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Enhancing Data Locality 
by Using Terminal Propagation 

Bruce Hendrickson* Robert Lelandt 

Abstract 

Termznal propagation is a method developed in the 
circuit placement community for adding constraints to  
graph partitioning problems. This paper adapts and 
expands this idea, and applies it to the problem of 
partitioning data structures among the processors of a 
parallel computer. We show how the constraints in ter- 
minal propagation can be used to  encourage partitions 
in which messages are communicated only between ar- 
chitecturally near processors. We then show how these 
constraints can be handled in two important parti- 
tioning algorithms, spectral bisection and multilevel- 
KL. We compare the quality of partitions generated 
by these algorithms to each other and to  partitions 
generated by more familiar techniques. 

1 Introduction 

To perform a computational task on a parallel com- 
puter it is first necessary to partition the task into 
pieces and to map the pieces to difirerent processors. In 
man)- caiculations the underlying computaticnai struc- 
ture can be conveniently modeled as a graph in which 
vertices correspond to computational tasks and edges 
reflect data dependencies. The partitioning and rnap- 
ping problems can then be addressed by assigning pro- 
cessor labels to vertices of the graph so that the cor- 
responding assignment of tasks to processors leads to 
efficient execution. 

Graph partitioning in this context has been an ac- 
tive area of research recently, and many new and effec- 
tive strategies have been developed. Much less atten- 
tion, however, has been paid to the mapping problem. 
When the mapping problem has been considered, it has 
typically been addressed as a post-processing problem 
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in which the pieces of a a given partitioning must be 
assigned 60 processors in an intelligent fashion. 

This primary emphasis on partitioning is justified 
by the impact a partition has on communication within 
a parallel computer. The number of graph edges cut 
in a partition typically corresponds to  the volume of 
communication in the parailel application, and, since 
communication is expensive, minimizing this volume 
is extremely important in achieving high performance. 
Mapping, in contrast, does not affect communication 
volume. Furthermore, with current parallel hardware, 
the cost of an isolated message between architecturally 
distant processors is only marginally greater than that 
of' a message between nearest neighbors. 

Nevertheless, mapping quality is still very impor- 
tafit. A message between disiant processors must tra- 
verse many TTires, which are rendered unavailable to 
transmit other messages. Conversely, if each message 
consumes onlv a small number of wires, more messages 
can be sent at once. It is in this competition for wires 
that a good mapping can be distinguished from a bad 
one. More formally we say that a good mapping is one 
that reduces message congestzon and thereby preserves 
communication bondwzdth. Many scientific computing 
applications of interest, for example those employing 
an iterative sparse solver kernel, have a structure in 
which many messages simultaneously compete for lim- 
ited communication bandwidth, and good msppings 
are especiall5- important in these cases. 

In such problems the simple, two-phased approach 
in which the mapping is decoupled from the partition- 
ing may be effective. But this is intuitively not optimal 
because it  does not allow for trading-off between parti- 
tion and mapping quality. Ideally, the partitioning and 
mapping should be generated together in such a way 
that some aggregate cost metric is minimized. Wal- 
shaw, er, al. 1211 describe one way of performing this 
coupling. and show that it can significantly reduce the 
run time of applications. Here we apply a very differ- 
ent approach to address the same problem. 

'This paper describes a general framework for cou- 
pling recursive partitioning schemes' to  the mapping 

'Most partitioningmethods are recursive, but some, e.o. the 
greedy method dyscribed in [SI, are not. The method described 
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problem and shows how to apply it to  two important 
algorithms, multilevel-KL and spectral bisection. Our 
approach is based upon an idea taken from the circuit 
placement community known as terminal propagation 
in which the result of one partitioning step in the re- 
cursion is used to  constrain subsequent steps. The 
constraints effectively transmit mapping information 
between partitioning problems. 

As a simple illustration consider the mesh depicted 
in the left side of Fig. 1, and to the right its partition 
into four sets using the popular spectral bisection al- 
gorithm [17]. The mesh was first sliced horizontally, 
and then the two halves were divided independently. 
Although the interfaces between the regions are quite 
small, the region just above the horizontal cut is adja- 
cent to all the others. Consequently, this decomposi- 
tion can not be mapped to  a hypercube or mesh topol- 
ogy in such a way that all communication is between 
neighboring processors. 

Figure 1: Simpie mesh (left) and its spectral bisection 
decomposition (right). 

However, if we partition the same mesh using 
the terminal propagation variant of spectral bisection 
which uTe describe in $5.2. me obtain one of the two 
decompositions depicted in Fig. 2. Here we perform 
two cuts exactly as before. but in the third cut we 
include constraints to  encourage a partition in which 
only neighboring processors need communicate. In 
both cases, the interfaces reniain small, but the re- 
sulting decomposition can now be mapped optimally 
to a hypercube or mesh. 

In the next section we describe the terminal prop- 
agation idea, showing how it couples recursive parti- 
tioning and mapping. In $3 we review an important 
partitioning algorithm from the circuit community and 
show how it can include terminal propagation. In $4 
we extend this technique to incorporate it in a mul- 
tilevel partitioning approach An enhanced spectral 

in this paper does not apply to these non-recursive methods. 

Figure 2: Two decompositions of the simple mesh 
produced by spectral terminal propagation. 

partitioning algorithm including terminal propagation 
is described in $5. We present experimental results 
obtained with these new methods in $6. 

2 Terminal propagation 

Mos-c of the grsph partitioning aigot-ithme being 
used today were developed by researchers in the cir- 
cuit piacement community. When placing circuit ele- 
ments on a chip, it is important t o  keep wire lengths 
as short as possible. This saves valuable space on the 
chip 2nd helps keep transmission delays lour. One im- 
portant methodology for positioning circuit elements 
involves partitioning the graph which describes the 
circux Typically, the circuit is partitioned into two 
pieces oi approximately equal size with few wires cross- 
ing between them. The chip area is similarly divided. 
and the two circuit halves are placed in the two chip 
halves This process is POW repeatsd recursively on 
each half-problem. Since few wires cross between the 
two halves, most wires are localized and so kept short 

This simple approach has an important shortcom- 
ing Since the two halves are completely decoupled. 
there 1s no longer any mechanism to minimize the 
length of the wires which cross between them. For in- 
stance consider dividing the circuit and chip area into 
quarters as shown in Fig. 3. In the first step, we divide 
the circuit in half, assigning one part to the left half of 
the chip and the other to the right half. Next we divide 
the left half circuit again, assigning the resulting pieces 
to the upper and lower left quadrants. Now consider a 
wire :bat ivas cut in the first partition, and assume its 
left enapoint is located in the lower left quadrant (at, 
for example. point 1). Clearly, it would be preferable 
from -!I? point of view of minimizing wire length if its 
right endpoint were assigned t,o the lower right quad- 



rant a t  point 2 rather than the upper right quadrant 
at  point 3, but simple partitioning algorithms are too 
shortsighted to  recognize this. 

Figure 3: The basic motivation for terminal propa- 
gation in the circuit layout context. 

It was to address this myopia that Kernighan and 
Dunlop introduced the concept of terminal propaga- 
tion in [53. Their approach was intimately coupled with 
the popular partitioning algorithm due to Kernighan 
and Lin [15], but we describe it here more generally 
to allow adaptation of the underlying idea to other re- 
cursive partitioning algorithms The basic idea of wr- 
minal propagation is to associate with each vertex in 
the subgraph being partitioned a value which reflects 
its net desire or pre ference  to  be in the top quadrant 
instead of the bottom quadrant. Note that this prefer- 
ence is a function only of edges that connect the vertex 
to verlices which are not in the current subgraph. The 
name t e r m z n a l  propagatzon  comes from circuit layout 
applications in which there are zdditional constraints 
of this type which come from the wires which con- 
nect to  the boundary of the chip at specified loca- 
tions. These i e rmana l s  impose preferences upon how 
subgraphs should be partitioned, and these preferences 
are propagated' through the recursive partitioning pro- 
cess. 

-4n analogous problem arises in parallel computing. 
Consider a graph describing a computation which we 
want io partition among processors. The usual man- 
ner for addressing this problem involves dividing the 
graph into two pieces, and assigning them to halves 
of the parallel machine. We can apply this approach 
recursively until each processor is assigned a unique 
piece of the graph. Unfortunately, this approach does 
not include any consideration of architectural distance 
between processors. Since edges between subproblems 
are ignored in the recursion, messages may end up 
traversing many wires. In the language of the previous 
section, mapping is decoilpled from partitioning. This 
is the same problem that occurs in circuit placement, 
which motivates our use of terminal propagation. 

In the parallel computing context we need a siightly 
differeiir b u t  closely related interpretation of the termi- 
nal propagation which we depict in Fig. 4. The quad- 
rants now represent processors or sets of processors of 
(for example) a hypercube or a 2-dimensional mesh 
architecture The (sets of) processors can be identi- 
fied b> a 2 bit code and the number of wires neces- 
sary :G traverse between two processors is the number 
of bits i n  which their processor identifiers diffec. As- 
sume $re haie already partitioned the graph into two 
pieces and assigned them to left and right halves of 
the computer, and that we have similarly divided the 
left half-graph into top and bottom quadrants. When 
partitioning the right half-graph between processors 
10 and 11 we would like messages to travel short dis- 
tances The mapping shown in the left hand figure is 
better since it results in a total message distance of 
2 x 1 t- 2 = 4 whereas the mapping in the right hand 
figure induces a total cost of 2 x 2 + 1 = 5. 

Figure 4: The terminal propagation idea in the par- 
allel wmpu:ing context. 

rnis argument in terms of preference val- 
ues: since ;he vertex in question has two neighbors in 
the iom: :eft quadrant and one in the upper ieft, its 
preference TO be in the lower right quadrant will be 1. 
If the e&<-- to these external vertices had weights, the 
preference vaiues would be scaled appropriately. Now, 
instead ai aartitioning to  minimize just the number 
of edges crossing between the upper and lower right 
quadrants. \<-e minimize the sum of the number of cross 
edges and ihe unsatisfied preferences. 

This o3jective function can be phrased alge- 
braid]!-. tt-hen working on a subproblem, we con- 
strucr a 2rGerence value €or each vertex based upon 
the e d g ~ s  ;.;nich connect it t o  vertices in other sub- 
problems. Sal- we are deciding whether to  place vertex 
i in  Oi l ?  pmit ion or the other, and i is connected to a 
vert.ex j tvhich is not in the current subproblem. The 
edge b e r w t n  i and j contributes a value to  the pref- 
erence eqca! to w,(eij)(Dz - D l ) ,  where we(eij) is the 
meighr of ~ 3 s  edge, D1 is the architectural distance be- 



tween i and j if i is placed in the first partition and 
0 2  is the architectural distance between i and j if i is 
placed in the second partition. If desired, we can also 
scaie the vector of preferences to adjust in our metric 
the relative importance of architectural locality versus 
communication volume. 

With this setup we can now state the problem fcr- 
mally. Let G = ( y  E) be a graph with vertices TJ E V 
and edges e i j  E E. We allow either edges O r  verticns 
to have positive weights associated with them, which 
we denote by wv(o) and we(eij) respectively. We will 
use n (and m) to denote the number of vertices (and 
edges) in the graph. Assume we want to divide V into 
two subsets VI and Vz, and that we have a a vector d of 
preferences for the vertices of V to be in VI .  The cost 
associated with a partition now has two components. 
First, every edge eij E El crossing between VI and Vz 
contributes a value of we(e;j) .  Second, for each vertex 
in Vi with a negative preference we add the magnitude 
of the preference to the cost, and similarly for each ver- 
tex in Vz with a. positive preference. Our goal is to  find 
a partition of the vertices into two sets of nearly equal 
size in which this combined cost function is minimized. 

Unfortunately, this problem is NP-hard, so an ef- 
ficient, general algoriihrn is unlikely t:, :xist. In th? 
next two sections we will describe two heuristics for 
this problem that generaiize popular techniques for the 
unconstrained partitioning problem. 

3 The algorithm of Kernighan/Ein and 
Fiduccia/Mat theyses 

3.1 Standard KL/FM 

In !970! Kernighan and Lin proposed a heuristic 
f9r partitioniag graphs based apon greedy exchange of 
vertices to reduce the number of edges cut by a par- 
tition [IS]. 'Their basic approach has been enhanced 
and improved through the years, most significantly by 
Fiduccia and Mattheyses who devised a linear time 
variant [7]. This approach to partitioning is often re- 
ferred to as KL/FM after these authors. Most of the 
ivork on this algorithm, including the above two pa- 
pers! was motivated by the circuit placement problem. 

The K L j F M  algorithm.is a technique for improving 
an initial, perhaps random, partition. The key notion 
is that of the gain of a vertex, the net reduction in 
cuts which wouid ensue if the vertex were moved to 
the other partit,ion. The basic step is selecting and 
moving a vertex with the highest gain value. 

There are two details which add complexity and 
considerabie power to this very simple idea. First, 
in order to keep sets from becoming unbalanced, only 

moves betxeen equal sized sets or from the larger to 
the smaller are allowed. Second, the algorithm contin- 
ues trying to move vertices even if doing so makes the 
partition temporarily worse. The hope is that this re- 
duction in quality will be compensated for by a larger 
improvement later on. This was the key insight of 
Kernighan and Lin's paper and makes the approach 
superior to  a simple greedy algorithm. 

The algorithm thus consists of two nested loops as 
depicted in Fig. 5. In the inner loop, vertices whose 
movement would maximally improve the partition are 
selected, subject to set size constraints. Once a ver- 
tex is moved, the gain values of all its neighbors are 
updated. A particular vertex is allowed to  move just 
once during each pass through the outer loop. The 
best partition encountered in this sequence of moves is 
recorded, and the outer loop resets the current parti- 
tion to this best partition. 

Best Partition := Current Partition 
Until N o  better partition is discovered 

Compute all initial gains 
Until Termination criteria reached 

Seiect vertex to  move 
Perform move 
Update gains of ail neighbors of moved vertex 
If Current balanced & better than Best Then 

Best Partition := Current Partition 
End Until 
Current Partition := Best Partition 

End Until 

Figure 5:  .In algorithm for refining graph partitions. 

The main cmtribution of Fiduccia and Mattheyses 
was to cast Kernighan and Lin's algorithm in the form 
depicted in Fig. 5, and to show how each pass through 
the outer loop could be performed in linear time if edge 
weights were integers. The key idea is to compute all 
gains at  the beginning of the outer loop and store them 
in an efficienr data structure. Move selection and gain 
value updates can then be performed in constant time 
Within the inner loop, gain values are never computed 
from scratch. but rather are changed incrementally. 

3.2 KL/FM with Terminal Propagation 

T'ne paper by Kernighan and Dunlop which in- 
troduced the concept of terminal propagation [SI de- 
scribed a simple enhancement to KL/FM that, al- 
lows inclusion oE terminal propagation considerations. 
There are a number of details in their paper which are 



relevant to circuit placement problems, but here we 
merely extract the essential idea. 

First we add an additional, special vertex to each 
partition which is not allowed to switch partitions. 
Now for each normal vertex in the subproblem with 
positive preference to be in partition 1. we add an edge 
to the special vertex in partition 1 with a weight equal 
to this preference. Otherwise, we add an edge to the 
special vertex ir- partition 2 with a weight equal to  the 
negative of this preference. Now when the KL/F?M 
algorithm is run, the external edge information is in 
ternalized in the connections to the special vertices. 

Another, more elegant approach is possible when 
using a Fiduccia/Mattheyses type implementation in 
which gain values are only computed once and are up- 
dated incrementally thereafter. The preferences are 
included in the initial gain calculations while the rest 
of the code remains unchanged. Specifically, if a ver- 
tex is in set 1 and its preference is positive, the initial 
gain should include a contribution equal to  the nega- 
tive of the preference. If that same vertex is initially 
in set 2, the initial gain should include a term equal 
to the the preference. Similar considerations apply to 
vertices with negative preferences. The advanthge of 
this sxond  approach is that the basic XL,/FM loop 
Lieed not be modified at  all. In contrast, the first ap- 
proach requires code to handle special vertices which 
are not allowed to  move, and additional storage for all 
the edges incident to the special vertices. 

4 Multilevel-KL 

4.1 Standard Multilevel-KL 

The primary sliortcoming of the KL/FM algzxithm 
is that it enacts only local modifications LO a parti- 
tion. Although it is quite effective at finding local min- 
imums, its solution may be quite far from the global 
optimum. This is particuiariy true for large graphs. 

One possible remedy is to initialize KL/FM with a 
parcition generated by another algorithm, for example 
the spectral bisection method discussed in $5.1. An al- 
ternate approach. suggested independently by several 
authors [ 2 ,  131 is to apply KL/FM on different scales. 
One way to  think of this is as an algebraic multigrid 
technique in which KL/FM serves as the smoother 

Such a muhlevel-KL algorithm consists of three 
phases, as sketched in Fig. 6. First, a sequence of suc- 
cessively smaller graphs is generated from the original 
graph. Next, the smallest graph in the sequence is par- 
titioned using some technique. This partition is then 
propagated Sack through the sequence of intermediate 

graphs, with I<L/FM refinement being applied to some 
partitions of the intermediate graphs. 

I 
(1) Until graph is smal! enough I 

graph := coarsen(graph) I 
I 

(2) Partition graph 

Un t i l  graph = originai graph I 
graph := uncoarsen(graph) 
partition := uncoarsen(partition) 1 
locally refine partition if desired. 1 

I 
( 3 )  

Figure 6: A multilevel algorithm for graph partition- 
ing. 

It is important that the small graphs represent their 
larger counterparts as accurately as possible. In the 
.partitioning context, there are two properties we would 
like to preserve the in construction of the smaller 
graphs: the cost of a partition should be accurately 
preserved, and so should the set sizes so that a bal- 
anced partit.ion of the small graph is also a balanced 
partit,ion D f  the larger graph. These properties are ?re- 
served by the algorithm discussed here and in 1131. 

The key mechanism in the construction of a small 
graph is an operation known as edge contraction. In 
this step, two vertices joined by an edge are merged, 
and the resulting vertex is given edges to  the union 
of the neighbors of the two mekged vertices. The new 
vertex is assigned a weight equal to the sum cf the 
weights of its constituent vertices. Edge weights are 
not changed ucless both merged vertices are adjacent. 
to the same neighbor. In this case, the new edge that 
represents the two original edges is assigned a weight 
equal to the sum of the weights of the edges it replaces. 
So, for example, contracting one edge of a triangle with 
unit edges and vertex weights would yield a graph with 
a vertex of weight one and a vertex of weight two, 
joined b>- an edge of weight two. 

The attractive feature of this contraction step is 
that it preseri-es cut and set sizes in a weighted sense. 
A partition of a small graph implies a partition of a 
larger graph since each vertex in the small graph is 
merely an amalgamation of vertices of the larger one. 
The toral weight of smali graph edges that are cut iri 
the partition xi11 be precisely equal to the totai weight 
of the edges cut in the larger graph. Similariy, the 
totai weight of r-ertices in each of the two small graph 
sets is exactly equal to  the weight of the vertices in the 
corresponding partition of the large graph. 

'To construct a small graph from a !arger one we 
need to contract a number of edges. Ideally, these 



edges will be well distributed throughout the large 
graph so the overall shape of the small graph will be 
similar to that of its larger counterpart. One way to 
do this is to select a maximal set of edges that share no 
vertices. Such a set is known as a maximal matching, 
and can be easily generated in linear time. 

4.2 Multilevel-KL with Terminal Propa- 
gation 

The multileve! approach can be enhanced to in- 
clude terminal propagation in a fairly straightforward 
way. Since we are applying KL/FM on the smaller 
graphs, we can apply the terminal propagation variant 
of KL/FM. There are only two issues that need to  be 
addressed. First, what partitioner should be used on 
the smallest graph? And second, how are preferences 
generated for small graphs? 

One suitable answer to  the first question is the spec- 
tral bisection algorithm with terminal propagation de- 
scribed in $5.2. An alternate approach would be to use 
the original Kernignan and Lin strategy of applying 
KL/FM to random initial partitions. If the smallest 
graph is small enough, this should work wel!. 

The spcond question, how to prcduce preferences 
for small graphs, is also easily answered. Consider 
a vertex of a small graph, which is a union of large 
graph vertices. The small graph vertex will generally 
be connected to some set of vertices not in the current 
subproblem. It is the total pull of these edges which 
determines the preference for the vertex. But this total 
pull is just the sum of preferences of the large graph 
vertices which comprise the small graph. Hence, wheE 
contracting an edge, the resziting L-erfex should be as- 
signed a preference which is equal to the sum of the 
preferences of the two original vertices. 

5 Spectral bisection with terminal 
propagation 

An important class of partitioning algorithms 
known as spectral methods uses eigenvectors of a matrix 
associated with the graph to generate a partition. This 
surprising connection dates back to work in the early 
70s by FiedIer [8, 91 and Donath and Hoffman [3, 41. A 
particular spectral method that has come to be known 
as spectral bisection gained widespread acceptance in 
the parallel computing community following the work 
of Pothen, Simon and Liou [16] and Simon [17]. In this 
section we briefly rederive the spectral bisection algo- 
rithm for weighted graphs developed in [12], and then 
show how it can be modified to  incorporate terminal 
propagation constraints. 

5.1 Standard Spectral Bisection 

One wa_v to describe a partition is to  assign a value 
of -1 to a.11 the vertices in one set and a value of -1 
to all the vert,ices in the other. If we denote the value 
assigned t.o 1-ertex i by z ( i ) ,  then the simple fiinction 
( ~ ( 2 )  - z ( j ) ) ' / 4  is equal to 1 if vertices i and j are in 
differat pmicions and 0 otherwise. This allows us LO 
write the parritioning problem as 

c wu(i)z(i)  M 0 
2 

(b) x ( i )  = i l .  

Constraint (a) is an algebraic way of saying that each 
partition musc have about half the total vertex weight. 
We do DOC specify it as a precise equality since it may 
not be possible to divide the vertices into t,wo sets of 
precisely equal weight. 

Recasing the partitioning problem this way does 
cot, m i k e  i t  any easier to solve. However, it does iden- 
tify a possible approximation that will lead io  a much 
simpler problem. Rather than insisting that all 2's be 
exact!!- 21. TW aliow them to take on any value and 
consequently replace constraint (b) with a norm con- 
dition on the vector z of values ~ ( i ) .  Once we solve the 
resuhing continuous problem, we can find the i l  vec- 
tor ~ h i c h  is riearest to  the continuous optimum, and 
use chis K G  pariition the graph. Although this strategv 
does ~ i o t  guarantee that the optimal solution will 3e 
found. i: xro;ks well ir, piactice. 

More forma!!>-, we approximate (1) by the following. 

{a' 

(b) 

i 

* ( i ) 2  = 72. 

We have repisced the previous constraint (b) with a 
normaiizarion which is appropriate for the &1 problem. 
We h a w  aiso changed constraint (a) to  a strict equality, 
since This can be achieved in the continuous problem. 

The nexi s ~ e p  is an algebraic transformation of the 
objecrive fuc:ion. It is not hard to  show that 



where L is the Lapdacian matrzxof the graph defined 
by 

The Laplacian matrix has a number of nice properties. 
It is symmetric, so it has a complete set of orthonormal 
eigenvxtors, and it is positive semidefinite. Because 
the sum of all the values i:i a row is zero, the constant 
vector is an eigenvector Rith eigenvalue zero. If the 
graph is connected, all other eigenvalues are positive. 
Eq. (2) can now be rewritten in matrix terms as 

1 
4 

Minimize f(z) = - 2 ~ z  

Subject to  

(a) 20, z = 0 T 

T (b) z z = n. 

(3) 

With a change of variables we can reduce ( 3 )  to a 
form in which we will recognize it as a standard eigen- 
problem First define s ( i )  = a a n d  t(i) = l / s ( i ) .  
Let y = Diag(s)e. and iet A = Diag(t)TLDiag(t). 
Si:ice the z valnea ape relaxatiom of fl, the appropri- 
ate normalization for the y vector is y’y = xi w v ( i ) ,  
which we denote by w,. With this notation, we can 
recast ( 3 )  as follows. 

1 
4 

Minimize f (y)  = -yTAy (4) 

Sub j ec t, to 

(a) s T y  = o 
(b) y’y = u V .  

It is straightforward to  verify that s is an eigenvector 
of A with eigenvalue zero. A is symmetric and pos- 
itive semi-definite. Furthermore, if the graph is COG- 
nected, S is the only eigenvector with a zero eigenvalue. 
(See [12] for proofs of these properties.) 

Now denote the eigenvalues and corresponding nor- 
malized eigenvectors of A by A; and u, respectively, 
where the eigenvalues are indexed in increasing value, 
The solution to (4) can be expressed as a linear com- 
bination of the u,’s. where constraint (a) excludes 
an contribution from u1. Subject to the constraints. 
it is now easy to see that y’Ay is minimized when 

Thus the solution to (4) is a multiple of the second 
eigenvector of A. This vector can be easily transformed 
to find the solution to (2), which can be used to  find a 
nearby discrete point which partitions the graph. The 
whole procedure is sketched in Fig. 7. The second 
eigenvector of a Laplacian matrix is often known as a 

y = f i u a .  

Fiedler vector in recognition of the pioneering work of 
Miroslav Fiedler [S,  91. 

Form L ,  the Laplacian matrix of the graph 
Generate .4 = Diag(t)LDiag(t) 
Compute y = second lowest eigenvector of A 
Generate = Diag(t)y 
Find median value y among entries in z 
Partition 1 = vertices with 2 value _< y 
Partition 2 = vertices with z value > y. 

Figure 7: The weighted spectral bisection algorithm 

The dominant cost of this spectral bisection algo- 
rithm is the calculation of an eigenvector of L. The 
traditional approach to this problem is the Lanczos 
algorithm [lo], an iterative method in which each it- 
eration is dominated by a matrix-vector multiplica- 
tion. Barnard and Simon have described a multilevel 
eigensolver that can significantly speed up the stan- 
dard spectral bisection algorithm [l]. 

5.2 Spectral Bisection with Terminal 
Propagation 

In [18, 191 Van Driessche and Roose show how to 
modify the standard spectral bisection algorithm to in- 
clude cerrain kinds of constraints. The original motiva- 
tion for their work was reduction of data movement in 
a dynamic repartitioning, but, their ba.sic idea can also 
be applied to the constraints associated with terminal 
propagation. -4s with the standard spectral technique, 
t h z  basic idea is to consxruct a discrete optimization 
problem and then to relax the dis-reteness constraint. 

In the standard derivation (I) we began with an al- 
gebraic formulation of the exact partitioning problem. 
-fie noii- need i3 enhance the objective function to in- 
clude t,erininal propagation considerations. If d ( i )  is 
the preference for a vertex to be in the set denoted 
by +l which will define to be, say, V I ,  then the new 
problem we x-ant to solve is 

Subject ro 

We n o ~ r  make the same approximation as in the stan- 
dard specird bisection problem, replacing constraint 



(b) by a normalization condition to obtain 

Minimize f(x) = -x*Lz 1 - -d ' T  2 (6) 
4 2 

Subject to 

(a) wyx = o 
(b) 2 L = n. T 

We now make the same variable transformation 
used to  take us from (2) to (4). Letting h = Diag(t)d 
and muftiplying the objective function by 4, we have 

Minimize f(y) = yTAy - 2hTy 

Subject to  

(a) sTy = o 
(b) Y T Y = w v .  

(7) 

Unfortunately, the solution to (7) is not as simple 
as the solution to  (4), its standard counterpart. We 
introduce Lagrange multipliers q and p, and look for 
stationary points of the function 

Setting t,he partial derivative of F with respect to q 
or p yields the twc constraint equations. Taking the 
derivatives with respect to the components of y, we 
obtain 

2Ay - 2h + vs - 2p1~ = 0. (9) 

We can calculate 17 by left multiplying (9) by sT 
Since s is orthogonal to  y and s is a zero eigenvector 
of A. we discover that r, = 2sTh/w,. We now define 

which allows us to  rewrite (9) as 

This extended ezgenproblem must be solved subject to 
the constraints in (7). Although this problem gener- 
ally has multiple solutions, Van Driessche and Roose 
have shown that the solution which minimizes the ob- 
jection function is always the y vector associated with 
the smallest possible value for p [18]. As with the 
standard spectral bisection approach, once 8 solution 
to (11) is computed. it is transformed back to a soiu- 
tion of (6), from xhich a nearby discrete soiution can 
be found 

An efficient. Lanczos based procedure for solving 
the extended eigenproblem can be found in i14, 181, 
but is too lengthy io include here 

6 Results 

The algorithms described in the previous sections 
have been implemented in Chaco 2.0 [ll], and we re- 
port some experimental results here. All the runs were 
performed a Sun Sparcstation 20 with a 50MHz clock 
and 64 Mbytes of RAM. We will describe results from 
four different. algorithms: 
MLKL: the multilevel-KL method from $4.1, 
MLKLTP:  the multilevel-KL algorithm with termi- 
nal propaga.tion described in $4.2, 
SKL: spectral bisection from $5.1 combined with a 
pass of standa.rd KL/FM from $3.1, and 
STPKL spectral bisection with terminal propagation 
as presented in $5.2 combined with the terminal prop- 
agation version of KL/FM discussed in $3.2. 
For the spectral algorithms we solved to  residual tol- 
erances of and we used a variant of Barnard and 
Simon's multilevel eigensolver for standard spectral bi- 
section. For multilevel-KL and the multilevel eigen- 
soiver, the smallest graph had at  most 200 vertices. 

U7e monitored four metrics of partitioner quality. 
First was the number  of edges cut: which correspmds 
c!oselg t.0 ill? total communication volume. Second 
was hops in wnizh -ne niultiply each cut edge by the 
archit.ectura1 distance between the two processors owii- 
ing the endpoints. Third was messages n-hich is the 
total number of messages required in a step of an iter- 
ative solver using the decomposition. The final metric 
was the dime required to  produce the decomposition. 

Our first example graph is barth5, a 2D finite ele- 
ment grid n-ith niangular elements containing 15606 
vertices, an6 43378 edges' The results of partitioning 
and m a p p i q  this graph to a 6-dimensional hypercube 
are presented in Table 1. 

I MLKL MLKLTP SKL STPKL 

hops 4532 3594 5052 
messages , 238 
time (s) 1O.i 12.2 30.8 32.6 

Table  1: Results of different partitioning algorithms 
on the barTh5 mesh for a 6-dimensional hypercube. 

-1s expmec rerminal propagation significantly im- 
proves the dara locality as evidenced by the significant 
reduction E haps. The average distance a datum has 
to :ravel is reduced from 1.7 to  1.1 in both algorithms. 

'This. and m d  a h e r  meshes, can be obtained via  anonymous 
ftp to  r iacs . th  iil :he directory /pub/grids. 



This comes a t  the cost of a modest increase in com- 
munication volume as reflected by the increase in the 
cuts metric, as well as an increase in  number of mes- 
sages. The time required to perform the partitioning is 
slightly increased by the use of terminal propagation. 

Kext, we partitioned the ocean mesh among the pro- 
cessors of a i o  x 20 mesh. This is a 3D finite difference 
grid of the world’s oceans comprised af about 143K 
vertices and l lOK edges, The ;esults are presented in 
Table 2. Xote that for this problem, we need to be 
able to bisect into two sets of unequa! size. This is 
straightforward to  do with the multilevel-KL method, 
and a generalization to  this case of spectral bisection 
with terminal propagation is described in [IS]. 

37847 45715 38365 52292 

messages 
186.7 690.3 477.5 

Table 2: Results of different partitioning algorithms 
cn the ocean mesh for s 10 x 20 grid. 

Again we observe that terminal propagation signifi- 
cantly improves locality, reducing the average number 
of wires traversed by a message from 2.7 to 1.3 in the 
multilevel-KL algorithm, and from 2.7 to 1.2 in the 
spectral method. As bel’ore this locality is paid for by 
an increase in communication volume. However, un- 
like the previous problem the number of messages is 
significantly reduced by terminal propagation. Since 
communication is local and meshes have many fewer 
processors in their neighborhood than hypercubes, this 
result isn’t surprising. For this problem. the spectral 
terrilinal propagation algorithm was significantly faster 
than its standard counterpart. 

From these and similar experiments we make several 
observations. 

with and without terminal propagation. while re- 
quiring significantly less time. 

e For meshes, and for iarge hypercubes, termi- 
nal propagation usually results in  fewer messages 
needing to be sent. 

We have siso observed that Lanczos with termi- 
nal propagation is typically somewhat h t e r  than 
standdrd Lanczos, altnough we do not understand 
why. 

7 Conclusion 

We have described a general method for coupling 
the partitioning and mapping problems in such a way 
that contention for communication links is significantly 
reduced. In applications where many messages are si- 
multaneously competing for limited bandwidth, this 
approach may significantly improve performance. The 
general idea can undoubtedly be applied to a wide va- 
riety of recursix-e partitioning methods. Here we have 
focused on m-o Techniques which are currently popular 
in the parallel compcting cornmiinity The approach 
presznted is suficiently flexible t G  allow for the Lser to 
weight the relative importance of cuts and hops and 
hence Lrade OR communication volume and message 
congestion More generally, we believe there are likely 
to be other important ideas which can be adapted from 
from the circuit placement community to  assist with 
parallel computing. 

The techniques described in this paper can be ex- 
tended in several ways. The KL/FM terminal propa- 
gation algorithm can be generalized to work on more 
than two sets ai  once. This leads to a similar general- 
ization of the multilevel scheme. (Both generalizations 
are iinplerneimd i n  Cham 2.0.) The spectral termi- 
nal propagatior: method can also be extended to work 
on four sets at once i201, and in principle it can be ex- 
tended to work on eight sets simultaneously as well. 

Terminal propagation is an effective approach - -  
for coupling recursive applications of partition- 
ing with the desire to  restrict communication to Acknowledgements 

- 
nearby processors. This is evidenced by the fact 
that  the cuts and hops values are very similar 
in all the tables where terminal propagation was 
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