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ABSTRACT 

A brief overview is given for two software developments related to the ITS code system. These 
developments provide parallel processing and visualization capabilities and thus allow users to perform 
ITS calculations more efficiently. Timing results and a graphical example are presented to demonstrate 
these capabilities. 

I. INTRODUCTION 

The Integrated Tiger Series (ITS)' provides state-of-the-art Monte Carlo solutions of linear, time- 
independent, coupled electron/photon radiation transport problems with or without the presence of 
external electric and magnetic fields. It has been widely used in simulator design and analysis, radiation 
dosimetry, radiation effects studies and medical physics research. Since its inception, the goal of the 
ITS developers has been to simultaneously maximize physical accuracy and operational efficiency. 
This is accomplished by employing the most complete physical models describing the production and 
transport of the electron/photon cascade, the best available cross-section data and sampling 
distributions, and variance reduction techniques for various difficult applications.2 In this work, we 
focus on two major software developments for the ITS code system to further improve the operational 
efficiency. First, we implement parallel-processing capabilities so that ITS calculations can be 
performed more rapidly, either on a cluster of workstations or on a massively parallel machine. This 
reduces the notoriously high computational expense often associated with the Monte Carlo method and 
allows users to solve extremely complex problems with fast turnaround time. Second, ITS has been 
coupled with the Ballistic Research Laboratory CAD package (BRL-CADQ to provide a means for 
interactive geometry modeling and to display particle tracks. These capabilities reduce the effort 
required to construct very complicated three-dimensional geometries, and enable users to gain useful 
insight into the physics of the problem. 

In the following sections we first discuss the parallel algorithm appropriate for the ITS code system 
and its implementation. Two techniques that proved effective for load balancing across multiple 
processors and machines are briefly discussed. Timing results and performance evaluation for selected 
problems are described. Finally, we briefly discuss the interface software which provides arbitrary 
geometry modeling capability for ITS using the BRL-CAD system. 
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11. PARALLEL PROCESSING 

Advances in computer hardware and communication software have made it possible to perform 
parallel computing for many scientific/engineering applications. Monte Carlo calculations are 
inherently parallelizable because the individual particle trajectories can be generated independently 
with minimum need for interprocessor communication. Furthermore, the number of particle histories 
that can be generated in a given amount of wall-clock time is nearly proportional to the number of 
processors. This is an important fact because the inherent statistical uncertainty in any Monte Carlo 
result decreases as the square root of the number of histories increases. For these reasons, researchers 
have expended considerable effort to take advantage of different parallel architectures for a variety of 
Monte Carlo radiation transport codes, often with excellent results! 

In ITS, the particle histories are divided into “batches” of equal size and the evaluation of the 
estimated quantities are performed using batch-averaged sample statistics. Since the batchwise 
evaluation can be performed independently, it provides a natural partition for parallel processing. At 
present, the parallelized version of ITS is based upon a message-passing model in conjunction with a 
master/slave paradigm. The basic operations of the parallel code can be summarized as follows: (1) the 
master process performs the input functions, starts up the slave processes, processes the problem- 
dependent parameters and sends a copy of parameters to all slaves, (2) the slaves perform the Monte 
Carlo calculations, Le., generating particle trajectories and scoring, and (3) the master receives and 
combines the data tallied by the slaves, and finally outputs the results. With efficient network 
communication, it is obvious that step (2) will require the majority of the computation time. Since each 
slave process can carry out these tasks concurrently, this requirement can be reduced almost linearly 
with the number of processors. 

The generation of random-number sequences for large-scale Monte Carlo simulations in a parallel- 
processing environment poses a non-trivial problem. The random number sequences for each processor 
must be independent, with good “randomness” property, and with sufficient long period. Here, we 
adopt the pseudorandom number generator, RANMAR, proposed by Marsagalia and Zaman. Detailed 
information and implementation can be found in the review article by James? The basic algorithm of 
RANMAR is a combination of two different sequences, namely, a lagged Fabonacci sequence which 
must be initialized by an integer, and a simple arithmetic sequence. The final random number is then 
produced by a subtraction operation. The most exceptional property of this generator is the extreme 
ease of generating independent disjoint sequences, which can be accomplished by initializing the 
generator with different integers. Furthermore, RANMAR has been tested for randomness, and has 
been demonstrated to have very long period. It is noted that this generator is more expensive to 
compute than the simple multiplicative linear congruential generators since all the operations are 
carried out in floating-point. However, the effect of this may be insignificant since the computing time 
spent in the random number generation is almost negligible in comparison to that for particle tracking. 

We have developed two updates to ITS 3.0 which will support various parallel-processing 
environments. These updates are designed in such a way that users can adapt them to construct and 
tailor the codes for their specific applications. The first update is designed to work on a cluster of UNIX 
workstations (either homogeneous or heterogeneous), where the communication tasks and process 
control are handled by the software Parallel Virtual Machine (PVM)? The second version is designed 
to run on a massively parallel computer such as the Intel PARAGON. In this case, the message-passing 
is handled by the native operating system calls (SUNMOS/NX)? It is noted that these updates also 
provide the basic structure to port ITS to other parallel computing platforms (such as IBM SP2), which 
can be accomplished by simply replacing the PVM or NX calls with the system specific functions. 
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I1.A. LOAD BALANCING 

The goal of load balancing is to enhance performance and achieve the greatest possible speedup of 
a parallel program. A balanced program can usually keep all processors busy and have them finish 
roughly at the same time. Otherwise, valuable processor cycles are wasted if some processors have to 
wait on others to finish. Load balancing is essential in parallel processing ITS since the computing time 
for each batch may vary, and thus adversely affect the performance. This variation in computing time 
may result from the following reasons: (1) the stochastic nature of particle histories, (2) difference in 
computational power on each machine in a heterogeneous configuration, and (3) change in 
computational performance in a multiuser environment. These considerations must be taken care of by 
adjusting the way the problem is distributed in a parallel system. 

The current version of ITS provides two load-balancing schemes, namely, the static and dynamic 
methods. The static method is simple and easy to implement. In this method the required tasks (or 
batches) are divided up and assigned to the available machines or processors. The number of batches 
can vary from machine to machine to account for different computation power for different machines. 
These assignments are set at the start and will not be adjusted to the actual loading and performance. As 
one may expect, this scheme can be quite effective on a dedicated or lightly loaded system (either 
homogeneous or heterogeneous). Dynamic load-balancing is accomplished by the classic “pool-of- 
tasks” paradigm. Initially, each slave process is given a batch just as in the static scheme. As a slave 
process finishes its task it will receive another one. With this scheme all the slave processes are kept 
busy as long as there are batches remaining in the pool. The work load for each machine is adjusted 
according to the “realistic” computational performance which can be changing dynamically as other 
users share the resources. An intuitive way to implement the dynamic scheme is by dividing up the 
problem into small batches (small number of particles per batch) which may be easier to balance across 
the available machines than the large batches. However, the number of batches should not be so 
excessive as to incur extra overhead in communication and output processing. 

II.B. PERFORMANCE EVALUATION 

The goal of parallel processing is to make the program run faster (shorter wall-clock time) than it 
would in the corresponding serial run. A speedup ratio is often used to evaluate the performance of a 
multitasking program. On a dedicated system, the speedup ratio can be calculated in the following 
manner: 4 

where SN is the speedup ratio if N processors are used in the calculation, Ts is the elapsed wall-clock 
time for a single processor, TN is the wall-clock time for N processors, and F p  is the fraction of the 
program that can be run in parallel (sometimes called the parallel efficiency). The second part of this 
equation is known as the Amdahl’s law from which one can estimate the parallel efficiency based on a 
set of measured speedup ratios. It is important to note that the parallel efficiency gives a measure of the 
extent to which a given program can potentially be parallelized, but it does not account for other effects 
such as multitasking and communication overhead. 



Table 1 summaries the measured speedup ratios for seven test problems on a cluster of SUN 
workstations. These test problems include the three standard codes (TIGER, CYLTRAN, and 
ACCEPT), two P-codes, and two M-codes of the ITS system, and utilize many tally and biasing options 
of the system. Sufficient particle histories were required so that the input/output and communication 
times were negligible in comparison to the overall CPU times. It is observed that the speedup ratios 
increase almost linearly with the number of processors. The parallel efficiency approaches 99%, except 
for the ACCEPT-M code, where it is around 93%. Further studies indicated that the relative poor 
performance of the ACCEPT-M code was caused by an anomalous batch which consumed 50% more 
CPU time than the other batches. It is believed that one or more electrons entered a vacuum region with 
a uniform magnetic field with velocities almost perpendicular to the field so that they drifted very 
slowly through this region. Consequently, extra computing time was needed to calculate these orbits, 
thus prolonging the CPU time for that batch. 

To further demonstrate the benefit of parallel processing, we consider a timing benchmark problem 
proposed by Rogers and Bielajew.* This problem was originally designed to assess the feasibility of 
using Monte Carlo method in radiotherapy treatment planning. To make a Monte Carlo code clinically 
useful on a routine basis, the atient dose calculation should be done in 5-10 minutes. The benchmark 
problem consists of a (10 cm) plane parallel 20-MeV electron beam incident on a patient. The patient 
is modeled as a (19 ~ m ) ~  phantom (mainly water) with 1 cm3 voxels everywhere except in the 1 cm2 
central region, where the voxels are (2.5 mm)2 by 1 cm thick except at the peak dose region where there 
are four voxels, each 2.5 mm thick. There total number of voxels is 7624. 

For timing assessment, we used the ACCEPT code to determine the dose distribution in all voxels. 
Simulation of 3.6 millions source electrons produced an uncertainty of 2% at the peak of dose-depth 
curve. The elapsed computing time is 108 minutes on a SUN SparclOOO with 8 processors and 25 
minutes on an Intel PARAGON using 120 processors. These timing results are very encouraging. 
Although these values are unacceptable relative to the requirement for routine treatment planning, they 
are short enough for research and development in treatment methods. Moreover, further reduction in 
the wall-clock time can be easily achieved by increasing the number of processors and/or by using 
more powerful processors which are currently available. 

4 

III. VISUALIZATION 

Visualization capabilities for the ITS code system have been realized with a software tool that is 
designed to interface with the Ballistic Research Laboratory CAD package (BRL-CAD). Originally 
developed for military vehicle design, BRL-CAD is a powerful solid modeling system which provides 
an interactive geometry editor, a ray tracing library, and a large collection of related tools and utilities. 
Its basic functions allow users to construct a geometry interactively and use ray tracing for model 
interrogation. Moreover, an image of a geometry model may be displayed with proper three- 
dimensional perspective from any viewpoint. As an example, Figure 1 shows a BRL-CAD Model of 
the bremsstrahlung convertor and collimator configuration for the EG&G LINAC. 

In BRL-CAD, geometrical models are represented by the Constructive Solid Geometry; that is, a 
model is constructed by combining a suite of solid primitives through boolean operations. This is 
essentially the same combinatorial method used in the ITS/ACCEPT codes. For this reason, a simple 
interface software (GIFTEX) has been developed to extract information from the BRL-CAD geometry 
database and convert it to the ITS input format for subsequent calculations. 

We are currently developing computer software to process particle tracks generated by the ITS 
calculations and display them together with the problem geometry using BRL-CAD. In this 



implementation, ITS generates a file containing selected information on the particle history, which 
includes particle type, energies, weights and positions. A utility is then used to filter this information at 
the user’s discretion and prepare a data file for BRL-CAD to access. The final display will support 
three-dimensional rotations, translations, zoom features, and provide illustration of particle types and 
energies by color. 
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* Speedup relative to a single SUN4/75 workstation. 

DISCLAIMER 
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ence herein to any specific commercial product, process, or service by trade name, trademark, 

, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, r a m -  
' mendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 
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Figure 1. A Cross-Sectional View of the BRL-CAD Model of the EG&G LINAC Bremsstrahlung 
Convertor and Collimator. 


