
-- , ' , .

Enhancing Data Locality
by Using Terminal Propagation

Bruce Hendrickson* Robert Lelandt

Abstract

Termznal propagation is a method developed in the
circuit placement community for adding constraints to
graph partitioning problems. This paper adapts and
expands this idea, and applies it to the problem of
partitioning data structures among the processors of a
parallel computer. We show how the constraints in ter-
minal propagation can be used to encourage partitions
in which messages are communicated only between ar-
chitecturally near processors. We then show how these
constraints can be handled in two important parti-
tioning algorithms, spectral bisection and multilevel-
KL. We compare the quality of partitions generated
by these algorithms to each other and to partitions
generated by more familiar techniques.

1 Introduction

To perform a computational task on a parallel com-
puter it is first necessary to partition the task into
pieces and to map the pieces to difirerent processors. In
man)- caiculations the underlying computaticnai struc-
ture can be conveniently modeled as a graph in which
vertices correspond to computational tasks and edges
reflect data dependencies. The partitioning and rnap-
ping problems can then be addressed by assigning pro-
cessor labels to vertices of the graph so that the cor-
responding assignment of tasks to processors leads to
efficient execution.

Graph partitioning in this context has been an ac-
tive area of research recently, and many new and effec-
tive strategies have been developed. Much less atten-
tion, however, has been paid to the mapping problem.
When the mapping problem has been considered, it has
typically been addressed as a post-processing problem

'Sandia National Labs, Albuquerque, NM 87135-1110.

t Sandia National Labs, .%lbuquerque, NM 87185-1109.

Dept. Computer Sciences, Katholieke Universiteit Leuven,

Email: bah@cs.sandia.gov.

Email: leland@cs.sandia.gov

Belgium.
Email: Rafael.VanDriessche&s.kuleuven.ac.be.

Rafael Van Driesschet

in which the pieces of a a given partitioning must be
assigned 60 processors in an intelligent fashion.

This primary emphasis on partitioning is justified
by the impact a partition has on communication within
a parallel computer. The number of graph edges cut
in a partition typically corresponds to the volume of
communication in the parailel application, and, since
communication is expensive, minimizing this volume
is extremely important in achieving high performance.
Mapping, in contrast, does not affect communication
volume. Furthermore, with current parallel hardware,
the cost of an isolated message between architecturally
distant processors is only marginally greater than that
of' a message between nearest neighbors.

Nevertheless, mapping quality is still very impor-
tafit. A message between disiant processors must tra-
verse many TTires, which are rendered unavailable to
transmit other messages. Conversely, if each message
consumes onlv a small number of wires, more messages
can be sent at once. It is in this competition for wires
that a good mapping can be distinguished from a bad
one. More formally we say that a good mapping is one
that reduces message congestzon and thereby preserves
communication bondwzdth. Many scientific computing
applications of interest, for example those employing
an iterative sparse solver kernel, have a structure in
which many messages simultaneously compete for lim-
ited communication bandwidth, and good msppings
are especiall5- important in these cases.

In such problems the simple, two-phased approach
in which the mapping is decoupled from the partition-
ing may be effective. But this is intuitively not optimal
because it does not allow for trading-off between parti-
tion and mapping quality. Ideally, the partitioning and
mapping should be generated together in such a way
that some aggregate cost metric is minimized. Wal-
shaw, er, al. 1211 describe one way of performing this
coupling. and show that it can significantly reduce the
run time of applications. Here we apply a very differ-
ent approach to address the same problem.

'This paper describes a general framework for cou-
pling recursive partitioning schemes' to the mapping

'Most partitioningmethods are recursive, but some, e.o. the
greedy method dyscribed in [SI, are not. The method described

mailto:bah@cs.sandia.gov
mailto:leland@cs.sandia.gov

problem and shows how to apply it to two important
algorithms, multilevel-KL and spectral bisection. Our
approach is based upon an idea taken from the circuit
placement community known as terminal propagation
in which the result of one partitioning step in the re-
cursion is used to constrain subsequent steps. The
constraints effectively transmit mapping information
between partitioning problems.

As a simple illustration consider the mesh depicted
in the left side of Fig. 1, and to the right its partition
into four sets using the popular spectral bisection al-
gorithm [17]. The mesh was first sliced horizontally,
and then the two halves were divided independently.
Although the interfaces between the regions are quite
small, the region just above the horizontal cut is adja-
cent to all the others. Consequently, this decomposi-
tion can not be mapped to a hypercube or mesh topol-
ogy in such a way that all communication is between
neighboring processors.

Figure 1: Simpie mesh (left) and its spectral bisection
decomposition (right).

However, if we partition the same mesh using
the terminal propagation variant of spectral bisection
which uTe describe in $5.2. me obtain one of the two
decompositions depicted in Fig. 2. Here we perform
two cuts exactly as before. but in the third cut we
include constraints to encourage a partition in which
only neighboring processors need communicate. In
both cases, the interfaces reniain small, but the re-
sulting decomposition can now be mapped optimally
to a hypercube or mesh.

In the next section we describe the terminal prop-
agation idea, showing how it couples recursive parti-
tioning and mapping. In $3 we review an important
partitioning algorithm from the circuit community and
show how it can include terminal propagation. In $4
we extend this technique to incorporate it in a mul-
tilevel partitioning approach An enhanced spectral

in this paper does not apply to these non-recursive methods.

Figure 2: Two decompositions of the simple mesh
produced by spectral terminal propagation.

partitioning algorithm including terminal propagation
is described in $5. We present experimental results
obtained with these new methods in $6.

2 Terminal propagation

Mos-c of the grsph partitioning aigot-ithme being
used today were developed by researchers in the cir-
cuit piacement community. When placing circuit ele-
ments on a chip, it is important t o keep wire lengths
as short as possible. This saves valuable space on the
chip 2nd helps keep transmission delays lour. One im-
portant methodology for positioning circuit elements
involves partitioning the graph which describes the
circux Typically, the circuit is partitioned into two
pieces oi approximately equal size with few wires cross-
ing between them. The chip area is similarly divided.
and the two circuit halves are placed in the two chip
halves This process is POW repeatsd recursively on
each half-problem. Since few wires cross between the
two halves, most wires are localized and so kept short

This simple approach has an important shortcom-
ing Since the two halves are completely decoupled.
there 1s no longer any mechanism to minimize the
length of the wires which cross between them. For in-
stance consider dividing the circuit and chip area into
quarters as shown in Fig. 3. In the first step, we divide
the circuit in half, assigning one part to the left half of
the chip and the other to the right half. Next we divide
the left half circuit again, assigning the resulting pieces
to the upper and lower left quadrants. Now consider a
wire :bat ivas cut in the first partition, and assume its
left enapoint is located in the lower left quadrant (at,
for example. point 1). Clearly, it would be preferable
from -!I? point of view of minimizing wire length if its
right endpoint were assigned t,o the lower right quad-

rant a t point 2 rather than the upper right quadrant
at point 3, but simple partitioning algorithms are too
shortsighted to recognize this.

Figure 3: The basic motivation for terminal propa-
gation in the circuit layout context.

It was to address this myopia that Kernighan and
Dunlop introduced the concept of terminal propaga-
tion in [53. Their approach was intimately coupled with
the popular partitioning algorithm due to Kernighan
and Lin [15], but we describe it here more generally
to allow adaptation of the underlying idea to other re-
cursive partitioning algorithms The basic idea of wr-
minal propagation is to associate with each vertex in
the subgraph being partitioned a value which reflects
its net desire or pre ference to be in the top quadrant
instead of the bottom quadrant. Note that this prefer-
ence is a function only of edges that connect the vertex
to verlices which are not in the current subgraph. The
name t e r m z n a l propagatzon comes from circuit layout
applications in which there are zdditional constraints
of this type which come from the wires which con-
nect to the boundary of the chip at specified loca-
tions. These i e rmana l s impose preferences upon how
subgraphs should be partitioned, and these preferences
are propagated' through the recursive partitioning pro-
cess.

-4n analogous problem arises in parallel computing.
Consider a graph describing a computation which we
want io partition among processors. The usual man-
ner for addressing this problem involves dividing the
graph into two pieces, and assigning them to halves
of the parallel machine. We can apply this approach
recursively until each processor is assigned a unique
piece of the graph. Unfortunately, this approach does
not include any consideration of architectural distance
between processors. Since edges between subproblems
are ignored in the recursion, messages may end up
traversing many wires. In the language of the previous
section, mapping is decoilpled from partitioning. This
is the same problem that occurs in circuit placement,
which motivates our use of terminal propagation.

In the parallel computing context we need a siightly
differeiir b u t closely related interpretation of the termi-
nal propagation which we depict in Fig. 4. The quad-
rants now represent processors or sets of processors of
(for example) a hypercube or a 2-dimensional mesh
architecture The (sets of) processors can be identi-
fied b> a 2 bit code and the number of wires neces-
sary :G traverse between two processors is the number
of bits i n which their processor identifiers diffec. As-
sume $re haie already partitioned the graph into two
pieces and assigned them to left and right halves of
the computer, and that we have similarly divided the
left half-graph into top and bottom quadrants. When
partitioning the right half-graph between processors
10 and 11 we would like messages to travel short dis-
tances The mapping shown in the left hand figure is
better since it results in a total message distance of
2 x 1 t- 2 = 4 whereas the mapping in the right hand
figure induces a total cost of 2 x 2 + 1 = 5.

Figure 4: The terminal propagation idea in the par-
allel wmpu:ing context.

rnis argument in terms of preference val-
ues: since ;he vertex in question has two neighbors in
the iom: :eft quadrant and one in the upper ieft, its
preference TO be in the lower right quadrant will be 1.
If the e&<-- to these external vertices had weights, the
preference vaiues would be scaled appropriately. Now,
instead ai aartitioning to minimize just the number
of edges crossing between the upper and lower right
quadrants. \<-e minimize the sum of the number of cross
edges and ihe unsatisfied preferences.

This o3jective function can be phrased alge-
braid]!-. tt-hen working on a subproblem, we con-
strucr a 2rGerence value €or each vertex based upon
the e d g ~ s ;.;nich connect it t o vertices in other sub-
problems. Sal- we are deciding whether to place vertex
i in Oi l ? pmit ion or the other, and i is connected to a
vert.ex j tvhich is not in the current subproblem. The
edge b e r w t n i and j contributes a value to the pref-
erence eqca! to w,(eij)(Dz - D l) , where we(eij) is the
meighr of ~ 3 s edge, D1 is the architectural distance be-

tween i and j if i is placed in the first partition and
0 2 is the architectural distance between i and j if i is
placed in the second partition. If desired, we can also
scaie the vector of preferences to adjust in our metric
the relative importance of architectural locality versus
communication volume.

With this setup we can now state the problem fcr-
mally. Let G = (y E) be a graph with vertices TJ E V
and edges e i j E E. We allow either edges O r verticns
to have positive weights associated with them, which
we denote by wv(o) and we(eij) respectively. We will
use n (and m) to denote the number of vertices (and
edges) in the graph. Assume we want to divide V into
two subsets VI and Vz, and that we have a a vector d of
preferences for the vertices of V to be in VI . The cost
associated with a partition now has two components.
First, every edge eij E El crossing between VI and Vz
contributes a value of we(e;j) . Second, for each vertex
in Vi with a negative preference we add the magnitude
of the preference to the cost, and similarly for each ver-
tex in Vz with a. positive preference. Our goal is to find
a partition of the vertices into two sets of nearly equal
size in which this combined cost function is minimized.

Unfortunately, this problem is NP-hard, so an ef-
ficient, general algoriihrn is unlikely t:, :xist. In th?
next two sections we will describe two heuristics for
this problem that generaiize popular techniques for the
unconstrained partitioning problem.

3 The algorithm of Kernighan/Ein and
Fiduccia/Mat theyses

3.1 Standard KL/FM

In !970! Kernighan and Lin proposed a heuristic
f9r partitioniag graphs based apon greedy exchange of
vertices to reduce the number of edges cut by a par-
tition [IS]. 'Their basic approach has been enhanced
and improved through the years, most significantly by
Fiduccia and Mattheyses who devised a linear time
variant [7]. This approach to partitioning is often re-
ferred to as KL/FM after these authors. Most of the
ivork on this algorithm, including the above two pa-
pers! was motivated by the circuit placement problem.

The K L j F M algorithm.is a technique for improving
an initial, perhaps random, partition. The key notion
is that of the gain of a vertex, the net reduction in
cuts which wouid ensue if the vertex were moved to
the other partit,ion. The basic step is selecting and
moving a vertex with the highest gain value.

There are two details which add complexity and
considerabie power to this very simple idea. First,
in order to keep sets from becoming unbalanced, only

moves betxeen equal sized sets or from the larger to
the smaller are allowed. Second, the algorithm contin-
ues trying to move vertices even if doing so makes the
partition temporarily worse. The hope is that this re-
duction in quality will be compensated for by a larger
improvement later on. This was the key insight of
Kernighan and Lin's paper and makes the approach
superior to a simple greedy algorithm.

The algorithm thus consists of two nested loops as
depicted in Fig. 5. In the inner loop, vertices whose
movement would maximally improve the partition are
selected, subject to set size constraints. Once a ver-
tex is moved, the gain values of all its neighbors are
updated. A particular vertex is allowed to move just
once during each pass through the outer loop. The
best partition encountered in this sequence of moves is
recorded, and the outer loop resets the current parti-
tion to this best partition.

Best Partition := Current Partition
Until N o better partition is discovered

Compute all initial gains
Until Termination criteria reached

Seiect vertex to move
Perform move
Update gains of ail neighbors of moved vertex
If Current balanced & better than Best Then

Best Partition := Current Partition
End Until
Current Partition := Best Partition

End Until

Figure 5: .In algorithm for refining graph partitions.

The main cmtribution of Fiduccia and Mattheyses
was to cast Kernighan and Lin's algorithm in the form
depicted in Fig. 5, and to show how each pass through
the outer loop could be performed in linear time if edge
weights were integers. The key idea is to compute all
gains at the beginning of the outer loop and store them
in an efficienr data structure. Move selection and gain
value updates can then be performed in constant time
Within the inner loop, gain values are never computed
from scratch. but rather are changed incrementally.

3.2 KL/FM with Terminal Propagation

T'ne paper by Kernighan and Dunlop which in-
troduced the concept of terminal propagation [SI de-
scribed a simple enhancement to KL/FM that, al-
lows inclusion oE terminal propagation considerations.
There are a number of details in their paper which are

relevant to circuit placement problems, but here we
merely extract the essential idea.

First we add an additional, special vertex to each
partition which is not allowed to switch partitions.
Now for each normal vertex in the subproblem with
positive preference to be in partition 1. we add an edge
to the special vertex in partition 1 with a weight equal
to this preference. Otherwise, we add an edge to the
special vertex ir- partition 2 with a weight equal to the
negative of this preference. Now when the KL/F?M
algorithm is run, the external edge information is in
ternalized in the connections to the special vertices.

Another, more elegant approach is possible when
using a Fiduccia/Mattheyses type implementation in
which gain values are only computed once and are up-
dated incrementally thereafter. The preferences are
included in the initial gain calculations while the rest
of the code remains unchanged. Specifically, if a ver-
tex is in set 1 and its preference is positive, the initial
gain should include a contribution equal to the nega-
tive of the preference. If that same vertex is initially
in set 2, the initial gain should include a term equal
to the the preference. Similar considerations apply to
vertices with negative preferences. The advanthge of
this sxond approach is that the basic XL,/FM loop
Lieed not be modified at all. In contrast, the first ap-
proach requires code to handle special vertices which
are not allowed to move, and additional storage for all
the edges incident to the special vertices.

4 Multilevel-KL

4.1 Standard Multilevel-KL

The primary sliortcoming of the KL/FM algzxithm
is that it enacts only local modifications LO a parti-
tion. Although it is quite effective at finding local min-
imums, its solution may be quite far from the global
optimum. This is particuiariy true for large graphs.

One possible remedy is to initialize KL/FM with a
parcition generated by another algorithm, for example
the spectral bisection method discussed in $5.1. An al-
ternate approach. suggested independently by several
authors [2 , 131 is to apply KL/FM on different scales.
One way to think of this is as an algebraic multigrid
technique in which KL/FM serves as the smoother

Such a muhlevel-KL algorithm consists of three
phases, as sketched in Fig. 6. First, a sequence of suc-
cessively smaller graphs is generated from the original
graph. Next, the smallest graph in the sequence is par-
titioned using some technique. This partition is then
propagated Sack through the sequence of intermediate

graphs, with I<L/FM refinement being applied to some
partitions of the intermediate graphs.

I
(1) Until graph is smal! enough I

graph := coarsen(graph) I
I

(2) Partition graph

Un t i l graph = originai graph I
graph := uncoarsen(graph)
partition := uncoarsen(partition) 1
locally refine partition if desired. 1

I
(3)

Figure 6: A multilevel algorithm for graph partition-
ing.

It is important that the small graphs represent their
larger counterparts as accurately as possible. In the
.partitioning context, there are two properties we would
like to preserve the in construction of the smaller
graphs: the cost of a partition should be accurately
preserved, and so should the set sizes so that a bal-
anced partit.ion of the small graph is also a balanced
partit,ion D f the larger graph. These properties are ?re-
served by the algorithm discussed here and in 1131.

The key mechanism in the construction of a small
graph is an operation known as edge contraction. In
this step, two vertices joined by an edge are merged,
and the resulting vertex is given edges to the union
of the neighbors of the two mekged vertices. The new
vertex is assigned a weight equal to the sum cf the
weights of its constituent vertices. Edge weights are
not changed ucless both merged vertices are adjacent.
to the same neighbor. In this case, the new edge that
represents the two original edges is assigned a weight
equal to the sum of the weights of the edges it replaces.
So, for example, contracting one edge of a triangle with
unit edges and vertex weights would yield a graph with
a vertex of weight one and a vertex of weight two,
joined b>- an edge of weight two.

The attractive feature of this contraction step is
that it preseri-es cut and set sizes in a weighted sense.
A partition of a small graph implies a partition of a
larger graph since each vertex in the small graph is
merely an amalgamation of vertices of the larger one.
The toral weight of smali graph edges that are cut iri
the partition xi11 be precisely equal to the totai weight
of the edges cut in the larger graph. Similariy, the
totai weight of r-ertices in each of the two small graph
sets is exactly equal to the weight of the vertices in the
corresponding partition of the large graph.

'To construct a small graph from a !arger one we
need to contract a number of edges. Ideally, these

edges will be well distributed throughout the large
graph so the overall shape of the small graph will be
similar to that of its larger counterpart. One way to
do this is to select a maximal set of edges that share no
vertices. Such a set is known as a maximal matching,
and can be easily generated in linear time.

4.2 Multilevel-KL with Terminal Propa-
gation

The multileve! approach can be enhanced to in-
clude terminal propagation in a fairly straightforward
way. Since we are applying KL/FM on the smaller
graphs, we can apply the terminal propagation variant
of KL/FM. There are only two issues that need to be
addressed. First, what partitioner should be used on
the smallest graph? And second, how are preferences
generated for small graphs?

One suitable answer to the first question is the spec-
tral bisection algorithm with terminal propagation de-
scribed in $5.2. An alternate approach would be to use
the original Kernignan and Lin strategy of applying
KL/FM to random initial partitions. If the smallest
graph is small enough, this should work wel!.

The spcond question, how to prcduce preferences
for small graphs, is also easily answered. Consider
a vertex of a small graph, which is a union of large
graph vertices. The small graph vertex will generally
be connected to some set of vertices not in the current
subproblem. It is the total pull of these edges which
determines the preference for the vertex. But this total
pull is just the sum of preferences of the large graph
vertices which comprise the small graph. Hence, wheE
contracting an edge, the resziting L-erfex should be as-
signed a preference which is equal to the sum of the
preferences of the two original vertices.

5 Spectral bisection with terminal
propagation

An important class of partitioning algorithms
known as spectral methods uses eigenvectors of a matrix
associated with the graph to generate a partition. This
surprising connection dates back to work in the early
70s by FiedIer [8, 91 and Donath and Hoffman [3, 41. A
particular spectral method that has come to be known
as spectral bisection gained widespread acceptance in
the parallel computing community following the work
of Pothen, Simon and Liou [16] and Simon [17]. In this
section we briefly rederive the spectral bisection algo-
rithm for weighted graphs developed in [12], and then
show how it can be modified to incorporate terminal
propagation constraints.

5.1 Standard Spectral Bisection

One wa_v to describe a partition is to assign a value
of -1 to a.11 the vertices in one set and a value of -1
to all the vert,ices in the other. If we denote the value
assigned t.o 1-ertex i by z (i) , then the simple fiinction
(~ (2) - z (j)) ' / 4 is equal to 1 if vertices i and j are in
differat pmicions and 0 otherwise. This allows us LO
write the parritioning problem as

c wu(i)z(i) M 0
2

(b) x (i) = i l .

Constraint (a) is an algebraic way of saying that each
partition musc have about half the total vertex weight.
We do DOC specify it as a precise equality since it may
not be possible to divide the vertices into t,wo sets of
precisely equal weight.

Recasing the partitioning problem this way does
cot, m i k e i t any easier to solve. However, it does iden-
tify a possible approximation that will lead io a much
simpler problem. Rather than insisting that all 2's be
exact!!- 21. TW aliow them to take on any value and
consequently replace constraint (b) with a norm con-
dition on the vector z of values ~ (i) . Once we solve the
resuhing continuous problem, we can find the i l vec-
tor ~ h i c h is riearest to the continuous optimum, and
use chis K G pariition the graph. Although this strategv
does ~ i o t guarantee that the optimal solution will 3e
found. i: xro;ks well ir, piactice.

More forma!!>-, we approximate (1) by the following.

{a'

(b)

i

* (i) 2 = 72.

We have repisced the previous constraint (b) with a
normaiizarion which is appropriate for the &1 problem.
We h a w aiso changed constraint (a) to a strict equality,
since This can be achieved in the continuous problem.

The nexi s ~ e p is an algebraic transformation of the
objecrive fuc:ion. It is not hard to show that

where L is the Lapdacian matrzxof the graph defined
by

The Laplacian matrix has a number of nice properties.
It is symmetric, so it has a complete set of orthonormal
eigenvxtors, and it is positive semidefinite. Because
the sum of all the values i:i a row is zero, the constant
vector is an eigenvector Rith eigenvalue zero. If the
graph is connected, all other eigenvalues are positive.
Eq. (2) can now be rewritten in matrix terms as

1
4

Minimize f(z) = - 2 ~ z

Subject to

(a) 20, z = 0 T

T (b) z z = n.

(3)

With a change of variables we can reduce (3) to a
form in which we will recognize it as a standard eigen-
problem First define s (i) = a a n d t(i) = l / s (i) .
Let y = Diag(s)e. and iet A = Diag(t)TLDiag(t).
Si:ice the z valnea ape relaxatiom of fl, the appropri-
ate normalization for the y vector is y’y = xi w v (i) ,
which we denote by w,. With this notation, we can
recast (3) as follows.

1
4

Minimize f (y) = -yTAy (4)

Sub j ec t, to

(a) s T y = o
(b) y’y = u V .

It is straightforward to verify that s is an eigenvector
of A with eigenvalue zero. A is symmetric and pos-
itive semi-definite. Furthermore, if the graph is COG-
nected, S is the only eigenvector with a zero eigenvalue.
(See [12] for proofs of these properties.)

Now denote the eigenvalues and corresponding nor-
malized eigenvectors of A by A; and u, respectively,
where the eigenvalues are indexed in increasing value,
The solution to (4) can be expressed as a linear com-
bination of the u,’s. where constraint (a) excludes
an contribution from u1. Subject to the constraints.
it is now easy to see that y’Ay is minimized when

Thus the solution to (4) is a multiple of the second
eigenvector of A. This vector can be easily transformed
to find the solution to (2), which can be used to find a
nearby discrete point which partitions the graph. The
whole procedure is sketched in Fig. 7. The second
eigenvector of a Laplacian matrix is often known as a

y = f i u a .

Fiedler vector in recognition of the pioneering work of
Miroslav Fiedler [S, 91.

Form L , the Laplacian matrix of the graph
Generate .4 = Diag(t)LDiag(t)
Compute y = second lowest eigenvector of A
Generate = Diag(t)y
Find median value y among entries in z
Partition 1 = vertices with 2 value _< y
Partition 2 = vertices with z value > y.

Figure 7: The weighted spectral bisection algorithm

The dominant cost of this spectral bisection algo-
rithm is the calculation of an eigenvector of L. The
traditional approach to this problem is the Lanczos
algorithm [lo], an iterative method in which each it-
eration is dominated by a matrix-vector multiplica-
tion. Barnard and Simon have described a multilevel
eigensolver that can significantly speed up the stan-
dard spectral bisection algorithm [l].

5.2 Spectral Bisection with Terminal
Propagation

In [18, 191 Van Driessche and Roose show how to
modify the standard spectral bisection algorithm to in-
clude cerrain kinds of constraints. The original motiva-
tion for their work was reduction of data movement in
a dynamic repartitioning, but, their ba.sic idea can also
be applied to the constraints associated with terminal
propagation. -4s with the standard spectral technique,
t h z basic idea is to consxruct a discrete optimization
problem and then to relax the dis-reteness constraint.

In the standard derivation (I) we began with an al-
gebraic formulation of the exact partitioning problem.
-fie noii- need i3 enhance the objective function to in-
clude t,erininal propagation considerations. If d (i) is
the preference for a vertex to be in the set denoted
by +l which will define to be, say, V I , then the new
problem we x-ant to solve is

Subject ro

We n o ~ r make the same approximation as in the stan-
dard specird bisection problem, replacing constraint

(b) by a normalization condition to obtain

Minimize f(x) = -x*Lz 1 - -d ' T 2 (6)
4 2

Subject to

(a) wyx = o
(b) 2 L = n. T

We now make the same variable transformation
used to take us from (2) to (4). Letting h = Diag(t)d
and muftiplying the objective function by 4, we have

Minimize f(y) = yTAy - 2hTy

Subject to

(a) sTy = o
(b) Y T Y = w v .

(7)

Unfortunately, the solution to (7) is not as simple
as the solution to (4), its standard counterpart. We
introduce Lagrange multipliers q and p, and look for
stationary points of the function

Setting t,he partial derivative of F with respect to q
or p yields the twc constraint equations. Taking the
derivatives with respect to the components of y, we
obtain

2Ay - 2h + vs - 2p1~ = 0. (9)

We can calculate 17 by left multiplying (9) by sT
Since s is orthogonal to y and s is a zero eigenvector
of A. we discover that r, = 2sTh/w,. We now define

which allows us to rewrite (9) as

This extended ezgenproblem must be solved subject to
the constraints in (7). Although this problem gener-
ally has multiple solutions, Van Driessche and Roose
have shown that the solution which minimizes the ob-
jection function is always the y vector associated with
the smallest possible value for p [18]. As with the
standard spectral bisection approach, once 8 solution
to (11) is computed. it is transformed back to a soiu-
tion of (6), from xhich a nearby discrete soiution can
be found

An efficient. Lanczos based procedure for solving
the extended eigenproblem can be found in i14, 181,
but is too lengthy io include here

6 Results

The algorithms described in the previous sections
have been implemented in Chaco 2.0 [ll], and we re-
port some experimental results here. All the runs were
performed a Sun Sparcstation 20 with a 50MHz clock
and 64 Mbytes of RAM. We will describe results from
four different. algorithms:
MLKL: the multilevel-KL method from $4.1,
MLKLTP: the multilevel-KL algorithm with termi-
nal propaga.tion described in $4.2,
SKL: spectral bisection from $5.1 combined with a
pass of standa.rd KL/FM from $3.1, and
STPKL spectral bisection with terminal propagation
as presented in $5.2 combined with the terminal prop-
agation version of KL/FM discussed in $3.2.
For the spectral algorithms we solved to residual tol-
erances of and we used a variant of Barnard and
Simon's multilevel eigensolver for standard spectral bi-
section. For multilevel-KL and the multilevel eigen-
soiver, the smallest graph had at most 200 vertices.

U7e monitored four metrics of partitioner quality.
First was the number of edges cut: which correspmds
c!oselg t.0 ill? total communication volume. Second
was hops in wnizh -ne niultiply each cut edge by the
archit.ectura1 distance between the two processors owii-
ing the endpoints. Third was messages n-hich is the
total number of messages required in a step of an iter-
ative solver using the decomposition. The final metric
was the dime required to produce the decomposition.

Our first example graph is barth5, a 2D finite ele-
ment grid n-ith niangular elements containing 15606
vertices, an6 43378 edges' The results of partitioning
and m a p p i q this graph to a 6-dimensional hypercube
are presented in Table 1.

I MLKL MLKLTP SKL STPKL

hops 4532 3594 5052
messages , 238
time (s) 1O.i 12.2 30.8 32.6

Table 1: Results of different partitioning algorithms
on the barTh5 mesh for a 6-dimensional hypercube.

-1s expmec rerminal propagation significantly im-
proves the dara locality as evidenced by the significant
reduction E haps. The average distance a datum has
to :ravel is reduced from 1.7 to 1.1 in both algorithms.

'This. and m d a h e r meshes, can be obtained via anonymous
ftp to r iacs . th iil :he directory /pub/grids.

This comes a t the cost of a modest increase in com-
munication volume as reflected by the increase in the
cuts metric, as well as an increase in number of mes-
sages. The time required to perform the partitioning is
slightly increased by the use of terminal propagation.

Kext, we partitioned the ocean mesh among the pro-
cessors of a i o x 20 mesh. This is a 3D finite difference
grid of the world’s oceans comprised af about 143K
vertices and l lOK edges, The ;esults are presented in
Table 2. Xote that for this problem, we need to be
able to bisect into two sets of unequa! size. This is
straightforward to do with the multilevel-KL method,
and a generalization to this case of spectral bisection
with terminal propagation is described in [IS].

37847 45715 38365 52292

messages
186.7 690.3 477.5

Table 2: Results of different partitioning algorithms
cn the ocean mesh for s 10 x 20 grid.

Again we observe that terminal propagation signifi-
cantly improves locality, reducing the average number
of wires traversed by a message from 2.7 to 1.3 in the
multilevel-KL algorithm, and from 2.7 to 1.2 in the
spectral method. As bel’ore this locality is paid for by
an increase in communication volume. However, un-
like the previous problem the number of messages is
significantly reduced by terminal propagation. Since
communication is local and meshes have many fewer
processors in their neighborhood than hypercubes, this
result isn’t surprising. For this problem. the spectral
terrilinal propagation algorithm was significantly faster
than its standard counterpart.

From these and similar experiments we make several
observations.

with and without terminal propagation. while re-
quiring significantly less time.

e For meshes, and for iarge hypercubes, termi-
nal propagation usually results in fewer messages
needing to be sent.

We have siso observed that Lanczos with termi-
nal propagation is typically somewhat h t e r than
standdrd Lanczos, altnough we do not understand
why.

7 Conclusion

We have described a general method for coupling
the partitioning and mapping problems in such a way
that contention for communication links is significantly
reduced. In applications where many messages are si-
multaneously competing for limited bandwidth, this
approach may significantly improve performance. The
general idea can undoubtedly be applied to a wide va-
riety of recursix-e partitioning methods. Here we have
focused on m-o Techniques which are currently popular
in the parallel compcting cornmiinity The approach
presznted is suficiently flexible t G allow for the Lser to
weight the relative importance of cuts and hops and
hence Lrade OR communication volume and message
congestion More generally, we believe there are likely
to be other important ideas which can be adapted from
from the circuit placement community to assist with
parallel computing.

The techniques described in this paper can be ex-
tended in several ways. The KL/FM terminal propa-
gation algorithm can be generalized to work on more
than two sets ai once. This leads to a similar general-
ization of the multilevel scheme. (Both generalizations
are iinplerneimd i n Cham 2.0.) The spectral termi-
nal propagatior: method can also be extended to work
on four sets at once i201, and in principle it can be ex-
tended to work on eight sets simultaneously as well.

Terminal propagation is an effective approach - -
for coupling recursive applications of partition-
ing with the desire to restrict communication to Acknowledgements

-
nearby processors. This is evidenced by the fact
that the cuts and hops values are very similar
in all the tables where terminal propagation was
used, while the cuts and startups are only mod-
estly larger than those obtained by traditional ai-
gorithms which ignore interprocessor distances.

For the fairly nice graphs associated with scientific
computing, the multilevel-I<L algorithm produces
partitions at least as good as spectral+KL, both

Hendricksoii and Leland were supported by the
dpplied hZariiematical and Computer Sciences pro-
gram, C.S Department of Energy, Office of Energy
Research, and v, ork at Sandia National Laboratories,
operated for riic C.S. DOE under contract No. DE-
AC04-76DPOOTS? Van Driessche was supported by
the Belgian Inceiirive Program %formation Technol-
ogy”-Compilrer Science of the Future (IT/IF/5). and
by the Belgiaii Programme on Interuniversitb Poles of

Attraction (IUAP i?), initiated by the Belgian State,
Prime Minister's Office for Science, Technology and
Culture. The scientific responsibility for this paper
rests with its authors.

References

ill

PI

i31

[7]

[91

s. T. BARNARD AND E. r). S I M O N , A fast mul-
tzlevel zmplementatzon of recursive spectral bzsec-
tzon for partitionrng unstructured problems, in
Proc 6th SIAM Conf. Parallel Processing for Sci-
entific Computing, SIAM, 1993, pp. 711-718.

T. BUI AND c. JONES, A heurzstzc for reduc-
ang Jill an sparse matrzx factorzzatzon, in Proc.
6th SIAM Conf. Parallel Processing for Scientific
Computing, SIAM, 1993, pp. 445-452.

Mi. DONATH AND A. HOFFMAN, Algorithmsfor
partitioning of graphs and computer logic based on
eigenvectors of connection matrices, IBM Techni-
cal Disclosure Bulletin, 15 (1972), pp. 938-944.

-: Lower bounds for the partitioning ofy-aphs,
ISM 3 . Res. Develop., i 7 (1973), pp. 423-425.

A . E. DUNLOP AND 3. W. MERNIGHAN, A proce-
dure for placement o f standard-cell VLSI circuits,
EEEE Trans. CAD, CAD-4 (1985), pp. 92-98.

C. FARHAT AND €3. SIMON, TOP/DOMDEC I
a software tool for mesh partitioning and parallel
processing, Tech. Rep. RNR-93-011, NASA Ames
Research Center, Moffett Field, CA 94035, June
1993.

c. M. FIDUCCIA AND R. M[. MATTHEYSES, A
h e a r time heuristic for improving network par-
tztzolzs, in Proc. 19th IEEE Design Automation
Conference, IEEE: 1982, pp. 175-181.

M. FIEDLER, Algebraic connectivity of graphs,
Czechosiovak Math. J., 23 (1973): pp, 298-305.

-----> A property of eigenvectors of nonnegative
symmetric matrices and its application t o graph
theory, Czechoslovak Math. J . , 25 (1975), pp. 619-
633.

G. GoLue AND C . VAN LOAN, Matrix Computa-
tions, Second Edition, Johns Hopkins University
Press: Baltimore, MD; 1989.

B. HENDRICKSON AND R. LELAND, The Cham
user's guade, version 2.0, Tech. Rep. SAND94-
2692, Sandia National Laboratories, Albu-
querque, 3M7 October 1994.

112j - , An improved spectral graph partitioning al-
gorithm for mapping parallel computations, SIAM
J . Sci. Comput., 16 (1995).

~ 3 1 - A multilevel algorithm for partitioning
graphs, in Proc. Supercomputing '95, ACM, De-
cember 1995. To appear.

[14] B. HEKDRICKSON, R. LELAND, AKD R. VAN
DRIESSCHE, Enhancing data locality by using ter-
minal propagation, tech. rep., Sandia National
Laboratories, Albuquerque, NM, May 1995.

[15] B. KERNGHAN AND S. LIN, A n efficient heuris-
tic procedure fo r partitioning graphs, Bell System
Technical Journal: 29 (1970), pp. 291-307.

[16] A. P O T H E K , H. S I M O N , AND K. LIOU, Partition-
ing sparse matrices with eigenvectors of graphs,
SIAM J. Matrix Anal., 11 (1990), pp. 430-452.

[la] H . D. SIMOK, Partitioning of unstructured prob-
lems for parallel processing, in Proc. Conference
on Parallel Methods on Large Scale Structural
Analysis and Physics Applications, Pergammon
Press, 1991

1181 R. VAT DKESSCHE AKD D. ROOSE, A spectral a[-
gorzthm f o r constrazned graph partztaonzng I: The
bzsectzon case, TW Report 216, Dept. Computer
Science. Kat holieke Universiteit Leuven, Belgium,
Octcber 1394

[19] - , Dynamic load balancing with a spectral bi-
section algorithm f o r the constrained graph parti-
tioning pmblem, in High-Performance Computing
and Xetworking, EO. 919 in Lecture Notes in Com-
puter Science. Springer, 1995, pp. 392-397. Proc.
International conference and Exhibition, Milan,
Italy, May 1995.

[ao] - , A spectral algorithm for constrained graph
partitiontnp Ii: The bisection case, tech. rep.,
Dept. Computer Science, Katholieke hiniversiteit
Leuven. Be!gium, 1995. In preparation.

[21! C . WAL~HAVI, M. CROSS, M. EVERETT,
s. JOHSSOS AND K. MCMANUS, Partztzonzng &
Mappzng of l-nstructured Meshes to Parallel Ma-
chrne Topologzes, in Proc. Irregular '95: Parallel
Algorithms for Irregularly Structured Problems,
A. Ferreiza and J. Rolim, eds., vol. 980 of LNCS,
Springer 195'3. pp. 121-126.

DISCLAIMER

This report was mpared as an account of work sponsored by an agency of the
United Slates Government Neither the United States Govcmmcnt nor any agency
thmof,.nor any of their empfoyces, maices any warranty, express or impfied, or
-e any WZty nsponsiity far the accwacy, completeness, or use-
Mness of aay informatioa, apparatus, prod^^^, or process disdosed, or represents
that its use wodd not infringe privately owmi rights Reference hmin to any spe-
dfic c~mmercid product, pro#s~, or &ce by trade name, trademark, manufac-.
mm, or othuwiK dots not ncccssdy amstitwe or impiy itJ endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
'Ihe views and opinions of authors expkai'herrin do not ncccssady state or
d m those of the United States -at ot any agency thereof.

I_

.

,

Portions of this document may be illegible
in electronic image products. h a g s are
produced from the best available original
dOCUUIeXlt0

