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Abstract 

An analytical and experimental study is conducted to investigate the effect of 
isolator locations on the effectiveness of vibration isolation systems. The study uses 
isolators with fixed properties and evaluates potential improvements to the isolation 
system that can be achieved by optimizing isolator locations. 

Because the available locations for the isolators are discrete in this application, a 
Genetic Algorithm (GA) is used as the optimization method. The system is modeled in 
MATLABTM and coupled with the GA available in the DAKOTA optimization toolkit 
under development at Sandia National Laboratories. Design constraints dictated by 
hardware and experimental limitations are implemented through penalty fbnction 
techniques. A series of GA runs reveal difficulties in the search on this heavily constrained, 
multimodal, discrete problem. However, the GA runs provide a variety of optimized 
designs with predicted performance from 30 to 70 times better than a baseline 
configuration. An alternate approach is also tested on this problem: it uses continuous 
optimization, followed by "rounding" of the solution to neighboring discrete 
configurations. Results show that this approach leads to either infeasible or poor designs. 

Finally, a number of "optimized" designs obtained from the GA searches are tested 
in the laboratory and compared to the baseline design. These experimental results show a 
7 to 46 times improvement in vibration isolation from the baseline configuration. 
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1. Introduction 
Vibration isolation systems are used in a wide variety of applications to reduce 

transmission of mechanical vibrations generated by noisy components or carried by the 
environment to a sensitive device. Examples include isolation of a laser table from floor- 
borne seismic disturbances, isolation of a car or airplane body from engine vibrations, and 
suspension systems of vehicles. 

Isolation is achieved by inserting soft mechanical links (“isolators”) between the 
subsystem containing the source of the disturbances and the subsystem to be isolated. 
Based on the relative sizes of these subsystems, two classes of isolation systems can be 
distinguished (Fig. 1). 

Qui2 Floor 

Quiet Device 

V Floor Vibrations 

Figure 1 Vibration isolation systems. 

In the first situation (left side of Fig. l) ,  the environment is isolated from vibrations 
created by a piece of machinery. A typical example is the isolation of a car body from 
vibrations caused by the engine. In the other, a sensitive device is protected from 
disturbances carried by its supporting structure. Isolation of a laser table from floor borne 
vibrations is a common example. In both cases, the effectiveness of the isolation system 
can be examined in terms of transmissibility functions, T, in the frequency domain. In the 
first class of systems, these transmissibilities can be expressed as ratios of excitation forces 
to forces transmitted to the floor. In the second class, they are expressed as ratios of 
component of floor motion to component of device motion. Note that mixed formulations 
are also possible. Whatever exact definition is used for T, its magnitude typically resembles 
the curve shown in Fig. 2. 

log( Frequency) 

Figure 2 Typical transmission characteristics of isolation system. 
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Three regions can be distinguished in the figure. At “low” frequencies, resonant 
peaks corresponding to the suspension modes are observed. There is no isolation in this 
band (in fact there is amplification). Damping is usually designed into the isolators to limit 
the amplitudes of these peaks and avoid large responses to transients. At the “high” end of 
the spectrum, flexible modes of the device and/or supporting structure themselves produce 
other resonant peaks. In a properly designed isolation system, those two frequency ranges 
are separated by a wide “isolation band” where transmission decays rapidly with frequency 
(about -40dB/decade for a lightly damped, single stage system). A properly designed 
system will “see” most of the disturbance energy occur in this band. 

Because of the sharp decay in the isolation band, the traditional design 
methodology focuses primarily on minimizing the stiffnesses of the individual isolators. 
This lowers the frequencies of the suspension modes and results in a corresponding drop 
in transmission in the isolation band (Fig. 3 ) .  The configuration of the complete system, in 
particular the number, locations, and orientations of the isolators, receives little attention 
in this approach. Actually, the system configuration is often designed to ensure decoupling 
between translations and rotations in the suspension modes and simplify the analysis”’. 

This PP 

Figure 3 Improving isolation by softening the isolators. 

oach is justified for “generic” isolation problems. Namely, whc th 
location, direction, amplitude, or frequency content of the disturbances are not well 
known and/or when no particular point on the isolated device more critically requires 
isolation than others. An example of a generic problem is that of isolating a laser table 
from floor vibrations: data will often not be available to accurately characterize the 
disturbance and the designer of the isolation system has no knowledge of what experiment 
will be performed on the table. In such cases, a generic isolation system (with 4 isolators, 
one in each corner for example) is appropriate. 

However, in some applications, the disturbance(s) are very well known (rotating 
machinery, for example) and residual motion is critical at one or a few specific 
points/directions on the isolated device. As an example, consider an isolation system 
designed to prevent excessive transmission of vibrations from a cryocooler to a telescope 
mounted on a satellite structure (Fig. 4). Clearly, the source of the disturbance is well 
known in direction, amplitude, and frequency content. Also, to minimize jitter, residual 
tilting vibrations of the telescope must be minimized. Vibrations at other points/directions 
in the system are less critical. In other applications, the critical poiddirection might be the 
location of a vibration-sensitive component or points/directions of strong dynamic 
coupling with an elastic sub-system. In all such cases, it is expected that locations and 
orientations of the isolators will have a substantial effect on the isolation effectiveness12]. 

9 



SAND96-1169 
0511 7/96 

Figure 4 Non-generic isolation problem. 

The present study examines this question in more detail. The authors consider the 
design of a 3-isolator system to minimize transmission of well characterized floor-borne 
perturbations to a specific point and direction on an optical table. The number and type of 
isolators used is fixed and their locations under the table are optimized. The optimized 
designs are compared to a baseline, generic configuration. These designs are then tested in 
the lab to validate the approach. 

Because our optical table provides only a discrete grid of mounting holes for the 
isolators, the design variables of the optimization problem are discrete and the 
optimization is performed with SGOPT’S’~’ Genetic Algorithm (GA) available in the 
DAKOTA141 optimization toolkit under development at Sandia National Laboratories. 

The goal of the study is twofold: first, investigate the potential of optimization in 
improving the performance of vibration isolation systems and second, by exercising the 
GA with a real-life problem, hopefully identify critical directions for future GA research 
and development efforts. 

2. System Description 
The experimental vibration isolation setup (Fig. 5) consists of a stainless steel 

honeycomb sandwich optical table (Newp~rt‘~~,  model RS4000-3 6-8) measuring 
approximately 48 by 36 by 8.5 inches and weighing approximately 815 Ibs. The table is 
resting on 3 steel coil spring isolators (custom designed, using springs from Associated 
Spring-Raymond’”, model CV2000-2500-365) whose locations under the table are the 
focus of the optimization. This system is in turn resting on a large, solid aluminum seismic 
mass (custom-made, approximately 70 by 48 by 12 inches, 4085 lb.), itself isolated from 
the lab floor by four air bags (Firestone Airmount@ isolators”’, model 224C). Note that the 
seismic mass will actually be considered the “floor” in this problem. The air bag 
suspension is there to eliminate any unknown disturbances from the experiment but will 
not be part of the optimization problem. The suspension frequencies of the system on 
these airbags range from about 1 .O to 2.5 Hz. 

10 



SAND96-1169 
05/17/96 

Figure 5 Experimental vibration isolation setup. 

The bottom of the optical table and the top of the seismic base are fitted with 
identical aluminum adapter plates featuring matching arrays of 6 by 8 threaded holes (on a 
6 in. grid). The spring isolators are attached to those holes with threaded rods and 
aluminum end-plates as shown in Fig. 6. Note that because the springs are simply resting 
in the end-plates, the isolators can only take compressive forces. 

Figure 6 Steel spring isolator. 

Four hydro-pneumatic lifters are attached to the seismic block, allowing 
convenient access to the isolators, The four corners of the aluminum adapter plate 
attached to the seismic block are machined to provide clearance for the lifters. This 
eliminates 4 of the 48 possible isolator mounting locations. 
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Both the seismic base and the optical table are hl ly  instrumented for 6 d.0.f. 
motion pickup for system identification and model validation purposes (see Section 4.3). 
Four sets of 3 accelerometers (Endevco[*], model 7751-500mV/g) are mounted near the 
four corners of the seismic base as seen in Fig. 5. The optical table is equipped with 5 
triaxial accelerometers (Endevco[*], model 63-500mV/g), embedded in the aluminum 
adapter plate near the four corners and the center. All accelerometers are powered by 12- 
channel signal conditioners (PCBi9’, model 483A10). In addition, a high sensitivity seismic 
accelerometer (Wilcoxon Research[’”], model 73 1 10,000 mV/in/sec. in velocity mode) 
measures residual vibration at the critical point, near the front left corner of the optical 
table. 

The “floor” (seismic base) is excited near its front right corner (Figure 4) by an 
electromagnetic shaker (MB Dynamics[”’, model Modal 50A). The excitation force is 
measured by a piezoelectric load cell (PCBI9’, model 208A03, 10mV/lb.). 

3. Optimization Problem 
The vibration isolation problem is shown schematically in Fig. 7. As mentioned 

previously, the goal is to find optimal locations for 3 steel spring isolators between the 
optical table and the seismic base. The number of isolators was set to 3 to minimize 
uncertainties in the experimental setup that would occur due to static indeterminacy with 4 
or more isolators. By design, only 6x8=48 discrete locations are available for these 
isolators. Four of those locations (at the corners) are not available (see Section 2). 

Quiet Location 8, Direction 
( V, vertical velocity) 

Figure 7 Vibration isolation design problem. 

For simplicity, and to reduce computational expenses in the simulations, the 
disturbance is a pure sinusoidal vertical force F at a frequency of 50 Hz. This frequency 
was chosen to be within the isolation band, i.e. much higher than that of the suspension 
modes of the optical table but well below the frequency of the lowest elastic modes (150 
to 200 Hz). It will be shown that the use of a single target frequency instead of a wide 
band does not limit the improvements to that single frequency. Instead, the optimized 
designs actually have improved performance across the isolation range. 
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The objective is to minimize the residual vertical velocity Y at a target location on 
the table (Figure 7), in response to a given amplitude of perturbation force F. This 
amounts to minimizing the transfer function T = V/F (pin/sec/lb) from the excitation force 
to the residual velocity. This fbnction T will be referred to as transmissibility in the 
remainder of this report. The locations of the excitation and the critical point were chosen 
to create asymmetry in the problem. This is expected to lead to non-intuitive, asymmetric 
optimal locations for the isolators, in sharp contrast to a baseline configuration. 

Practical limitations dictate a number of design constraints on this problem (the 
implementation of those constraints is explained in more detail in the next section): 
e 

e 

e 

Depending on how the isolator locations are coded into design variables, it may be 
necessary to enforce the condition that the 4 locations at the corners of the 6x8 grid 
are not used. 
There cannot be more than one isolator at any given grid location. 
The isolators cannot be aligned on a straight line because the table would then be 
unstable. Note that, with 3 isolators, this condition also takes care of the previous one: 
if any two isolators are at the same location they are also on a straight line with the 
third one. 
Also, since softer isolation generally implies better performance (see Section 1) there 
may be a tendency for the optimizer to generate designs with very low natural 
frequencies (by placing the isolators very close to each other for example). This is 
undesirable in practice because such designs would have very large transient responses 
to impact and handling loads. To prevent this, a lower limit of 4.0 Hz is enforced on 
the first natural frequency of the optical table on its isolators. Note that this value also 
ensures decoupling with the suspension modes of the seismic base on its airbags (1 to 
2.5 Hz). 
Because the springs are not attached to their end-plates, the static gravitational load on 
each isolator must be compressive. 
The static deflections of the springs cannot exceed an upper limit beyond which the 
springs might not be linear or might be compressed to their solid length. This limit was 
set to 0.5 in. 

The discrete nature of the design variables (isolator locations) calls for the use of 
specialized optimization techniques. An approach based on a genetic algorithm will be 
examined in this study and compared to other techniques. It will be shown that the use of 
classical continuous optimization techniques followed by rounding of the solution is not 
appropriate. 

4. Modeling 

4.1 Suspended Rigid Body Modeling 

The lowest “flexible” modes in the system occur at frequencies of about 150 to 
200 Hz. They correspond to resonances of tuned vibration absorbers which are embedded 
in the optical table. At frequencies well below these flexible modes (say from 0 to lOOHz) ,  
the system can be approximated as a set of 2 rigid bodies (seismic base and optical table) 
connected by 3-dimensional, linear springs with viscous damping (airbags and spring 
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isolators). Each rigid body is given 6 degrees of freedom and defined by its mass and 
inertia tensor. The springs are defined by stiffnesses (kx, k,,, k,) and damping coefficients 
(G, c,,, c,) in 3 mutually orthogonal directions, parallel to the global reference directions 
X, Y, and Z of Fig. 5. For the system at hand, we have kx=ky=kshear, kz=kmral, Cx'Cy'Cshear, 
and cz=cmlalbecause of axisymmetry of both the airbags and the steel springs. Bending and 
torsional stiffnesses of the springs were neglected. 

4.2 Mass Properties 
Mass properties for most components (seismic base, adapter plates, airbag adapter 

blocks, etc.) were obtained from Pro-Engineer'I2] models. The lifters were weighed and 
their inertia tensors were approximated based on uniform density assumptions in a Pro- 
EngineerTM geometric model. The optical table posed special problems: because of the 
presence of embedded tuned vibration absorbers of unknown properties (accurate data 
could not be obtained from the manufacturer), the mass properties could not be 
determined analytically and were instead measured by the Mass Property Laboratory at 
Sandia National Laboratories. The center of mass of the table was found to be offset by 
1.72 in. in the negative Y direction from its geometric center (due to uneven distribution of 
tuned dampers). 

4.3 Stiffness and Damping 

4.3.1 Airbags 
The stiffness of an airbag is almost exactly proportional to the static axial load (the 

natural frequency of a 1 d.0.f. system made of an airbag and a mass is approximately 
independent of the magnitude of the mass). Initial data for axial stiffness versus axial load 
was obtained from the manufacturer's catalog[" and can be approximated as 

krrlrn, = 66.5 1 + 0.4047 P, 
where P is the axial static load in lb and kcrxrcr1 is in Ib/in. Shear stiffnesses were not 
available. Modal tests were then performed on the seismic mass alone, supported by the 
airbags (the optical table and springs were removed for this test). Natural frequencies and 
modal damping ratios were extracted form those measurements and are listed in Table 1 .  

..... !?! e.# .......... E!ewenc~..L!zJ ........... D?.E.P!?.~..~ ' %  .... 1 ...................................................................................................... 
1 0.961 2.95 shear along X (+ rocking around Y) 
2 1.145 3.23 shear along Y (+ rocking around X) 
3 1.519 3.36 twist around Z 
4 2.161 0.82 symmetric up/down along Z 
5 2.464 1.61 rocking around Y 
6 2.467 1.28 rocking around X 

..,..-_____u______I .... us....... ....... ......-< .......... ........~.......A...A........... ...... .A .... u.u.u..-~.~...~....u....,-....-.,_u-.~..~---....-... 
Table 1 Eqm-imental modes of seismic base on airbags 

Mode 4 (pure up and down motion) was used to adjust the axial stiffness and 
damping (catalog values for stiffness was scaled by 1.0154) and mode 3 (pure twisting 
motion around 2, straining the airbags in pure shear) provided the ratio of shear to axial 
stiffness (kshear/kaxlcrr = 0.461 1) and the shear damping. With those values, the model 
predictions compare reasonably well with the experiment (Table 2). 

14 
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.................................................................................................................... Damping ratio C"/.] Frequency [Hz] 
exp. anal. exp. anal. 

shear along X (+ rocking around v) 0.961 1.192 2.95 I .70 
shear along Y (+ rocking around X) 1 . I45 1.333 3.23 2.39 
twist around Z 1.519 1.519 3.36 3.36 
symmetric up/down along Z 2.1 61 2.1 61 0.82 0.82 
rocking around Y 2.464 2.489 1.61 2.90 

2.467 2.479 1.28 1.97 

............................................................................................................................................................................................................................... 

_ U _ _ _ _ . . _ . . _ _ _ _ _ _ . _ _ _ _ _ _ _ . _ _ _ _ _ . . _ . . _ . . _ P  

Table 2 Seismic base on air springs; analytical and experimental modes. 

4.3.2 Sieel Springs 
With the assumption of linearity, the dynamic axial and shear stiffnesses of a coil 

spring are independent of static loads. An initial value k,,, = 38 16 lb/in was obtained from 
the manufacturerr6]. The shear stiffness was not available. Modal tests were performed on 
the optical table resting on 4 spring isolators, symmetrically arranged around its geometric 
center. The airbags supporting the seismic base were replaced with stiff support blocks for 
those tests. Measured natural frequencies and modal damping ratios are listed in Table 3 .  

--...... -------- ..._____u__________ 

Mode ## Frequency [Hz] Damping ["h] .............................................................................................................................................................................................. 
1 7.1 99 0.16 shear along X left side 
2 8.007 0.41 shear along X right side 
3 8.456 0.22 shear along Y (+ rocking X )  
4 12.121 0.15 rocking around Y 
5 12.885 0.16 up/down left side 
6 14.551 

Table 3 Experimental modes of optical table on 4 spring isolators. 

---.....-.-.-...*.--...-....-- __u__UU___UYU_U_U___XXW 

Frequency [Hz] Damping ratio ph1 ....................................................................................................................... 
exp. anal. exp. anal. .......................................................................................................................................................................................................... 

shear along X left side 7.199 7.375 0.16 0.22 
shear along X right side 8.007 8.020 0.41 0.26 
shear along Y (+ rocking X) 8.456 8.279 0.22 0.27 
rocking around Y 12.121 12.203 0.1 5 0.25 
up/down left side 12.885 12.897 0.16 0.17 

14.551 14.370 0.21 0.16 uj-sid e 
_uu_u__________u -..A=- ,A.A ..______u_I 

Table 4 Optical table on 4 spring isolators; analytical and experimental 
modes. 

The simple analytical technique used to identi@ airbag stiffnesses and dampings 
cannot be used here because of the absence of pure up/down or shear modes. Instead, a 
parameter identification optimization problem was formulated that minimizes a weighted 
sum of squares of errors on natural frequencies and damping ratios. Four parameters were 
adjusted to minimize this error: axial stiffness karrul and damping cMlul, and shear stiffness 
kshear and damping Csheu,.. The minimization was performed using OPT++Ii3' conjugate 
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gradient optimizer in DAKOTA. The results lead to a correction factor of 1.04 on the 
catalog value for karia,, a ratio kshea,./ karral = 0.41, and damping coefficients Caria! = 0.13 and 
cshear = 0.18. These values achieve good analytical-experimental match (Table 4). 

4.4 Analysis Code 
The rigid body equations of motion were coded into a set of M-files in 

MATLAB[14'. For the optimization, interfacing with DAKOTAt was done directly 
(without the use of input and output filtersr4]) since the MATLAEI code could be designed 
to exchange information (design variables and objective hnction) in the DAKOTA 
compatible format. 

4.4. I Objective Function Calculation 
The transmissibility Tat a single frequency of 50 Hz (see Section 2) is calculated 

by solving the (1 2x1 2) set of linear dynamic equations for that frequency. 

4.4.2 Constraint Evaluation 
corner constraints: simple checks are performed for each isolator location. Three 

Boolean constraints g / ,  g2, g3 are defined as 

alignment constraint: since natural frequencies are needed for the 4Hz limit in the 
stability constraint, alignment was checked by monitoring the value of the first natural 
frequency5 (out of 12) of the system. A value of zero indicates alignment (or more than 1 
spring at any location). To account for numerical roundoffs, a threshold value of 0.01 Hz 
was used. This defines the 4'h Boolean constraint: 

Note that if this constraint is violated, the system's stiffness matrix is nearly singular and 
static equilibrium cannot be computed. Also, there is a switch in the order of the natural 
frequencies because the first natural frequency is now associated with the upper system 
instead of being a seismic base suspension mode (which is also why the alignment 
constraint is treated separately from the stability constraint). For these reasons, all 
following constraints g5 .. .gll are evaluated only if g4 is false. 
0 stability constraint: As mentioned earlier, the upper system natural frequencies are 
required to be above 4 Hz, i.e. 

g5 = I - f714.0 Hz 0, real constraint, 
where f7 is the first natural frequency of the upper half of the system (because the first 6 
frequencies correspond to the lower half, i.e. the seismic mass on its airbags). 

compression constraint: with 3 isolators, the upper table is statically determinate so that 
reaction loads can be readily computed by solving 3 equilibrium equations. Three 
constraints are formulated to guarantee that the loads are compressive: 

gs+, = PI 1. 0, i = I ,  ...) 3, 
where PI is the static load on spring #i (positive in traction). 

g, = < is isolator # i at corner? >, i= I ,  . . . ,3, boolean constraints. 

g4 = <fi <. 0.01 Hz ? > , boolean constraint. 

real constraints, 

DAKOTA is an object-oriented C++ toolkit for interfacing broad libraries of optimization methods (e.g. 
NLP, GA's, coordinate pattern search) with engineering applications i n  a variety of disciplines. 
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e 

springs remain below a limit 6,, = 0.5 in.: 
0, i= I ,  . . . , 3  , 

static deflection constraint: three constraints enforce that the static deflections 6, of the 

g8+, = ti,/ 6,, - I real constraints. 

5. Baseline Design 
Before optimizing the isolation system, we first define a generic, baseline 

configuration. It will be used as a point of comparison to evaluate improvements achieved 
by optimization. This baseline configuration is generated following the generic design 
approach described in Section 1 : the three isolators are placed symmetrically around the 
center of mass of the isolated body (the optical table). Because of the coarse discrete grid 
of mounting holes for the isolators, perfect symmetry cannot be achieved. The selected 
locations are shown in Fig. 8. 

Figure 8 Locations of isolators in baseline design. 

Note that, without prior analysis, a configuration similar to that of Fig. 8 would 
probably be used in practice. This study will show that other configurations can be found 
that lead to much superior performance. 

The transmissibility predicted by the MATLAB model for this design is plotted in 
Figure 9. A number of resonant peaks corresponding to suspension modes can be seen at 
frequencies up to about 15 Hz. At higher frequencies, the transmissibility decays rapidly 
and reaches T = 21.22 pin/sec/lb at the 50 Hz target frequency. 

1000000 , 

T =  V/ 
(pin/sec/l b.) 

..... T = 21 22 ............ . ........................... 

\ 
1 

0 20 40 60 80 100 
frequency (Hz) 

Figure 9 Transmissibility of baseline design. 
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Flexible modes are absent from the figure because first, they are not represented in the 
rigid bodyhpring model and second, they start at frequencies of about 150 Hz. 

It should be noted that the performance of this design is very representative of this 
particular isolation system: Monte Carlo simulations with 1000 random configurations 
show that the average transmissibility of feasible designs is 2 1.1 pidsechb, almost exactly 
equal to that of the baseline design. 

6. Optimization Techniques 
Three optimization techniques are applied to this discrete problem: random search, 

genetic algorithm (GA), and continuous optimization followed by rounding of the 
solution. These techniques and their implementation for solving the problem at hand are 
presented in the following sections. Particular attention is given to the GA solution. 

6.1 Random Search 
The random search technique (Figure 10) is used as a point of comparison to 

evaluate the efficiency of the GA search. It consists of generating a given number (n) of 
random configurations of 3 isolators, eliminating those that violate one or more 
constraint(s) and selecting the best remaining design. This process is extremely simple and 
general but obviously inefficient. 

‘optimized’ design 

Figure 10 Random search technique. 

6.2 Genetic Algorithm 

6.2. I Description 
A genetic algorithm (GA) is a random search technique that mimics some 

mechanisms of natural evolution. The algorithm works on a population of designs 
(individuals) which is the counterpart of a population of biological creatures. Following 
principles of the Darwinian theory, the population evolves from generation to generation, 
gradually improving its adaptation to the environment: through natural sdection, fitter 
individuals have better chances of transmitting their characteristics to later generations 
(suwival of the fittest). 
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In the algorithm (Figure 1 l), the selection of the natural environment is replaced 
by artificial selection based on a computed fitness for each design. This fitness is 
essentially the objective function of the optimization problem (possibly augmented with 
constraint penalties). The chromosomes that define characteristics of biological beings are 
replaced by strings of numerical values representing the design variables. When couples of 
selected individuals (designs) reproduce, they combine portions of their genetic material 
to create an offspring that shares traits from each parent. In the GA, this recombination of 
the parents’ chromosomes is performed by two genetic operators which are the simplified 
versions of their natural counterparts: crossover and mutation (several other operators 
have been introduced but crossover and mutation are almost always present). The 
crossover combines existing features of both parents to exploit the genetic heritage of the 
population while the mutation introduces new features to explore new areas of the design 
space. In tuning the algorithm, a delicate balance (which unfortunately is problem- 
dependent) must be achieved between exploitation and exploration: too little mutation and 
the GA will “converge” prematurely, possibly to a local optimum, destroying the global 
character of the search; too much and the search will be exceedingly disrupted, preventing 
efficient exploitation of existing design features. 

Initial Population 

LI 
I Analyse & Rank 

Clone 

4 Put Child into 
New generation 

------i 
Final Population 

Figure 11 Classical genetic algorithm. 

While innumerable variations of genetic algorithms are possible, the following 
subsections describe the coding, operators, and constraint enforcement strategies specific 
to SGOPTr3’ in DAKOTAI4] and this application. 

6.2.2 Defining the Chromosome (Coding) 
The first and most important step in preparing an optimization problem for a GA 

solution is that of defining a particular coding of the design variables and their 
arrangement into a string of numerical values to be used as the chromosome by the GA. 

The choice of a particular coding has large ramifications on the efficiency of the 
search. Although historically GA’s were developed to operate on strings of binary 
numbers (design variables would be converted to their binary representations and 
concatenated into a long binary chromosome), ~tudies[ l~”~]  have shown that other 
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representations (using trinary, decimal, or real alphabets) can be used with similar or better 
performance. 

For the problem at hand, a few coding options are illustrated in Fig. 12. The first 
three options (a.1 to a.3) are based on a continuous numbering of all available locations 
from 1 to 44. The last two (b. 1 and b.2) use array indices 1 to 6 and 1 to 8 in the X and Y 
directions. The first numbering scheme (a,) presents the disadvantage of not embodying 
the physics of the problem: choosing the location of isolators in a plane is a 2-dimensional 
problem, calling for a 2-dimensional coding. This numbering also creates artificial 
discontinuities in that a small change in code value does not always lead to a small change 
in isolator location. For example, changing an 
moves it all the way across the adapter plate. 

a- 00000000 
00000@0@ a.2 

a.3 

1 2 3 4 5 6 7 8  

b. 1 

000000 
00000000 b.2 

b. 

0000 
000 

isolator location from #6 to #7 (Fig. 12a) 

3 Integers 

3 Binarv - 6 Bits 

44 Logical (spring / no spring) 

6 Integers 
6 1 5 ) 1 / 6 1 2 1 2  

6 Binary - 3 Bits 

Figure 12 Various ways of coding isolator locations into a "chromosome" 
for a genetic algorithm. 

Coding a.3 is particularly inefficient: crossover operations between two such 
chromosomes have very little chance of generating an offspring with exactly 3 isolators. 
The algorithm would then spend most of its time generating and analyzing designs that do 
not have the required number of isolators. This is a manifestation of a more general idea: a 
coding should include as many constraints as possible to reduce the probability of 
generating infeasible designs. Another example of this is the corner constraint: the first 
numbering scheme (a,) implicitly guarantees satisfaction of that constraint. 

Despite this last observation, the designs were coded using a string of 6 integer 
genes for the X and Y grid indices of the 3 isolator locations, i.e. [ X I ,  yl, x2, y2, x3, y3] 
(coding b. 1 in Fig. 12). This coding closely represents the physics of the problem and does 
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away with the need for back and forth conversions between integer and binary 
representations of the design variables. The alphabet (range) is 1..6 for x genes and 1. .8  
for y genes. 

6.2.3 Selection Operator 
The selection operator is in charge of picking individuals for reproduction. It uses 

a biased roulette wheel where fitter individuals get larger portions of the wheel and have 
therefore better chances of reproducing and transmitting their characteristics. 

A ranking technique is used to assign portions on the roulette wheel: the 
probability of selection of an individual is a hnction of its rank in the population - not its 
fitness. This avoids the classical problem of the super-individual: if, early in the search, a 
single design is - by chance - vastly superior to all others, a fitness-based selection would 
almost always pick that super-individual and create a population of clones, leading to 
complete loss of genetic diversity. This does not happen with a rank-based selection rule. 

t Probability of Selection 

Figure 13 Ranking selection operator. 

Figure 13 illustrates the particular rule used in this application. The selection 
pressure is defined as the ratio of the probability of selection of the best individual in the 
population to that of the worst. High selection pressures push the search to faster 
improvement but also gives it less time to explore the design space. Again, a compromise 
must be found. The selection pressure was set to 2 for this application. 

6.2.4 Crossover Operator 
Once two parents have been selected, their chromosomes undergo a crossover 

operation that generates an offspring chromosome. This GA uses a 2-point, non-averaging 
crossover illustrated in Fig. 14. 
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Parent 1 
I 

Parent 2 

j 2random ; 
;t- cutting- 
; points ; 

n 
Crossover 

( 7  
V 

Child 

00000. 
0 0 0 0 0 0 0 0 
00000000 
00.000.0 
00000000 

000000 

000000 
00000.00 
00000000 
.0000000 
00000000 

000.00 

0000.0 
00000000 
00000000 
.00000.0 
00000000 

000000 

Figure 14 Non-averaging 2-point crossover operator. 

The operator selects two random cutting points and creates a child chromosome 
by assembling the inner and outer substrings from either parent. This operation is applied 
with a given probability P, (typically large, 80 to 100%). When crossover is not applied, 
one of the 2 parent chromosomes (chosen at random) is simply cloned. 

Notice that the child typically has some features from each parent but also some 
new characteristics: the (1,6) location in the child’s chromosoine in Fig. 14 for example 
results from the combination of the x index from one parent and the y index from the 
other. 

This crossover is called non-averaging because the cutting points are only allowed 
to fall between genes. In contrast, an averaging crossover (see 
for example ‘16]) generates cutting points that can fall anywhere within a gene. When this 

happens, the child gene is computed as a weighted average of the parent genes. The 
averaging crossover was introduced to improve the GA’s behavior for problems with large 
alphabets: when a gene can take a large number ofvalues, the initial population is unlikely 
to contain every possible value for that gene. Without averaging crossover, the generation 
of new values is left exclusively to the mutation. Artificially large and disrupting mutation 
rates are then needed to maintain diversity. The averaging crossover is also naturally 
indicated for problems with real-valued genes (which have an infinite alphabet). 

For the current application, the alphabet is limited enough (1 to 6, or 1 to 8) that a 
non-averaging crossover may be sufficient, although fhther testing would clarifL this 
point. 

62 .5  Mutation Operator 
The mutation introduces random changes in the offspring chromosome resulting 

from the crossover operation. The role of the mutation is to prevent loss of genetic 
diversity by introducing design features that may have never been present in the population 
or may have been lost over time. 
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n 
Mutation 

V 
I 

Random value 
I 

Figure 15 Mutation operator. 

Mutation is applied with a small probability P, to each gene in the chromosome. 
Figure 15 illustrates this process. When mutation occurs, the current value of the gene is 
replaced by a random value, uniformly distributed in the range of that particular design 
variable. 

6.2.6 Coirstraiirt Ei!forcenieiif 
It is interesting to note that although most realistic engineering design problems 

involve numerous constraints, little work has been done to investigate constraint 
enforcement strategies for genetic algorithms. One of four approaches is typically used: 
data structuring, direct elimination, repair operators, or penalty hnctions. 

Data strzrcturiiig consists of designing the coding in such a way that constraints 
are automatically satisfied because infeasible designs can simply not be represented. In our 
problem for example, the requirement to have exactly 3 isolators is automatically satisfied 
when using any coding scheme in Fig. 12, except a.3. Satisfaction of the corner constraint 
on the other hand is implicit with codings a. 1 to a.3 but not with b. 1 or b.2. Although data 
structuring is always the most efficient technique, it is only applicable for particular types 
of constraints and is very problem-specific. 

Figure 16 Design problem with disjoint feasible space. 

In the direct eliniiriatioir technique, each design resulting from selection, 
crossover, and mutation is examined for constraint satisfaction before it is included in the 
new generation. If any constraint is violated, the offspring is eliminated and a replacement 
is created through new selection, crossover and mutation operations. This process is 
repeated until a feasible design is found. This creates entirely feasible populations at every 
generation, constraining the search exclusively within the feasible regions of the design 
space. In cases where the design space contains non-convex and/or disjoint feasible 
regions, this makes the search inefficient and unreliable. The reason is best explained on a 
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simple example. Figure 16 represents the design space of a 2-dimensional design problem. 
The shaded areas represent infeasible regions and the arrow gives the general direction of 
improvement of the objective fbnction within the large feasible area at the upper right of 
the figure. An initial feasible population for this problem is likely to reside entirely in the 
large feasible region of the design space. If direct elimination is used, the GA will then 
converge to the local minimum within that area (0  in Fig. 16), missing the global optimum 
(*). It is clear that convergence to the global optimum is likely only if the GA population 
is allowed to migrate through the infeasible “barrier” to reach the small feasible inclusion. 
Note that the feasible space does not have to be disjoint for this problem to occur: if the 
feasible space is non-convex, the GA may have to migrate around a constraint barrier 
instead of short-cutting through it. 

Another approach uses repair operators to “fix” infeasible designs before 
incorporating them in the new generation. Repair operators use some knowledge about 
the problem to try and eliminate constraint violations through “small” modifications of the 
design. This approach is inherently problem-specific and is used mostly in research 
algorithms or GAS designed specifically for a particular class of problems. A simple 
example is shown in Fig. 17 for the corner constraint: an isolator located at a corner could 
be moved to one of the neighboring locations (one of three at random for example). 

In less trivial cases however, it may be difficult to define design changes that 
eliminate given constraint violations. Also, in highly constrained problems, one cannot 
guarantee that ‘fixing’ a design for one constraint will not cause violation of another. 
Finally and most importantly, repair operators are problem-specific so they cannot be used 
in a general purpose optimization package like DAKOTA. 

i? 
.A 

0 0 0 0 0 @ @  
0 0 0 0 0 0 @ @  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

0 0 0 0 0 0  

Figure 17 A simple repair operator for the corner constraint. 

The fourth constraint enforcement technique uses penalty functions: in a 
minimization problem, each constraint violation produces an increase in the objective 
fhction. Because penalty fimctions were originally introduced to enforce constraints in 
the context of gradient-based optimization, classical definitions produce a smooth, 
differentiable transition from feasible to infeasible regions. This ‘blurs’ the boundaries of 
the feasible design space. A continuous optimization then converges to either slightly 
infeasible designs (when using exterior penalty finctions’ *’I) or slightly conservative 
designs (with interior penalty functions). To avoid this and since there is no need to 
achieve continuity in the penalty fimctions with a zero order method like a GA, a 
combination of step and gradual penalties[’81 (as shown in Fig. 18) will be used. 
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The steps prevent convergence to slightly infeasible designs while gradual penalties 
maintain a logical hierarchy between designs with more or less severe constraint 
violations. Gradual penalties are of course applied only to the quantifiable constraints 
(stability, compressive spring loads, and static spring deflections); Boolean constraints 
(corner constraints and isolator alignment) receive only a step. 

Unconstrained 
Objective 

Step Penalties 

+ C multipliers x (gjI2 Gradua I Pen a lties 
I 

Figure 18 Penalty function approach used in this application; the shaded 
ilre:i is infeasible. 

Just like in gradient-based optimization, adjusting penalty multipliers (and steps) is 
tricky. Too little penalty leads to infeasible designs, while too much makes the search 
inefficient by restricting it to feasible regions. Unfortunately, because GAS are random 
searches and necessitate large numbers of fbnction evaluations, trial and error adjustments 
are impractical. A study by Richardson ef a/.[’91 indicates that penalties should be as small 
as possible, but large enough to prevent frequent convergence to infeasible solutions and 
that using harsh penalties leads to poor convergence and/or premature convergence to a 
super-individual. However, that study uses proportional selection (probability of selection 
based on objective fhction value); its conclusions do not hold when using a ranking 
selection rule. In fact, it appears from limited experimentation with this problem that the 
reliability of the search is best with harsh penalties associated with a weak selection 
pressure (the selection pressure was set to 2, see Section 6.2.3). Note again that because 
of the random character of GA’s and the interaction between multiple parameters 
(probabilities of mutation and crossover, population size and number of generations per 
search, penalty multipliers and steps, etc.), statistically significant conclusions can be 
reached only through extensive (and expensive) experimentation. 

6.3 Rounding of Continuous Optimum 
In this approach (Fig. 19), all design variables are temporarily viewed as 

continuous and classical gradient-based techniques are used to solve the optimization 
problem. The resulting optimal design is infeasible and its parameters must be “rounded” 
to discrete values. 
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Solve Optimization Problem in 
continuous design space 

Continuous Optimum 

I "Round" to close discrete solution 1 
I 

Discrete Design@) 

FEASIBLE ? OPTIMAL ? 

Figure 19 Using continuous approximation followed by rounding to 
nearby discrete solution. 

The appeal of this technique is the much smaller number of hnction evaluations 
typically needed to achieve convergence with a gradient based technique than with a 
random search method. However, the rounding operation can make the design infeasible 
or suboptimal. Also, many different designs can be defined by rounding up or down the 
various design variables. To increase the chances of optimality, all these "direct neighbors" 
must be considered and analyzed. When the number of discrete design variables is large, 
this may require a substantial number of additional function evaluations (2" if i 7  is the 
number of design variables) so that the computational advantage may be lost. These points 
are hrther discussed in Section 7.2. 

7. Optimization Results 

7.1 Genetic Algorithm and Random Search 

The GA in DAKOTA provides a number of options and adjustments. The 
following choices were made for this application: 

.population of 10 individuals (designs). The initial population is random. With 10 
individuals, the probability of representation of any gene value (1 to 6, or 1 to 8) at any 
gene location is close to 1, which should ensure good performance with a non-averaging 
crossover 

probability of crossover: 0.80 
probability of mutation: 0.10. This gives a 60 to 80% probability for any 

offspring to be affected by mutation. 
elitist strategy always clones the best individual of the current generation into the 

next generation. This guarantees that the best found design is never lost in fiture 
generations. 

not achieve sufficient reliability) 

twice that of the worst (Le. selection pressure=2). 

0 number of generations : 15 (experiments with smaller numbers of generations did 

0 moderate selection pressure: the probability of selection of the best individual is 
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Penalty multipliers and steps were adjusted somewhat arbitrarily. Limited trial and 

0 comer constraints gI,g2, g3: step = 5.0. 
0 alignment constraint g4: step = 20. 
0 stability constraint g5: step = 2, multiplier = 20. 
0 compression constraints g6 g7, $3: step = 5,  multiplier = 0.05. 

static deflection constraints g9, gio, gll: step = 5, multiplier = 200. 

error experimentation was performed and lead to the following values: 

Random Search A GA Search 10 

2 c  

10 Runs - 105 Function evaluations each 

Figure 20 Comparison of genetic algorithm and random search results 
using the same number of function evaluations (105). Designs shown are 

the best found for each run. 

The design space for this problem is relatively small: 6x8 locations for each of 3 
isolators gives 483 E 1 10,000. With 15 generations of 10 individuals, each search evaluates 
up to 150 designs, or 0.14% of the design space. Note that because this GA keeps track of 
previously analyzed designs, the actual number of fbnction evaluations averages around 
105 per search (0.1%). To get an idea of the reliability of the search, a series of 10 runs 
were performed and the results are compared to a series of 10 random searches. The 
number of designs in the random search is set to 105 so the computational expense is the 
same as in the GA. Typical results are shown in Fig. 20. The figure shows only the best 
design found in each run of the GA or the random search. The random searches generate 
some good designs and many mediocre ones. In contrast, all 10 designs obtained from the 
GA represent significant improvements from the baseline case. However, the GA 
occasionally "converges" to a relatively poor design (T=3.23 in Fig. 20). This implies that 
more reliable results can be obtained by running a small number of short searches: if the 
probability that the best found design is "poor" is 0.1 for a one run, then it is only 0.01 for 
the best of 2 runs, 0.001 for the best of 3, etc. Because GA's are most efficient in the 
initial phases of the search and fhrther ''convergence'' is usually slow, this approach is 
oRen preferable to running a single longer search['*]. 

It is interesting to note that the classical argument that a GA provides a choice 
between several good designs in the final population does not hold in this application. 
Instead, final populations typically contain only one or two feasible design(s). In fact, all 
generations in the search are composed mostly of infeasible designs. This shows that the 
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search is taking place primarily in infeasible regions of the design space. Under these 
conditions, it is particularly crucial to allow the search to migrate through infeasible 
regions. This may also explain why a weak selection pressure provides better results with 
this problem. 

Figure 21 GA optimized designs and their transmissibilities at SO Hz (in 
pin/sec/lb), compared to baseline configuration. 

Several sets of 10 runs each were performed in the course of this study. Nine of 
the best designs obtained form those runs are shown in Fig. 21 and compared to the 
baseline design. The transmissibilities at 50 Hz are also listed in the figure. Clearly, all 9 
optimized designs represent very significant improvements from the baseline case: 
transmissibilities are reduced by factors 32 to 70 compared to baseline. 

Note also that the 9 optimized designs do not have any apparent similarities 
although they provide very similar performances. This indicates the existence of multiple 
local optima for this problem. 

Figure 22 shows frequency response functions (FRF’s) for all designs of Fig. 21. 
They show that the GA is seeking out an anti-resonance condition in the vicinity of 50 Hz. 
The fact that the anti-resonances “miss” the 50 Hz target is due to the discrete isolator 
locations. In fact, the continuous optimum of the next section places the antiresonance 
almost exactly at 50Hz, achieving a transmissibility of 0.2 pin/sec/lb. Another important 
observation is that there is significant broad-band improvement in the transmissibilities of 
the optimized designs compared to the baseline design. That is, the improvement is not 
confined only to the 50 Hz target frequency. This is an especially important observation 
since it indicates that performance is not seriously degraded for off-nominal excitation 
inputs and more sophisticated objective function formulations minimizing broad band 
transmissibility are probably unnecessary. 
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Figure 22 Transmissibility curves of optimized designs corn pitred to 
baseline configuration (model predictions). 

7.2 Rounding of Continuous Optimum 
 DOT'S'^^' modified method of feasible directions (accessible through DAKOTA) 

was used to solve the constrained, non-linear continuous problem. A continuous solution 
(k in Fig. 23) was found at (2.22, 1.56, 2.49, 4.94, 4.29, 3.79) with a transmissibility 
F0.20 pin/sec/lb at 50 Hz. Rounding to the closest discrete solution (e in Fig. 23) leads 
to (2,2,2,5,4,4), which is infeasible (violates the 4Hz stability limit). If we consider all 
immediate neighbors of the continuous solution (all combinations of and 0 in Fig. 23), 
we find that out of the 64 designs, onIy I2 are feasible and the best of these (2,1,3,5,5,3) 
gives T=3.67 pidsec-lb. This transmissibility is 22 times higher than that of the best GA 
solution (T=0.30) and only 6 times better than the baseline configuration (T=2 I .22). 

0 0 0 0 0 0  

e*. 0 @ 0 0 0 0 

0 0 "*. 0 0 0 0 

* 
~ @ O @ @ O O O  

0 0 @ @ 0 0 0 0  

0 0 0 0 0 0  

* Continuous optimum (2.22, 1.56, 2.49, 4.94, 4 29, 3.79). , . . . T = 0.20 

0 Closest discrete design (2, 2, 2, 5, 4, 4) infeasible 

@I Immediate neighbors 64 designs: - 52 infeasible 
- 12 feasible. . . . . . . . best T = 3.67 

Figure 23 Results from continuous optimization and rounding. 
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Continuous approximation leads - for this problem - to many infeasible designs and 
a few suboptimal solutions. Although this particular application is particularly difficult for 
continuous approximation (because of the low density of feasible designs and the very 
coarse discrete grid), two general observations can be made: 
0 continuous solutions for constrained problems tend to make one or more constraint(s) 

active. Rounding those solutions is likely to produce violations of the active 
constraint(s). 
optimal regions in the continuous problem may not contain any discrete solution. The 
discrete optimum may then be very different from the continuous one. This is 
particularly true when the discrete grid is coarse compared to the shortest wavelengths 
in the objective fbnction response surface. 

Objective 

1 ’ Constraint boundary i 
Design Variable 

Figure 21 Rounding i continuous optimum to neighboring discrete 
solutions. 

Figure 24 illustrates these points for a one-dimensional constrained problem. The 
curve represents the variation of the objective function in a continuous design space. 
Dotted vertical lines show the discrete grid of the actual problem and the solid line gives 
the constraint boundary. If appropriate starting points are used for the continuous 
optimization, the global continuous optimum will be found at -k (the global optimum in 
the continuous sense). This design makes the constraint active. The closest discrete 
solution (0) violates the constraint while the other direct neighbor solution is far from 
optimal. The discrete optimum (shown by the arrow in the figure) does not “resemble” its 
continuous counterpart. 

7.3 A Look at the Design Space 
To understand the behavior of the optimizers, it is interesting to take a look at the 

topography of the design space. In particular, the relative sizes of feasible and infeasible 
regions and the rates of variation of the objective fbnction are critical factors that influence 
the efficiency of optimization algorithms. 

To answer the first question, a Monte Carlo simulation was performed in which 
1000 random combinations of isolator locations were selected at random and their 
objective fbnction and constraints were calculated. The results show that only 12.7% of 
the designs are feasible, indicating a heavily constrained problem. The mean objective 
fbnction value for the feasible designs is equal to T=21.1 pidsedlb. As mentioned earlier, 
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this value is almost exactly equal to the transmissibility of the baseline configuration which 
can therefore be considered representative (in other words, the baseline design is not 
exceptionally poor). Also, the distribution of isolator locations among the feasible designs 
does not depart significantly from uniform (except for the 4 corners which are never used). 
This indicates that “good” designs do not tend to use particular locations on the grid. It is 
only the combination of 3 locations that determines a design’s feasibility. 

unconstra ned constra ned 

F i p r e  25 Two-dimensional cut through the design space obtained by 
moving one isolator in both directions; for clarity, the constrained 

objective plot only shows step penalties. 

The 6-dimensional design space of this problem cannot be visualized easily. 
However, 2-dimensional cuts can be obtained by fixing the locations of 2 of the isolators 
and moving the third one in the X and Y directions. The GA design (1,6,2,8,5,3) with 
T=0.47 from Fig. 21 is used as a starting point. The locations of the two isolators near the 
top right comer (1,6) and (2,s) are fixed while the third one is moved across the plane, 
ignoring the grid. This generates the 2-dimensional cut (1,6,2,8,xj with x,y E% ) in the 
design space. Figure 25 shows both unconstrained and constrained (steps penalties only) 
response surfaces. Note that -in the continuous sense- there is not a unique optimum 
but rather a infinity of locations (the dotted curve in Fig. 26) for the third isolator that 
achieve a small transmissibility (0.2) by designing an anti-resonance at the exact location 
of the pickup point. 
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Figure 26 Design space cross section showing unconstrained objective, 
discrete grid, contour lines, constraint boundaries, feasible domain 

(shaded), and feasible discrete designs with their transmissibilities; the * 
shows the discrete optimum. 

The same cut is represented in Fig. 26: here, contour lines of the unconstrained 
objective function are plotted together with constraint boundaries. Discrete isolator 
locations are shown with small circles. Note the small size of the feasible domain (shaded). 
Only 5 discrete designs are contained in that area; their transmissibilities T at 50 Hz are 
listed in the figure. 

Note also that the location (5,3) found by the GA for the 3rd isolator is the discrete 
optimum (*) for the given locations of the other 2 isolators. It was found that this is the 
case of almost all locations used in the designs of Fig. 21, which indicates that they 
correspond to various local optima and confirms the strong multi-modality of this 
problem. 

The small size of the feasible regions (12.7% of design space) and the coarse 
discrete grid create small feasible “pockets”, each containing few discrete solutions. This 
explains the difficulties encountered in the GA searches. The search has to take place 
almost entirely in the infeasible design space because the number of designs in each 
“pocket” is too small to allow efficient exploitation by the GA. This also leads to mostly 
infeasible populations so that each run provides only one or two feasible design(s). 

Also, there is very strong coupling between design variables: it is only specific 
combinations of 3 locations that enable the small transmissibilities of Fig. 2 1. In Fig. 26 for 
example, the locations of the 2 fixed isolators selected by the GA are such that there is a 
feasible discrete location almost exactly on the anti-resonance line (dotted curve in the 
figure). 

8. Experimental Results 
The baseline configuration and all 9 optimized designs of Fig. 21 were tested in the 

laboratory. Because of the limited load capability of the shaker, the very large inertia of 
the seismic base, and the effectiveness of the optimized isolation systems, residual 
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velocities proved difficult to measure because of marginal signal to noise ratio and the 
presence of acoustic disturbances. To "clean up" the velocity signal, about 200 samples 
triggered on the 50Hz sinusoidal excitation signal were averaged in the time domain. The 
results are shown in Fig. 27 and compared to analytical predictions. The figure also shows 
predicted ranges of transmissibilities with 55% scatter in the spring stiffnesses. Those 
ranges were obtained from Monte Carlo simulations using uniform distributions of spring 
stifiesses with +5% variations; the stiffnesses of the 3 spring isolators were varied 
independently from each other. 

experimental 

nominal 

I +I- 5% spring stiffness variations 

25 

20 t - 

15 
T 

(pin/secAb) 
10 

5 

0 

Figure 27 Experimental transmissibilities at 50 Hz of baseline and 
optimized designs, compared to analytical predictions. 

The analytical-experimental agreement is qualitatively excellent: the dramatic 
improvement in performance achieved through optimization as predicted by the analysis is 
confirmed by the experiment. All 9 optimized designs perform between 7 and 46 times 
better than the baseline configuration (predicted ratios were between 32 and 70). 

9. Conclusions 

9.1 Optimum Isolation System Design 

Our results confirm that in cases where vibration isolation must be provided at 
specific points/directions on a device and sufficient information is available about the 
disturbances, very significant improvements in performance can be achieved by explicitly 
optimizing the locations of the isolators. In the particular application, the performance of 
the optimized designs was predicted between 32 to 70 times better than that of a baseline 
configuration. Those improvements were also observed in the laboratory, with 
performance ratios between 7 and 46. It was also shown that, even though the 
optimization was formulated to "target" transmissibility at a single frequency, significant 
broad-band improvement was obtained in the optimized designs compared to the baseline 
configuration. 
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9.2 Discrete Optimization 

Applying constraints through penalty fbnctions in a GA problem is a delicate 
operation. A balance must be achieved between the desire to obtain a feasible final design 
and the need to allow the search to cross infeasible regions of the design space. 
Surprisingly little research has been devoted to this aspect. One reason is that, in research 
GA’s, problem-specific repair operators are often introduced to enforce constraints. This 
approach is more efficient but is highly application-specific and cannot be included in 
general purpose codes like DAKOTA. 

The combination of multi-modality, large number of constraints, and limited 
design options (coarse discrete grid in this case) makes the problem dificult to handle, 
even for a zero-order random search technique like the GA. 

The classical argument that a GA provides multiple design alternatives in its final 
population does not hold in heavily constrained discrete problems with small design 
spaces. Instead, each run provides only one or two acceptable designs. 

0 Multiple design options and improved reliability of the search can be obtained by 
running a few short searches, rather than a single long search. 

Continuous optimization followed by rounding to neighboring discrete solutions 
does not generally lead to an optimal design. For problems with coarse discrete grids, 
heavily constrained design space, and rapidly varying objective function, this approach 
leads to few, relatively poor feasible designs. 

These observations have uncovered the need for further research if discrete 
optimization is to become a practical, easy to implement technique for use in real life 
design problems. In particular, techniques for efficient implementation of multiple 
constraints in genetic algorithm optimization need hrther exploration and development. 
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