of n3:l [2.17]. This can be understood by a simple argument given by Rutledge 

et al. [2.17]. It is easier to consider the dipole antenna as a receiver and then use 

reciprocity to evaluate its performance as a transmitter. The dipole antenna responds to 

the local electric field at the dielectric air interface. First consider a wave incident from 

air into the dielectric. The air has a large impedance while the dielectric has a low 

impedance, thus the transmitted field into the dielectric is smaller than the incident field 

and the dipole response is low [2.13]. In the reversed situation, when the wave is incident 

from the dielectric side, the transmitted field is larger than the incident field ahd the 

dipole response is large. By reciprocity, the antenna transmits better into the dielectric 

than into the air. 

As shown in Figure 2.4(a), the radiation into the substrate will eventually reflect 

off the bottom of the substrate and reduce the coupling into free space. In order to 

maximize the amount of radiation coupled into free space, we use a hyperhemispherical 

silicon lens [2.18]. The principle behind the operation of this lens is identical to the oil 

immersion microscope objective. It turns out that for a spherical surface there are two 
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conjugate axial points which are free from spherical aberrations, a discovery attributed to 

Huygens. Figure 2.4(b) is a ray diagram picture showing the focusing properties of a 

hyperhemisphere of radius R and index n. Jn the limit of ray optics, if an antenna is 

placed exactly at a distance R/n from the center of the sphere then all rays emitted in the 

forward direction appear to come form a single conjugate point a distance nR from the 

center. This result may be proved easily with Snell's law and elementary geometry. Even 

rays which are emitted perpendicular to the optic axis will appear to come from the same 

conjugate point. Thus the lens has a full collection solid angle of 2n steradians. With a 

silicon lens, n=3.4, this solid angle is focused down to 0.027 steradians. Thus an optic 

with an f/#=1.6 or better will be able to collect the entire beam. In our experiments we 

use a 90 degree parabolic mirror with an f/#=1.3 and focal length of 3.5" to collimate the 

entire beam. This choice of optics leads to a highly efficient system. 

Although the ray diagram picture defines the optimal position for the antenna, it 

does not tell us how large the radius of the silicon lens should be. In order to understand 

this design constraint requires taking into account diffraction of the beam by the lens. 

According to Kasilingam and Rutledge [2.18] the radius should be larger than the free 

space wavelength to avoid diffraction effects. We chose a radius of 5 mm since the 

lowest frequency of interest is 50 GHz which has a free space wavelength of 6 mm. 

Our choice of a silicon lens over a sapphire lens may appear puzzling at first. 

Actually for our first experiments, we did use a sapphire lens. Obviousiy with the 

sapphire lens we can index match to the sapphire antenna chip eliminating reflections 

from the chip lens interface. However, as we refined our experimental technique, we 

opted for a silicon lens since it has superior dielectric properties compared to sapphire 

above 250 GHz. The silicon is a special grade of Float Zone silicon [2.19]with a 

resistivity greater than 10,000 Q-cm. The index of refraction of silicon from 250 GHz to 

2 THz is flat to 1 part in a 1000 [2.8]. This means that the lens will be free of chromatic 

aberrations as well as spherical aberrations. In addition the power absorption coefficient 
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of silicon is less than 0.05 cm-1 in this same range. In contrast sapphire has a large 

resonance in the THz regime. The power absorption coefficient is 3 cm-1 at 1.5 THz 

C2.81. 

2.4 Source Detection 

Thus far we have only treated the source but we have not explained how to detect 

these pulses. No conventional detection electronics are available with the necessary 

bandwidth to time resolve the pulses. In order to time resolve the pulses, we use the 

Terahertz Time Domain Spectroscopy (THz-TDS) technique. Figure 2.5 shows a typical 

THz-TDS setup for antenna characterization with a second antenndens system identical 

to the transmitter. The pulse is generated from the transmitter by the method described 

above. This produces a THz electric field pulse. The pulse is initially focused by the 

silicon lens and then it is fully collimated by the parabolic mirror. The collimated beam 

propagates through free space and then is refocused onto the receiver. The fabrication of 

the receiver is in all respects identical to the transmitter. The only difference is that we 

replace the dc battery bias to the antenna terminals (see Fig. 2.l(a)) with a high quality 

low noise current amplifier. On the receiver the "dc" bias will come from the THz 

electric field pulse which polarizes the switch. A second optical pulse is incident on the 

receiver. At the instant when the optical pulse shorts the receiver, a small amount of 

photocurrent will flow through leads of the antenna in response to the THz field bias. 

This current will continue to flow until the free carriers recombine and the switch closes. 

This photocurrent can be easily measured by the current amplifier. The shape of the 

electric field pulse can then be read out by measuring the photocurrent as a function of 

time delay, 2, between the two optical pulses. It is important. to recognize that this 

technique allows us to measure the electric field that is incident on the antenna and not 

just the average power. 
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Quantitatively, the photocurrent we measure is the cross correlation between the 

field across the switch of the receiving antenna, En and the sampling function, f(t), 

Here B is a constant that depends on the laser power and the detailed properties of the 

switch. f(t) is simply the normalized time profile of the free carrier density in receiver 

switch. E,is the field across the switch, not the actual field, Ef,, that is propagating 

through free space. Efs will be modified by the responsivity of the dipole receiver. If we 

assume for simplicity that we are in the Hertzian dipole limit, then from equation (2.3) 

we would expect Er to be the first derivative of Efs. If we further assume that our 

sampling function is a delta function, then Ip(z) should look like the derivative of a 

bipolar pulse. This is indeed what we find experimentally. 

.. 

2.5 Experimental Source Characterization 
Let us now look at the performance of one of our 300 pm dipole antennas. Figure 

2.6(a) shows the measured time profile of the pulse and Figure 2.6(b) is the magnitude of 

the Fourier Transform of time profile in Fig. 2.6(a). To zero order, the measured pulse 

looks like the first derivative of a bipolar pulse as expected. Thus the actual pulse in free 

space must approximately be a single cycle sine wave with a period of 5.6 ps. This 

corresponds to a center frequency of 180 GHz which is near the design frequency of 

220 GHz. The pull to lower frequencies is most likely due to the limited bandwidth in 

the optically injected current pulse. Recall from Section 2.3 that the 3 dB bandwidth of 

the current pulse is 265 GHz. By looking at Fig. 2.6(b) we see that the pulse is extremely 

broadband, with a FWHM of 150 GHz which is almost equal to the center frequency. A 

more careful look at Fig. 2.6(a) reveals a few small periodic oscillations after the main 

pulse. These are possibly due errors in the alignment of the spectrometer. . 
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In addition to the broadband bandwidth, the second obvious characteristic of the 

pulse is that it is virtually noise free. This trace was taken in four minutes with 150 mW 

of laser power focused on each antenna chip. We use lock-in techniques to improve the 

signal to noise. The transmitter is biased with a 2 KHz, 50 V sine wave. We detect the 

synchronous photocurrent in the receiver with an Ithaco 564 current amplifier coupled to 

a standard PAR 124A lock-in. By ac chopping the bias on the transmitter, we obtain 

twice the signal at the lock-in as compared to chopping the intensity of the laser with a 

mechanical chopper. 

The maximum signal on peak is 250nA with a noise level of one part per 

thousand in a 1 Hz bandwidth at a frequency of 1 KHz. This noise level is less than the 

1% fluctuations on the laser. The reduction in noise is probably due to saturation of the 

number of photoexcited carriers in the transmitter. The noise floor off peak before the 

main pulse is 10 p N m .  This gives us an enormous dynamic range of 2.5~104 in 

electric field or 6.25~108 in power. 

I 

We have calibrated our system in order to approximate the average power in the 

free space pulse. To do this we first measure the amount of current flowing through a 

switch in response to an applied dc bias. In our case we obtain 10 pA for an applied bias 

of 10 V. As can be seen in Fig. 2.6(a), the maximum photocurrent is 250 n'A. This 

implies that we have an effective bias on the receiver switch of 250 mV. The average 

power on the receiver then is just 1.5 pW where we have assumed that the dipole antenna 

has an impedance of 40 C2 (see Section 6.3.2). In addition, we have included a duty 

factor of 1000 since the THz pulse has a temporal width of roughly 10 ps and the pulses 

are repeated once every 10 ns. To compute the transmitted power into the silicon lens, 

we use the fact that for an applied bias of 50 V, the peak current in the transmitter is 

50 mA. This corresponds to an average emitted power of 100 pW. If we assume that the 

losses in going from the transmitter into free space are the same as the losses in going 

from free space into the receiver, then the average power in free space beam is 12 pW. 
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These sources are extremely bright. The other common broadband source in this 

regime is an hot mercury lamp. At first it is not obvious how to make a fair comparison 

between the antenna source and the black body source. We know that the total power, 

P(h), emitted from a small hole of area, CT, from an oven at temperature Ts into a 

frequency interval 6f is, 

Since an antenna on resonance has length U 2 ,  we replace CT by (h/2)2. In this case the 

power density, P(h)/Sf, is just (n/2)*k~T,. The antenna sources have an average power 

density of 320 eV. This corresponds to an effective source temperature of 3.5 million 

degrees Kelvin! This is many times hotter that the average mercury lamp source 

temperature of 2000 K. 

The large dynamic range of our system means that we have a very sensitive 

detector. The minimum detectable power is only 20 f W / a .  Compare this to the 

140 fW/ a noise floor of a 4.2 Kelvin Silicon Bolometer . It is literally amazing that a 

room temperature detector can have a noise floor comparable to a helium cooled 

bolometer. This result can be understood intuitively. The noise floor of the antenna 

system is so low because we are effectively using a form of gated boxcar detection. We 

only sample the electric field pulse when the optical pulse is at the switch. During this 

time we also sample the shot noise in the photocurrent. At other times the receiver switch 

is unbiased so there is no current and therefore no shot noise to collect. 
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In summary, the important facts to remember is that these antenna sources are 

both broadband and bright and they can also be used as very sensitive gated detectors. 

Length =300 pm 

Center Frequency =180 GHz 

FWHM Bandwidth = 150 GHz 

Peak Power =12mW 

Average Power = 12 pw 

Min. Detec. Power = 20 fW/m 

.2.6 Device Characterization: Terahertz Time Domain Interferometry 

2.6.1 Device Admittance 

Up to this point, we have discussed in detail the picosecond source, but we have 

not explained how this source can be used to characterize a two terminal device. What 

we mean by device characterization is that we would like to measure the linear response 

prope&es of the device. For devices, the usual linear response function is the admittance, 

Y(o). The admittance relates the input voltage, Vu, to the generated current, I ,  

12.6 1 I ,=Y(w)V,  . 

The most straight forward procedure for measuring the admittance would be to 

inject a sinusoidal voltage signal at frequency o into the device and measure the 

amplitude and phase of the resulting current. Then by tuning the frequency, Y(o) could 

be mapped over a broad frequency scale. This procedure is indeed used and works 

extremely well for standard devices that operate at room temperature and relatively low 

frequencies (<20 GHz) where tunable sources and broadband coaxial cable are readily 

available. 
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The types of devices, though, that we are interested in studying are exotic and 

require much more stringent temperature and frequency constraints. For example a 

Quantum Point Contact (QPC) tunnel barrier operates at temperatures below 0.5 K which 

means the device must be bathed in superfluid 3He. In addition we are interested in 

learning how the linear response vanes with high magnetic field so it must reside inside a 

superconducting magnet cryostat. Finally the frequency scale that we are interested in 

probing has as lower bound of 50 GHz and an upper bound in the THz regime. This 

frequency scale introduces a whole host of problems. The first problem is that at this 

frequency scale there is no broadband coaxial cable that can easily carry the radiation 

down into a 0.5 K sample chamber and the carry the output signal back out of the 

cryostat. In addition, experiments with coaxial cables at high frequencies are plagued by 

unwanted reflections and large standing waves. Another option is to use hollow 

rectangular waveguide. The problem is that waveguides are not sufficiently broadband 

for our needs. The second and equally serious problem is that there is no broadband 

tunable source or ultrafast detector in our frequency range of interest. 

To overcome these obstacles we developed a new technique based on quasioptical 

methods and interferometry. The quasioptical method will allow us to overcome the 

bandwidth limitations of waveguides and the interferometric method will allows us to 

both inject high frequencies and detect the high frequency response. 

2.6.2 Quasioptical Coupling 

The quasioptical scheme was already described above in Section 2.5 where it was 

used to characterize the terahertz pulse. Looking once again at Fig. 2.5, the idea is to 

replace the Auston receiver with the device under test. The device will also be placed at 

the feed of an antenna to maximize the coupling of radiation into the device.' The main 

difference is that the device now resides in the core region of a cryostat. The other 

difference is that there will be no laser pulse to gate the device and time resolve the 
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output pulse. As we shall discuss later, the gating action of the laser pulse will be 

replaced by a second terahertz pulse. 

The quasioptical method is extremely broadband. Since the pulses are 

propagating through free space there is no dispersion or attenuation of the pulses as there 

is in coaxial cables or waveguides. There is no practical high frequency limit to this 

method as is suggested by the name quasioptical. In fact these methods are common in 

the far infrared and optical regime. On the low frequency end we are limited by 

diffraction effects. The ultimate limit is set by the smallest aperture in the system. In our 

system the smallest aperture is set by the innermost cryostat window which is adjacent to 

the sample. We know that for a gaussian beam, the minimum spot size of a focusing 

system is given by 1.27h*f/#. For a window size of 2 cm and an f/#=l, the minimum 

frequency is 12 GHz which is well below our frequency range of interest. To go below 

this frequency range it is more natural to switch back to using conventional electronics 

and coaxial waveguides to measure the admittance. 

To maximize the coupling of the pulses to the device, we place the device at the 

terminals of antenna. Figure 2.7 shows a schematic of the coupling scheme. The antenna 

is used to overcome the basic limits of diffraction. It turns out that dimensions of most 

devices are much smaller than the wavelength of the incident radiation. For example, the 

active area of a QPC is a square region 0.3 pm on a side which is much smaller than our 

typical wavelength of 3000 pm. The idea is to only focus the electric field down to the 

antenna which has a length of h/2. The antenna then focuses the electric field to the 

sample which only has a size w. 

To fully appreciate the importance of the antenna let us compute the voltage 

produced across two different antennas of length h/2 and w in the presence of incident 

radiation of wavelength h. The voltage developed across an antenna, VA, is given by E, 

where h is the effective height of the antenna and E is the incident electric field r2.201. 

For a resonant dipole antenna with length h/2, h=0.64h/2. For the shorter antenna of 
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length w the effective height is reduced to 0 .5~ .  Thus the voltage developed across the 

longer antenna is 0.64hlw times larger than that developed across the smaller antenna. 

For the QPC example given above, this corresponds to an enhancement by a factor of 

6400! It is clear from this example than an antenna is a necessary element whenever the 

device under study becomes smaller than the wavelength of the incident radiation. 

2.6.3 Diode Rectification 

The quasioptical method allows us to deliver picosecond pulses to the device of 

interest. The next problem is to devise a method to measure the high frequency response. 

Since it is impossible to measure the response directly at these high frequencies, we have 

chosen a different approach. Instead of measuring the high frequency response directly, 

we measure the change in the dc current , AI&, that is induced in the device in the 

presence of a microwave field. In contrast to the high frequency response, AI& can easily 

be measured with standard low frequency (KHz) electronics. In addition, lock-in 

techniques may be used to dramatically improve the signal to noise ratio. As we will 

describe in detail below, the magnitude of AI& will depend on the frequency dependent 

admittance of the device. Thus a measure of AI& (0) will give an indirect measure of 

Y( 0). 

The technique that we have developed is absolutely general and can be applied to 

any device which exhibits a nonlinear dc I-V curve. The most common type of device 

that exhibits nonlinear I-V characteristics is the crystal diode rectifier. In the presence of 

a voltage, V=Vo+Vocos(ot), across the diode a finite rectified current, &c, will be 

generated. To lowest order in Vo, AI& is, 

29 



Notice that AIdc is proportional to the second derivative of the dc I-V curve evaluated at 

the dc operating point, I(V0). This expression shows explicitly that the dc I-V curve must 

be nonlinear in order to produce a rectified current. The appearance of the second 

derivative is quite general. As we shall show in Chapter 3, an SIS tunnel junction can also 

act as a rectifier. The rectified current in an SIS tunnel junction is proportional to the 

discrete finite difference second derivative of the dc I-V curve. Another important point 

to notice is that d d c  is proportional to Vo2 which means that d d c  is proportional to the 

power absorbed in the diode. Such devices are often called square law detectors. As we 

shall show later, the dependence of AIdc on Va2 means that we can use interferometric 

techniques to measure AI&. 

In order to see explicitly how d d c  depends on Y(o) we need to appeal to the 

circuit model given in Figure 2.8. We have modeled the antenna with its Norton 

equivalent circuit [2.20]. This consists of an ideal current source, IA(o), and a frequency 

dependent antenna admittance YA(o). IA(o) is easily found by taking the product of the 

antenna voltage, VA(O), described above with the antenna admittance. As usual Y(o) 

represents the admittance of the device. It is important to recognize that Va in (2.7) 

above is the voltage that appears across the device. This voltage is not directly under 

experimental control. We can use elementary circuit theory to express Va in equation 

(2.7) in terms of YA(o), IA(o), and Y(o). The antenna admittance is a property 

intrinsic to the antenna and can be calculated numerically and in some cases analytically 

C2.201. IA(o), unlike Va , is proportional to the incident microwave field which is 

directly under experimental control. Y(o) is of course the quantity we would like to 

measure. The resulting expression for AI& is, 
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By varying IA(o)over a broad frequency scale, AIk(o) can be measured. If the second 

derivative of the dc I-V curve, YA(o), and IA(o) are all known then Y(o) can be 

extracted. 

2.6.4 Terahertz Interferometry 

Expression (2.8) above gives an explicit method for extracting Y(o) from 

measurements of &c(@) using a tunable broadband source. Unfortunately, as we have 

described previously, such sources do not exist and we need to use an interferometric 

technique based on broadband pulses and a homemade Fourier transform spectrometer 

depicted in Figure 2.9. 

The operation of this spectrometer is straight forward. To begin with let us only 

consider the arm of the interferometer which passes through the terahertz beamsplitter 

(beam #l). A 100 fs laser pulse is incident on the photoconductive switch which is 

coupled to an antenna which generates a THz pulse as shown in Fig. 2.6(a). This pulse is 

then collimated by a parabolic mirror into a large 3.5 inch beam. This beam then passes 

through a beam splitter. A final parabola is used to focus the beam down onto the sample 

which resides in the cryostat. Due to the rectification action of the device, a dc current is 

generated in the device, as in equation { 2.8) above. In this case since our pulse 

contains many different Fourier components, the amount of current generated is given by, 

We must integrate over all the Fourier components to get the full dc response. Here 11( o) 

is the Fourier transform of the current pulse generated by beam #1 and A(o) contains the 

nonlinear mixing coefficient and linear response factors given in equation (2.8). It is 

important to extend the above definition to negative frequencies so that we can use 

standard Fourier transform techniques. It can easily be shown that A(o)=A(-o) by using 
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the fact that Y(o)=Y*(-o) and YA(~)=YA*( -~ ) .  The latter two statements are true for 

both the device and the antenna since they both are linear time invariant (LTI) causal 

systems. In addition Il(o)=I i*(-o) since 110) is real. From these results we obtain, 

(2.10) 

Our goal, though , is to measure A(o). In order to do this, we must use a second 

terahertz pulse from the second antenna. This first pulse can be time delayed with a 

variable time delay, 2, with respect to the pulse from the second antenna. We accomplish 

this by taking the original optical beam from the laser and splitting it into two. One half 

of the laser beam is injected into the second photoconductive antenna. The otherhalf of 

the laser beam first passes through a variable Klinger optical delay line and then is 

injected into the first photoconductive antenna. The two Terahertz beams are then 

combined into one with a Mylar (or wire grid )beam splitter. A description of these beam 

splitters will be given in Chapters 4 and 6. Both beams are then focused onto the sample. 

We then measure the induced dc current generated in the device as a function of time 

delay, 2, between the two pulses and we obtain an interferogram as shown. By Fourier 

transforming this interferogram we obtain information about A(o). 

To see this explicitly, consider the following analysis. The expression for the 

induced current with two beams Il(t-z) and I2(t) incident on the device is, 

. -  

There are three contributions to the induced current. The first two are uninteresting and 

are independent of time delay and will be neglected. They correspond simply to the 

induced current due to each individual beam when interference is neglected. It is the 

third interferometric term, 
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(2.12) 

which allows us to extract A(o). In the laboratory we measure AIdc(@ by varying the 

time delay, 2, of the second optical pulse. Next we Fourier transform Ndc(r) to get 

4 C  (0) 3 

N d c  (0) = WUi (4 
= 2 d (  w)l, (a)g (a). (2.13) 

Thus, AZdc(a) is directly proportional to the quantity of interest, A(o). In a typical 

experiment, the data is normalized to some fixed reference to remove the contribution 

from the fixed frequency spectrum of 11 and 12. Once A(w) is determined we can then 

return to equation { 2.8) to extract Y(o). 
' The above discussion has shown in general how interferometric techniques can be 

used in characterizing an arbitrary nonlinear device. Although in the previous discussion, 

we have assumed that our source consists of picosecond electrical pulses, the experiment 

in principle could also be accomplished with a hot lamp black body source and a standard 

Fourier transform infrared spectrometer [FTIR]. In fact Mears [2.21] has applied the 

FTIR method to probing SIS tunnel junctions. However, the signal to noise ratio in those 

experiments was not sufficiently high enough to obtain data over a broad frequency scale. 

Our THz-TDI has a number of distinct advantages over a standard FTIR E2.11. 

The first advantage is that our antenna source is much brighter than a typical lamp source 

as was discussed previously in Section 2.5. The other critical advantage is that half of 

our interferometer lies in the optical domain, while the other half is in the low frequency 

terahertz regime. This means that we can strategically place our delay line in the optical 

portion of the interferometer as opposed to the terahertz portion of the interferometer. 

The advantages of this 

millimeter in diameter, 

approach are numerous. First since the optical beam is only a 

the retroreflector in the delay line can be small and light. In an 
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FTIR the beam is typically four inches in diameter making the optics bulky and hard to 

move. On the other hand, the optical retroreflector is small so it can be placed on a 

rapidly moving arm which allows for the application of powerful signal averaging 

techniques which can significantly enhwce the signal to noise ratio of our system. A 

second more subtle, but perhaps more important advantage of keeping the delay line in 

the optical regime is that we are not plagued by the alignment difficulties inherent to an 

FTIR. In a standard FlTR, the moving mirror needs to be aligned with interferometric 

accuracy with respect to the rest of the spectrometer. This alignment procedure is difficult 

and time consuming [2.22]. For our system the terahertz portion of the spectrometer 

which requires interferometric alignment has no moving parts which makes it trivial to 

align. The alignment of the delay line in the optical domain is also trivial since it does 

not require interferometric accuracy. Only one laser beam is incident on a 

photoconductive switch. It does not have to interfere with the second laser beam. 

2.7 Summary 

In this Chapter we have provided the basic information needed to design terahertz 

pulsed sources and described how these pulses can be used to characterize the dynamic 

response of an arbitrary nonlinear device. It should be clear now that the THz-TDI 

technique is extremely general and can be applied to any device which exhibits a 

nonlinearity in its I-V characteristics. We believe that this technique will find its niche in 

probing devices which operate in exotic environments such as ultralow millikelvin 

temperatures and high magnetic fields. 
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2.9 Figure Captions 

Figure 2.1: (a) 100 fs incident optical pulse triggers the silicon photoconductive switch 

which then drives the antenna to radiate a 6 ps Terahertz pulse. (b) Typical dimensions 

for 300 pm dipole antenna source. 

Figure 2.2: Photolithographic steps for metalization of antenna. (a) Wafer which has 

been coated with photoresist and developed (b) Evaporate thin aluminum layer (c) Dip 

wafer in acetone to remove photoresist leaving behind aluminum lines. 

Figure 2.3: Auston Switch. A 100 fs incident pulse of energy U is incident on a 

damaged silicon patch of area wG. The pulse generates free carriers which closes the 

switch for approximately 0.6 ps. 

Figure 2.4: (a) Radiation emitted from an antenna into a sapphire substrate is reflected. 

by the sapphire air interface. (b) Application of a hyperhemispherical lens to fully 

couple the radiation out of the dipole antenna. 

Figure 2.5: Quasioptical method for time resolving a Terahertz pulse. 

Figure 2.6: (a) Typical time domain trace of pulse (b) Magnitude of the Fourier 

transform of the pulse in (a). 

Figure 2.7: Method of quasioptical coupling to an antenna 

Figure 2.8: Norton equivalent circuit for the antenna and the device. 

Figure 2.9: Terahertz Time Domain Interferometer which is used to characterize the 

dynamic response of the nonlinear device. We measure the dc rectified current the flows 

through the device as a function of time delay, 2, between the two optical pulses. 
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Chapter 3 

High Frequency Response of 
Superconducting Tunnel Junctions: 
Theory 

This Chapter provides the basic theoretical background necessary to understand the 

high frequency response of conventional low Tc superconducting tunnel junctions. We will 

begin with the BCS theory [3.1] with its prediction for the density of states and the energy 

gap of a superconductor. This theory is then applied to problem of quasiparticle tunneling 

following the theory developed by Cohen, Falicov, and Phillips. Lastly these results will 

be used in combination with a theory developed by Tucker to explain the linear as well as 

nonlinear response of superconducting tunnel junctions. 

3.1 BCS Theory 

There are many excellent texts which describe in detail the BCS (Bardeen, 

Schrieffer, Cooper) theory r3.2-3.41. Here we only outline the basic results needed to 

understand quasiparticle tunneling. Specifically we give expressions for the energy gap 

and the density of states in a superconductor. 



Although superconductivity was discovered by Kamerlingh Onnes in 191 1 E3.51, it 

took nearly fifty years before a microscopic theory was developed. It took the insight of 

Frohlich in 1950 [3.6] to recognize that there can be an effective attractive interaction 

between pairs of electrons. This effective attraction between electrons is mediated by 

interactions with crystal lattice vibrations. The origin of the attractive force may be 

understood by realizing that an electron traveling through a crystal will polarize the medium 

by attracting the positively charged ions. Physically the electron leaves behind it a track of 

ion cores. A second electron traveling in the vicinity will see the track of ion cores and will 

be attracted towards it. In this way there is an apparent attractive interaction between the 

first and second electron. Obviously there is also a repulsive Coulomb interaction. 

Normally the Coulomb interaction is a long range interaction, but in a solid Thomas-Fermi 

screening will reduce the length scale of this interaction. 

This idea lead Cooper in 1956 [3.7] to propose that a weak attractive interaction 

between pairs of electrons can lead to a bound state. He showed that given an arbitrarily 

small attractive interaction, the Fermi sea of electrons is unstable to the forniation of a 

bound electron pair. This is a direct consequence of the Pauli Exclusion Principle and the 

existence of a background Fermi sea. 

The instability of the Fermi sea forms the basis for the BCS microscopic theory of 

superconductivity. In a superconductor as the temperature is lowered below Tc, the Fermi 

sea becomes unstable and Cooper pairs form. This is the result of a constant pairwise 

attractive interaction, -V, between electrons within an energy Bo, from the Fermi surface 

where Ao, is the cutoff energy. The new ground state of the system has a lower energy 

than the unperturbed Fermi sea by an amount, N(O)A(0)*/2, where N(0) is the density of 

states of the unperturbed normal metal at the Fermi energy and A(0) is the energy gap at 

zero temperature. The formation of an energy gap means that a minimum energy is needed 

to excite the system. The elementary excitations of this new system are called 

quasiparticles. 
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The BCS theory results in a number of important relations of experimental 

significance. First kBTc is related to ha,, 

I IN(0)V  kBTc = 1.13hoce- 

In the limit of weak coupling (N(0)V << l), 2A(0)=3.52kgTc. For bulk niobium, 

Tc=9.25 IC and 2A(0)=3.05 meV C3.41. In the same weak coupling limit a particularly 

simple expression is found for the temperature dependence of the energy gap near T,, 

112 

A(T) = A(0) L74( 1 - g) . 

Physically A is a constant as long as long as there are a significant number of Cooper pairs. 

Only once the number of quasiparticles dominates is the gap driven to zero. 

Obviously since the BCS theory predicts the formation of an energy gap, there must 

be a corresponding change in the density of states. The excitation energies of these new 

quasiparticles is, 

3 Here Ek is the energy of an excitation with momentum Ak, and ck is the kinetic energy 

A2k2/2m measured relative to the Fermi energy. In order to compute the density of states in 

the superconductor, Ns, we recopize that there is a one to one correspondence between 

each quasiparticles and the normal electrons. This gives us a relation between the normal 

density of states, Nn, and Ns. 

Since we are only interested in energies a few mV from the Fermi energy (eVs), we can 

take Nn(c)=Nn(O) which is a constant. Using { 3.3) and { 3.4) from above, we obtain the 

simple result, 
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= O  (3.51 

Thus the density of states is divergent at E=A. Physically the states which previously had 

energies within the gap have been pushed up to states with energies greater that A. 

Equation { 3.5) predicts that this divergence should be absolutely sharp. The sharpness of 

this divergence is the result of the assumption that the attractive interaction has a sharp 

cutoff at 20,. In real materials this sharp cutoff will be smeared over the whole range 20, 

by the phonon mediated interaction. This smearing will in turn smooth out the divergence 

in the density of states. These corrections are of order ( A / ~ o ~ ) ~  or (Tc/O~)2, where is 

the Debye temperature. 

3.2 Superconductive Tunneling 

Experiments in the area of superconductive tunneling have proven to be fertile soil 

for both basic and applied research. The first single particle (quasiparticle) tunneling 

experiments through a thin insulating barrier between a normal metal and a superconductor 

(NIS) and between two superconductors (SIS) were performed by Giaver in 1960 C3.81. 

' He showed that at temperatures well below Tc, no current could flow through an NIS 

junction unless the applied voltage across the junction exceeded A. He used this technique 

to c o n f m  the density of states and temperature dependence of the energy gap as predicted 

by the BCS theory. Within only two years, Josephson predicted that a pair of electrons 

might tunnel through an SIS junction even with zero applied voltage [3.9]. Since that time 

there have been numerous experiments on Josephson and quasiparticle tunneling. The 

Josephson effect forms the basis for ultrasensitive measurements of small magnetic fields 

using a SQUID (Superconducting Quantum Interference Device). In addition there has 

been much recent work on Josephson junction integrated circuits using Rapid Single-Flux 
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Quantum logic operating at ultrahigh clock frequencies in excess of 100 GHz C3.101. 

Quasiparticle tunneling on the other hand has been shown by Paul Richards to have nearly 

ideal properties for making microwave heterodyne mixers with low-noise. We will 

concentrate on the quasiparticle tunneling current and ~ollow the treatment of Cohen, 

Falicov, and Phillips C3.113 to compute the dc nonlinear current-voltage(I-V) characteristics 

of an SIS tunnel junction. 

We begin with the Hamiltonian formulation for the tunneling problem. In this case 

the SIS system is described by an effective Hamiltonian, 

H = HL + HR + HT + eV(t)NL, { 3.6 1 

where HL and HR are the complete many-body Hamiltonians for the left and right side 

respectively, V(t) is the applied voltage across the junction, and NL is the number operator 

on the left hand side, 

{ 3;7a} 

HT is the one body Hamiltonian which transfers electrons from one superconductor to the 

other, 

H7 = ( TQckc; + T;c,c,') . { 3.7b) 
k.q 

Here Ck (cq) and ck+ (cq+) correspond to electron annihilation and creation operators for the 

left (right) sides of the barrier. Tkq is a phenomenological tunneling matrix element which 

transfers quasiparticles from the right to the left electrode. Equation { 3.7b) simply states 

that for a thin barrier there is finite quantum mechanical probability that an electron will 

tunnel across the barrier. This probability will decrease exponentially with the thickness of 

the barrier and depends on the details of the oxide layer.' All these factors are lumped into 



If we neglect coherent process which result in Josephson tunneling, then the 

transition probability and hence the tunneling current through the junction is proportional to 

the tunneling matrix element squared. In order to calculate this term, c and c+ must be 

.expressed in terms of the elementary (Bogoliubov) quasiparticle excitations of the 

superconductor, 

Here a+ and p are the electron like creation and hole like destruction operators respectively 

and u and v are the BCS coherence factors. From this expression and a similar expression 

for c+, the square of the tunneling matrix can be found. By summing the current from left 

to right and from right to left, the total current is found to be proportional to, 

The above equality holds due to the normalization condition on the coherence factors. Thus 

the tunneling current only depends on the tunneling matrix element but does not depend on 

the nature of superconducting ground state through coherence factors of the form UkVk. 

The disappearance of the coherence factors in { 3.9) allows us to use the simplified 

semiconductor model for a superconductor. In this model the superconductor is 

represented by an ordinary semiconductor with a density of states given by { 3.5) which is 

applied to both positive and negative energies. The chemical potential is set to the zero of 

energy. At T=O, all states below the chemical potential are filled and all states above the 

chemical potential are empty. At finite temperature, the occupation number of the states is 

simply give by the Fermi-Dirac distribution function. In this model the transitions across 

the barrier are elastic, that is they conserve energy. Inelastic processes such as scattering 

by phonons in the barrier are neglected. Within this model the current in linear response is 

given by, 



Here f(tzo)=(exp(ho/kBT +1)-l is just the Fermi function and AL and AR are the single 

particle spectral distribution functions for the left and right sides of the barrier respectively. 

According to BCS theory the spectral distribution function is given by 

A(k, O )  = Iyf 6(O - Ek / 'I) f IVkf 6( O - Ek / 'I), (3.11) 

where vk2=1-uk2=1/2(1-~k/Ek) is the probability that a given pair (k?, -kJ) is occupied in 

the BCS ground state. By substituting equation { 3.1 1) into equation (3.10) we obtain the 

simple result for the dc tunneling I-V curve, 

In this result Tkq is assumed to be constant and is absorbed into the normal state resistance, 

RN. 

The above calculation for the dc current may have been obtained in a more simple 

fashion using the semiconductor model [3.4]. The density of states (3.5) of the single 

particle excitations at zero temperature is shown in Figure 3.1 in the presence of and 

applied bias V. The tunneling current from left to right for a quasiparticle at energy E is, 

according to the Fermi's Golden rule calculation, 

where NR(E) is the density of states on the right side of the barrier. This expression when 

summed over all the quasiparticle states on the right side of the barrier leads to expression 

(3.12). From Fig 3.1 we see that no tunneling current can flow until the voltage, V, 

reaches a critical value, eV=2A. At this point there are empty states on the right hand side 
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for the quasiparticles to tunnel into. The sharp divergence in the density of states will lead 

to a sharp onset in the tunneling current. As the applied bias is increased the tunneling 

current will asymptotically approach the value V/RN which is just the normal state tunneling 

current. The process of quasiparticle tunneling can be thought of as the unbinding of a 

Cooper pair. The binding energy of a Cooper pair is simply 2A. When eV exceeds this 

value, the Cooper pair unbinds and a quasiparticle tunnels across the barrier to an empty 

state, leaving behind the other quasiparticle. Figure 3.2(a) shows the experimentally 

measured I-V curve at 1.6 K for the 2x2 pm Nb/AIOx/Nb SIS tunnel junction used in the 

experiments of Chapter 4. The most striking feature is the sharp onset in the current at 

2.7 mV. The sharp onset, though, is broadened by such effects as gap inhomogeneity, 

gap anisotropy, and quasiparticle lifetime broadening. 

3.3 High Frequency Response 

In the previous Section we concentrated on the calculation of the dc current in 

response to a dc voltage.. In ,this Section we focus on the current which is induced in 

response to a sinusoidal time dependent voltage; V(t)=Vo+Vacos(ot). Since the I-V curve 

(Fig. 3.2(a)) for an SIS tunnel junction is nonlinear, we would expect to obtain a rectified 

current at dc as well as oscillating currents at the fundamentd frequency, o, and all higher 

harmonics. This is similar to the case of a classical crystal rectifier. 

In the case of a diode, the currents can be calculated easily using classical mixer 

theory. This is also true for an SIS tunnel junction when the frequency is sufficiently low. 

At high frequencies in the hundreds of GHz range, the classical mixer approach breaks 

down and the SIS response must be evaluated with a semi-classical quantum approach. 

High frequency is determined by the condition that Ao/e be much greater than the voltage 

scale of the nonlinearity, 6V, in the dc I-V curve (see Fig. 3.5(a)). At high frequencies, 

the SIS junction begins to resemble other quantum detectors in the visible and near infrared 

such as photomultipliers, photoconductors, and photodiodes. These devices are all based 

56 



on the photoelectric effect. In the familiar case of a photomultiplier, an individual electron 

absorbs a single photon. If the photon energy is greater than the work function of the 

metal, then a free electron is generated and a current may be detected. This current is a 

measure on the incident photon flux. The SIS tunnel junction operates in a similar fashion 

but the currents are the result of photon assisted tunneling rather than photoelectron 

ejection. In addition, the SIS junction has the added benefit that its workfinction can be 

tuned with an applied dc voltage. 

To understand the phenomena of photon assisted tunneling we begin with the 

simplified semiconductor model given previously. Recall that this model neglects the 

admixture of electron and hole like properties of quasiparticles near the band edge. These 

effects were shown in Section 3.2 above to be unimportant for single quasiparticle 

tunneling. Figure 3.3(a) shows the density of states of the SIS junction in the presence of 

both an applied dc bias, Vo, and a microwave signal, Am. Figure 3.3(b) show the first 

measurements of photon assisted tunneling in a AI-AI2O3-In tunnel junction r3.121. The dc 

V-I curve in the absence of a microwave field is given by the solid curve in Figure 3.3(b). 

The dashed curve in Fig. 3.3(b) shows the appearance of a step like structure in the dc V-I 

curve in the presence of CW microwaves (pumped V-I curve) at 38 GHz. This step like 

structure can be understood by referring to Fig. 3.3(a). In the presence of a microwave 

field, the quasiparticles incident on the barrier may absorb n multiple quanta of energy. 

When the quasiparticle absorbs enough energy so that nAweV0 > 2A then a new channel 

for quasiparticle tunneling will open and photon steps will appear in the dc I-V curve. The 

width of a step in voltage is hole, and as we shall show later, the number of steps that 

appear is given by a=eV&o. The current steps below the sharp onset correspond to the 

absorption of multiple quanta, nho. Above the sharp onset there are also steps, but this 

time there is an overall decrease in the current. The decrease in current corresponds to the 

emission of multiple quanta. 
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The semiconductor model gives an immediate explanation for the condition that 

Ao/e >> 6V in order to see photon steps. At sufficiently high frequency the step like 

structure in the pumped I-V curve will be a direct reflection of the sharp step like structure 

in the original I-V curve. As the frequency is lowered, though, the sharp steps will begin 

to smear out. At sufficiently low frequency, the applied microwave field will simply 

average over the nonlinearity and the SIS junction will operate just like a classical mixer. 

In the classical regime the applied field can be thought of as modulating the applied 

voltage. Since the I-V curve is nonlinear, a rectified current will result. 

A common misconception is that hole >> 6V in order to observe photon assisted 

tunneling. The fact is that any induced current observed in the presence of a microwave 

field can be understood in terms of the photon-assisted tunneling picture. Even when the 

frequency is in KHz range the photon-assisted picture can be applied. The problem is that 

the photon picture becomes unwieldy since at low frequencies we are typically in the 

multiple photon regime. The number of photons involved is given roughly by eV&ho. 

For example, at a frequency of 1 KHz and a voltage of 1 pV approximately 250 photons 

interact with the junction. In this low frequency multiphoton regime it is easiest to treat the 

SIS junction as a classical mixer rather than use the full quantum mixer theory. 

The semiconductor model gives a simple prescription for calculating the induced 

currents in the SIS junction. We begin with the simple case of two superconducting films 

separated by a thin insulating barrier. Let the right side of the junction be grounded for 

convenience and then apply a time dependent voltage, V(t)=Vo+V~os(ot), to the left side 

of the barrier. 

To compute the resulting tunneling current, we must consider the quasiparticle 

excitations in the left lead. In order to simplify the calculation, we make the critical 

assumption that the quasiparticle wave function drops off sharply in the insulating region of 

the barrier. This is true when the barrier height in the insulator is large which causes the 

wave function to decay rapidly. This is indeed the case since the barrier height in the 
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insulator is typically many eV above the Fermi energy in the superconductor. Within this 

approximation, the interaction between the microwave field and the quasiparticles in the 

insulating region will be vanishingly small and can be neglected. When this is done, the 

action of the microwave field is simply to adiabatically modulate the energy of the 

quasiparticles. The adiabatic approximation assumes that the frequency is below the 

plasma frequency in the leads. This is typically well into the ultraviolet regime. 

In the presence of the microwave field, the new Hamiltonian for the system 

becomes, 

H=Ho+eVo+eVocos (at) , (3.14) 

where Hois the unperturbed Hamiltonian in the absence of the microwave field. The 

unperturbed wave function incident on the barrier is given by, 

Y ( x , t )  = Y(x)e-iE"". (3.15) 

Here E is the unperturbed energy of the Bloch state. Since the perturbation to the 

Hamiltonian contains no spatial dependence, the new electronic wave function has the 

form, 

m 

"=-- 

It is important to realize that this is an exact result which is correct to all orders in the 

perturbation and its validity hinges on the rapid decay of the wave function 'into the 

insulator. The interpretation of (3.16) is that each quasiparticle level is displaced by an 

energy n h o  with a probability amplitude of occupancy given by Jn(cC=eV&O). Figure 3.4 

illustrates the generation of photonic side bands. Since all the levels are modulated 

together, the displacements in energy are equivalent to an effective dc bias, Vo+nfio, 

across the junction with a weighting factor of Jn2(a>. From this picture, Tien-Gordan 

[3.12] obtained an expression for the dc tunneling current, 

59 



I,  (v,, vu) = - c .I: ( @ I d C  (v, + nfiw), I3.17) 

where Idc is the tunneling current in the absence of microwaves. In computing this result it 

is assumed that the barrier in the insulator is infinitely high so that the tunneling probability 

is independent of quasiparticle energy. Equation { 3.17) explains directly the photon steps 

observed in the pumped V-I curve in Fig. 3.3(b). The tunneling current is just the 

summation of many dc V-I curves displaced by a voltage, Vo+nfio, and weighted by 

Jn2(eVolfio). The number of steps that appear is ’given roughly by a. This can be 

understood by recognizing that Jn(a) goes rapidly to zero for n>a. 

For the purposes of this thesis it will be important to obtain an expression for the 

change in the dc tunneling current, adc,  when the amplitude of the microwave voltage or 

equivalently a is small. By expanding the Bessel functions in {3.17), we obtain the 
\ 

following result, 

. (3.18) 
I,, ( V, + f i  w / e)  - 21,, ( V, ) + I,,~ ( V, - f i  w 1 e) 

(fiw / e)’ 

The quantity-in brackets is the finite second difference of the dc I-V curve where the term 

Vo+fio/e corresponds to photon absorption and Vo-fio/e corresponds to photon emission. 

All other higher order multiphoton processes are unimportant for this low power case. In 

the limit that the frequency is small, the finite second difference will eventually approach 

the second derivative of the dc I-V curve. Replacing the term in brackets with the second 

derivative results in the same expression derived previously in equation { 2.7) for classical 

rectification in a nonlinear diode. It is clear that the crossover between the quantum to the 

classical regime occurs when hole becomes smaller than the voltage scale of the 

nonlinearity of the I-V curve. 

The simplified model above allows us to easily calculate the rectified tunneling 

current, but it does not allow us to calculate the time dependent currents that flow through 
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the junction. Werthamer [3.14] has developed via perturbation theory an expression for the 

full tunneling current based on the Hamiltonian given in equation { 3.6 1, . 

-00 

(3.19) 

This technique computes correctly the quasiparticle as well as the Josephson tunneling 

current. The first term above is the quasiparticle tunneling current while the second term is the 

Josephson current. Here j,, and j, are the quasiparticle and Josephson response functions 

respectively. The Josephson term is similar to the quasiparticle term except that the former 

depends on the phase difference, @, between the BCS ground state wave functions on the two 

sides of the junction. The function W(o) is the Fourier transform of the time evolution 

operator, W(t), which is found in the interaction picture of time-dependent perturbation theory 

to be, 

I3.20) 

j, and j, can be calculated exactly for an ideal junction using the density of states for 

the quasiparticles and the Cooper pairs [3.14]. This calculation is difficult and cannot be 

applied to real junctions which have a broadened step in the dc I-V curve. In the case of a 

real junction it is better to obtain j, directly from the dc I-V curve. To see how this is done 

consider the following analysis. When the voltage across the junction contains only a dc 

component, V,, then W(o)=6(0) and (3.19) becomes, 

. 
The Josephson relation 4 = 2eV0 / A  tells us the second and third terms oscillate at the 

Josephson frequency while the first term results in a dc contribution. Thus the imaginary part 

of the quasiparticle response function is just the dc tunneling current, 
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IdC(V0)  = J -m[~&O)]  { 3.22a) ' 

where coo=eVo/fi. The dc tunneling current only depends on the imaginary part of the 

quasiparticle response function. The real part of the quasiparticle response function plays no 

role and can only be measured by measuring the reactive time dependent currents through the 

junction. 

The Reuqp] may be found from the Kramers-Kronig transform of Imusp]. The 

' Kramers-Kronig transform may be applied to any bounded and causal response function. By 

analogy with equation { 3.21 }, we can define an I&-V curve which is related to the real part of 
the quasiparticle response function, I& ( Vo)  = Re[ jqp ( coo)]. If we assume that we know the dc 

I-V curve for all voltages then we can compute I m ~ q p ( ~ o ) ]  for all frequencies. Using 

I m ~ q p ( ~ o ) ]  we can compute Reusp(~) ] ,  

-00 

{ 3.22b) 
-m 

Here P stands for the principle value of the integral. In this formula for I&, the ohmic term 

from the dc I-V curve has been subtracted to avoid a divergence in the integral. The ohmic 

term does not effect the Kramers-Kronig transform since only the nonlinear part of the I-V 

curve will result in a reactive component of I&. Figure 3.2(b) shows a direct calculation of . 
Ikk(V) from the'dc I-V curve in Fig. 3.2(a). The sharp divergence in I& at the gap voltage is 

the result of the sharp step in the dc I-V curve. For the case of an ideal BCS junction, Ikk 

diverges logarithmically [3.13,3.14]. This can be understood by noting that the Kramers- 

Kronig transform of a delta function is a function which diverges as 1/61. Since a step 

function is the integral of a delta function, the Kramers-Kronig transform will go like the 

integral of 1/61 which is a logarithmic divergence. 
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The results developed above by Werthermer give a direct procedure to compute the 

time dependent current in the presence of an arbitrary voltage waveform. The first step is to 

measure the dc I-V curve which via equations {3.22a,b) can be used to compute the 

quasiparticle response functions. The next step is to compute the time evolution operator, 

W(t) in equation { 3-20} using as input the time dependent voltage that appears across the 

junction. With the computed quasiparticle response functions and the Fourier transform of 

W(t) placed in equation {3.19), the time dependent current can easily be found. It is 

important to recognize that the voltage that appears in equation { 3.20) must be calculated in a 

self consistent manner since the applied voltage and the true voltage that appears across the 

junction can differ due mixing of different harmonics. 

Rather that treat the general case with an arbitrary V(t), we follow the treatment by 

Tucker who considered the specific case of V(t)=Vo+Vmcos(ot). In his formulation, he 

makes the simplifying assumption that all higher harmonics in the voltage that appear across 

the junction are shorted out. This is typically a good assumption since the geometrical 

junction capacitance shorts outs the higher harmonics. In this simplified case the applied 

voltage and the true voltage are equivalent making the calculation relatively straight forward. 

With the voltage waveform as input, Tucker calculates via equation { 3.20) the time evolution 

operator, W(t). Using this result along with the expressions {3.22a,b} for the quasiparticle 

response functions in equation { 3-19}, Tucker computes an expression for the time dependent 

tunneling current, 

m 

I ( t )  = Q + C 2 a m  cos(rnOt) + 2bm sin(rnmt) 
m=l 

(3.23) 

The first term, w, is just the equation for the dc current in the presence of microwaves that 

we obtained earlier in equation { 3.17) with the simpler Tien-Gordan approach. The other 
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terms are at the fundamental and the harmonics of the driving frequency. Harmonic 

generation is not surprising since any classical nonlinear circuit element is expected to give 

rise to harmonic signals. What is surprising is that we get two contributions to the current. 

The first is the expected cosine term which is in phase with the applied voltage. The second 

term is a sine term which is out of phase by 90 degrees. The sine term has no classical analog 

and is a direct result of the fact that the tunnel junction has a sharp nonlinearity in the dc I-V 

curve. 

In order to understand the cosine and sine terms further, let us make the simplifying 

assumption that we are in the small signal limit defined by a<<l. In this limit all harmonic 

mixing can be neglected and we enter the regime of linear response. In the regime of linear 

response, current at the fundamental frequency, I@, can be written as, 

I, = Y(o)  V,  = [G(o) +jl3(0)]V,. { 3.26) 

’ Here we use standard phasor notation in which the true time dependent signal, I(t), is 

found by taking the real part of 1,expljotI. The complex admittance, Y(o), of the tunnel 

junction can be written as the sum of the two terms. The first term is the quantum 

conductance, G(o), which gives the amplitude of the in phase currents while the second 

term is the quantum susceptance, B(o), which gives the amplitude of the out of phase 

currents. The term quantum is used by the SIS community to indicate that the admittance is 

frequency dependent. As we shall discuss later, the admittance of a tunnel junction is 

entirely analogous to the admittance of an atomic system. By expanding equations { 3.23- 

3.25) to lowest order in a, we obtain the following expressions for G(o) and B(o), 

{ 3.27) 

{ 3.28) 

G(O) = ~ [ I ~ ~ ( v ~ + A o / ~ ) - z ~ ~ ( v ~ - A o / ~ ) ]  e 

B( O )  = 
e [ ~ f i  ( VO + A o / e)  - 21fi ( VO ) + I& ( VO - AO / e) ]  

The equations { 3.27,3.28) for the conductance and the susceptance respectively show 

explicitly that these quantities can be computed from the experimentally accessible dc I-V 



curves. Thus a simple dc transport measurement can reveal the transport properties of an 

SIS tunnel junction in the 100's of GHz regime. 

From equation {3.27}, G(o) can be found by taking the finite difference derivative 

of the dc I-V curve. The finite difference interval in this case is given by the photon 

voltage, hole. Figure 3.5 shows a graphical approach to calculating the high frequency 

conductance. Let us assume that we have applied a dc bias of V ~ 2 . 3  mV, and that we are 

operating at a frequency of 180 GHz. For reference, one mV corresponds to the amount of 

energy in a single 240GHz photon. The conductance at 180 GHz is then just the slope of 

the solid line drawn through the two points, VdAole. For this case the conductance is 

155 mmhos. It is clear from this graphical representation that the high frequency 

conductance differs greatly from the classical small signal conductance which is the slope 

of the curve at the dc bias point. The slope of the dashed curve in Fig. 3.5 is the classical 

conductance which is just 3 mmhos which is roughly fifty times smaller than the 

conductance at 180 GHz. Thus it is clear from this example that at high frequencies we 

cannot neglect the frequency dependence in the conductance. It is also clear from Fig. 3.5 

that the dc conductance and the high frequency conductance will begin to differ whenever 

the photon voltage begins to exceed the voltage scale of the nonlinearity, 6V. We obtained 

a similar criterion previously in equation (3.18) when we discussed the crossover from 

classical to quantum rectification. 

Figure 3.6 further emphasizes the dramatic frequency dependence of the 

conductance at two different dc bias voltages. At a dc bias of 2.6 mV, the low frequency 

conductance starts at 35 mmhos. As the frequency is raised to 80 GHz the conductance 

rapidly peaks at 355 mmhos and then goes away slowly as the frequency is raised into the 

hundreds of GHz regime. The sharp onset in the conductance can be understood easily by 

referring once again to the semiconductor model in Fig. 3.3(a). A quasiparticle incident 

from the left at energy EA will absorb a photon and then tunnel into a state at energy EB. 

The condition for energy conservation tells us that EB-EA =ha. At low frequencies there 
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are no available states at EB so the conductance is nearly zero. As the frequency is raised 

sufficiently high enough so that Ao > 2A-eV0, then at energy EB there is a sharp increase in 

the density of states. This sharp increase is directly reflected in the fast onset in the 

conductance. Fig. 3.6 also shows the frequency dependent conductance as the dc bias is 

lowered to 2.3 mV. As is expected the lowering of the bias pushes the peak in the 

conductance up to higher frequencies. In fact the bias change of 0.3mV corresponds 

exactly to the peak shift of 75 GHz. 

Although we have discussed the origin of the frequency dependence of the 

conductance, we have not explained the appearance of the quantum susceptance. We know 

from quantum mechanics that in addition to real transitions which give rise to a 

conductance there are also virtual transitions which will result in a susceptance. In a real 

transition the energy conservation condition, EB-EA =Am, must hold. However, in a 

virtual transition the energy conservation condition need not hold. Refer once again to Fig. 

3.3(a). A quasiparticle incident from the left at energy EA undergoes a virtual excitation to 

an energy EB where EB#EA+Ao. This virtual excitation is short lived. However, if the 

excited state lives long enough and there are available states to tunnel to on the right side of 

the barrier, then the quasiparticle can tunnel across. Once on the right side, the 

quasiparticle tunnels back to the left side and then relaxes to a state with energy EA with the 

emission of a photon. There is no net absorption of photons in this process. Instead there 

is a quantum mechanical sloshing of quasiparticles across the barrier C3.151. The currents 

produced by this sloshing are non-dissipative and have no classical analog. For example a 

crystal diode lacks a quantum susceptance. 

We can compute B(o) for our tunnel junction using equation (3.28). This process 

requires the calculation of Ikk, the Kramers-Kronig transform of the dc I-V curve, as 

shown in Fig. 3.2(b). The next step is to compute the finite second difference of the Ikk 

curve. Figure 3.7 shows the result of this calculation for B(o) for two different bias 

voltages. First consider the case for V0=2.6mV. B(o) starts at zero and then it rapidly 
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rises to 225 mmhos at 50 GHz. This is the same order of magnitude as the peak 

conductance. As the frequency is increased further, the susceptance drops rapidly and goes 

through zero at 90 GHz. For still higher frequencies the susceptance remains negative. 

As expected as the bias is lowered to 2.3 mV, the peak in the susceptance moves to higher 

frequencies. 

A positive susceptance corresponds to a capacitive like response while a negative 

susceptance corresponds to an inductive response. Thus at low frequencies the tunnel 

junction responds capacitively while at high frequencies the junction responds inductively. 

This behavior is of great practical importance since this intrinsic susceptance of the junction 

can in fact tune out the geometrical capacitance of the device and greatly modify the 

coupling of power into the junction. In fact Worsham et. al. [3.16] has recently proposed 

that SIS tunnel junctions be used as voltage tunable reactive elements in high performance 

microwave detectors. 

Rather than use equation { 3.28) to compute B(o), B(o) can also be obtained from 

the Kramers-Kronig transform of G(o), 

B ( w ) = - P I -  w ' - dw' G(w') 
x -m 0' (w' -0) - (3.29) 

The above result can be used to explicitly show the capacitive nature of the tunnel junction 

at low frequencies. The susceptance for a simple capacitor, C, is just oC. At low 

frequencies, equation (3.29) reduces to a similar form with, B(W>=WCj , where the 

junction capacitance Cj is given by, 

1 O0 G(w') Cj =-PI dw'- 
x -m (cot)* - (3.30) 

This equation shows that the dc junction capacitance can be found by integrating the 

frequency dependent conductance over all frequencies. As we saw in Fig. 3.6, reducing 

the dc bias pushes the onset of the conductance to higher frequencies. From equation 
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{3.30}, this will lead to a corresponding lower capacitance. This effect is entirely 

analogous to that seen in atomic systems. We know that an atomic system becomes less 

polarizable as the spacing between the energy levels is increased. 

In the quantum regime, the properties of the SIS tunnel junction resemble most 

closely an atomic system, rather than a classical nonlinear diode. Just as the SIS tunnel 

junction has a frequency dependent complex admittance, an atomic system has a frequency 

dependent complex conductivity, B. This complex conductivity it normally separated into 

real and imaginary parts, CT=CT~+~B~. Consider the case of a solid with N atomic systems 

imbedded in a matrix with dielectric constant E, each with an infinitely lived resonant 

absorption line at frequency 00. The conductivity of this system is given by C3.171, 

0, = E a ; % 5 ( a *  -ai) {3.31a} 2 

{ 3.3 lb} 

Here 0~ is the plasma frequency for the solid. 

The delta function in cq above represents absorption at frequency 00. This peak is 

analogous to the peak like feature seen in G(o) in Fig 3.6. The peak, though, in G(o) is 

broadened on both the high and low frequency side. The origin of the broadening in G(o) 

on the high frequency side is due to the fact that the SIS junction is really an ensemble of 

two level systems each with a different 00. Instead of a single resonant frequency, 00, 

there is a threshold for absorption: hqp2A-eVo: The broadening of G(o) on the low 

frequency side has a different origin. It may be due to a number of factors such as a finite 

quasiparticle lifetime, gap anisotropy, or gap inhomogeneity. Variation in the gap 

parameter, A, would mean that the threshold condition will vary over the area of the 

junction. 

02 can be related to the susceptance, B(o). Just as B(o) in Fig. 3.7 has a bipolar 

nature, so does 02 in equation (3.31b). The analogy can be carried further by noting that 
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in the low frequency limit, 0 2  is also proportional to frequency so that the capacitance per 

unit length, C', of solid can be defined to be, 

(3.32) 

This is analogous to the expression given for the tunnel junction capacitance given in 

equation { 3.30) above. Note also that C' also decreases as increases, that is the system 

becomes less polarizable as the energy level spacing is increased. 

3.4 Quantum Efficiency 

In the previous Section we have described in detail the response of a tunnel junction 

to a time dependent sinusoidal voltage. In particular, equation (3.18) tell us that the 

magnitude of the induced dc current is proportion to Vi2 which implies that the induced 

current is proportional to the incident power. Thus the SIS tunnel junction is a power or 

square law detector. Other more familiar types of square law detectors include crystal 

rectifiers, photoconductors, and photomultiplier tubes. For the later two devices, one 

typically defines a quantity called the quantum efficiency (QE) or more commonly the 

quantum yield. The QE is defined as the change in dc current per unit of power absorbed. 

For example, in a photoconductor, the QE is one electron per absorbed photon when the 

photon energy is greater than the bandgap of the semiconductor. 

We can use the results of the previous Section for the induced dc current in 

equation (3.18) and the admittance from equations {3.27,28} to compute the QE(o) of a 

SIS tunnel junction, 

(3.33) 

As usual, Io=Y(o)V,. Substituting equations { 3.18,27,28} into equation { 3.33) results 

in, 
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I ~ ~ ( v ~  + A ~ / ~ ) - ~ I ~ ~ ( V , ) + I ~ ~ ( V ,  - h a l e )  
I ~ ~ ( v ~  + fiw / e)- I ~ ~ ( v ~  - A @  / e) 

1 d21dc / dVi 
2 dIdc / dVo ’ Classical Limit - -- 

e 
Aw , Quantum Limit. { 3.34) - -- 

When kc varies slowly on a voltage scale compared to fide we obtain an expression for the 

QE which is identical to that found for a classical diode rectifier. However, at sufficiently 

high frequencies the conductance of a SIS tunnel junction varies so rapidly that 

In this regime, the SIS detector approaches the quantum limit of one electron per absorbed 

photon. From Fig. 3.2(a) we see that the dc current varies on the voltage scale of 0.lmV 

which implies that for frequencies in excess of 25 GHz we are well into the quantum limit. 

For the experiments in this thesis, we will be probing the SIS junction in the 1OOGHz 

regime which means that al l  our experiments will be in the quantum regime. 

3.5 Summary 
In this Chapter we have seen that it is possible to calculate using Tucker theory the 

high frequency response of a tunnel junction by only measuring the dc I-V curve of the 

tunnel junction. In the next Chapter we will show experimental results which verify the 

Tucker theory. 
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3.7 Figure Captions 

Figure 3.1: Density of states at zero temperature in a superconducting-insulating- 

superconducting tunnel junction with gap 2A in the presence of an applied bias, Vo. The 

states below Ef are completely filled. 

Figure 3.2: (a) Measured dc I-V curve in a 2 pm x 2 pm Nb/AIOx/Nb trilayer SIS 

tunnel junction. (b) Ikk which is the Kramers-Kronig transform of the dc I-V curve in (a). 

Figure 3.3: (a) Density of states in a superconducting-insulating-superconducting tunnel 

junction with gap 2A in the presence of an applied dc bias, Vo, and a microwave signal 

frequency o. (b) The solid curve is dc I-V characteristic for an A1-A1203-In tunnel 

junction. The dashed curve shows the appearance of photon-assisted tunneling steps when 

the junction is irradiated by microwave radiation at 38 GHz. 38 GHz corresponds to a 

photon energy of 0.16 mV which is the size of the photon steps. 

Figure 3.4: A quasiparticle incident on a SIS tunnel barrier from the left at energy Ei is 

scattered by the microwave field at frequency o, into a series of photonic sidebands 

separated by energy Ao and weighted by the Bessel functions. 

Figure 3.5: Graphical method for calculating the quantum conductance (solid line) and the 

classical conductance (dashed line) at a bias of 2.3 mV and frequency of 180 GHz. Note 

that the quantum conductance is much larger than the classical conductance. 

Figure 3.6: Quantum conductance as a function of frequency for two different dc bias 

voltages, 2.6 mV and 2.3 mV. As the bias is lowered the peak in the conductance moves 

to higher frequencies. 
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Figure 3.7: Quantum susceptance as a function of frequency for two different dc bias 

voltages, 2.6 mV and 2.3 mV. The junction appears capacitive at low frequencies but 

becomes inductive at high frequencies. 



Figure 3.1 
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Chapter 4 

High Frequency Response of a 
Superconducting Tunnel Junction: 
Experiment 

In this Chapter we will describe the experimental measurement of the response of 

the quasiparticle current in a single Nb/AIOx/Nb tunnel junction in the frequency range 

from 75-200 GHz [4.1]. This work is the result of a successful collaboration between 

Professor Joseph Orenstein's group and Dr. Simon Verghese and Dr. Carl A. Mears from 

Professor Paul Richards group. We have applied the THz-TDI technique described in 

detail in Chapter 2 to measure the linear admittance of a superconducting-insulating- 

superconducting (SIS) tunnel junction over a broad frequency scale. Picosecond pulses of 

millimeter wave radiation were generated by illuminating a photoconductive switch with a 

femtosecond mode-locked Ti-sapphire laser. The pulses are coupled quasioptically to the 

junction through a broadband log periodic planer lithographed antenna. The broadband 

response of the junction is inferred by monitoring changes in the dc current induced by 
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interfering two picosecond electrical pulses at the junction as a function of time delay 

between them. These data are found to be in complete agreement with the results described 

in Chapter 3 for the linear theory of photon-assisted tunneling. In addition, to describing 

our linear response data, we will also describe briefly some of our preliminary 

measurements of the nonlinear response. 

4.1 Introduction 

A sharp onset in the current-voltage (I-V) curve of an SIS junction occurs at a 

voltage 2Ue. The theoretical basis for this phenomena was discussed in Chapter 3 and 

shown explicitly for a Nb/AlO,/Nb tunnel junction in Fig. 3.2(a). This nonlinearity in the 

quasiparticle current has been exploited in sensitive, high-frequency mixers and square-law 

detectors of millimeter wave radiation [4.2,4.3]. We have applied a new terahertz 

interferometric technique to make broadband measurements of the high frequency response 

of an SIS square law detector. These measurements are useful for applications such as 

understanding the ultimate operating speed of interconnections between optical fibers and 

superconducting tunnel junctions. 

As discussed in Chapter 3, a rectified dc current, AIdc(VO), flows across a SIS 

junction when it is excited with a microwave signal at frequency o and is biased at a 

voltage Vo=2A/e. In the limit of low microwave power, the SIS junction operates as a 

square-law detector and A&jC(vo) is proportional to the quantum efficiency, QE(w,Vo), of 

the detector and the amount of microwave power coupled to the junction (see equation 

(3.33)). With proper experimental design, the amount of power coupled to the junction 

can be made to sensitively depend on the admittance of the tunnel junction. According to a 

theory developed by Tucker [4.4], all the information required to predict QE(o,Vo) (see 

equation { 3-34}) is embodied in the ratio of the second and first finite difference of the dc 

I-V curve, where each difference is calculated with a finite voltage interval Ao/e. The 

quantum efficiency QE(o,Vo) has two frequency regimes which are separated by a 
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crossover frequency of order e6V/A, where 6V is the width of the onset of the dc I-V curve 

(see Fig. 3.5). In the low-frequency or classical regime, the first and second difference 

approach the first and second derivative of the dc I-V curve evaluated at Vo and QE(o,Vo) 

is independent of o. In the quantum regime, defined by o>eGVIA, the QE(o,Vo) is 

frequency dependent and exhibits a threshold near (2A-eV0)IA. Similarly, Tucker also 

predicts the appearance of a frequency dependent quantum conductance, G(o), in the 

quantum regime. The prescription for calculation of the quantum conductance is to take the 

first finite difference of the dc I-V curve (see equation { 3-27}). 

Considerable effort has been devoted to testing Tucker's theory experimentally, for 

essentially two reasons. First, the ability to characterize the microwave response of an SIS 

device by making relatively trivial dc transport measurements is economically 

advantageous. Second, the appearance of a frequency dependent quantum conductance 

implies via the Garners-Kronig relations the appearance of a frequency dependent quantum 

susceptance (see equation { 3-29}). The appearance of a quantum susceptance has typically 

been absent in the classical theory for SIS mixers. The quantum susceptance, B(o), 

describes the out-of-phase component of the microwave current generated by the incident 

microwave voltage. In accordance with the general requirements imposed by causality, 

B(o) becomes large near the onset of absorption at (2A-eVo)Ifi: According to the theory, 

B(o), can be large and of the same order of magnitude as G(o). 

Previous experiments using continuous-wave (CW) or narrow-band sources have 

generally confirmed the predictions of the Tucker theory. Hu et al. made the first 

measurements of the quantum susceptance in SIS tunnel junctions [4.5]. They used cavity 

perturbation techniques to infer the existence of the quantum susceptance. Using 

microlithographic techniques they fabricated a planer antenna and SIS junction in parallel 

with an inductive niicrostrip stub. The inductive stub and the geometrical capacitance of the 

junction formed a resonator. By using a Fourier-transform infrared spectrometer (FTIR), 

they were able to measure small 10% shifts in the resonant frequency as the bias voltage, 
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VO, was changed. These variation in the resonant frequency could be directly attributed to 

changes in the quantum susceptance as the bias voltage was swept. Another method for 

extracting the susceptance was developed by Worsham et al. They used conventional 

phase sensitive microwave reflectometry techniques at 87 GHz on a pair of Nb/AlO,/Nb 

tunnel junctions mounted at the end of a waveguide [4.6]. By knowing exactly the 

impedances of the network that the tunnel junctions were imbedded in, they were able to 

extract absolute numbers for the voltage dependent conductance and susceptance at 

87 GHz. 

These experiments, although important since they were the first to demonstrate the 

existence of the quantum susceptance, suffer from the significant drawback that the 

techniques are inherently narrow band. The experiment by Worsham et al. relies on the 

use of a Gunn oscillator which is a narrow band source with typically less than 5% tuning 

capability. In addition Gunn sources are only available at discrete frequencies making 

broadband measurements impossible. On the other hand, the FTIR technique developed by 

Hu et ai. has the potential for broadband measurements. However, due to the low power 

of the lamp source, the experiments were restricted to the use of resonators. The use of the 

resonator boosted the signal strength near the resonant frequency making the experiments 

feasible. Unfortunately, the introduction of tuning structures also makes the method 

inherently narrow band. They were only able to monitor changes in the resonant frequency 

from 75 GHz to 85 GHz. Even though the resonator improved the signal strength, the 

overall signal to noise(S/N) still remained poor. In fact 5-10 spectra had to be co-added to 

obtain a sufficiently high S / N  ratio [4.7] and most experimental runs took five to ten hours 

for a complete data set. 

To overcome the limitations of the FTIR lamp source, we have developed a THz- 

TDI which has been described in detail in Chapter 2. Due to the high brightness of our 

picosecond sources, we have been able to characterize SIS devices over a broad frequency 

regime ranging from 75 to 200 GHz. By changing the antenna source, the frequency 
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regime could easily be extended to several THz. The data obtained with our system are the 

first broadband measurements of the quasiparticle response of an SIS junction. Overall, 

our results are consistent with the Tucker theory and demonstrate clearly the importance of 

B(o) in determining the quasiparticle response. 

4.2 SIS Terahertz Time Domain Interferometer 

In Chapter 2 we have discussed in detail the characteristics of our picosecond 

sources and the basic theory behind the THz-TDI technique. Here we will not repeat all 

that information, but we will briefly summarize the experimental method and describe some 

of the experimental details which are specific to the SIS experiment. 

A block diagram of the time-domain interferometer was given in Fig. 2.9. The key 

elements of the system are the sources of pulsed electric fields. Each source consists of a 

50x50 pm square of ion-damaged silicon which bridges the terminals of a 300 pm dipole 

antenna. The sources were patterned on a silicon-on-sapphire wafer. Each antenna was dc 

biased between 10 to 20 volts. When the silicon is illuminated with a short optical pulse, a 

short pulse of photocurrent flows through the antenna terminals. The photocurrent is 

generated with optical pulses of duration 100 fs, repetition rate of 100 MHz, and average 

power of 100 mW from a Tksapphire laser operating at 800 nm. The photocurrent pulse 

drives the antenna to radiate a nearly single cycle electric field pulse into free space. As 

shown in Fig. 2.6(b), the pulse is incredibly broadband with a center frequency of 

180 GHz and a FWHM bandwidth of 150 GHz. After generation, the pulses are 

immediately collimated by a 13 mm diameter sapphire hyperhemispherical lens. The 

sapphire was z-cut, which means that the optic axis of the sapphire lens was chosen to be 

perpendicular to the plane of the antenna [4.8]. After the lens, the pulse is fully collimated 

by a 9cm diameter Ell parabolic mirror. The two beams are then combined with a 1 7 5 ~  

thick Mylar beamsplitter. An f/3 parabolic mirror then focuses the combined beam through 

a 16mm diameter 25 pm thick polypropylene vacuum window on a small Infrared Labs 
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liquid helium cryostat which cools the junction. The thickness of the polypropylene 

window was chosen to be thin enough to eliminate Fabry-Perot effects. After passing 

through the vacuum window, the beam passes through a 12.7 mm diameter 0.83 mm 

thick fused quartz window with a 100pm thick black-poly film overlay. Cooled by a 77 K 

heat shield, this window absorbs radiation above the midinfmed, reducing the heat load on 

the pumped liquid He coldstage. We pump on the liquid helium to cool the junction down 

to 1.6 K. Although pumping on our liquid helium reduces the hold time of the cryostat 

from ten hours (unpumped helium) to five hours, this time is more than sufficient to cany 

out three to four experimental runs. The FTIR experiments by Hu et al. were restricted to 

measurements at 4.2 K (unpumped liquid helium temperatures) to allow for the lengthy 

measurement times [4.7]. The helium cryostat rests on a kinematic mount so that it can be 

replaced temporarily with a helium cooled bolometer for calibration experiments. 

Our interferometer has the unusual property that when the spectrometer is properly 

aligned, the resulting interferogram is purely asymmetric, that is ,AIdc( 2) = -NdC (-T). 

This is in contrast to the standard FTIR with a mylar beam splitter in which the 

interferograms are symmetric, AI&(@ = AI&(-@. The unusual property of our 

spectrometer is due to the fact that one arm of our spectrometer interacts with the 

beamsplitter in reflection while the other arm of the spectrometer only sees the beam in 

transmission. Since the reflection and transmission coefficients of the beam splitter are 

frequency dependent, the beams from the two arms of the spectrometer are not identical 

after the beam splitter. Thus the interferogram does not have to be strictly symmetric. In a 

standard FTIR both beams see the beam splitter in reflection and in transmission. This 

means that beam from both arms or the interferometer will be identical which will lead to 

the standard result of a symmetric interferogram. 

The unique properties of our interferogram can be understood from the simple 

mathematical argument given below. In Chapter 2 (equation (2.13)) we derived a general 

expression for the rectified current spectrum, 
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Looking at a schematic of our interferometer in Fig 2.9, we see that Il(o)=t(o)Ilo(o) and 

12(o)=r(o)I20(o), where t(o) and r(o) are the amplitude transmission and reflection 

coefficients respectively. Since both antennas were fabricated with identical processing, we 

assume that I~o(o)=I~o(o)=Io(o). In this case equation (4.1) can be rewritten as, 

AIdc (0) = 2 d (  0)ll, (oft * (w)r( 0) . { 4.2 1 

The beam splitter operates on the principle of a Fabry-Perot etalon and is designed to 

function between the zero and first order transmission peak. For a lossless dielectric beam 

splitter it can easily be shown using the equations for a Fabry-Perot etalon that the product, 

t*(o)r(o) is purely imaginary [4.9]. Since A(@) is strictly real, AIdc(o) is also imaginary. 

From the properties of the Fourier transform we know that if &(z) is real and &(o) is 
imaginary then &c(2> must be an odd function of 2, ie. Ndc(z) = -AI&(-z). Figure 4.1 

shows a plot of the beam splitter efficiency 2Im[rt*] for a mylar beamsplitter of thickness 

175 pm and index of refraction of 1.85 at millimeter wavelengths [4.10]. This beam 

splitter is useful over the frequency range from 50 to 450 GHz. 

Before beginning experiments with the SIS tunnel junction, we performed a 

number of calibration tests with a composite bolometer operating at T=1.6 K. Since the 

SIS cryostat was mounted on a kinematic mount, it was a relatively simple operation to 

switch out the SIS junction for the bolometer without disturbing the alignment of the 

interferometer. The bolometer was specially designed for measurements at low microwave 

power levels. A Winston cone was used to maximize the coupling of power into the 

bolometer. In addition, a cooled low pass fluorogold filter with a cutoff frequency at 

600GHz was used to block room temperature black body radiation from saturating the 

sensitive bolometer. 
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The experimental procedure for measuring an interferogram is as follows (see Fig. 

2.9). First the dc voltage on each antenna is adjusted so that the power from each arm of 

the interferometer is identical. Next, one of the laser beams in the interferometer is 

mechanically chopped with a chopper wheel at 10 Hz. The synchronous signal is then 

picked up on the bolometer with a PAR 124A lock-in amplifier. Next a Klinger stepper 

stage is used as variable path delay to move a mirror a distance D. The delay is placed 

strategically in the optical portion of our interferometer. The distance change AD can easily 

be converted to a change in time delay AT by the equation, A T = ~ / c .  We then monitor the 

bolometric signal as a function of D. Figure 4.2(a) shows a typical interferogram. Notice 

that the interferogram is asymmetric as expected. The point of asymmetry occurs at the 

position D=1550 pm which defines the condition T=O. The fact the interferogram is not 

perfectly asymmetric implies the spectrometer is not perfectly aligned or that the antennas 

are not absolutely identical. In our data analysis on the SIS junction, we always 

normalize our data which makes our experiments insensitive to small misalignments. 

Figure 4.2(b) is the amplitude of the Fourier transform of the interferogram in Fig 4.2(a). 

From equation {4.2}, it is clear that the Fourier transform is proportional to the power 

spectrum, lZof, of the incident pulses. The spectrum peaks at 180 GHz and has an 

approximate 3db bandwidth of 100 GHz. We can compare this spectrum in Fig. 4.2(b) to 

the spectrum in Fig. 2.6(b) which was measured using the terahertz time domain technique. 

The spectrum measured with the bolometer has more structure and has less bandwidth. 

This is most likely due to the filtering action of the Winston cone and the drop in beam 

splitter efficiency below 100 GHz. Nevertheless the spectrum is sufficiently broadband to 

make spectroscopic measurements on the SIS tunnel junction. 

4.3 SIS Junction Fabrication 

A cross Section of the SIS junction is shown schematically in Figure 4.3. The 

junction was fabricated at Conductus Inc. by A.T. Barfknecht using the Nb trilayer process 

88' 

_I_-- _. 



r4.113 which has been popularized for use in fabrication of digital Josephson Junction 

technology . The first step is to sputter a Nb base electrode on a four inch diameter silicon 

wafer. Next a thin aluminum film is deposited on the Nb and then the aluminum is 

oxidized to form the tunnel barrier. On top of the aluminum oxide, a second layer of Nb is 

added and anodized to define the junction area. A layer of Si02 is used for electrical 

isolation. Lastly a Nb wire-up layer is added which will form one terminal of the antenna. 

The second terminal of the antenna is formed by the base Nb electrode. 

The SIS junction has an area of 2x2 pm and a normal state junction resistance, RN, 

of 14 ohms. The dc I-V characteristics of the junction were given in Fig. 3.2(a). Since the 

junction also has a geometrical capacitance, C, of 200 ff, the SIS junction has a 3 dB 

comer frequency, 1 / 2 z R ~ C  at only 60 GHz. This means that in our frequency range the 

current will be shunted by the geometrical capacitance. A magnetic field of approximately 

, 100 G is used to cancel out the Josephson Cooper pair tunneling current so that our 

measurements will solely reflect the high frequency tunneling currents. 

As discussed in Section 2.6.2, the coupling of microwave radiation to the SIS 

junction can be greatly enhanced by placing the junction at the feed of an antenna. This 

reduces the mismatch between the mm wave radiation and the 2x2 pm square junction. 

For the SIS experiments we use a circular tooth log-periodic antenna which is shown. 

schematically in Figure 4.4. Both the central bow angle and the tooth angle is 45 degrees. 

The ratio of the adjacent linear teeth is two and the length of the smallest tooth is 50 pm. 

This antenna belongs to a special class of self complimentary antennas. Self 

complimentary means that the metalized and unmetalized portions of the antenna are 

identical. It has been shown that-such an antenna made of lossless conductors and 

fabricated on a semi-infinite substrate will have the desirable property that the antenna 

admittance, YA, is frequency independent and depends only on the dielectric constant of the 

substrate E4.121. The admittance is given by the expression, 

89 



[ (1 + Er ) I 2]1'? 
YA = 

2, 1 2  9 (4.3) 

where Er is the relative dielectric constant of the substrate and & is the impedance of free 

space. With a dielectric constant of silicon equal to 11.9 at millimeter wavelengths E4.131, 

the antenna admittance is 1/75 SZ. Preliminary measurements by Nahum et al. C4.141 

suggest that the beam pattern of a circular tooth log-periodic antenna maybe frequency 

dependent. This is most likely the result of the fact that adjacent teeth on log-periodic 

antenna are oriented roughly orthogonal with respect to each other. Different teeth will 

resonate at different frequencies which means that the polarization will flip flop as the 

frequency is varied. 

4.4 Single Pulse Experiments 

Before we consider the interferometric experiments, it is instructive to first look at 

the rectified photoresponse due to a single pulse.$ These experiments are important in 

choosing the proper regime to carry out the spectroscopic experiments. We need to choose 

an appropriate bias voltage range and microwave power level. In Chapters 2 and 3 

(equations (2.8) and (3.18)) we have derived the following expression, 

for the rectified current induced in a SIS tunnel junction of admittance Y(o) by a 

microwave field at frequency O. Here YA(a) is the admittance of the antenna, IA ( o ) I i  (0) 

is proportional to the power spectrum of the incident pulses, and Idc(Vo) is the dc current 

that flows through the junction in response to a dc bias Vo. If we ignore the frequency 
_. 

dependence of Y(o) and YA(a), then the above expression predicts that the rectified 

response will have a threshold at tzw > 12A - eVol. Equation { 4.4) is only valid in the 

regime of low microwave power levels defined by the condition, e V & m  << 1 where V, 
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is the voltage induced across the tunnel junction. This is often referred to as the regime of 

linear response. If the microwave power level is too high and eV@o approaches unity, 

we will enter the regime of nonlinear response where multiphoton processes will dominate 

the rectified current. 

We use the following experimental procedure for measuring the rectified current. 

First we chop the visible laser beam incident on photoconductive switch #2 in Fig. 2.9 at 

1 KHz with a mechanical chopper and bias the antenna with a variable voltage source so 

we can adjust the strength of the microwave pulses on the SIS junction. The microwave 

pulses induces a small synchronous rectified current in the junction. This current is 

amplified with a room temperature low noise field effect transistor (FET) amplifier with a 

spot noise referred to the SIS junction of 0.2 nV/Hz112 at 1KHz. A PAR 124A lock-in is 

then used to detect the synchronous signal. The use of an ultra low noise FET amplifier is 

critical to this experiment since relatively low microwave power levels are necessary to stay 

in the regime of linear response. 

Figure 4.5 shows the results of a measurement of the rectified current induced in a 

SIS tunnel junction as a function of bias voltage at two different photoconductive antenna 

voltage levels, Vpc. The dc I-V curve is also superimposed on this plot for comparison. 

Recall from Chapter 2 that the power emitted by the Terahertz sources is proportional to 

Vpc2 . Thus by changing the antenna voltage from 20 V to 60 V, the microwave power 

level incident on the junction is increased by a factor nine. Let us begin by considering the 

rectified current at the lower microwave power level (dotted curve in Fig. 4.5). This signal 

has many interesting features some of which are easily understood and others that must be 

left for future investigations. For a bias voltage, VO, less than 1.5 mV the signal is 

immeasurably small. This is due to the fact that our pulse has very little spectral weight 

above the requisite frequency of 300GHz = (26 - eVo) / h. As the bias voltage increases, 

the rectified current increases as expected since the threshold for photon absorption moves 

to lower frequencies where our pulse has greater spectral weight. The rectified current 
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peaks at a bias of 2.5 mV which corresponds to a threshold frequency of 60 GHz. One 

might naively expected that the peak in the rectified current at 60 GHz should match the 

peak in the spectrum in the pulse. Experimentally, though, we find that the pulse spectrum 

peaks at 180 GHz. The peak in the rectified current would only match the peak in pulse 

spectrum if the SIS junction acted as a single frequency resonant detector. Then the shape 

of the rectified current versus bias voltage would just be a reversed image of the pulse's 

spectrum. In reality, though, the SIS junction is a threshold detector, so the rectified 

current will more naturally reflect the integral of the pulse's spectrum. This integral will 

have a maximum value when threshold moves below the lowest frequency in the spectrum. 

From Fig. 4.2(b), 60 GHz is in fact near the low end of the pulse's spectrum. 

As the bias is increased further, the rectified current is eventually reduced and 

finally goes negative when Vp2A. The negative response is due to stimulated emission of 

photons. As can be seen from Fig. 3.3(a), when Vp2A quasiparticles can easily tunnel 

from the right to the left side of the barrier. When the quasiparticles are stimulated to relax 

by emitting a photon, there will be no states to tunnel into and there will be a corresponding 

decrease in the current or equivalently a negative rectified current. As the bias is increased 

further, a sharp negative peak is formed at V032.85 mV and then eventually the rectified 

cunent returns to zero. The fact the a negative going peak in the rectified current is much 

sharper than the positive going peak is currently not understood. One hypothesis is that at 

that bias voltage, the. bias dependent intrinsic admittance of tunnel junction exactly cancels 

the geometrical capacitance of the junction allowing for resonant absorption of power into 

the tunnel junction. 

Now let us consider the case of the higher microwave power level with an antenna 

voltage of 60 V (solid curve) and compare it to the lower power signal. In order to 

simplify the comparison, we have multiplied the lower power signal by a facto7 of nine. In 

the regime of 1inear.response for the tunnel junction, the rectified current should be 

proportional to VF2, ie. linear in the incident power. Thus the signal at VF=60 V should 
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be nine times greater than that for the rectified current at VF=20 V, hence th dotted and 

dashed curves should perfectly overlap. There is reasonable overlap for 

2.3 mV<V0<2.7 mV which indicates that we are in the regime of linear response for these 

bias voltages. At lower bias voltages, however, excess rectified current flows through the 

tunnel junction. At V0=2 mV there is twice as much signal as would be expected from a 

Vpc” dependence of the rectified current. 

The excess current at low bias voltages most likely results from nonlinear 

multiphoton processes. To investigate this further, we have made measurements of the 

rectified current as function of VF for two different tunnel junction bias voltages. These 

data are shown in Figure 4.6. First consider the dashed curve which is for a tunnel 

junction bias of 2.3mV. This dashed curve follows relatively closely the upper solid curve 

which has a Vp,2 dependence thus we can assume that we are in the regime of linear 

response. However, at V0=2.0 mV (dotted curve), the situation is dramatically different. 

Here the rectified current resembles more closely the Vpc3 dependence of the lower solid 

curve. This is indicative of a multiphoton process. For the case of pure two photon 

absorption, the rectified current should scale as Vp4. The fact that we are not seeing the 

full Vpc4 dependence is probably because we are in a cross over regime where both one 

photon and two photon processes are important. Since our pulse is extremely broadband, 

the different Fourier components may be in different regimes of linear and nonlinear 

response. We will show later how it is possible with interferometry to separate the signal 

due two photon processes from the signal due to one photon processes. Such 

measurements may prove useful in measuring the quasiparticle Hetime. 

. 

4.5 Linear Response: THz-TDI 
The single pulse experiments described in the previous Section has given us a 

glimpse of the rich parameter space in which to carry out experiments on the SIS tunnel 

junction. By changing the power level we can probe the crossover between linear and 



nonlinear response and by changing the tunnel junction bias we can probe both photon 

absorption and stimulated emission. Obviously this parameter space is extremely large, so 

it is crucial to be selective in choosing the first series of experiments. Fortunately, since we 

are the first to develop a technique to do broadband spectroscopy, we could begin with the 

simplest experiment: Probing the linear response of photon absorption for an SIS tunnel 

junction. 

From the results of the single'pulse experiments in Figs. 4.5 and 4.6, we decided 

to probe the junction in the bias regime from 2.1 mV to 2.5 mV and keep the 

photoconductive antenna voltage below 15 V. This will insure that our experiments will 

remain in the regime of linear response. The technique we use to measure interferograms 

with the SIS tunnel junction is in many respects identical to that used in measuring 

interferograms with the bolometer. There are only two important differences. First we 

chop the laser beam at 1 KHz and second we average two interferograms each of which 

takes eight minutes to record. Averaging is used to reduce noise due to laser fluctuations. 

Figure 4.7(a) shows the average rectified current as a function of time delay at five different 

bias voltages between 2.1 mV and 2.5 mV. The curves at different bias voltages have 

been offset for clarity. The interferograms are asymmetric about the null position at zero 

time delay as expected from the discussion in Section 4.2. Figure 4.7(b) shows the 

amplitude of the Fourier transforms of the interferograms in Fig. 4.7(a). As the bias is 

lowered from 2.5mV to 2.lmV, the threshold frequency, (2A-eVo)/h, moves to higher 

frequency. This increase in the threshold frequency is reflected in the spectra by inducing 

an increasing suppression of the low frequency response relative to the high frequency 

response. The structure seen in the spectra are most likely the result of interference effects 

in coupling the electrical pulses through our system and onto the log periodic antenna in the 

cryostat. 

, 

The first step in our analysis is the normalization of the spectra in order to divide 

out the bias-independent term, IA (w)I; (a), which is proportional to the power spectrum of 



the incident pulses. Figure 4 8 (symbol curves) shows the spectra in Fig. 4.7(b) divided by 

the spectrum at V0=2.5 mV. Most of the structure in the spectra in Fig. 4.7(b) are 

removed by the normalization, indicating that they are related to the spectrum of the incident 

power and are not intrinsic to the junction itself. The normalized spectra show a gradual 

onset at (2A-eVo)/h, indicating the threshold for photon-issisted tunneling. In addition, 

the curves shift systematically to the right in steps of approximately 25 GHz. This 

correlates well with the step changes in the dc bias on the junction of 0.1 mV (recall 

1 mV=240 GHz). 

As discussed extensively in Chapter 3, the Tucker theory provides a prescription 

for predicting the spectral response (equation { 4.4)) of the junction from a measurement of 

the dc I-V curve. It is apparent, though, from equation (4.4) that we are also required to 

know the antenna admittance. As discussed in Section 4.3, the log periodic antenna used 

in our experiment was designed to have a constant, real admittance over the frequency 

range of the measurement. To minimize the effect of any possible variation in YA(o) on the 

shape of the spectra, the design admittance of the antenna was chosen to be much smaller 

than the junction admittance. The junction admittance Y(o) consists of two parallel 

components, the intrinsic admittance of the junction calculated in Chapter 3 from the Tucker 

theory and an extrinsic admittance due to the 200 fF geometrical capacitance of the 

junction. At 120 GHz, the admittance of the geometrical capacitance of 151 mmhos is 

much greater than the antenna admittance of 13mmhos which means that most of the 

microwave currents will be shunted through the junction. In this limit, from equation 

{ 4.4), AI& will be directly related to the quantity we would like to measure, 1 / IY( w)l' or 

equivalently IZ(w)l' where Z(o) is the impedance of the tunnel junction. 

In order to stress the importance of including the quantum susceptance in Y(o), we 

first calculated the response of our junction with the quantum susceptance omitted from the 

calculation of AId;. This calculation is shown as the dashed curves in Figure 4.8. The 

difference between the data and the dashed lines shows dramatically the significance of the 
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quantum susceptance in determining the microwave response of the SIS junction. Without 

the quantum susceptance, the onset is considerably sharper than is observed 

experimentally. The smearing of the experimentally observed threshold is the direct result 

of the quantum susceptance modifying the coupling of power to the junction. From Fig. 

3.7, we also, see that the quantum susceptance is of order 100 mmhos which is comparable 

to the susceptance of the geometrical capacitance of 150 mmhos at 120 GHz. Thus both 

the data and the calculations tell us that we cannot ignore the quantum susceptance. 

Now let us calculate the response of the junction including the full Tucker theory 

with the quantum susceptance. The solid lines in Fig. 4.8 show the results of this 

calculation using the dc I-V curves measured at T=1.6 K as input, with no fitting 

parameters. The calculated lines are in remarkable agreement with the data for 

2.liitV S Vo S 2.3mV . The data for Vo=2.4 mV fall slightly below the theoretical curve. 

For frequencies less 170 GHz, the structure in the ratios is reproducible and may arise 

from interference effects in the interferometer. For frequencies greater than 170 GHz, the 

signal is small and amplifier noise contributes to the structure in the ratios. 

In summary, we have presented the first broadband measurements of the 

microwave response of an SIS junction. We observe clearly the onset of photon assisted 

tunneling at (2A-eVo)/h. The results are in excellent agreement with Tucker theory with 

zero fitting parameters. In addition, the effects of the frequency dependent quantum 

susceptance appear dramatically in our data and cannot be ignored in computing the 

microwave response. Finally, the success of the SIS experiment isiproof that the THz-TDI 

technique is applicable to probing any micron or nanometer scale device that exhibits a 

nonlinearity in the dc I-V curve. 

4.6 Nonlinear Spectroscopy - Preliminary Experiments 

In the previous Section we presented measurements in the time domain of the linear 

response of the quasiparticle current to a picosecond pulse. In principle, since we are only 
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probing the linear response, there is no extra information gained in making measurements 

in the time domain versus frequency domain. For example, if a tunable CW source were 

available, then we could simply measure AI, as a function of frequency directly and obtain 

the same data as in Fig. 4.8. In the laboratory, though, experiments with CW sources are 

plagued by difficulties due to formation of large standing waves. These effects may 

sometimes be minimized by averaging over the frequency spectrum. In any case, the linear 

spectroscopy experiments do not take advantage of the ultrashort temporal profile of our 

picosecond pulses except for the fact that the pulses are extremely broadband. 

Short pulses are especially well suited for nonlinear experiments as compared to 

CW sources. A short pulse can provide both a high peak power which is necessary for a 

nonlinear experiment and also provide a low average power so as not to melt the sample. 

Our system has a duty factor of 1000 which means that our peak power is 1000 times 

greater than the average power. In this Section we will describe how large amplitude 

picosecond pulses can be applied to measuring the quasiparticle lifetime. 

There are a number of time scales which appear in the dynamics of quasiparticle 

excitations. Consider the case of a photon with energy fio>2A-eVo which generates a 

quasiparticle excitation. According to the theory developed by Cohen, Falicov, and 

Phillips [4.15], if the photon is absorbed, the quasiparticle oscillates across the junction at a 

frequency o/2n forever. The infinite lifetime is manifest in the sharp discontinuity in the 

superconducting density of states. In this theory, the current produced by a delta function 

voltage pulse only decays because the many quasiparticles generated each oscillate with a 

slightly different frequency. This current decay is extremely slow and goes like l/r [4.16] 

where T is the time after the delta function voltage pulse. However, if the junction is 

inhomogeneously broadened due to a variation of the gap function across the junction, then 

the quasiparticles will dephase with respect to each other in a time, T,. Although the 

current has gone to zero, the quasiparticles are still excited. These excited quasiparticles 

will first thermalize with each other by emitting phonons and eventually they will scatter to 
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the superconducting band edge in a time T,. Once at the band edge, one quasiparticle may 

scatter with another quasiparticle of opposite spin and momentum, and emit a phonon of 

energy 2 h  These processes will eventually relax the system to the BCS ground state in 

time T,, the quasiparticle recombination lifetime. Both Tt and T, will depend on the 

temperature of the superconductor and on the density of quasiparticles. Dynes et al. were 

able to extract quasiparticle lifetime information from the dc I-V curve of a Pb:Bi alloy 

tunnel junction [4.17]. Their technique, though, only works with a small class of SIS 

junctions. They require an SIS junction with an extremely sharp onset in the dc I-V curve 

at 2A, such that the intrinsic broadening due to inhomogeneous effects isless than the 

broadening due to the fmite quasiparticle lifetime. They measure the smearing in the dc I-V 

curve onset and attribute the smearing to a quasiparticle lifetime. Nonlinear spectroscopic 

measurements are more general than the dc technique and are especially well suited to 

tunnel junctions with inhomogeneous broadening greater than lifetime broadening. 

Let us begin our discussion of the data by looking at a typical nonlinear 

interferogram in Figure 4.9. This interferogram was taking with the identical technique 

used in the previous Section, with the only difference that our power levels are now much 

higher. For Fig. 4.9, the voltage on the photoconductive antenna is 60 V as compared to a 

voltage of 15V for the linear spectroscopy measurements. In addition, the junction is 

biased at V0=1.35 mV. We notice immediately two significant differences between the 

nonlinear interferogram and the linear interferograms in Fig. 4.7(a). The nonlinear 

interferogram is rectified, that it goes more positive than negative, and the interferogram is 

symmetric (cosine.symmetry). 

To understand these observations, let us begin with the phenomenological 

expression for AIdc in the nonlinear regime at a fmed frequency, 
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We have omitted the term proportional to IVI3 since this term cannot mix a high frequency 

microwave signal to dc. Let us first consider the rectification of the interferogram. If our 

signal in Fig. 4.9 is completely due to the second term above, then the ratio of the peak 

signal to the background should be 16 to 1 (remember that we only chop one arm of the 

interferometer) . The first term above will only lead to a peak to background ratio of 4 to 1. 

The fact that we observe a peak to background ratio of 12 to 1 indicates that a significant 

component of our signal is due to second term in (4.5) above. 

The cosine symmetry of the nonlinear interferogram can also be understood from 

equation (4.5). Let us begin with a review of the origin of the sine (asymmetric) 

symmetry of the linear interferograms. We can replace V by, 

where tB and rB are the transmission and reflection coefficients of the beam splitter in Fig. 

2.9, V, and V2 are proportional to the electric field pulses from the photoconductive 

antennas, and T is the time delay between the pulses. The first term in (4.5) can be 

rewritten as, 

In computing the above expression, we have used the fact that tBri is purely imaginary. 

The last term in (4.7) above shows explicitly the appearance of a sine symmetry in the 

interferogram. The second nonlinear term in (4.5) above can be rewritten as the sum of 

four terms, 

B p i 4  = B[ltB121v112 +IrBI2~v212]2 + 
2B(tBr;121v,121v,12 - 

2B cos( 2 wqltBr; I' I v, 1, I v, 1, + 
, 2B sin ( or)ltBri I V, V2 [ ItB 1'1 V, 1'. + I rB 1' I V, 1'1 . { 4.8 }. 
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The first two terms are uninteresting since they do not depend on the time delay, 2. The 

third term shows explicitly the appearance of a'term with cosine symmetry which must be 

the dominant term in nonlinear interferogram in Fig. 4.9. This term in optics is often called 

the interferometric pump-probe term since it depends on the product of the intensity in the 

two beams [4.18]. In'our experiment the pump and probe are of similar magnitude. The 

fourth term still retains the odd symmetry of the linear interferogram. It depends on the 

intensity of one beam and the interference product of beam one with beam two. In optics 

this is called the four wave mixing term [4.18]. The above calculation gives a simple 

prescription for extracting the pump-probe term from the other terms in the spectra. We 

can simply separate the interferogram into even and odd components via the sine and cosine 

Fourier transforms. The resulting even interferogram will be due strictly to the nonlinear 

pump-probe term while the odd term will contain contributions from the linear response 

and the four wave mixing signal. 

Let us now discuss how the linear and nonlinear experiments can give us 

information about the dynamic processes appearing in the junction. The linear 

spectroscopic measurements can only measure a coherence time T, which is given by the 

equation, 

It is clear from the above expression that T, will be dominated by the shortest time scale in 

the problem. If the system is strongly inhomogeneously broadened, then T2 will be short 

and T, will effectively only measure T2 and be insensitive to the thermalization and 

recombination lifetimes, Tt and Tr respectively. This problem also plagues the dc transport 

experiments by Dynes et al. [4.17] described at the beginning of this Section. If the tunnel 

junction is heavily inhomogeneously broadened, then the smearing of the I-V curve onset 

will only measure T2 In this limit, no information can be gained about the quasiparticle 

lifetimes from the dc transport data. In sharp contrast, the nonlinear pump-probe signal is a 
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direct measure of the quasiparticle lifetime. Consider once again the pump-probe term in 

equation { 4.8) above. The physical interpretation of this term is the following. The first 

pulse injected into the tunnel junction will generate a large number quasiparticles. This 

large change in the distribution of quasiparticles will greatly change the mixing properties 

of the tunnel junction. The second pulse will then probe the modified tunnel junction. By 

varying the time delay between the pump and the probe a nonlinear interferogram can be 

measured. The width of the nonlinear interferogram will be related to quasiparticle lifetime. 

Since our pump and probe beam are of equal intensity, the nonlinear interferogram should 

be symmetric. In addition the interferogram will have interference fringes. In optics the 

fringes can be removed by using pump and probe beams of opposite polarizations. 

Unfortunately, since we couple to the junction with an antenna, the antenna terminals will 

always apply a field in a fixed direction, irrespective of the direction of the incident 

microwave field polarization. Thus, it is not possible to remove the fringe pattern. 

Figure 4.10 shows preliminary data for the odd and even parts of the 

interferograms. These data were collected at various microwave power levels with the SIS 

junction at T=1.6 K. The incident microwave power levels were calibrated with a 

bolometer. The curves in Fig. 4.10 have been offset for clarity. These data have not been 

analyzed in detail and are meant only to demonstrate our ability to carry out nonlinear 

experiments. Nevertheless, some preliminary comments are appropriate. First consider the 

odd symmetry interferograms. These interferograms are roughly proportional to the 

microwave power and their shape does not change significantly. If we assume that the 

effect of increasing the microwave power. is to increase the density of excited 

quasiparticles, then apparently T, is independent of number of quasiparticles. This would 

be consistent with the interpretation that the SIS junction is strongly inhomogeneously 

broadened and T, is dominated by the dephasing time T2. The inhomogeneous broadening 

is expected to be independent of quasiparticle number. On the other hand, the even 

interferograms change in both shape and magnitude as the microwave power increased 
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above 4.6 pW. These changes in the interferogram may represent changes in the 

quasiparticle lifetime due to a higher density of excited carriers. Unfortunately, our pulse 

width is of order the width of the even interferogram, which makes it difficult to extract 

lifetime information. In future experiments, shorter 2 ps pulses may be used to more 

easily extract the quasiparticle lifetime. 

In summary, we have shown that we have sufficient pulsed power in the terahertz 

regime to make nonlinear spectroscopic measurements. Such measurements are ideally 

suited to measuring the quasiparticle lifetime, which cannot in general be found from dc 

transport measurements. In addition, we are the first group to show that it is possible to do 

nonlinear experiments with terahertz pulses generated from a high repetition rate 

unamplified Ti-sapphire laser. The high repetition rate gives us excellent signal to noise 

characteristics as compared to a amplified Ti-sapphire system [4.19]. 

4.7 Summary 

In this Chapter, we describe in detail the measurements of the linear response of the 

quasiparticle current in a Nb/AlO,/Nb junction from 75-200 GHz. Our results confirm 

dramatically the importance of the quantum susceptance in determining the linear response. 

Our results are in full agreement with the linear theory for photon assisted tunneling. In 

addition we have described preliminary nonlinear spectroscopic measurements that may 

prove useful in the future for measuring the quasiparticle lifetime. 
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4.9 Figure Captions 

Figure 4.1: Beam splitter efficiency 2Im[rgtg*] plotted versus frequency for a 175 pm 

mylar beamsplitter. 

Figure 4.2: Measurement of an interferogram using the interferometer in Fig. 2.9 in which 

the bolometer is used as the detector. (a) Bolometric interferogram measured as a function 

of mirror delay line position. The interferogram has odd symmetry about the mirror 

position of 1550 pm. (b) Amplitude of the Fourier transform of the interferogram in (a). 

The spectrum has useful bandwidth from 100 to 220 GHz. 

Figure 4.3: Cross Section diagram of the Nb/AIOx/Nb tunnel junction fabricated at 

Conductus, Inc. The junction has a cross Sectional area of two square microns. 

Figure 4.4 Circular toothed log periodic antenna. 

Figure 4.5: Measurement of the rectified current, AI&, in the presence of a single 

picosecond pulse as a function of bias, Vo. The dotted curve shows AIdc when the 

photoconductive antenna is biased at 20 V while the solid curve corresponds to a antenna 

bias of 60 V. The low power curve has been multiplied by a factor of nine to ease 

comparison to the high power data. The excess AI& flowing at 1.5 mV at the higher 

power level is an indication of multiphoton processes. Also shown is the dc I-V curve of 

the tunnel junction. 

Figure 4.6: AIdc measured at two junction bias voltages versus antenna voltage, Vpc, 

which is proportional to the incident electric field on the junction. The dashed curve is at a 

bias of 2.3 mV while the dotted curve is at a bias of 2.0 mV. In the regime of linear 

response AI& should scale as Vpc2. 

Figure 4.7: (a) Shift in the dc quasiparticle current A b c  generated by two pulses of 

millimeter radiation plotted as a function of time delay between the pulses. (b) Amplitude 

of the Fourier transforms of the data in (a). 

\ 
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Figure 4.8: The symbols are ratios of the spectra shown in Fig. 4.7a to the spectrum 

measured with Vo=2.5 mV. Solid lines show calculations from the linear theory of photon 

assisted tunneling. Dashed lines show theoretical predictions with the quantum 

susceptance omitted. 

Figure 4.9: Shift in the dc quasiparticle current A& generated by two pulses of millimeter 

radiation plotted as a function of time delay between the pulses of high intensity. The 

interferogram is rectified, indicating the presence of multiphoton processes. 

Figure 4.10: (a) Odd part of the interferogram measured at a bias V ~ 2 . 4  mV for low and 

high pulsed power levels. (b) Even part of the interferogram measured at a bias 

Vo=2.4 mV for low and high pulsed power levels. These data may give information 

relating to the quasiparticle lifetime. 
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Chapter 5 

The Quantum Point Contact: 

de and High Frequency 
Theory 

Transport 

Investigations of ballistic electronic transport in the quantum regime have led to a 

number of important as well as surprising discoveries. In particular the study of a short, 

narrow ballistic constriction or quantum point contact (QPC) has yielded a number of 

unexpected results. Independent investigations in 1988 by van Wees et al. [5.l] and 

Wharm et al. [5.2] led to the discovery that the conductance of a QPC is quantized in units 

of 2e2k (=13 KQ). In addition, the QPC showed a step like behavior in its conductance 

as a function of contact width. Following this discovery, there have been numerous 

investigations of the QPC and related structures such as single and multiple quantum dots. 

Excellent reviews of the field have been given elsewhere [5.3-5.51. In sharp contrast to the 

dc transport studies, our understanding of the high-frequency ac response is much less 

well developed because of the comparative lack of experimental results to compare to 

theory. 
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In this Chapter we will discuss briefly the dc transport properties of a ballistic QPC 

implemented in a two dimensional electron gas (2DEG). We will then derive the 2-terminal 

Landauer formula for the quantized conductance and a formula for the nonlinear dc 

Id, - V,, curve. Next we describe two theories for the high frequency response of a QPC. 

We will only consider the generation of a rectified current signal via photon assisted 

transport (PAT) as opposed to the linear response, Y(o), since the former is the more 

easily accessible experimental quantity. In Chapter 6 we will discuss experimental 

measurements of PAT in a QPC. The first ac transport theory we will discuss was 

developed by Landauer and Buttiker C5.61. They discussed how a high speed barrier 

modulation experiment can be used to measure the barrier traversal time. The second 

theory we will consider is the application of the Tien-Gordon [5.7] approach to the problem 

of PAT in a QPC. 

5.1 dc Transport 

5.1.1 Fabrication of QPC device 

The two basic conditions for observing quantized conductance are that the electronic 

transport must be in the ballistic regime and the constriction width must be of order the 

Fermi wavelength. The ballistic regime is distinguished by the feature that the mean free 

path for the electron must be greater that size of the sample. In order to obtain the longest 

mean free path, devices are typically fabricated in the ultra high mobility 2DEG of a 

GaAs/AIGaAs heterostructure [5.8]. In such heterostructures, it is now common to obtain 

electronic mobilities in excess of lo6 cm2N-s which corresponds to an electronic mean 

free path in excess of 10 pm. For these heterostructures, typical electronic densities range 

from 1 to 4 x 1011cm-2 which corresponds to a Fermi wavelength, hF, of 40 to 80 nm. 

With electron beam lithography, it is possible to fabricate devices on this length scale. 
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To understand how the 2DEG is formed and how such high mobilities may be 

obtained, we can look to the band bending diagram for a modulation doped GaAs-AlGaAs 

heterostructure [5.9] shown in Figure 5.l(aj. These heterostructures are grown with 

molecular beam epitaxy. The 2DEG is formed at the interface between GaAs and 

AZXGal-,As where the typical mole fraction, x, of aluminum is 0.3. The formation of the 

well at the GaAs/AlGaAs interface is due to the 0.3 V offset in the conduction bands of the 

two semiconductors and the attractive electrostatic field produced the ionized donors in the 

n doped AlGaAs layer. In order to maximize the mobility of the electrons trapped in the 

well, a thin 20 nm undoped AlGaAs spacer layer is placed between the doped AlGaAs and 

the GaAs. The physical separation of the donors from the 2DEG greatly reduces the 

scattering of electrons in the 2DEG. The mobility of the electrons is further enhanced by 

the fact that AlGaAs and GaAs are almost perfectly latticed matched. Thus crystalline 

purity may be maintained at the interface. Confinement perpendicular to the interface leads 

to the formation of two dimensional subbands. The energy spacing of these subbands is 

typically in the 1OOmV range. For typical doping levels, only the lowest subband is 

occupied. Since devices are typically probed with energies less than a few mV's, it is an 

excellent approximation to treat the electrons as a pure two dimensional electron gas. 

Although band bending provides confinement into a two dimensional sheet, we also 

require confinement in the lateral direction. Figure 5.l(b) shows a top view of a typical 

split gate QPC device. The hashed region at the center of the bar corresponds to a metallic 

gate which makes a Schottky contact to the semiconductor below. The metallic gates are 

defined with electron beam lithography. The lithographically defined width of the 

constriction is typically between 250 and 500 nm. Application of a negative voltage to the 

gate, depletes the electron gas below the gate. By varying the voltage on the gate, the 

width of the constriction may be varied. In addition, ohmic contacts are made to the 

electron gas on the two sides across the constriction. The ohmic contacts, due to their large 

size (typically lOOxlOOp), are defined with standard optical lithography. 
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5.1.2 QPC: Quantized Conductance and Nonlinear Idc-Vsd Curves- Experiment 

The conductance as a function of constriction width is easily measured. First a 

small (typically less than 10 pV) ac voltage at 1 KHz is applied to the ohmic contacts and 

then the synchronous current is measured with a lock-in amplifier. In analogy with FET 

transistor terminology, we refer to the voltage across the ohmic contacts as the source-drain 

voltage, Vsd. Next this current is measured as a function of gate voltage or equivalently 

constriction width. Figure 5.2(a) shows the classic measurements by van Wees et al. in 

1988 [5.1] of the conductance of such a constriction as a function of gate voltage. These 

measurements took place at T=0.6 K and at zero magnetic field. The conductance is 

pinched off at a gate voltage, V,, of -2.2 V. The conductance shows the dramatic 

appearance of conductance steps quantized in units of 2e2/h. As we shall show in the next 

Section, the conductance quantization can be explained due to the formation of one 

dimensional subbands within the constriction. 

In addition to measuring the conductance as a function of gate voltage, the 

conductance may also be measured as function of large source-drain voltage. Figure 5.2(b) 

are measurements by Kouwenhoven et al. [5.10] of the nonlinear - vsd curves at 

different values of the gate voltage near pinch off. Consider curve 1 at a V,=-2.20 V. As 

expected from the data in Figure 5.2(a), the current flow is zero for small Vsd. As vsd is 

increased, the current remains zero until $threshold of 55 mV. As v s d  is raised above 

55 mV, the slope remains constant with a differential conductance of 1/80 KQ. As the 

gate voltage is reduced, the threshold moves to smaller values of Vsd, but the differential 

conductance remains relatively constant. We will discuss one possible model for these 

experimental results in the next Section. 

At this point, it is appropriate to make some preliminary statements comparing the 

SIS junction to the QPC. Recall, from Fig. 3.2(a), that the dc I-V curve of an SIS junction 

also shows a strong nonlinearity. There is a sharp onset in the current at a voltage of 
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2.7 mV. The nonlinearity in the SIS junction, however, is much stronger than in the 

QPC. In the SIS junction, the current makes a discontinuous jump at the threshold voltage, 

while in the QPC there is only a turn on of the current. Nevertheless, the I* - Vsd curve of 

a QPC is clearly nonlinear. It is this critical fact, that will allow us to use our terahertz 

interferometric technique to probe the dynamic response of a QPC. These experiments will 

be described in detail in Chapter 6. Another critical point of difference between the QPC 

and SIS junction is that in the QPC we can change the position of the threshold by simply 

changing the gate voltage. This is would be analogous to changing the bandgap of the 

superconductor making up the SIS junction. 

Since we have not yet discussed the theory for the high frequency response of 

QPC, we cannot yet say what information may be obtained from our terahertz technique. 

Nevertheless, the simple analogies given above were sufficient to motivate us to start an 

effort to probe the high frequency response of a QPC. In Section 5.2 we will discuss two 

theories for the high frequency response so that we can understand better what microscopic 

information may be obtained from the high frequency measurements. 

5.1.3 QPC: Quantized Conductance and Nonlinear Idc'Vsd Curves-Theory 

In order to understand the appearance of steps in the conductance in Fig.5.2(a), we 

will apply the formalism developed by Landauer and Buttiker to calculate the current that 

flows through a one-dimensional system. Let us first begin with the Hamiltonian for the 

constriction in Fig. 5.l(b), 

where x corresponds to the longitudinal direction through the constriction, y corresponds to 

the transverse direction, and m*=0.067mo is the band mass. V(y) is the confinement 

potential produced by the gate in the transverse direction: We have explicitly left out the 

variation in the potential along the x direction. If the potential in the x direction, V(x), 
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varies smoothly on the length scale of IF, then the motion in the x and y directions can be 

decoupled [5.11]. In this case, the transport through the constriction will be wholly 

determined by the point along x at which the channel is the narrowest (often referred to in 

the literature as the bottleneck). It is at this point that we want to solve the Hamiltonian in 

equation {5.1}. For confinement in the y-direction, we use a parabolic potential, with 

V(y)  = Vo + 1 / 2em * oy2y2. V, is the height of the barrier in the x-direction at the bottle 

neck as shown in Figure 5.3. Vo is controlled by the gate voltage. We assume a linear 

dependence of Vo on V, with Vo=-pV,. The potential variation in the x-direction is also 

assumed to be parabolic. The use of a parabolic potential has been supported by numerical 

simulations by Laux et al [5.12]. Their results showed that near the turn on of the 

constriction, the potential variation can be approximated as parabolic. However, as the 

barrier, V,, is lowered the electrons can screen the potential and drastically change the 

shape of the barrier. 

Equation { 5.1 } is trivial to solve once a parabolic potential is assumed for V(y). 

The solution is just a simple harmonic oscillator in the y-direction and a free particle in the 

x-direction with energies, 

n = 1,2,3 ... , (5.2) En = eVo +- "'' + (n - 1 / 2)1io,, 2m * 

where each n denotes a different subband. Each of the subbands is separated by an energy 

h6.1~. In order to compute the current through the junction, first refer to Fig.5.3, in which a 

dc bias, vsd=p1'p2, is applied across the junction. First we will calculate the zero 

temperature current that flows from left to right due to the electrons in the left reservoirs, 

using the Landauer-Buttiker formalism [5.13,5.14], 



where p(E) is the one-dimensional density of states, v(E) is the velocity of electrons, and 

T(E) is the transmission probability of the tunnel barrier. N is the number of occupied 

subbands in the left reservoir and is given by the largest integer for which the equation, 

Ef > (N- l /  2)Aw, holds true. The velocity of electrons is given by, 

vn(E) = dE, / d(Ak,) while the density of states including the spin degeneracy is, 

pn ( E )  = (dk, / dE,) 2 / n. Using these relations, and similar relations for the right side of 

the barrier, we obtain an expression for the total current through the junction, 

(5.41 

This result is particularly simple, due to the fortuitous fact that in one dimension, the 

density of states is inversely proportional to the velocity. This expression can.be simplified 

further by assuming that the Fermi energy which is of order lOmeV is large compared to 

the applied potential, eV,d. In this case, we obtain the well known two-terminal Landauer 

formula for the conductance, G=IdJV [5.15], 

N 
G = y x T n ( E f ) ,  

n=l 
(5.51 

from which it is clear, that the fundamental unit for the conductance of a quantum ballistic 

wire is 2e%. 

The explanation of the steps in Fig. 5.2(a) is now straight forward. As the gate 

voltage is reduced to zero, the barrier height, V,, in Fig. 5.3 is lowered. As V, is lowered, 

successive subbands turn on, and the conductance steps in units of 2eVh. Fig 5.2(a) then 

is an experimental measure of the transmission coefficient of the tunnel barrier. Buttiker 

E5.161, has treated explicitly the case for quantized transmission of a saddle-point 

constriction, using the results of Conner [5.17] and Fertig and Halperin E5.181, for the 

transmission probability of a parabolic potential, 
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1 

E - (v, + ADy (n + 1 / 2)) 
fin, 

Tn(E) = (5.61 

This expression resembles the Fermi-Dirac distribution function. TJE) for a given 

subband n will approach unity as the electronic energy, E, exceeds, Vo + Awy(n + 1 / 2). 

In addition, the broadening of TJE) is the same for each subband, and is given the 

effective temperature, Aox/2n. This result is valid as long as the true sample temperature 

is less than the eflective temperature. This is the case in our experiments since kBT at 

0.5 K is 0.04 meV and the Aox/2n is typically in the meV range. 

Now, we will consider briefly the effects of an applied magnetic field, B, 

perpendicular to the plane of the 2DEG on the lowest mode (n=l) of the constriction. 

Fertrig and Happerin C5.183 have calculated the transmission coefficient for this case, 

1 
E-(V,+fiR,/2) 

fia 
T ( E )  = 

Here the o’s have been replaces by 0 ‘s  where, 

Qy(B)- -[(T -+w;w,’ JJZ +- 71 7 

{ 5.7 I 

{ 5.8a) 

{ 5.8b) 

where $ = wz + w; - 02 and oc=eB/m*. The experiments in this thesis take place in the 

low field limit, where ox and oy >> 0,. Typical values for ox and oy are in the many 

mV range whereas our cyclotron energies are in the mV range (B e1Telsa). In this limit, 

the above expressions take a particularly simple form, 

QX(B) = w, 1- [ 2(wf + w;) 

1 2 3  

{ 5.9a) 



{ 5.9b) 

The application of a magnetic field will have two effects on the conductance steps in Fig. 

5.2(a). First the steps will become sharper since the effective temperature, fiQ2,/2n, 

becomes smaller as the field is increased. Secondly the steps will become longer since the 

effective confining potential, 1 / 2m * Q:y2, becomes tighter as B increases. 

With the theory for the conductance steps in Fig. 5.2(a) on a firm footing, we will 

now move on to discussing the origin of the nonlinear I-V curves in Fig. 5.2(b), In 

contrast to the theory for the conductance steps, the exact details as to the microscopic 

origins of the nonlinear I-V curves is not well understood. Kouwenhoven et al. [5.10] has 

developed a phenomenological model for the origin of the nonlinear conductance. Before 

going through this model, let us first try to understand the physical origin of the 

nonlinearity. Refening back to Fig. 5.3, consider the case where the barrier height, V,, is 

much larger than Ef. This corresponds the pinched off regime where a large negative 

voltage is applied to the gates as for curve 1 in Fig. 5.2(b). Now consider what happens 

when a dc bias, Vsd, is applied across the junction, where Vsd=pl-pZ. For small Vsd, the 

current is nearly zero since the transmission coefficient of the barrier is nearly zero when 

the electronic energy, E, is much less than V,. However if Vsd is made large enough, then 

the electrons on the left side of the barrier will have enough energy to traverse the barrier, 

and a measurable current will flow. For curve 1 in Fig. 5.2(b), the threshold for current 

flow appears at Vsd=% mV. This threshold can be moved to lower voltages by lowering 

Vo which is accomplished by reducing the magnitude of V,. 

An attempt to quantify this discussion can be made by appealing to the Landauer- 

Buttiker formula, equation { 5.4). Before using this equation, we must point out that this 

equation is only valid in the linear transport regime. We begin by introducing a 

phenomenological parameter, m, which represents the fraction of voltage, Vsd, that is 
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dropped across the side of the barrier which is the source of current flow. Looking once 

again at Fig. 5.3, for p1>p2, the left side of the barrier is the source of current, and 

pl=mV, while p2=(l-m)V. For p2>p1, the equations would be reversed. For a perfectly 

symmetric barrier, one would expect m=1/2, that is the voltage is dropped equally across 

the barrier. For simplicity, let us consider an opaque barrier, where 

T Q  = 0 E<Vb (5.10a) 

T(E)=l E>V,. (5.10b) 

In this case, with equation { 5.4}, it is trivial to show that the differential conductance 

,g=dIdddVsd, is7 

g=O mvsd<wo-Ef) (5.11a) 

g=m- 2e2 / h mVsd>(Vo-Ef) - (5.11b) 

This model can be fit to the data in Fig. 5.2(b) with m3.2. 

Currently, there is no formal justification for the model given above, although it fits 

the data quite well. Unfortunately, the microscopic origin of m it is not considered a hot 

topic in the mesoscopic community, and as such has not been thoroughly investigated 

experimentally or theoretically. As we shall show later, PAT is a direct probe of m, and 

can measure its dependence on Vsd. 

One possible origin of the m factor can be understood by considering Coulomb 

charging effects C5.191 in the tunnel barrier. This line of reasoning is motivated by the fact 

that charging effects in quantum dots results in highly nonlinear Idc - Vsd curves [5.20]. 

The argument for the QPC is as follows. When current is not flowing through the 

junction, m=1/2 as expected for a symmetric barrier. Once current starts to flow, however, 

electrons will reside in the barrier region. These electrons will impede the flow of other 

electrons due to Coulomb repulsion, reducing the conductance of the channel. This is 

equivalent to making m less than 1/2. In this model, m is explicitly a function of Vsd. 
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5.2 ac Transport 

In the previous Section, we discussed in detail the fundamental dc transport 

properties of a QPC. The dc transport experiments are fairly well understood and 

experimentalists as well as theorists have moved in other directions. One of those 

directions is high frequency ac transport. Recently several theoretical studies of the 

nonlinear rectified response [5.21-5.241 and the linear response [5.25-5.271 of mesoscopic 

devices have appeared, increasing researchers' motivation to conduct more experiments. 

Another motivation for high frequency measurements is to obtain a direct measure of the 

traversal time across a tunnel barrier [5.28,5.29]. As we will show below, the traversal 

time is both within our frequency range and appears explicitly in the rectified photocurrent 

response for a QPC. 

Calculating the ac response of a QPC is much more difficult than calculating the ac 

response of an SIS junction. The critical difference between the SIS junction and the tunnel 

barrier system, is that the height of the tunnel barrier for the QPC is on the order of the 

Fermi energy, while in the SIS junction the height of the tunnel barrier is effectively 

infinite. The infinite barrier height for the SIS case implies that ac modulation of the barrier 

height can be neglected. An applied ac potential to an SIS junction can only modulate the 

quasiparticle energies in the leads of the SIS junction. Modulation in the leads can easily be 

solved using the Tien-Gordon [5.7] approach discussed in Chapter 3. In sharp contrast to 

the SIS tunnel barrier, the QPC barrier height is finite, and ac modulation of the barrier can 

lead to observable effects. In general an applied ac potential to a QPC can modulate the 

electron energies in the leads and in the barrier region. A theoretical solution for the 

response to an arbitrary spatial ac potential applied across the QPC is a difficult problem 

and there currently does not exist a simple solution. 

Given these fundamental difficulties in developing a general theory for the ac 

response of a QPC, we will only discuss two specialized theories. The first is one 

developed by Buttiker and Landauer [5.28] which treats the case of an oscillating potential 
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barrier but neglects any oscillations in the leads. The second will be a straight forward 

application of the Tien-Gordon [5.7] approach to the QPC. This approach implicitly 

assumes that excitations only take place in the leads of the QPC and not in the tunnel barrier 

region. B 0th approaches, though, predict a frequency dependent rectified current 

spectrum. 

5.2.1 Buttiker-Landauer Approach: Traversal Time For Tunneling 

Buttiker and Landauer [5.28] treat the case of oscillating barrier, where 

V(x,t)= V(x)+V1(x)c0swt. (5.12) 

V(x) is the static potential in Fig. 5.3 and V,(x) is a small modulation restricted to the 

barrier region. They assume the electron is free in the other two transverse dimensions. 

Obviously this does not correspond to the QPC where the electron is confined in two 

transverse dimensions. Nevertheless, we expect to gain some physical intuition from their 

free particle approach. As expected from the discussions in Chapter 3, an electron incident 

on the barrier, interacts with the modulated potential, Vl (x)cos ut, and will absorb or emit 

photons of energy fio. When the frequency is so low that the period of oscillation is longer 

than the traversal time across the barrier, T,, then the incident electron sees an effectively 

static barrier. When the frequency is high compared to 1ht, the electron sees many periods 

of the oscillating potential. In this case, the electron can absorb or emit photons as it 

traverses the barrier. Clearly from Fig. 5.3, an electron that gains energy by absorbing a 

photon will traverse the barrier more easily. The crossover between these two regimes 

occurs when wz, = 1. T, is given by, 

(5.13) 
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where x1 and x2 are the classical turning points for a particle of energy E incident on the 

barrier. This equation is strictly only valid in the WKB limit at energies well below the 

barrier top. An equation for 2, when E>>eVo can be found by reversing E and eVo(x) in 

equation { 5.13 } above. 

Let us apply equation (5.13) to the case of a parabolic potential, 

with V(x) = Vo - m * &x2 / 2e. For this form of the potential, the integral in equation 

(5.13) is elementary, and T,= n/a,=T,/2: This result has a simple physical interpretation. 

2,is just half the round trip time, T,, of a classical harmonic oscillator in the inverted 

potential,-V(x). In addition, as with a classical oscillator, qdoes not depend on the 

electron energy, E. At this point we should refer back to equation { 5.6) for the T(E) for a 

QPC. Recall that a, shows up explicitly in the effective temperature, AaX/27r. Typical 

values for this effective temperature are in the mV regime which corresponds to 

frequencies in the hundreds of GHz range. This is exactly in the range of our terahertz 

interferometric technique which makes it ideal for a dynamic measurement of T~ 

Buttiker and Landauer C5.281 did not treat explicitly the case of a parabolic 

potential. Instead they treated the case of a rectangular barrier with height Vo and width d, 

centered at x=O as shown in Figure 5.4. In addition they assume that T(E)<<l and that E 

cc Vo. For this case they have calculated the transmission probability, T,, of the two side 

bands at energies E k fiw , 

T, =-aZT(E)(e*m-1)2. 1 { 5.14) 4 

In Fig 5.4(a) we show the low frequency limit of equation (5.14). In this case, the 

electrons in the upper and lower side bands still tunnel through the barrier at energy E, 

because of the appearance of T(E) in the transmission probability, 

T,(E) = T(E)(eVlz/ 213)’. (5.15) 
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This result does not depend on frequency. Unlike the SIS case, here the electron absorbs 

the photon after the barrier. The situation is dramatically different in the high frequency 

regime as depicted in Fig. 5.4(b). Here, 

{ 5.16a) T+ = iia’T(E+ 1 Am), 

where a=eV,/Ao (as in Chapter 3). This result is similar to the Tien-Gordon result of 

Chapter 3. The upper sideband corresponds to the following process. The electron 

incident on,the barrier absorbs a photon of energy Ao and then transmits through the 

barrier. This sideband is weighted by the usual factor, a2/4. The lower sideband, though, 

undergoes a different process. This sideband has a strength, 

(5.16b) T- = z a * T ( E ) .  1 

The appearance of T(E) implies that this electron does not absorb the photon till after it has 

passed through the barrier. Nevertheless this sideband is still weighted by the factor, a2/4. 

Experimentally one can try to measure the traversal time, T,, by measuring the 

rectified current, a d c .  At low frequencies, one would expect a rectified current, 

(5.17a) 

in the presence of a small applied bias, Vsd. This expression is found by using the 

appropriate equations for T+ in equation (5.4). At low frequencies, the rectified current is 

frequency independent, When the frequency becomes greater than l/q, 

(5.17b) 

will become frequency dependent. A knee will appear in the rectified current spectrum 

when or, = 1. The beauty of this experiment is that no fitting parameters are needed in 

extracting 2, from the spectrum of AIdc. In contrast, extracting T, from dc transport 

experiments of the conductance requires a knowledge of a number of model dependent 
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parameters. For example if we assume that the potential is parabolic (not valid well away 

from the turn on), then we need to know a,, my, and a (see Section 5.1.2) before we can 

calculate 2, Although the ac transport measurements are more direct, the experiments are 

much more difficult. The difficulty lies in the fact that T(E) must be small for the above 

expressions to remain valid. In this case AIdc will be small and hard to measure. 

To conclude this Section, we would like to repeat that this is not a rigorous theory 

for the high frequency response of a one-dimensional oscillating tunnel barrier. We have 

essentially grafted the Buttiker-Landauer result which applies to a large area rectangular 

tunnel barrier onto the one-dimensional arbitrary tunnel barrier problem. Nevertheless, this 

is a start at trying to understand the microscopic origin of the high frequency response of a 

one-dimensional tunnel barrier. 

5.2.2 Tien-Gordon Approach 

We will now apply the Tien-Gordon method to the problem of photon assisted 

transport in a QPC. This method was applied successfully in Chapter 3 to calculate the 

amount of photocurrent induced in a SIS junction in the presence of a microwave signal. 

We begin with a beam at energy, E, incident on a barrier from the left as in Figure 5.5. We 

assume that a microwave signal of the form, 

VL = mVSd + VL1 cos qt , (5.18) 

is coupled to the left side of the barrier. Since this is a three terminal device (gate, source, 

and drain), it is possible to apply different voltage signals to the two sides of the barrier. 

As we will discuss in Chapter 6, we find a large difference between the amount of 

microwave signal coupled to the two sides'of the barrier. In contrast to the QPC, the SIS 

junction is only a two terminal device, so only one voltage appears in dl the calculations. 

One terminal of the SIS junction is at the applied voltage while the other terminal is kept at 

ground. For the QPC, we take the point at the center of the tunnel barrier as ground. In 

- 
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addition, in equation {5.18), we have included the m factor, which was introduced in 

Section 5.1.2 to explain the nonlinearhc - vsd curves. 

Since we assume that the signal in equation { 5.18) only modulates the left lead and 

not the barrier, the incident electronic wave function is modified as in equation (3.16). 

For the case of low microwave power levels, the incident wave function is split into three 

waves, 

as shown in Fig. 5.5. Here CXL=~VJJ/~~O. The new wave function will modify the density 

of states on the left side of the barrier. This new density of states, which is proportional to 

Y*Y , will lead to a change in the dc current flowing from left to right, . 

where we have used equation (5.3) with the modified density of states. Notice that the 

rectified current is proportional to the power in the left lead through the quantity a;. This 

means that we can apply our terahertz interferometric technique to measure the spectrum of 

the rectified current. We have assumed in deriving equation { 5.20) that the cancellation 

between the density of states and the velocity still occurs, even though they must be 

evaluated at different energies in the integral of equation { 5.3). A similar equation to 

{ 5-20} is found for the right side of the barrier in the presence of a signal of the form, 

v, = -(1- rn)Vsd + v,, cos wt { 5.21 } 

The total induced current is then given by, 
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To better understand equation {5.22}, we will treat the special case when all terms 

above are negligible compared to the first term. The first term corresponds to photon 

absorption on the left side of the barrier. This will be the dominant term for a large barrier, 

Vsd, and photon energy. In this case the rectified current is given simply by, 

(5.23) 

By measuring the &c as a function of frequency, we get a direct measure of the integral of 

the transmission coefficient, T(E). For the barrier in Fig. 5.3, the spectrum will have a 

knee at a frequency,oc= (eVo-Ef-emV,d)/tz . If Vo is raised or Vsd lowered this knee will 

move to higher frequencies. This knee will not be perfectly sharp. It will be broadened by 

the same mechanism that broadens T Q .  

We now try to answer the critical question: What can be learned from measuring 

AIdc at high frequencies? A critic would say that the all the necessary microscopic 

information about the tunnel barrier can be found from dc transport measurements. For 

example, from equation { 5.5},  it is clear that the conductance steps in Fig. 5.2(a) are 

directly related to T(E). By measuring the broadening of T(E), one can obtain a measure of 

the traversal time across the barrier. These statements are true. Unfortunately, though, in 

order to obtain T(E) from the dc transport data, one first has to know the relationship 

between V, and the barrier height VO. Previously we made the approximation that VO=- 

pVg. If this relationship holds, then p = -Ef / eV,, , where V,, is the pinch off voltage (- 

2.2 V) in Fig. 5.2(a). In general, though a linear relationship between VO and V, need not 

hold. In this case, p cannot be found from dc transport measurements. Without p, the. 
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. 
traversal time Tt cannot calculated. Similarly, nonlinear Idc - Vsd curve measurements 

cannot determine the m factor directly when m depends on the source-drain voltage, Vsd. 

In contrast to the dc transport measurements, broadband ac measurements of 

AIdc(0) can provide a direct measure of p,Tt7 and m. To find p, we first measure &(a) 

as different gate voltages and monitor the changes in the knee at ac. From these 

measurements we can find p as an arbitrary function of V,, 

p(Vg)  = - A ( f i ~ , ) /  A(eVg). { 5-24} 

Tt is found directly from the broadening of the knee at 0, in &&(a). The broadening may 

be more easily found by taking the derivative of &(a). The m factor can be found by 

measuring f&c(a) at different source-drain voltages, Vsd, and once again monitor changes 

in the knee at a,. From these measurements, 

m(Vsd) = A(Awc) / A(eV,d). { 5-25} 

Thus we see that the ac transport measurements give us direct microscopic information 

about the tunnel barrier. From equation { 5.23) we see that, &,(a) is a direct measure of 

T(E) and its dependence on V, and Vsd. Although it is fairly well accepted that the potential 

looks parabolic near the turn on, it is not known exactly how the shape changes after turn 

on. In fact numerical calculations show that the shape of the barrier changes dramatically 

due to charging effects when current flows through the barrier C5.121. We can study these 

changes directly by making measurements of &(a,v,, Vsd). 

There is another subtle, but important difference between the ac transport 

measurements and the dc transport experiments. In the ac transport experiments, we use 

photoexcited electrons to probe the tunnel bamer at different energies. By changing the 

intensity of the incident photon flux, we can adjust the number of electrons which are in the 

barrier region. In this way, we can directly learn how the barrier shape depends on 

charging effects. In contrast, in the dc transport experiments, the number of carriers in the 
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barrier region are not under direct experimental control. For example, if we want to 

measure T(E) with dc transport methods, we measure the current through the tunnel barrier 

as a function of gate voltage. Unfortunately the shape of the barrier will change in an 

uncontrolled fashion once the channel turns on. However, with the ac technique, we can 

keep the gate voltage fixed, and just vary the photon energy to measure T(E). If we want 

to see how T(E) depends on the number canier in the barrier region, we can change the 

intensity of the photon flux. 

5.3 Conclusions 

In this Chapter we have discussed the classic dc transport experiments on a 

quantum point contact. In particular, the most dramatic finding was that the conductance of 

a one-dimensional channel is quantized in units of 2e2h (13 KQ). We have also discussed 

two possible theories for the high frequency response of a QPC, and in particular their 

predictions for the rectified photocurrent spectrum. Both theories predict that AI,,(a) will 

become frequency dependent at sufficiently high frequencies. From the Landauer-Buttiker 

point of view (barrier modulation), high frequency is set by the condition that a > 1 / ~ ~ .  In 

the Tien-Gordon approach (lead modulation), &,(a) becomes frequency dependent when 

o>(eVo-E~emV,d)/A. From an experimentalists point of view, both theories predict a 

frequency dependent &,(a), so our first step is to look for a frequency dependent &,(a). 

This will be the main subject of the next Chapter. J 
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5.5 Figure Captions 

Figure 5.1: (a) Band-bending diagram for GaAs-AlGaAs heterostructure. A high mobility 

of 2DEG appears at the interface between GaAs and the thin undoped AlGaAs layer 

(Figure taken from ref. [5.3]). (b) Top view of a typical QPC device. The white region 

corresponds to 2DEG. A voltage, Vsd, is applied to the ends and the current is measured 

through the constriction. A negative voltage is applied to the hashed gates in the center. 

This depletes electrons near the gate and confines them in the transverse dimension. 

Figure 5.2: (a) Conductance vs. gate voltage of a QPC at 0.6 K. Steps are,quantized in 

units of 2e2/h (Fig. from ref. [5.1]). (b) Nonlinear Idc’Vsd curves of a QPC at 0.6 K 

taken at different gate voltages near pinch off (Fig. from ref. [5.10]). 

Figure 5.3: Potential variation in the longitudinal direction, x, in a QPC. A voltage, Vsd 

=p1-p2 is applied across the junction. Vo is the barrier height and fi is the Fermi energy. 

Figure 5.4: (a) Buttiker-Landauer barrier modulation experiment at low frequency. The 

barrier height, VO, is modulated at a frequency o and amplitude VI. An electron incident at 

energy, E, is split into three bands separated by 20. The photon is not absorbed or emitted 

till after the barrier. (b) Barrier modulation experiment at high frequency. The barrier 

height, VO, is modulated at a frequency o and amplitude VI. An electron incident at 

energy, E, is split into three bands separated by tio. For the upper band, the photon is 

absorbed before the barrier, and for the lower band the photon is emitted after the barrier. 

Figure 5.5: Tien-Gordon picture for photoexcitation in the left lead. The left lead is 

modulated at a frequency o and amplitude VL1. An electron incident at energy, E, is split 

into three bands separated by fio. Photon absorption and emission takes place in the left 

lead. 
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Chapter 6 

The Quantum Point Contact: 

High Frequency Transport - - 
Experiments 

6.1 Introduction 

Extensive studies of electronic transport in the quantum regime have led to a deep 

understanding of the near-zero frequency conductance of mesoscopic structures. The 

Landauer formula [6.1], relating the conductance to the electron scattering matrix provides 

a unifying viewpoint for understanding such seemingly diverse phenomena as conductance 

plateau in the quantum Hall effect [6.2] and transport through narrow constrictions [6.3]. 

In contrast, we are only beginning to understand the frequency dependent response 

functions of such structures. Current controversial issues include the tunneling time 

through a barrier [6.4], and the complex admittance [6.5-6.71 of mesoscopic systems. At 

sufficiently low frequency, the admittance is real and approximately equal to the zero 

frequency conductance. The admittance is predicted to become frequency dependent for 
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photon energies, fiw = Idln[t(E)] / 4-l where t(E) is the energy-dependent transmission 

amplitude. 

An appealing system for studying the phenomena discussed above are 

GaAs/AlGaAs heterostructures containing a two-dimensional electron gas (ZDEG) beneath 

the surface. As discussed in Chapter 5, gates on the surface of the heterostructure can be 

used to create tunnel barriers whose properties can be adjusted by tuning the gate voltage. 

The conductance of these tunnel bamers, or more commonly known as quantum point 

contacts (QPCs), is quantized in units of 2e2/h (13 KQ). dc transport measurements of 

these devices indicate that It(E)12 for these barriers varies from exponentially small to near 

unity on the nzeV scale [6.8]. The crossover to the high-frequency regime is therefore 

expected to occur at terahertz frequencies. 

Although direct measurements of the terahertz admittance are extremely difficult, 

measurements of the change in dc current due to terahertz excitation are relatively 

straightforward. Such measurements can ,also reveal the predicted crossover. At low 

frequencies the induced dc current is well described by classical rectification, as in a 

square-law diode detector, which is frequency-independent. Above the crossover 

frequency the induced current (or "photocurrent") is predicted to befrequency-dependent, 

with high frequencies producing a greater photocurrent than low frequencies. This regime 

is conventionally termed photon-assisted transport (PAT) [6.9]. PAT processes have been 

studied extensively in superconducting-insulating-superconducting tunnel junctions [6.9]. 

In this Chapter we will begin with a brief review of all the experiments to our 

knowledge that attempt to probe the high frequency response of mesoscopic devices. The 

fact that we can still discuss all the experiments in a few short paragraphs emphasizes that 

this field is still in its infancy. After this discussion we will describe our results using 

THz-TDI to probe the high frequency response of a single QPC device. These experiments 

owe their success to a fruitful collaboration between Professor Orenstein's and Professor 

McEuen's group at UC Berkeley, and Professor Sakaki's group at the University of 
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Tokyo. In Section 6.2, we will describe a series of preliminary experiments on a QPC. 

We measured the induced current response, AId,(o), as a continuous function of . 

frequency, source-drain voltage, and magnetic field. The measured spectra were the first to 

show evidence for PAT in a QPC [6.10]. In addition, the experience that we gained in 

carrying out these experiments provided us with a number of ideas to improve our 

experimental technique. In Section 6.3, we will describe a series of highly refined 

experiments in which we concentrate on measuring the induced current response as a 

function of frequency, barrier height, and magnetic field [6.11-141. As with the source- 

drain experiment, these new measurements also provide strong evidence for PAT. 

We now begin with a historical review of the measurements to date of the high 

frequency response of a single low dimensional tunnel barrier. In 1992, we began an 

experimental program to measure AId,(o) in a QPC with terahertz pulses. Unknown to us 

at the time, there had been a group a few years earlier in 1990 at Cambridge C6.151 that had 

also tried to measure 4, in a QPC. They quasioptically coupled radiation from a FIR laser 

at frequencies between 200GHz to 4.2 THz to the device. They concluded that their 

measured Abc was due to heating. Concurrent with our work at Berkeley, Hu’s group at 

MIT [6.16] had also begun a program to look for PAT in a QPC. They quasioptically 

coupled 1 mW of 300 GHz radiation from a Gunn oscillator to a QPC and measured AI& 

as a function of barrier height or equivalently gate voltage. Although they were hoping to 

see PAT, later in 1993 they concluded that the measured Aid, was simply due to heating 

[6.17] of the 2DEG. By early 1993, we had successfully made the first measurements of 

Ab,  as a continuous function of frequency and source-drain voltage using our terahertz 

interferometric technique C6.101. These results were consistent with PAT and will be 

described in detail in Section 6.2. During this same year, Chemla’s group at Berkeley had 

made the first measurements of the response of the tunneling gap in a scanning tunneling 

microscope to excitation by subpicosecond electrical pulses [6.18]. They recently showed 

that the response of the tunneling gap to excitation by a subpicosecond electrical pulse has 
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1 a capacitive component, the origin of which is quantum mechanica 1. In 1994 

Janssen et al. [6.19] presented evidence for classical rectification in a QPC subjected to 

THz radiation from a far infrared laser. By this time our group at Berkeley had refined our 

terahertz interferometric technique, and were able to measure AIac in a QPC as a function 

of frequency, barrier height, and magnetic field [6.11-143. These results, like our previous 

measurements were also consistent with PAT and will be described in Section 6.3. 

Concurrent with the search for PAT in quantum point contacts, groups were also 

looking for PAT in multiple tunnel barrier systems. Kouwenhoven et aZ. in 1994 while at 

Berkeley began a program to measure the response of a quantum dot [6.20] to microwave 

signals up to 40 GHz. Their measurements were the first to demonstrate photon-assisted 

tunneling in a quantum dot [6.21]. Hu’s group at MIT has also recently begun to study 

lateral dual-gate devices. They also report observations of PAT through quantized energy 

states that result from lateral confinement in a mesoscopic device [6.22]. In addition, van 

der Weide et al. at the Max-Planck-Institute has begun to probe the picosecond response of 

a quantum dot using an interferometric technique similar to ours [6.23]. 

As can be seen from the brief review above, the interest in measuring the high 

frequency response of mesoscopic devices has steadily increased and there appears to be no 

abatement of interest. As PAT becomes firmly established in mesoscopic devices, we 

expect experiments to shift their focus from attempting to observe PAT to using PAT as a 

probe of mesoscopic devices. As we discussed in the Section 5.3, PAT is a more powerful 

probe of a tunnel barrier than is dc transport. In addition, one can use PAT as a probe of 

the frequency dependent complex admittance of mesoscopic systems in analogy with the 

experiments on SIS junctions discussed in Chapter 3. Beyond measuring the linear 

response, interesting nonlinear effects are also expected in quantum dot structures. 

Wingreen et aZ.[6.24] has predicted the appearance of Rabi oscillations in a quantum dot 

probed by large amplitude pulses on the picosecond time scale. 
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6.2 The First Terahertz Interferometric Measurements of a QPC 

6.2.1 QPC Device Fabrication 

The QPC device used in this Section was fabricated by Keith Wald at UC Berkeley 

[6.25]. The device is similar to that depicted in Figure 5.l(b). The structure is 

implemented in 2DEG confined to a AlGaAdGaAs heterojunction using techniques similar 

to those described in Section 5.1.1. The 2DEG had a typical carrier concentration of 2- 

3x1011 cm-2 and mobility of 500,000 cmW-s at 0.5K. We use a standard Hall bar 

geometry, with a series of ohmic contacts around the edge which may be used as current 

injectors or voltage probes. The ohmic contacts were made by annealing an alloy of 

Au/Ni/Ge to the 2DEG. The Hall bar has a length of lmm and a width of 100 pm. The 

metallic gates are forked with a 500 8, layer of Au on top of a 100 A Cr layer. The 

lithographically defined gate separation is 0.3 pm. All unused gates on the device were 

grounded to the 2DEG. As a side note, this same device has be used by Professor 

McEuen's group for NMR studies in a QPC [6.25]. 

The device is placed inside an optical access, one shot 3He, 7 Telsa magnet cryostat 

from Oxford Instruments. 3He gas is condensed in the sample space so that the sample is 

bathed in liquid 3He. A charcoal sorb pumps on the liquid 3He, reducing the temperature 

of the liquid and the sample to 0.5 K The 3He hold time for a single run is 12 hours. 

After 12 hours the sample will warm to 4.2 K and the 3He liquid will turn into a gas. The 

gas must be recondensed to return the sample to 0.5 K. The single shot hold time of 12 

hours is sufficient for our terahertz interferometric measurements. 
I 

Figures 6.1 and 6.2 show a trace of the conductance of our device at T a . 9  K as a 
h 

function of gate voltage. The conductance steps appear at multiples of-the conductance 

quantum, 2e%. The slight deviations from ideal steps is most likely due to scattering at 

impurities in the vicinity of the QPC or abruptness of the constriction [6.26]. The 

conductance was found by measuring the source-drain current with a low noise 1211 
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Ithaco current amplifier in the presence of a 50 pV source-drain voltage. While sweeping 

the voltage on the gates, the current through the device was measured and the conductance 

calculated. In Fig. 6.1, the sharp drop off in the conductance for V, < 0.6 V is due to 

depletion of the 2DEG below the metallic gates. In Fig. 6.2, the series resistance of the 

2DEG has been removed by subtracting the conductance at V,=O. 

6.2.2 Terahertz Detection 

Before we could begin our spectroscopic measurements, we first had to prove that 

we could detect a terahertz induced current, AIdc, in our device. At this poiRt in our 

experimental program, we knew of only one other group that had measured a rectified 

current signal in a QPC. The MIT group [6.16], had measured a detectable signal in the 

presence of 300GHz radiation from a Gunn oscillator at a microwave power level of 

1 mW. In addition, to improve the coupling of microwave radiation to the QPC, they 

fabricated the gates into a log periodic antenna ( see Section 4.4). In contrast to a Gum 

oscillator, our terahertz pulses are relatively weak with maximum power levels in the range 

of tens of microwatts. In addition, we did not have a special antenna structure to maximize 

the amount of microwave power coupled to the QPC. Thus, a priori, we had no idea if 

terahertz interferometiic measurements were possible. 

For the first experiment, we simply butted a single terahertz antenndlens source 

directly in front of the outer window of the optical access cryostat. No parabolas were 

used to focus the radiation onto the sample. The hope was that the weak collimating 

properties of the lens would be sufficient to couple radiation onto the sample. The distance 

between the antenna and the sample was four inches. The beam first passes through a 

25 pm Mylar room temperature window followed by two cold quartz windows one at 

77 K and the other at 4.2 K. These windows, of thickness 6 and 9 mm, respectively, are 

required for blocking thermal radiation and allow the sample to reach the requisite 

temperature of 0.5 K. The beam finally enters the 3He sample cell through a 125 pm 
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Mylar window. The use of windows that are either much thinner or much thicker that the 

pulse length eliminates reflections that might otherwise contaminate future terahertz 

interferometric measurements. As described previously, the sample rests immersed in 

superfluid 3He. The superfluid is quiescent, eliminating the possibility of bubbles causing 

instabilities in the device and in beam propagation. We expected radiation to be coupled to 

the QPC by the metallic gate electrodes. To maximize the coupling to the gate electrodes, 

we made sure that the terahertz radiation was polarized along the gates. 

Fortunately, the crude coupling scheme described above was sufficient to generate a 

measurable AIdc. Figure 6.3 show the first measurements to our knowledge of terahertz 

pulse detection using a QPC (9/10/92) . The step like curve is a measure of the dc current 

through the QPC as a function of gate voltage in the presence of 1 mV source-drain bias 

voltage. The bipolar signal is AIdc. The multiple curves correspond to different terahertz 

power levels. This signal was multiplied by a factor of 1000 so that it can be put on the 

same scale with I&. We measure with the following procedure. First the laser beam 
. 

which is injected into the terahertz source is mechanically chopped at 1 KHz. Next the 

component of the dc current in the QPC which is synchronous at 1 KHz is detected with a 

PAR 124A lock-in. AIdc is then measured as a function of gate voltage. The most 

important features of is that the signal is bipolar and concentrated near the onset of the 

conductance steps. These data have features similar to what we found for the SIS tunnel 

junction in Fig. 4.5. We know from Chapter 5 that the conductance steps appear at those 

gate voltages when the barrier height in the channel is near the Fermi energy. From the 

PAT picture, one would expect the largest photocurrent iignal when the barrier is within a 

photon energy of the Fermi level. We will show in Section 6.3.5 that should look 

bipolar for gate voltage modulation.. 

6.2.3 Terahertz Spectroscopy-Source/Drain Experiment-Zero Magnetic Field 
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At this point, we cannot draw any conclusions as to the origin of the measured 

induced current signal. The difficulty is that there are a number of ways a rectified current 

can be induced in a nonlinear device in the presence of terahertz radiation. One way to 

obtain a rectified current is classical rectification [6.19]. It is also possible to obtain a 

bolometric signal which looks like Fig. 6.3 [6.17]. How one can distinguish between 

these different phenomena, classical rectification, heating, and PAT? The answer is to 

measure AIdc  as a function offfequency. 

In Chapter 5, we have discussed various theories of PAT that predict that will 

become frequency ,dependent at sufficiently high frequencies. In addition, the Tien- 

Gordon approach specifically predicts a threshold for photon absorption, 

o, = (E,  - Ef - emVsd) / f i  , where EO=eVO is the V, dependent barrier height and Vsd is 

the applied source-drain bias. Thus one possible experimental program to search for PAT 

is to measure the rectified current as a function of frequency and then look for a threshold 

that varies in the proper way as a function of vsd and V,. For example, when Eo>Ef, the 

threshold for absorption should decrease as Vsd is increased. On the other hand, classical 

rectification and heating is not expected to have the same a,Vsd, and V, dependence as 

PAT. We will discuss the issue of heating further at the end of this Section. 

To measure the frequency dependence of we use the terahertz interferometric 

technique described in Chapter 2. The interferometer we use is similar in concept to the 

interferometer in Fig. 2.9. The only difference is that we have used a single antenna (#1) 

as a source as opposed to two separate antenna sources. We have taken laser beam #2 and 

diverted it into antenna #1. Thus antenna #1 is pulsed by two separate laser beams. To 

eliminate any interference at the photoconductive switch, the polarization of the first laser 

beam is rotated by 90 degrees with respect to the second laser beam. Each pulse will 

generate its own separate terahertz pulse. The time delay between these terahertz pulses can 

be varied by changing the time delay, 2, between the two laser pulses. There are a number 

of obvious advantages of this interferometer over the earlier version in Fig. 2.9. The first 
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is that no beam splitter is needed since the terahertz pulses comes from the same source. 

This means that we need not be concerned with the frequency dependence of the Mylar 

beam splitter and its associated losses. In addition, our interferograms will be perfectly 

symmetric since the two terahertz pulses will be identical. A second advantage of this 

technique is that spectrometer is autoinatically aligned. Since the pulses come from the 

same source, they will travel the identical beam path and will interfere perfectly on the 

QPC. 

The only disadvantage of pulsing the same antenna twice is that it is possible to 

saturate the photoconductive Auston switch with the two laser pulses when the pulse 

intensity is too high. Ideally, without saturation, the average power in the terahertz beam 

should be twice as large at zero time delay relative to large time delays. However, with 

saturation the average power at zero time delay will be less than twice the average power at 

large time delays. To minimize saturation effects we kept the laser power low at 20 mW in 

each beam. In addition, we can measure the degree of saturation by monitoring the 

photocurrent in the photoconductive switch as a function of time delay, 2. Saturation 

effects will appear as a depression in the photocurrent near 2=0. We verified that the 

photocurrent near.z=O dropped by less than 10% relative to photocurrent at large 2. 

We decided to probe the rectified current in the QPC as a function of source-drain 

voltage, Vsd, in analogy with the earlier SIS experiments described in Chapter 4. The inset 

in Figure 6.4 shows the I d ,  - v s d  curve for the point contact in the presence of a large 

negative gate voltage (V,=-1.936V) such that very little current flowed for V,d<lmV. This 

corresponds to the regime where Vo>>Ep The Id= - v s d  characteristic shows a pronounced 

nonlinearity in this range of bias voltages from 2 to 5 mV. The physical origin of this 

nonlinearity was discussed in Chapter 5. Refer once again to Figure 5.3. At small vsd 

(Vsd=p1-&), the device is pinched off and no current can'flow. As Vsd is increased, 

eventually electrons in the left lead will have sufficient energy to surmount the barrier and 

there will be a large onset in the current flow. 
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Like the dc current, the rectified current in the QPC also depends strongly on Vsd. 

From classical mixing theory (see Section 2.6.3), one would expect the rectified current to 

be a maximum near the nonlinear portion of the Id, - vsd curve. Indeed, we do find that 

the rectified current is a maximum at the kink in the Id,  - vsd  curve at Vsd=4.6 mV. The 

rectified current drops off sharply as the bias is moved away from 4.6 mV. The rectified 

current in the QPC due to a single antenna source had a maximum value of 30 pA and a 

noise level of 200 fA in a 1 Hz bandwidth at a chopping frequency of 1 KHz. 

The main part of Fig. 6.4 shows typical curves of m d c  vs. Z for two values of Vsd 

labeled (a) and (b) in the inset. Notice that the interferograms are perfectly symmetric as 

expected. The difference in the two interferograms illustrates that the dynamic response of 

the QPC depends dramatically on Vsd in this regime. To analyze the interferograms, we 

Fourier transform AIdc(Z) to obtain AIdc(a). In addition, we remove the influence of the 

power spectrum of the incident pulses by normalizing each Fourier transform to the 

spectrum at a single value of Vsd. Figure 6.5 shows the spectra which result form this 

normalization procedure. Again, the inset shows the nonlinear Id, - vsd curve and 

indicates the values of Vsd (2.7, 3.5,4.0, and 4.6 mV) at which the spectra were acquired. 

Each transform was normalized to the spectrum at Vsd=5.0 mV (shown as the open circle 

in the inset). 

The change in the spectra as a function of Vsd provide strcng evidence that the 

rectified current is photonic rather than bolometric in origin. As Vsd decreases and the 

difference between the Fermi level in the left lead and the barrier height increases and the 

onset in the rectified current shifts systematically to higher frequency as expected for 

photon assisted transport. These data are the first to our knowledge to show evidence for 

PAT in a QPC (2/28/93). The bolometric current, which is proportional to the power 

dissipated in the 2DEG is not expected to depend strongly on the height of the barrier. . 

The arrows in Fig. 6.5 indicate the approximate onset frequency, a,, for each Vsd. 

As eVsd is raised from 2.7 to 4.6 meV, a, shifts by about 100 GHz. This may seem 
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surprising at first since in analogy with the SIS junction one would expect a frequency shift 

of A(eV,d )/ h. This corresponds to a expected shift in the threshold frequency of 

460 GHz. To understand our results we must recall from our discussions in Chapter 5 

that A(tzo,)=mA(ev,d ) (see equation { 5-25)), where m=1/2 for a symmetric barrier. From 

our ac transport data, we find that m4.22. We can compare this to an estimate for m from 

the dc transport data in the inset of Fig. 6.4. The differential conductance for V,d>7mV is 

1/60 Kohms. From equation {5.11b}, the m factor is equal to differential conductance 

divided by the 2e2/h (13 Khoms). Thus from the dc transport, we find m=0.22. This is 

in excellent agreement with the ac transport results. 

One might be tempted to extract a traversal time from the data in Fig. 6.5. We 

know that if we are modulating the electron energy in the leads as in Tien-Gordon picture, 

then the onset in the AIdc(o) will be broadened by 1/z, where z, is the traversal time. 

Unfortunately it is not possible from this data to know if we are modulating the electron 

energyin the leads or modulating the barrier as in the Buttiker-Landauer picture. In all 

likelihood, we are probably modulating both the barrier and the leads. In which case, there 

is no theory for what the AIdc(@) should look like. 

Now we will discuss the possibility that the photocurrent spectra is due to either 

heating or classical rectification and not to PAT. For any square law or power detector, we 

can write in general that the induced current, 

where PA(o) is the power absorbed in the detector and A(o) is a frequency dependent 

absorptivity. The power absorbed in the device is not necessarily the power incident on the 

detector. In general, PA(o)=C(o)Pi(o) , where C(o) is a coupling coefficient and Pi(@) is 

the incident power. C(o) will depend on the admittance of the detector and the network the 

detector is imbedded in. We discussed such a situation in Section 2.6.3. Thus in terms of 

the incident power, 
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For either heating or classical rectification, A(@) is not expected to be frequency dependent. 

Thus to explain the observed spectral shifts in the spectra of Fig. 6.5, one would need to 

assume that C(0) changes in just the right way with Vsd to mimic the observed spectral 

shifts. This is highly unlikely. Obviously this is not a proof that the observed spectral 

shifts are due to PAT. 

To prove that AIdc is absolutely due to PAT, one would need to know exactly the 

admittance of detector and imbedding matrix. This is nearly impossible to do since there 

are a large number of parasitic reactances. In addition, our coupling to the device is not 

well defined since we are applying the terahertz radiation to the entire sample, not just to the 

QPC region. Furthermore, we also need to know how the reactances depend on Vsd. This 

is a non-trivial problem. For example we know that the capacitance across the QPC 

junction will depend on Vsd [6.27] in a nontrivial way. In addition, in a analogy with the 

SIS junction we would also expect the intrinsic quantum admittance of the QPC to depend 

on Vsd. Unfortunately we do not have a theory for the quantum admittance of a QPC. 

Given dl these difficulties, it is Clear that attempting to compute c(0,vsd) is not practical at 

this stage. 

A more pragmatic approach than trying to compute C(o,Vs,j is to accept the fact 

that our technique can only give evidence for PAT. This evidence can be made stronger if 

- the correct spectral shifts are seen in a number of different experiments. In this experiment, 

we have seen the correct shift as a function of Vd. In Section 6.3 we will discuss another 

experiment on a completely different device. On that device we study changes in the 

spectral response as a function V, over a large range of barrier heights. In addition, that 

device was studied in a magnetic field. In all cases we see spectral shifts that correlate well 

with what is expected from the dc transport data. All these data taken as a whole present 

strong evidence for PAT in these QPC structures. 
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6.2.4 Terahertz Spectroscopy-Magnetic Field Dependence 

The experiments in the previous Section all took place at zero magnetic field. We 

decided to make some preliminary measurements of the spectra as a function of field. The 

first step was to choose an operating point for Vsd. We chose vsd=4.6 mV since that is the 

bias voltage that gave us the maximum rectified current. Figure 6.6 shows interferograms 

for B=O T and 0.2 T. As is clear from these traces, there is large change in the response 

for very small changes in field. In order to investigate these change further we made 

measurements at a number of magnetic field points up to 0.7 T. To analyze these data, we 

took the Fourier transforms of the interferograms at different magnetic fields. From these 

Fourier transforms, we can plot AIdc as a function of magnetic fields for different 

frequencies. These data are plotted explicitly in Figure 6.7 for the frequencies, 110, 150, 

and 170 GHz. AId, peaks at a definite magnetic field for each of the different frequencies. 

In addition, the peak moves to higher field as the frequency is raised. 

In the inset we plot the peak frequency as a function of magnetic field. From this 

dispersion relation, it was clear to us that we were seeing the bulk magnetoplasmon 

excitation of the 2DEG. The magnetoplasmon dispersion relation for a GaAs 2DEG is 

expected to be, ~f = wfO + w:, where opo and o, are the 2D plasmon and cyclotron 

frequency respectively [6.28]. The dashed curve in the inset of Fig. 6.7 is a fit to this 

relation. The frequency opo for a 2D plasmon in an infinitely large 2DEG is given by 

l6.291, 

where seff is the effective dielectric constant, k is the wave vector for the plasmon, and Ns 

is the 2D electron density. seff can be well approximated by seff = (sGd, + sYm) / 2. This 

approximation is valid when lk is large compared to the AlGaAs and the GaAs cap layer 

which is true for our devices. For we find that ~ ~ ~ 6 . 9 .  To measure the carrier 
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density, N,, we use the Shubnikov-De Hass technique [6.1]. We find that our 2DEG had 

a typical N, of 2 - 3 x 10*1cnz-2. N, is stable at low temperatures, but can be changed by 

illumination with optical radiation [6.30] or by thermally cycling the device. Unfortunately 

for this experiment, we did not measure the carrier density soon after the experiment so we 

can only estimate that N, = 2.5 x 101-'cm-2. Next we have to choose the proper k for the 

plasmons in our Hall bar. Since we do not have an infinite 2DEG, we assume that the 

edges of the Hall bar will determine the appropriate k vectors for plasmon excitations. 

Since our terahertz radiation is polarized along the short direction of the Hall bar, we 

assume that we are exciting plasmons along that same direction. The lowest plasmon mode 

will have a k vector such that half a wavelength will fit into the width, w, of the Hall bar. 

In this case, k=n/w. From the inset in Fig. 6.7 we see that the experimentally measured 

plasmon frequency is 75 GHz. From this value for the plasmon frequency and the above 

relations we find that w=l15 pm. This number is in close agreement with the 100 pm 

etched width of the Hall bar. The small discrepancy may be attributed to fact that we do not 

have an exact measure for the carrier density in this experiment. 

6.2.5 Conclusions 

Obviously, we would have liked to do many more experiments on this device to 

support our hypothesis that we have seen PAT. Unfortunately, we blew out the device 

shortly after completing the experiments described above. One of the most important 

experiments would have been to measure the gate voltage dependence of the interferograms 

and see if they correlated with the PAT model. A second important experiment would have 

been to repeat the measurements of the interferograms as a function of source-drain voltage 

in a 1 T magnetic field. At this field, the magnetoplasmon would be outside of our 

frequency range. If we still had seen similar spectral shifts as in Fig. 6.6, we could rule 

out the possibility that the spectral shifts are caused by a source-drain voltage dependent 

magnetoplasmon frequency. In the next Section, we will describe a second series of highly 
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refined experiments on a new type of device where we do perform the experiments 

described above. 

6.3 Terahertz Interferometric Measurements of a Mesoscopic 
Tunnel Barrier 

The experiments of the previous Section are important for a number of reasons. 

First those experiments proved that the terahertz interferometric is a viable method to 

measure the dynamic response of a QPC. In addition, we found nontrivial effects in the 

induced current response, that is evidence for PAT. Nevertheless, those measurements 

were preliminary, and left much to be desired in terms of experimental finesse. The 

modifications we will describe in this Section have allowed us to make high quality 

measurements which give even stronger support that the induced current response is due to 

PAT [6.11-6.141. We will first describe the new version of the terahertz spectrometer 

which employs a wire grid beam splitter which has a number of advantages over the Mylar 

beam splitter technique. Next we will cover a novel antenna-transmission line scheme to 

couple to the device. This technique insures that ac potentials are applied to the tunnel 

barrier in a controlled manner. Lastly we will describe our new device. This device is 

slightly different than the standard QPC, and thus we will refer to it as a mesoscopic tunnel 

barrier or tunnel barrier for short. The advantages of this device is that ac potentials can be 

applied solely to the barrier region and not to the entire 2DEG. After discussing these 

important modifications in the experimental method, we will describe the new series of 

experiments. We will begin by taking a look at the rectified current generated by a single 

voltage pulse. Next we will apply the terahertz interferometric technique to measure &c as 

a function of frequency, barrier height, and magnetic field. 

6.3.1 Improved Terahertz Spectrometer 
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In contrast to the experiments described in the previous Section, we have decided to 

return to an interferometer configuration similar to the SIS interferometer in Fig. 2.9, rather 

than pulse a single antenna twice. Although pulsing a single antenna twice has a number of 

advantages in terms of alignment, it has one major disadvantage in that the laser power 

must be kept low on the photoconductive switches to minimize saturation effects. This 

limits the maximum power available from the antennas and reduces the over all dynamic 

range of the system. 

A diagram of the new spectrometer is shown in Figure 6.8. The pulsed source is 

the same photoconductive Auston switch [6.31] coupled to a 300 pm dipole antenna 

[6.32], described in Chapter 2. The antenna source radiates when excited with a mode- 

locked Ti:sapphire laser. The emitted pulse is a nearly single cycle of electric field with an 

approximate period of 5 ps. The power spectrum of the pulse has a center frequency of 

180 GHz and a 3 dB bandwidth of 80 GHz. To study AId, vs. o we measure the dc 

current induced by two pulse trains as a function of their relative arrival time 2. As depicted 

schematically in Fig. 6.8, the two-pulse beam is formed by combining the radiation from a 

pair of antennas using a wire grid beamsplitter. 

The wire grid has a number of advantages over the earlier version of the SIS 

spectrometer which employed a Mylar beam splitter. The most significant advantage is less 

frequency dependence of the reflection and transmission coefficients, which is important 

for broadband measurements. In addition, the ideal throughput of the interferometer 

increases from 50% for a reflection beamsplitter to 100% for the polarizing beamsplitter. * 

The configuration of the polarizers to achieve optimum coupling is as follows: the two 

antennas are aligned at 45" with respect to the horizontal. The axis of the beamsplitter is, 

adjusted to transmit the pulse from (A) and reflect the pulse from (B). The combined beam 

contains two pulse trains with orthogonal polarizations. An additional polarizer (P) 

between the beamsplitter and the sample selects either horizontal or vertical polarizations for 

excitation of the device. A final f/3 parabolic mirror focuses the combined beam onto the 
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sample through a number of windows in a 3He, 7 Tesla magnet cryostat. The 

configuration of the cryostat is the same as described above in Section 6.2.1. As before, 

the sample rests immersed in superfluid 3He at 0.5 K. 

6.3.2 Antenna-Transmission Line Coupling 

One of the weakest features of the experimental method described in Section 6.2 is 

that the coupling of the voltage pulses to the gates of the device is uncontrolled. In the 

earlier experiments, radiation incident on the sample can excite both the gate electrodes and 

the 2DEG. Strong excitation of the 2DEG can lead to heating which is undesirable. We 

would rather have a method which can selectively excite the gates only. In addition, we 

want a method of coupling that will work in general with multiterminal devices such as 

quantum dots or coupled dots r6.201. It would be highly undesirable to excite all the 

electrodes of such a structure in a random manner. Such an experiment would be too 

difficult to analyze. 

To avoid these difficulties we have devised a technique that ensures that the ac 

potentials are applied to the tunnel barrier in a controlled manner. Figure 6.9 shows our 

scheme for coupling terahertz radiation to a single tunnel barrier. Our device actually 

consists of four tunnel barriers which can be used to form a quantum dot E6.331. We will 

describe this device further in the next Section. For now, though, our goal is to excite only 

one of the tunnel barriers. The antenndtransmission line chip and tunnel barrier chip are 

both mounted in a standard 16 pin carrier (not shown). The chip carrier is secured to a 

brass holder which prevents terahertz radiation from directly falling on the device and 

exciting the device in an uncontrolled manner. To reach the tunnel barrier incident radiation 

must first pass through a small hole in the brass holder fitted with a 4 mm diameter 

hyperhemispherical silicon lens. The silicon lens focuses the beam onto a 600 pm dipole 

antenna designed to resonate at approximately 90 GHz. Due to the wide bandwidth of 

dipole antennas, substantial overlap remains between the picosecond pulses centered at 
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180 GHz and the receiving antenna centered at 90 GHz. The advantage of this design is 

that the power coupled to the antenna will be relatively evenly distributed from 90 to 

180 GHz. 

From the antenna, the pulses are coupled to a coplanar transmission line (CTL). 

Both the antenna and transmission line consist of 0.8 p thick aluminum evaporated onto 

a single 0.5 mm thick sapphire substrate as described in Section 2.2. The antenna and the 

transmission line dimensions were chosen to maximize the coupling from the antenna to the 

transmission line. Kominami et al. E6.341 has calculated the resonant resistance of a dipole 

antenna on a semi-infinite substrate as function of substrate permittivity. The antenna and 

the transmission line are oriented on the sapphire chip such that only the ordinary ray in 

sapphire is excited. The ordinary ray has a permittivity of 9.4 in this frequency range. For 

this permittivity, the resonant resistance of the antenna is only 40 ZZ. It is difficult to 

design a CTL with this low an impedance. If W is the width of a one of the transmission 

lines and s is the spacing between the lines, then according to calculations by Wen [6.35] , 

if s=W then the impedance of the line is 90 ZZ which is much larger than our antenna 

resistance. To lower the impedance of the line, we must reduce the ratio, 

S/(S+2W). { 6.4 1 

Obviously making s small will reduce this ratio. Although it is possible to make s smaller 

than a 1 pm with optical lithography, we decided not to push the limits of optical 

lithography and set s=4 p. The ratio in equation { 6.4) can also be made small by making 

W large. We do not want to make W too large because this would lead to large radiation 

losses as the pulse propagates down the transmission line. According to Frankel et al. 
. C6.361 the wavelength dependent attenuation, A(h), on a CTL in a distance h is 

proportional to, 

s+2w 
OC (A, / % . . ) 7  
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where & is the free space index and neff is the effective index of refraction. neff is defined 

to be the square root of the average dielectric constant of a i r  and sapphire. As expected, the 

attenuation is greatest at shoit wavelengths and on wide transmission lines. Intuitively, 

once the wavelength approaches the dimensions of the transmission line, the line ceases to 

guide the wave and the CTL begins to look like an antenna which can radiate. If we 

assume that the highest frequency of interest is 200GHz, then the effective wavelength, 

W n e f ~ 6 5 0  pm. To minimize the radiation losses, we choose W=60 pm which is small 

compared to Wneff. For these dimension, the CTL has a impedance of 50 i2 [6.35] which 

is well matched to the antenna impedance on resonance. Once the pulse is coupled onto the 

line, it propagates 5 mm to the end of the transmission line on the antenna chip. At this 

point it hops onto the QPC chip via 100 pm long gold wire bonds and excites a single 

gate. 

6.3.3 Device Under Study 

The tunnel barrier we have studied differs somewhat from the split gate QPC. 

Figure 6.10 shows a scanning electron micrograph of the device [6.37] used in our 

experiments. In the region of interest, two narrow channels defined by wet shallow 

etching [6.38], on a selectively doped n-Alo.3Gao..;rAs/GaAs heterojunction of width 

460 nm, intersect to form a cross. The thickness of the undoped AlGaAs spacer, the n- 

AlGaAs doped layer, and the undoped GaAs cap layer are 30,70, and 10 nm respectively. 

Due to depletion of electrons at the edges, the effective channel width is reduced to nearly 

60 nm. The narrow channel grows into a narrow wire 10 pm in length, beyond which it 

widens into large millimeter scale 2DEG regions. The full length of the large cross is 

1.3 mm. The 2DEG is characterized by a mobility of 800,000 cm2/V-s at 4.2 K and 

density 1.6 x 10" cm-*. The density was found from measurements of the Shubnikov-De . 
Hass oscillations in pxx. These measurements were done right after the terahertz 
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interferometric experiments. Ohmic contacts were made to the large 2DEG regions by 

alloying In-Sn in an argon atmosphere at 400°C for a few minutes. 

In contrast to the split gate QPC, each channel of our device has a gate which 

overlaps its entire width. The gates of width 230 nm were fabricated by depositing locally 

a NiCr(5 nm)/Au(5O nm) fdm with lift-off techniques. Application of a negative voltage 

to a gate generates a banier for electron propagation. With four gates, the structure may be 

configured for a wide variety of experiments including demonstration of Coulomb blockade 

oscillations and turnstile operation [6.37]. To date, we have studied the high-frequency 

response of the device with only one gate active, forming a single tunnel barrier. The other 

three gates were held at ground. In the future, activating all four gates will allow us to 

study the high-frequency response of a quantum dot. 

The main advantage of the new device over the standard QPC device depicted in 

Fig. 5.l(b) is that the gate only overlaps the 2DEG where it, is needed to form the tunnel 

barrier. Thus when an ac voltage is applied to the gate, the ac voltage only couples to the 

2DEG in the region of the tunnel barrier. This ac voltage can lead to PAT. In sharp 

contrast, the gates in Fig. 5.l(b) overlap the 2DEG over a large region faf away from the 

tunnel barrier that actually forms the QPC. Thus when an ac voltage is coupled to the gate, 

the 2DEG will be excited at a distance far from the QPC . These excitations will only lead 

to heating of the 2DEG. Only the small fraction of the full ac signal that is coupled to the 

QPC region will be available for PAT. 

6.3.4 dc Transport 

As shown in Fig. 6.9, the high-frequenc! volt ge is pplied across the QPC via 

gate (A) and ohmic contact (1) to the electron gas. In addition to the ac input, the QPC is 

biased at 100 pV through "source" and "drain" ohmic contacts (1) and (2). A negative 

voltage applied to the gate creates a tunable barrier, Eo. 



D e  solid curve in Figure 6.1 l(a) shows a typical trace of the dc current flowing 

from source to drain I&, as a function of gate voltage V,, for an applied bias Vsd of 

100 pV. There is a sharp increase in conductance when -V, drops below approximately 

750 mV. The curves of vs. v, near the onset of conductance differ from device to 

device, and the same device will have different behavior depending on history of 

temperature cycling and visible light exposure. In general these devices do not exhibit the 

quantized conductance steps of size 2e2k seen in QPC's formed by split gates C6.31. We 

attribute the absence of conductance steps to electron back scattering in the channel leading 

to a breakdown of the conductance quantization. 

6.3.5 Single Pulse Experiment 

Before considering the interferometric response, we first discuss the rectified 

current created by individual voltage pulses. We define the "induced current," &c , as the 

additional dc current flowing from source to drain when the device is irradiated with a train 

of pulses. To measure Aid,, the laser beam which generates the terahertz pulses is 

mechanically chopped at 100 Hz and the synchronous source to drain current is detected 

with a current and lock-in amplifier. 

: The dashed curve in Fig. 6.1 1 shows Ab, vs. V, under the same experimental 

conditions as the solid curve of Idc vs. V,. There is a sharp increase in the induced current 

near the value of V, at which the channel becomes conducting. The induced current is 

localized to the region near the onset of conductance with little induced current at zero gate 

voltage. In addition there is an induced current signal at V, = -300 mV. This signal is 

also due to a change in the channel conductance. A close inspection of vs. V, reveals 

that there is indeed a small step in the conductance at Vg = -300 mV. For the purposes of 

this paper we will confine our discussion to the induced current peak at V, c- -700 mV. 

- 

An initially unexpected feature is that the induced current is unipolar and it does not 

depend on Vsd for IVsdk100 pV. Assuming that the gate voltage oscillates symmetrically 

I 
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about its dc value, both the quasistatic and quantum models C6.391 predict that the induced 

current is bipolar in the neighborhood of the conductance onset. This is exactly what was 

seen in the first series of experiments on the QPC device in Fig. 6.3. To see explicitly how 

classical modulation of the gate leads to a bipolar signal, we need the Landauer formula 

(equation { 5.5)), 

for the current through the lowest mode of the constriction. T(V,) is given by equation 

(5.6) with n=l  and E=Ef. In the presence of an oscillating gate voltage, 

V8 = Vg0 + VgCl, cos( ut), the rectified current is given by, 

This is entirely analogous to equation { 2.7) found in Section 2.6.3 for diode rectification. 

Since the T(V,) is similar to the Fermi function (broadened step), the second derivative will 

look bipolar as in the data of Fig. 6.3. The fact that our data is unipolar implies that the 

rectified current cannot be due to an oscillating gate voltage and must come from a source- 

drain modulation. 

One important clue as to the origin of the rectified current, is the fact that we obtain 

the same rectified current signal, even when zero bias is placed across the junction. There 

are only two possible ways to obtain a rectified current for the zero bias case. One 

possibility is that the barrier potential, V(x), must break inversion symmetry. In this case 

an ac voltage applied across the source drain contacts will lead to a rectified current [6.40]. 

This is entirely analogous to a P-N junction diode which can also rectify an ac signal due to 

a built in electric field at the junction between the P-type and N-type semiconductor [6.40]. 

The other possibility is that the ac signal which is applied to the gate couples differently to 

the two sides of the tunnel barrier. Recall in Chapter 5, equation {5.22}, we derived an 

expression for the photon induced rectified current in the presence of a source drain 
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modulation. As expected, the rectified current goes to zero in the zero bias case. But if the 

ac signal only couples to left side of the barrier, we can use equation { 5-20}, 

ea' €3 

2h 0 

AIdc = - JT( E + t z ~ )  + T(E - f i ~ )  - 2T(E)dE, 

for the rectified current at zero source-drain bias. Here a=eV&m, where Va is the 

strength of the ac signal that is coupled to the left side of the barrier from the gate electrode. 

The term in the integral is just the finite second difference of T(E). Since T Q  looks like a 

broadened step, the finite second difference will look bipolar. The integral of a bipolar 

function will be unipolar, thus AI,, will be unipolar which is exactly what is observed in 

Fig. 6.11. We can show this explicitly by considering the case where tzo is small 

compared to the energy scale for the nonlinearity in TQ. In this case the rectified current 

is given by, 

AIdc =-- vi . 2h 6'E E, 

Since Ab, is proportional to first derivative of T(E), it will look unipolar as seen in the 

data. 

dc transport measurements of the Idc-Vsd curves of our device indicate the tunnel 

barrier is relatively symmetric, that is &c(+v~d)=&Jc(-vsd). Thus our rectified signal is most 

likely due to an asymmetry in the coupling of the ac voltage to the leads. This means that 

we can fit our spectral data with the Tien-Gordon theory for PAT as in equation { 6.8). At 

this point we can only postulate an explanation for the asymmetry in the coupling to the two 

sides of the tunnel barrier. From Fig. 6.10 we see that the gate electrode is near the cross 

region of the 2DEG. Since the shape of the 2DEG is different on&e two sides of the 

barrier, the coupling from the gate to the 2DEG might be expected to be different. 

6.3.6 Terahertz Interferometry-Gate Voltage Experiment-Zero Magnetic Field 
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Excitation of the tunnel barrier with a single pulse yields a dc current whose 

magnitude is an average of the response over the spectral range spanned by the pulse. As 

mentioned previously, the spectrum of AIdc vs. 61 can be measured by time-domain 

interferometry. To determine N d c  we measure the current, AI&( z) , generated by a pair of 

pulses as a function of the time delay, 2, between them. AIdC(w) is then simply obtained 

from the Fourier transform of AI&( z). We have verified that the induced current scales 

linearly with pulse power, thus it is valid to Fourier transform AIdc(z) to obtain N&(w) .  

In our interferometer the two pulses are nearly identical, so that to an excellent 

approximation AI&( z) is symmetric about T=O and AI&( 0 )  is real. 

We now consider the dependence of AIdc(@) on barrier height Eo, depicted in 

Figures 6.12(a) and (b). The main part of panels (a) and (b) compare spectra recorded at 

the operating points labeled in the inset of Fig. 6.12(a) by primed and unprimed letters, 

respectively. The spectrum, has two main features: a peak at = 25 GHz and a broadband 

response from = 100-200 GHz whose shape is largely determined by the spectral density 

of the excitation pulse. The positions of the resonances within the broadband response are 

field independent and thus are most likely due to reflections from the wire bonds between 

the transmission line and the tunnel barrier device. The peak at = 25 GHz and the 

broadband response differ dramatically in their dependence on B. With increasing B the 

peak shifts to higher frequency while the broad component of the spectrum remains 

relatively unchanged for fields up to 1 T. We will show in the next Section that the peak at 

= 25 GHz is due to bulk plasmon excitation of the 2DEG. 

For now, we will concentrate on the dependence of AIdc(@) on barrier height Eo. 

Both panels in Figs. 6.12(a) and (b) include the spectrum at the point "0" where Eo=Ef and 

the magnitude of the induced current is greatest. For Eo<Ef (Fig. 6.12(b)) the low- 

frequency response is strongly suppressed with increasing I E,,-Ef I . For example, at 

lOOGHz the magnitude changes by a factor of ten over the full range of Vg, while the 

response at 200 GHz changes by a factor of two. The suppression of low-frequency 
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response is emphasized in the inset of Fig. 6.12(b), in which the curves are normalized to 

the spectnim recorded at point "0". The periodic oscillations in the ratios result from the 

reflections from the wire bonds referred to above. In addition, as Eo is varied, the plasmon 

shows complex behavior which is presently not understood. In addition to becoming 

negative, the plasmon also acquires an imaginary part. For E+b (Fig. 6.12(a)) the change 

in response is qualitatively similar, but the magnitude of the effect is much weaker. For 

example, at 125 GHz the magnitude drops to 25% as the response at 200 GHz changes by 

only 36%. 

The observation of a frequency dependent photoresponse, which depends on 

barrier height, is strong evidence that the terahertz radiation couples directly to the barrier 

region. In addition, the suppression of the low frequency response for Eo>Efis consistent 

with an intuitive picture of PAT: a high frequency photon can provide an electron with 

enough energy to surmount a potential barrier while a low frequency photon cannot. It 

may appear surprising, however, that suppression of low frequencies is observed for 

E,<Efas well, and that the suppression is far stronger in this regime. Understanding this 

behavior requires a more realistic model of photon-assisted transport, which includes both 

Fermi statistics and the physics of barrier formation in a 2DEG. . 

Figure 6.13 shows a sketch which helps to illustrate the frequency dependence 

expected for PAT in a degenerate Fermi system. In the presence of an harmonically 

varying potential, Vu, an electron incident from the left-hand side will undergo inelastic in 

addition to elastic scattering. To first order in Va the inelastic processes are transmission 

with the absorption or emission of a single photon. As Fig. 6.13(a) illustrates, when 

Eo>Efovercoming the barrier requires that Ao 2 Eo -Ef. For E,<Ef (Fig. 6.13(b)), 

Am 2 Ef - Eo is required in order to reach states above the Fermi level for which there is 

no counter flow of electrons from right to left. Therefore spectra for Efabove and below 
the barrier are expected to show a threshold when Am = IEf - Eo 1. 
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This explains why AIdC(w) may be suppressed at low frequency for both Eoabove 

and below E+ However, the fact that the low frequency suppression is much stronger for 

Eo<Ef than for remains unexplained. In the following we suggest that the trends in 

AIdc(@) reflect dramatic changes in the shape of the barrier in the insulating (E+Ef) vs. 

conducting (&+) regimes. To test this hypothesis we apply the Tien-Gordon model for 

PAT discussed in Section 5.2.2. This model relates NdC(o) to the barrier potential. 

Equation { 6.8) is an expression for the change in current flowing from left to right, 

evaluated at zero temperature. As input to this calculation we need only the elastic 

transmission probability. We use equation { 5.6) for the transmission probability of a 

parabolic potential which depends explicitly on Eo and h ~ .  To simplify the notation, we 

set h ~ / 2 n = r .  The hcoy dependence of T(E) can be included in Eo. An oscillating electric 

field on the right side will lead to an equation similar to equation { 6.8) for the current from 

right to left. As discussed previously, if the oscillating electric field couples symmetrically 

to both sides, an equal change is generated in both directions and the net current is zero. 

To model AIdc(o) in our experiment we require an ac potential drop which is not 

symmetric. We assume that the degree of asymmetry is independent of excitation 

frequency and can be represented by an overall scale factor q, where Iqkl. 

The parameters of the model are the effective spectral density of the excitation pulse 

rp*, EO, and I'. Next we use the spectrum at the peak of the respone, labeled "O", to fm 

, 

qa*, which we assume to be independent of gate voltage. This is equivalent to assuming 

that the power coupling coefficient, C(O), defined in equation (6.2) is gate voltage 

independent. This assumption will be discussed later. We next adjust r, which determines 

the strength of the low-frequency suppression. A small corresponds to a sharp threshold 

in T(E) and a large reduction in low-frequency response with increasing IEf - &I. In order 

to account for the dramatic difference between Figs. 6.12(a) and6.12 (b) we allow r to take 

on two values, one for Eo above and below Ef. The amplitude and frequency dependence 

of the spectra for all other values of V, are then fit by varying only Eo. 
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The dotted lines in Figs. 6.12(a) and 6.12(b) are fits to the data obtained with the 

procedure described above. We are able to fit the spectra quite well over the frequency 

range above the 2D plasmon feature at 25 GHz. From the fit, we find that Eovaries 

linearly with V, both above and below Ef as shown in Figure 6.14. However, both 
p(V8) = IdE, / d(eV8)I and r change dramatically as the device is swept through the onset 

of conduction. In the insulating regime, we obtain T/h= 100 GHz and p(V8)=0.017, 

while in the conducting regime, Tlh is much smaller, 20 GHz, and p(V8)=0.006. 

The fit is significant because the parameters which emerge are consistent with 

theoretical predictions and with independent dc measurements. Numerical modeling of the 

barrier potential formed by a split-gate electrode predicts the trends described above. Law 
et al. [6.42] find a sudden increase in p(Vd) as Eo is raised above Ef and the screening 

below the ,gate electrode changes from metallic to dielectric. Furthermore, the short 

screening length in the metallic regime leads to a barrier with sharper edges and a flatter 

top, corresponding to a smaller than in the insulating regime. 

The value of p(V8) in the conducting regime agrees with an independent 

determination based on dc transport data. The onset of dc current across the barrier occurs 

at a gate voltage V,, which corresponds to the condition Eo-Ef. If Eovaries linearly with 

V,,as expected from numerical modeling [6.42], then p(V8) should equal the ratio 

[E’/V,,I. With V, =685 meV (see Fig. 6.12(a)) and E ~ 5 . 6  meV inferred from the 

electron density, we find p(V8)=0.008, which is in reasonable agreement with the ac 

experimental result p( V8)=0.006. 

Let us now consider changes in r. In contrast to the our first experiments on a 

QPC described in 6.2, in this experiment we are fairly certain that we are modulating the 

electron energy in the leads, thus a Tien-Gordon approach should be valid. In addition, if 

we assume that power coupling coefficient is gate voltage independent, r can be related 

directly to the banier traversal time. From the discussion in Section 5.2.1, r=t2/2~~. In the 

insulating regime, we obtain 2 4 . 8  ps, while in. the,conducting regime, zt is much larger, 
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4ps. The longer traversal time is consistent with the expectation that the barrier will 

become longer in the conducting regime due to increased screening. 

Finally, we consider other possible mechanisms for the observed photocurrent: 

differential heating due to absorption in the ohmic contacts or wire bonds and/or classical 

rectification. Both appear to be ruled out immediately because the photocurrent spectra are 

sensitive to the properties of the device, Le., they depend on gate voltage. However, it 

may be argued that the spectral shifts reflect a Vg dependence of the spectral density of 

terahertz radiation coupled to the device, qa2, rather than PAT. To explain the observed 

behavior, low-frequency radiation would have to couple poorly to the device for E+&, go 

through a maximum when Eo=Ef, and decrease again for Eo<Ef. The coincidence of 

maximum coupling at Eo=Ef, particularly when the device impedance is varying 

monotonically, seems unlikely. As a result, we believe that PAT provides the most 

reasonable description of the data 

In conclusion, this experimental study has demonstrated that PAT provides a 

consistent explanation for the dc current induced across a tunnel barrier by terahertz 

radiation. The variation in barrier shape deduced from the model is a consequence of the 

crossover from metallic to dielectric screening. In addition, if we assume that the power ’ 

coupled to the device is gate voltage independent, the barrier has a parabolic shape, and the 

Tien-Gordon approach is valid, we obtain a value for the barrier traversal time of 4 and 

0.8 ps in the conducting and insulating regimes respectively. 

6.3.7 Terahertz Interferometry-Magnetic Field Dependence 

We now discuss in detail the rectified current response as a function of magnetic 

field, B. The first experiment that we did was to measure the AI& due to a single pulse as a 

function of B. The gate voltage was,set to maximize the rectified response. This 

corresponds to point “0” in Fig. 6.12(a). Next the field was swept from 0 to 0.6 T. The 

measured f&, is shown in Figure 6.15 by the dark solid line. It clear from this figure that 
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AIdc depends dramatically on B. We immediately recognized two important features in 

these data. The first is the fast oscillations in B with a periodicity that increases at larger B. 

This behavior is characteristic of the field dependence of the density of states at the Fermi 

level of the 2DEG. Most commonly, the field dependence of density of states is seen in the 

Shubnikov-De Hass oscillations in the dc source-drain current. If we ignore the fast 

oscillations in &c, we also see that AIdc varies on a much slower field scale of 0.6 T. 

This is exactly the same field scale as cyclotron resonance. At 0.3 T the cyclotron 

frequency is 120GHz which is near the center frequency of our pulses. In addition, the 

shape of the &c looks similar to the spectrum "0" (Ahc(o)) in Fig. 6,12(a). To show this 

explicitly, we have plotted the negative of the spectrum "0" as the dashed curve in Fig. 

6.15. To convert from frequency to magnetic field, we have used the cyclotron resonance 

condition, o=eB/m* with m*=0.07m0 where m, is the free electron mass. It is clear that 

there is a strong resemblance between the aC(B) and -&,(o(B)). 

To investigate the system further, we have made measurements of the spectra as a 

function of B. Figure 6.16(a) shows the real part of AIdc(@) at several magnetic fields, 

measured at the value of V, which gives the maximum response (point 0 in the inset of 

Figure 6.12(a)). These spectra were taken at those fields where AIdc due to a single pulse 

was a minimum (see Fig 6.15). As discussed previously, the spectrum with B=O, shown 

in the lowest curve in Fig. 6.16(a), has two main features: a peak at = 25 GHz and a 

broadband response from = 100-200GHz whose shape is largely determined by the 

spectral density of the excitation pulse. These two features differ dramatically in their 

dependence on B,.as the spectra above indicate. At a relatively small field, 0.25 T, the 

25 GHz peak disappears, and a peak with reversed sign appears at 100 GHz. With 

increasing B the negative-going peak continues to shift to higher frequency while the broad 

component of the spectrum remains relatively unchanged for fields up to 1 T. 

The dependence of the sharp peak on B is indicative of a bulk magnetoplasmon 

excitation of the 2DEG. This is similar to the behavior we saw in the first experiments on 
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the QPC described in Section 6.2.2. The lower panel of Fig. 6.16 is a plot of the peak 

frequency vs. B, including both the positive peak at B=O and the negative peak at nonzero 

field. The solid line is the upper branch of the magnetoplasmon spectrum expected for the 

GaAs 2DEG: v+*(B)=vp2+v~, where vP and v, are the 2D plasma and cyclotron frequency, 

respectively [6.20]. The fit was obtained with vp=25 GHz, which corresponds' to a 

confinement length of 670pm, using the measured 2DEG density and a GaAs band mass of 

0.07 me. The confinement length scale indicates that the plasmon is an excitation of the 

large 650 pm 2DEG "leads" to the quasi-1D wire: Thus the sharp, field-dependent feature 

in the spectrum is not due to the properties of the submicron channel/barrier, but rather the 

macroscopic 2DEG regions. The barrier serves as a detector of this 2DEG resonance. 

From the dispersion relation and the spectra in Fig.6.16 it is clear that the low 

frequency peak is a plasmon associated with the bulk 2DEG. The most surprising and 

unexpected feature is that the plasmon reverses sign as the field is increased from zero 

field. In fact at 0.1 T the magnetoplasmon actually disappears as it reverses sign from OT 

to 0.25 T. Usually one is not used to a negative going signal in the photocurrent 

spectrum. In this experiment since we plot the real part of the Fourier transfom of AI&), 

the sign can actually go negative. The sign in this case simply records the direction of the 

induced current. Thus at 0 T the broadband response and the plasmon response both drive 

an induced current in tT.le same direction. This is in contrast to the response at 0.34 T 

where the magnetoplasmon now drives currents in the opposite direction to the broadband 

response. These two components nearly cancel so that the dc photocunent induced from a 

single pulse is nearly zero. 

The mechanism for the sign reversal is currently not fully understood. We propose 

the following preliminary hypothesis. The zero field plasmon is due to heating of the left 

lead which subsequently leads to an induced current flowing from left to right. As the 

magnetic field is increased the electronic states begin to evolve into edge states. In this 

picture electrons at the edge are excited to higher energy edge states and then relax towards 
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the center of the lead. Electrons near the center will have a lower probability of 

transmission when they reach the QPC and will in turn lead to an induced current flowing 

from right to left, opposite to the direction at zero field. This picture was used by E. Diepel 

et al. to explain cyclotron resonance absorption in a 2DEG at high magnetic fields C6.431. 

The behavior of the spectra as a function of B suggests that heating due to the bulk 

magnetoplasmon absorption by the 2DEG cannot explain the broadband component of the 

induced current. If this were the mechanism then we expect hl , (w)  to peak only near 

frequencies at which the 2DEG absorbs energy from the electromagnetic field. Instead, the 

magnetoplasmon appears only as a perturbation of the field-insensitive continuum. 

To investigate the fast oscillations of AIdc in Fig. 6.15 further, we have made 

measurements of the spectrum at two adjacent field points. The results are shown in Fig. 

6.17 for Bd .31  T (dotted curve) and 0.328 T (solid curve) which corresponds to an 

adjacent minimum and a maximum in Aid, of Fig. 6.15 respectively. For reference, 

cyclotron resonance is at 124 GHz at this magnetic field. For this small change in field, 

the amplitude of the magnetoplasmon absorption changes by a factor of three and the line 

width remains constant. Since the line width remains fairly constant, we do not expect that 

the scattering rate is strongly field dependent. In contrast, since the amplitude of the 

absorption changes, this implies that the number of carriers available for excitation is 

strongly field dependent. 

To explain this effect, we apply an argument given by J.C. Maan et al. [6.44]. 

They measured cyclotron resonance in a 2DEG (without a tunnel barrier detector) by 

measuring the rectified current in the presence of a CW far infrared laser as a function of 

magnetic field in the Quantum Hall regime [6.2]. They found that the strength of the 

cyclotron absorption was much greater at those magnetic fields where pxx=O (Hall 

plateaus) than when pxx was finite (Hall risers). They postulated that this is due to the fact 

that when pxx=O no scattering.is allowed. FIR radiation changes this situation since 

photoexcited carriers in the higher Landau level and the empty states left behind in the 
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lower Landau level increase the scattering and a large change in pxx is expected. The large 

change in pxx leads to a large Abc. In contrast, on a Hall riser, the Fermi level is in the 

middle of a Landau level, which is partially empty,and pxx is finite. Since pxx is allready 

finite, scattering due to FIR photons is expected to induce a much weaker change in pxx 

and hence a smaller a&. This picture is consistent With the behavior seen in our spectra at 

low fields, even though we are not fully in the Quantum Hall regime. Thus B=0.31T 

corresponds to a Hall Plateau and B=0.328T corresponds to a Hall Riser. 

Unfortunately dc transport measurements of the pxx were not made on this device 

simultaneously with the AIdc measurements to verify in fact that B=0.31 T is a Hall 

Plateau and B3.328 T is a Hall Riser. 

In addition to the data described above, we have made preliminary measurements at 

B=l T, where the bulk magnetoplasmon absorption of the 2DEG is well above the spectral 

range of the pulse. These data are shown in Figures 16.18(a) and 16.18(b). The behavior 

in Figs. 16.12(a) and 16.12(b) is observed at this high field as well; suppression of the 

low-frequency response as Eois varied away from Ef, and a much stronger effect when 

Eo<Ef. From the discussion in Section 5.1.2, we know that T(E) should become sharper 

in a magnetic field. This would imply that the low frequency suppression will be stronger 

in a field. In the future, more detailed experiments could be performed to verify this 

prediction. Nevertheless, these preliminary results verify that the observed low frequency 

suppression is not due to changes in coupling to the magnetoplasmon. 

6.4 Conclusions 

In conclusion, this experimental study has demonstrated that PAT provides a 

consistent explanation for the dc current induced across a tunnel barrier by terahertz 

radiation. We have made the first measurements of PAT in a tunnel barrier as a function of 

source-drain voltage and gate voltage. From the gate voltage experiments, we find that the 

variation in barrier shape deduced from the model is a consequence of the crossover from 
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metallic to dielectric screening. Other possible mechanisms for the induced current, 

radiation-induced heating of the bulk 2DEG, heating of the contacts and wire bonds, and 

classical rectification, that exactly mimic the gate voltage and source-drain voltage 

dependence of PAT is highly unlikely. 
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6.6 Figure Captions 

Figure 6.1: (Baby) Conductance vs. Gate (baby) voltage at T=O.9 K and B=O T in the 

presence of a source-drain bias of 50 pV. 

Figure 6.2: Same as Fig. 6.1 with series resistance removed. Step like structure is direct 

evidence for conductance quantization in units of 2e2/h. 

Figure 6.3: First measurements of AIdc (~1000) vs. V, in a QPC in the presence of 

terahertz pulses at T=O. 5K at different power levels. The step like structure in hc vs. V, 

is also shown. The bipolar structure of QC appears near the steps of I&. 

Figure 6.4 (inset) Nonlinear I-vsd curve of a QPC in the presence of large negative gate 

voltage, V,=-1.936 V. (a) Time domain interferogram in a QPC at Vsdz5.0 mV. (b) Same 

as (a) but Vsd = 2.7 mV. These bias points are labeled in the inset. 

Figure 6.5: The main panel shows Fourier transforms of interferograms at source-drain 

bias voltages of 2.7,3.5,4.0, and 4.6 mV. Each spectrum is normalized to the spectrum 

at Vsd =5.0 mV (open circle in inset). (inset) Nonlinear Idc - Vsd curve ofi QPC with 

markers for bias values. The threshold for absorption moves to higher frequencies as the 

bias is lowered. 

Figure 6.6: Representative time domain interferograms at Vsd=4.6 mV and at B=O and 

B=0.2 T. The dramatic change in the response can be attributed to a magnetoplasmon in 

the bulk 2DEG. 

Figure 6.7: AI& at fiied frequencies, 110, 150, and 170 GHz as a function of magnetic 

field. The peak in aC moves to higher magnetic field as the frequency is increased. This 

positive dispersion is plotted in the inset. The dashed curve is a fit to the magnetoplasmon 

dispersion relation and the solid curve follows the cyclotron resonance condition. 
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Figure 6.8: New terahertz interferometer. BS=wire grid beam splitter. P=polarizer. 

PC=photoconductive Auston switch. We measure &c in the device as a function of time 

delay, 2, between the two pulses. Fourier transformation of AIdcgives the frequency 

response of the device. 

Figure 6.9: Schematic diagram of the antenna-transmission line coupling to the device. 

Figure 6.10: Scanning electron micrograph of tunnel barrier device. 

Figure 6.1 1: Solid curve is the source-drain current for an applied bias of 100 pV. The 

dotted curve is the induced current. 

Figure 6.12: Re[ AZk( v)] at B=O measured at different gate voltages indicated in the inset. 

The solid curves correspond to measured data. The dashed lines are a fit to a PAT theory. 

(a) Re[ AIdc( v)] for Eo>Ef. Inset: The dc current flowing through the tunnel barrier vs. 

gate voltage in the absence of pulsed excitation.(b) Re[ Aldc( v)] for EocEf. Inset: Ratios 

of Re[ N d c (  v) J relative to spectra "0". 

Figure 6.13: (a) Tunnel barrier with barrier height, h, greater than the Fermi Energy, Ef. 

An electron incident at energy, E, is scattered by a harmonically varying potential at 

frequency v in the left lead into a direct beam at energy E and two sidebands at energies 

Ekhv. (b) Similar to (a) but with EoiEf. 

Figure 6.14: Barrier height, Eo, and broadening, I?, as a function of V, obtained from fits 

of the data in Fig. 6.12 to a PAT theory. 

Figure 6.15: Solid curve is &c due to a s h g k  pulse as a function of magnetic field. The 

gate voltage is adjusted to maximize the photoresponse. Dashed curve is the frequency 

spectrum [ -AIdc(o(B)) 3 of the coupled terahertz power to the device. The cyclotron 

resonance formula was used to convert from frequency to magnetic field. 
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Figure 6.16: (a) Re[ AI&( v)] at typical magnetic fields. The spectra have been offset for 

clarity. (b) Plot of low frequency resonance at 25 GHz vs. magnetic field (boxes). Solid 

line is a fit to the magnetoplasmon dispersion relation. 4 

Figure 6.17: Re[ AIdc( v) J at adjacent mjnima (Bd.31 T) and maxima (B=0.328 T) field 

points in Fig. 6.15. The strength of the magnetoplasmon absorption at 125 GHz changes 

dramatically for this relatively small change in field. 

Figure 6.18: Preliminary measurements of Re[AIdc(v)] at B=l T measured at different 

gate voltages similar to Fig. 6.12. (a) Re[ AIdc( v)] for E,>Ef. Decreasing spectral strength 

corresponds to increasing Eo. (b) Re[ v)] for b<Ef. Decreasing spectral strength 

corresponds to decreasing Eo. 
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Chapter 7 

/ 

Con c 1 us ions 

In this thesis we began in Chapter 2 with the basic information needed to design 

terahertz pulsed sources and described how these sources can be implemented in a terahertz 

time-domain interferometer (THz-TDI) to characterize the dynamic response of an arbritrary 

nonlinear device. This technique is absolutely general and may be applied to my device 

that exhibits a non-linearity in its I-V characteristic. We believe that this technique will find 

its niche in probing devices which operate in exotic environments at ultralow millikelvin 

temperatures and high magnetic fields. 

In Chapter 4 we applied the THz-TDI technique to the measurement of the linear 

response of the quasiparticle current in a Nb/AlO,/Nb SIS tunnel junction for frequencies 

from 75 to 200 GHz. Our results confirm the crucial role the quantum susceptance plays 

in determining the linear response. Our results are in full agreement with the linear theory 

for photon assited tunneling described in Chapter 3. In addition, we have described 
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preliminary nonlinear spectroscopic measurements that may prove useful in the future for 

measuring the quasiparticle lifetime. 

In Chapter 6 we further demonstrated the generality of the THz-TDI technique by 

applying this method to measuring the dynamic response of a quantum point contact. This 

experimental study has shown that photon assited transport (PAT) provides a consistent 

explanation for the dc current induced across a tunnel barrier by terahertz radiation. We 

have made the first measurements of PAT in a tunnel barrier as a function of source-drain 

voltage, gate voltage, frequency, and magnetic field. 

The experiments on the quantum point contact described in this thesis represent 

only the beginnings of an entire field of study devoted to probing the ac response of 

mesoscopic devices. In the future we fully expect the THz-TDI technique pioneered by our 

group at Berkeley to become the method of choice in probing the dynamics of 

semiconductor nanostructured devices in the terahertz frequency domain. Indeed other 

. 

research groups are beginning to recognize the power of the interferometric method. For 

example van der Weide et aZ at the Max-Plank-Institute has begun to probe the picosecond 

response of a quantum dot using a modified form of our interferometric technique [7.1]. A 

number of interesting dynamical phenomena have been theoretically predicted in a quantum 

dot, such as the appearance of Rabi like oscillations [7.2]. In addition to the group at Max- 

Plank, J. Allam's group at Hitachi Cambridge in Europe has initiated a program to apply 

the interferometeric technique to measure the time of flight of electrons in a mesoscopic 

nanostructure C7.31. 
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