
Shock Physics Code Research at Sandia National Laboratories; _-
Massively Parallel Computers and Advanced Algorithms’

by J. M. McGlaun, J. S. Peery and E. S. Hertel
Sandia National Laboratories

Albuquerque, New Mexico, 87 185-0819

1. Abstract
Shock physics researchers at Sandia are
working in two areas: massively parallel
computing and improved solution
algorithms. Our goal is predictive
modeling of large, three-dimensional
problems. We will discuss the goals,
rationale and status of this work.

1. I Massively Parallel Computer
Research

Massively parallel computers present
both tremendous opportunities and
challenges. They can have much more
memory and speed than traditional
supercomputers. For example, Sandia’s
Paragon computer has 1840 i860 CPU’s,
a peak performance of 147 GFLOPs and
37 Gbytes of memory. Intel will install
the Accelerated Strategic Computing
Initiative (ASCI) TFLOP computer at
Sandia in 1996. It will have 9072
Pentium Pro CPU’s, a peak performance
of 1.8 TFLOPs and 594 Gbytes of
memory. Both of these computers are
orders of magnitude larger than
traditional supercomputers and offer
tremendous opportunities to predictively
model very large, complex systems.

There are two challenges in developing
software for these computers. First, we
must write the code to use a distributed

mesh. To do this, we must decompose
the global mesh into numerous
submeshes. Each compute node has its
own submesh and copy of the code. The
code explicitly passes information to
neighboring submeshes as needed.
Second, we must write the codes using
different data structures and algorithms
than we used in the past for vector
computers. Massively parallel computers
are built from commodity CPU’s with
hierarchical (cache) memories. Vector
computers, such as CRAYs, have single-
level memories with very fast bandwidth
to memory. Cache memories have a very
high bandwidth to the first level of
memory (cache), but the bandwidth to
main memory is too slow to keep the
CPU busy. To obtain high performance,
we are designing the codes to perform as
much work as possible on data in cache
before writing it back to memory.

1.2 Algorithm Research

We are focusing our algorithm research
on better approximations to the
governing equations and mesh
management. Our ALEGRA [11 code
uses finite-element methods, an
arbitrary-connectivity mesh and an
Arbitrary-Lagrangian-Eulerian (ALE)
formulation where the mesh can move to
improve the accuracy. For example, part
of the mesh may move with the body

This work was performed at Sandia National Laboratories supported by the U S . DOE I

under contract DE-AC04-94AL8.5000.

Portions of this document may be fllegible
in electsoaic image products. Images are
produced from the best available original
document

(Lagrangian mesh), another part may be
space-fixed (Eulerian) and another part
may move arbitrarily.

We are also developing h-adaptive
meshing techniques for ALEGRA. H-
adaptive meshes can dynamically refine
or coarsen a mesh depending on some
criteria. For example, a single
hexahedral element may divide into
eight hexahedra. We will use h-adaptive
methods to resolve discontinuities such
as shocks, material interfaces and shear
flow. One of the biggest challenges is
developing h-adaptive methods that run
efficiently on massively parallel
computers. Work must dynamically
migrate between processors to load-
balance the work over the computer.

2. Introduction
We want to design and test complex
three-dimensional systems on
computers. This requires predictive,
three-dimensional codes. This paper will
discuss some of our research in
computational sciences and algorithms
to achieve that goal.

Three-dimensional calculations require
large meshes to resolve small scale
phenomena. Large meshes require very
high compute speeds. Only Massively
Parallel (MP) computers offer the
memory and processor speed needed.
Unfortunately, MP computers come with
new memory hierarchies that require
rethinking the way we develop code.

The memory hierarchy change in
commodity CPU’s will influence your
codes even if you do not run on MP
computers. There is a corresponding
change in computer hardware.
Workstations are taking over the market.
They use hierarchical memories rather

than the memory architectures used in
CRAY vector computers. Our solution
algorithms must change to achieve high
performance on workstations and MP
computers.

We are also developing adaptive solution
algorithms. They will move the mesh
and change the mesh to reduce the
calculation’s global error.

Code development of this scale requires
team efforts to both develop and validate
the codes. The authors acknowledge the
extensive contributions of both the CTH
and ALEGRA teams.

3. Massively Parallel
Computer Research

3.1 Why Do We Need Massively
Parallel Computers for Shock
Physics ?

Shock physics codes need the enormous
memories and compute speed of
massively parallel computers to support
the very large meshes required to resolve
the small structures that arise in shock
problems. The structures may be a shock
wave, a vortex sheet (sliding), a material
interface, a crack, the geometry of the
object or a contact discontinuity. Our
codes cannot resolve these structures at a
level finer than a cell. We model many
of these phenomena with first-order
algorithms. As you refine the mesh, the
error decreases linearly. For example, a
code that uses artificial viscosity will
always spread a shock over
approximately four cells. Many other
parts of the solution scheme are second-
order accurate so their error decreases as
the square of the mesh size. The first-
order algorithms’ errors dominate the
total error and determine the mesh
resolution needed.

3. f . f Processor Speed Versus
Memory

The processing speed needed for shock
physics codes should increase faster than
the memory size increases because the
Floating Point Operations (FLOPs) scale
up faster than the memory requirements.
This implies you should not simply add
more memory to a busy system and try to
run larger problems.

The memory needed for a three-
dimensional mesh increases as the cube
of the mesh refinement.

Memory = (mesh- refinement)3

For example, a region of space covered
with one centimeter cells will require
eight times as much memory as the same
space covered with two centimeter cells.
However, the number of floating point
operations (FLOPs) will increase as the
fourth power of the mesh refinement.

FLOPs = (mesh- refir~ement)~

The first three-fold increase in flops
comes from the larger mesh. The fourth
increase comes because the time step
used with explicit time integration
schemes decreases as the mesh refines.
We must add processing speedfaster
than we add memory or the run times
will quickly become be too long to be
useful.

Memory = (mesh- refinement)
FLOPs = (mesh- refinement)
FLOPs =

Equation 1. Speed and Memory
Scaling Relations

3.1.2 Memory and Performance of
MP Computers

Massively parallel computers provide the
needed combination of memory and
speed. A typical workstation may have
0.256 Gbytes of memory and a peak
speed of 0.23 GFLOPs peak processing
power. Sandia’s Paragon massively
parallel computer has 37 Gbytes of
memory and 140 GFLOPs peak
processing power from 1840 i860 CPUs.
The internode bandwidth is 200 Mbytes
per second. (The internode bandwidth is
the speed nodes can exchange
messages.) DOE’s ASCI TFLOP
massively parallel computer has 594
Gbytes of memory and 1800 GFLOPs
peak processing power from 9072
Pentium Pro CPUs. The internode
bandwidth is 800 Mbytes per second.
Shock physics codes need massively
parallel computers to achieve TFLOPs
on Tbytes.

between
nodes

workstation

200 Sandia’s
Intel

Paragon

TeraFLOP
DOE’s 1 1,800 ‘47 1 51: 1 800

of
CPUs

-
1

1840

9012 -
Table 1. Computer Statistics

3.2 Distributed mesh

We must design our shock physics codes
to run effectively on massively parallel
computers because MP computers have a
different memory structure than
traditional computers. All CPUs have
access to all the memory on traditional
shared memory processor (SMP)

computers, such as CRAY vector
computers and various vendors’
workstations. The memory on a SMP has
one global address space.

node. The code solves the physics on its
submesh.

3.2.1 Internal Boundaries

MP computers have a memory hierarchy
with different access times to the
different memories. A code must
manage the access to the different
memories to be efficient. Memory is
associated with each compute node.
(There may be multiple CPUs on a node,
as on the ASCI TFLOP.) There will be
fast access to the memory on the
compute node. Much of the memory will
be on the other compute nodes. The
memory on another compute node may
not be part of a specific node’s address
space. The access time to off-node
memory will be much longer because the
inter-node communication system must
retrieve the memory. Therefore, too
much inter-node communication can
degrade the code’s performance. We
must carefully design our codes to run
efficiently on these hierarchical memory
systems.

I

8- memory

,500 MB18 memory
I I

-100 MBIs I

We introduce new internal boundaries
when we break the global mesh apart.
Most codes use some form of ‘ghost’
cells to store boundary condition data.
We must add ‘ghost’ cells for the new
internal boundaries. The ghost cells hold
data that is on the interior of another
submesh. For example, in Figure 2, the
top, right-hand side of the ball in the
ghost cell of sub-mesh #1 is actually a
replication of the top, right-hand side of
the ball in sub-mesh #2. The code
updates the information in the ghost cells
before the solution scheme uses the data.
The code gathers the data into messages
and passes it to a neighbor. We refer to
this as explicit message passing.

global mesh

ghost
cells

I submesh #1 submesh #2

Figure 2. Global and Two Sub-Meshes

Figure 1. Hierarchical Memory and
Communication Systems

Distributed meshes are an effective
method for using MP computers. A
distributed mesh breaks the global mesh
into several nearly equal size submeshes.
Each submesh is on a different compute

3.2.2 Mesh Decomposition

We need a tool to decompose a global
mesh into the appropriate number of
submeshes. The submeshes should be
approximately the same size. This helps
keep the same amount of work on each

node and helps balance the work load.
We refer to this as static load balancing.
The code should minimize
communication between the submeshes
to improve the efficiency. This is done
by minimizing the ‘surface area’ of the
new created internal boundaries. This is
particularly important for arbitrary
connectivity meshes used in finite-
element codes because the connectivity
is so complex. There are several mesh
decomposition tools available. We use
the Sandia developed CHACO [2]
family of routines.

3.3 New Algorithms for New
CPUS

3.3.1 Hierarchical Memories

Our shock physics codes need new core
architectures because new memory
architectures also appear on the compute
node. The compute nodes used in
workstations and MP computers have
hierarchical (cache) memories. For
example, a node may have two levels of
memory. The first level is a 256 KByte
cache memory with a GByte/sec
bandwidth to the CPU’s registers. The
second level is a 128 MByte bank of
memory with a 500 MBytdsec
bandwidth to the cache.

x cache

- GBk x cache
-500 MBh

-100 MBh I
Figure 3. Cache and Main Memories

3.3.2 Cache Utilization

A code needs to perform most of its
memory YO from cache and not from the
main memory to achieve high
performance. The bandwidth between
the CPU and cache can keep the CPU
busy. But the bandwidth between the
CPU and main memory cannot keep the
CPU busy. If the data is not in the
cache, then the CPU must wait while it
reads the data from main memory into
cache. Waiting for data degrades the
performance.

3.3.3 New Code Architectures

We must restructure our algorithms for
hierarchical memory computers. We
originally developed the algorithms for
vector memories on CRAY computers.
Vector memories have very fast I/O to
arrays. Existing algorithms may not run
efficiently on hierarchical memories
because they rely on the high bandwidth
to memory. For example, our codes split
the physics into several modest sized
parts. The code would pass the database
through each part of the physics. The

modified data would overwrite the old
data. There was a lot of I/O between
memory.

database

Figure 4. Old Code Architecture

We are going to a different code
architecture for hierarchical memory
computers. We break the data base into
parts and keep the physics chunks as
large a possible. We want to read some
of the database into cache and perform
as much of the physics as possible before
writing it back out to main memory.
Therefore, most of the CPU’s I70 is to
the cache rather than to main memory.
I

I

Database #1

Database#2 4 physics

Database #3

Figure 5. New Code Architecture

4. Algorithm Research

4.1. I Arbitrary-Lagrangian-Eulerian
Adaptive Algorithms

Our ALEGRA code uses an arbitrary-
Lagrangian-Eulerian (ALE) mesh. A part
of the mesh can move with the material

(Lagrangian), be fixed in space
(Eulerian) or anything in between
(arbitrary). This allows us to run part of
the mesh Eulerian and another part
Lagrangian. We can also change the
mesh from Eulerian to Lagrangian
depending on the phenomena. The ALE
capabilities allow the code to adapt the
solution scheme to improve its accuracy.

4.1.2 Finite-Element Methods

ALEGRA use finite element rather than
finite-difference or finite-volume
algorithms. This allows us to use the
large body of finite element technology.
Finite element numerical techniques are
also widely believed to give the best
resolution of transient phenomena.

ALEGRA also uses arbitrary
connectivity finite-element meshes. This
allows us to use a body-fitted, finite-
element mesh where the mesh
boundaries coincide with the material
interfaces. We can run the calculation
Lagrangian or single-material ALE. A
single-material ALE calculation has no
multi-material element and requires the
material interfaces remain Lagrangian
but the material’s interior can be non-
Lagrangian. We can also use a fully
multi-material mesh as in an Eulerian
code. This gives us tremendous
flexibility in modeling the behavior of
complex three-dimensional structures.

4.1.3 H-Adaptive Methods

We are developing h-adaptive meshing
schemes for ALEGRA. An h-adaptive
mesh can subdivide an element into
several elements to better resolve
phenomena. We will use an error
estimator to identify the elements with
the largest error and refine those
elements. For example, we may want to

refine the mesh in the neighborhood of a
shock to get 1 mm zoning and coarsen
the mesh to a 1 cm mesh for the smooth
flow behind the shock.

Figure 6. H-Adaptive Mesh

One of the biggest challenges is
implementing h-adaptive methods on
massively parallel computers. Static
mesh decomposition techniques will not
work as the mesh refines. A single
element may transform into hundreds of
elements. We will have to migrate work
among compute nodes to keep the work
load balanced and avoid exhausting the
memory on the node.

5. Summary
We want a predictive, 3D modeling
capability. The h-method will provide an
adaptive algorithm that will use the
computer resources to minimize the
global error in the calculation. The MP
computers will provide enough compute
power and memory to effectively use h-
adaptive methods on complex three-
dimensional problems. The biggest
challenges to achieving our goal are
understanding the physics and
understanding how to effectively use
hierarchical memory computers.

6. References
111 Peery, J. S., Budge, K.G., Wong, M.
K., Tmcano, T. G. “RHALE: A 3D
MMALE Code for Unstructured Grids,”
Proceedings of the 1993 Winter ASME
Meeting, New Orleans, LA

[2] Hendrickson, B. and Leland, R.,
“The CHACO Users Guide,” Sandia
National Laboratories Report SAND93-
2339, 1993, Sandia National
Laboratories, Albuquerque, NM

