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1. Abstract 
Shock physics researchers at Sandia are 
working in two areas: massively parallel 
computing and improved solution 
algorithms. Our goal is predictive 
modeling of large, three-dimensional 
problems. We will discuss the goals, 
rationale and status of this work. 

1. I Massively Parallel Computer 
Research 

Massively parallel computers present 
both tremendous opportunities and 
challenges. They can have much more 
memory and speed than traditional 
supercomputers. For example, Sandia’s 
Paragon computer has 1840 i860 CPU’s, 
a peak performance of 147 GFLOPs and 
37 Gbytes of memory. Intel will install 
the Accelerated Strategic Computing 
Initiative (ASCI) TFLOP computer at 
Sandia in 1996. It will have 9072 
Pentium Pro CPU’s, a peak performance 
of 1.8 TFLOPs and 594 Gbytes of 
memory. Both of these computers are 
orders of magnitude larger than 
traditional supercomputers and offer 
tremendous opportunities to predictively 
model very large, complex systems. 

There are two challenges in developing 
software for these computers. First, we 
must write the code to use a distributed 

mesh. To do this, we must decompose 
the global mesh into numerous 
submeshes. Each compute node has its 
own submesh and copy of the code. The 
code explicitly passes information to 
neighboring submeshes as needed. 
Second, we must write the codes using 
different data structures and algorithms 
than we used in the past for vector 
computers. Massively parallel computers 
are built from commodity CPU’s with 
hierarchical (cache) memories. Vector 
computers, such as CRAYs, have single- 
level memories with very fast bandwidth 
to memory. Cache memories have a very 
high bandwidth to the first level of 
memory (cache), but the bandwidth to 
main memory is too slow to keep the 
CPU busy. To obtain high performance, 
we are designing the codes to perform as 
much work as possible on data in cache 
before writing it back to memory. 

1.2 Algorithm Research 

We are focusing our algorithm research 
on better approximations to the 
governing equations and mesh 
management. Our ALEGRA [ 11 code 
uses finite-element methods, an 
arbitrary-connectivity mesh and an 
Arbitrary-Lagrangian-Eulerian (ALE) 
formulation where the mesh can move to 
improve the accuracy. For example, part 
of the mesh may move with the body 
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(Lagrangian mesh), another part may be 
space-fixed (Eulerian) and another part 
may move arbitrarily. 

We are also developing h-adaptive 
meshing techniques for ALEGRA. H- 
adaptive meshes can dynamically refine 
or coarsen a mesh depending on some 
criteria. For example, a single 
hexahedral element may divide into 
eight hexahedra. We will use h-adaptive 
methods to resolve discontinuities such 
as shocks, material interfaces and shear 
flow. One of the biggest challenges is 
developing h-adaptive methods that run 
efficiently on massively parallel 
computers. Work must dynamically 
migrate between processors to load- 
balance the work over the computer. 

2. Introduction 
We want to design and test complex 
three-dimensional systems on 
computers. This requires predictive, 
three-dimensional codes. This paper will 
discuss some of our research in 
computational sciences and algorithms 
to achieve that goal. 

Three-dimensional calculations require 
large meshes to resolve small scale 
phenomena. Large meshes require very 
high compute speeds. Only Massively 
Parallel (MP) computers offer the 
memory and processor speed needed. 
Unfortunately, MP computers come with 
new memory hierarchies that require 
rethinking the way we develop code. 

The memory hierarchy change in 
commodity CPU’s will influence your 
codes even if you do not run on MP 
computers. There is a corresponding 
change in computer hardware. 
Workstations are taking over the market. 
They use hierarchical memories rather 

than the memory architectures used in 
CRAY vector computers. Our solution 
algorithms must change to achieve high 
performance on workstations and MP 
computers. 

We are also developing adaptive solution 
algorithms. They will move the mesh 
and change the mesh to reduce the 
calculation’s global error. 

Code development of this scale requires 
team efforts to both develop and validate 
the codes. The authors acknowledge the 
extensive contributions of both the CTH 
and ALEGRA teams. 

3. Massively Parallel 
Computer Research 

3.1 Why Do We Need Massively 
Parallel Computers for Shock 
Physics ? 

Shock physics codes need the enormous 
memories and compute speed of 
massively parallel computers to support 
the very large meshes required to resolve 
the small structures that arise in shock 
problems. The structures may be a shock 
wave, a vortex sheet (sliding), a material 
interface, a crack, the geometry of the 
object or a contact discontinuity. Our 
codes cannot resolve these structures at a 
level finer than a cell. We model many 
of these phenomena with first-order 
algorithms. As you refine the mesh, the 
error decreases linearly. For example, a 
code that uses artificial viscosity will 
always spread a shock over 
approximately four cells. Many other 
parts of the solution scheme are second- 
order accurate so their error decreases as 
the square of the mesh size. The first- 
order algorithms’ errors dominate the 
total error and determine the mesh 
resolution needed. 



3. f . f Processor Speed Versus 
Memory 

The processing speed needed for shock 
physics codes should increase faster than 
the memory size increases because the 
Floating Point Operations (FLOPs) scale 
up faster than the memory requirements. 
This implies you should not simply add 
more memory to a busy system and try to 
run larger problems. 

The memory needed for a three- 
dimensional mesh increases as the cube 
of the mesh refinement. 

Memory = (mesh- refinement)3 

For example, a region of space covered 
with one centimeter cells will require 
eight times as much memory as the same 
space covered with two centimeter cells. 
However, the number of floating point 
operations (FLOPs) will increase as the 
fourth power of the mesh refinement. 

FLOPs = (mesh- refir~ement)~ 

The first three-fold increase in flops 
comes from the larger mesh. The fourth 
increase comes because the time step 
used with explicit time integration 
schemes decreases as the mesh refines. 
We must add processing speedfaster 
than we add memory or the run times 
will quickly become be too long to be 
useful. 

Memory = (mesh- refinement) 
FLOPs = (mesh- refinement) 
FLOPs = 

Equation 1. Speed and Memory 
Scaling Relations 

3.1.2 Memory and Performance of 
MP Computers 

Massively parallel computers provide the 
needed combination of memory and 
speed. A typical workstation may have 
0.256 Gbytes of memory and a peak 
speed of 0.23 GFLOPs peak processing 
power. Sandia’s Paragon massively 
parallel computer has 37 Gbytes of 
memory and 140 GFLOPs peak 
processing power from 1840 i860 CPUs. 
The internode bandwidth is 200 Mbytes 
per second. (The internode bandwidth is 
the speed nodes can exchange 
messages.) DOE’s ASCI TFLOP 
massively parallel computer has 594 
Gbytes of memory and 1800 GFLOPs 
peak processing power from 9072 
Pentium Pro CPUs. The internode 
bandwidth is 800 Mbytes per second. 
Shock physics codes need massively 
parallel computers to achieve TFLOPs 
on Tbytes. 

between 
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Table 1. Computer Statistics 

3.2 Distributed mesh 

We must design our shock physics codes 
to run effectively on massively parallel 
computers because MP computers have a 
different memory structure than 
traditional computers. All CPUs have 
access to all the memory on traditional 
shared memory processor (SMP) 



computers, such as CRAY vector 
computers and various vendors’ 
workstations. The memory on a SMP has 
one global address space. 

node. The code solves the physics on its 
submesh. 

3.2.1 Internal Boundaries 

MP computers have a memory hierarchy 
with different access times to the 
different memories. A code must 
manage the access to the different 
memories to be efficient. Memory is 
associated with each compute node. 
(There may be multiple CPUs on a node, 
as on the ASCI TFLOP.) There will be 
fast access to the memory on the 
compute node. Much of the memory will 
be on the other compute nodes. The 
memory on another compute node may 
not be part of a specific node’s address 
space. The access time to off-node 
memory will be much longer because the 
inter-node communication system must 
retrieve the memory. Therefore, too 
much inter-node communication can 
degrade the code’s performance. We 
must carefully design our codes to run 
efficiently on these hierarchical memory 
systems. 
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We introduce new internal boundaries 
when we break the global mesh apart. 
Most codes use some form of ‘ghost’ 
cells to store boundary condition data. 
We must add ‘ghost’ cells for the new 
internal boundaries. The ghost cells hold 
data that is on the interior of another 
submesh. For example, in Figure 2, the 
top, right-hand side of the ball in the 
ghost cell of sub-mesh #1 is actually a 
replication of the top, right-hand side of 
the ball in sub-mesh #2. The code 
updates the information in the ghost cells 
before the solution scheme uses the data. 
The code gathers the data into messages 
and passes it to a neighbor. We refer to 
this as explicit message passing. 

global mesh 

ghost 
cells 

I submesh #1 submesh #2 

Figure 2. Global and Two Sub-Meshes 

Figure 1. Hierarchical Memory and 
Communication Systems 

Distributed meshes are an effective 
method for using MP computers. A 
distributed mesh breaks the global mesh 
into several nearly equal size submeshes. 
Each submesh is on a different compute 

3.2.2 Mesh Decomposition 

We need a tool to decompose a global 
mesh into the appropriate number of 
submeshes. The submeshes should be 
approximately the same size. This helps 
keep the same amount of work on each 



node and helps balance the work load. 
We refer to this as static load balancing. 
The code should minimize 
communication between the submeshes 
to improve the efficiency. This is done 
by minimizing the ‘surface area’ of the 
new created internal boundaries. This is 
particularly important for arbitrary 
connectivity meshes used in finite- 
element codes because the connectivity 
is so complex. There are several mesh 
decomposition tools available. We use 
the Sandia developed CHACO [2] 
family of routines. 

3.3 New Algorithms for New 
CPUS 

3.3.1 Hierarchical Memories 

Our shock physics codes need new core 
architectures because new memory 
architectures also appear on the compute 
node. The compute nodes used in 
workstations and MP computers have 
hierarchical (cache) memories. For 
example, a node may have two levels of 
memory. The first level is a 256 KByte 
cache memory with a GByte/sec 
bandwidth to the CPU’s registers. The 
second level is a 128 MByte bank of 
memory with a 500 MBytdsec 
bandwidth to the cache. 

x cache 
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Figure 3. Cache and Main Memories 

3.3.2 Cache Utilization 

A code needs to perform most of its 
memory YO from cache and not from the 
main memory to achieve high 
performance. The bandwidth between 
the CPU and cache can keep the CPU 
busy. But the bandwidth between the 
CPU and main memory cannot keep the 
CPU busy. If the data is not in the 
cache, then the CPU must wait while it 
reads the data from main memory into 
cache. Waiting for data degrades the 
performance. 

3.3.3 New Code Architectures 

We must restructure our algorithms for 
hierarchical memory computers. We 
originally developed the algorithms for 
vector memories on CRAY computers. 
Vector memories have very fast I/O to 
arrays. Existing algorithms may not run 
efficiently on hierarchical memories 
because they rely on the high bandwidth 
to memory. For example, our codes split 
the physics into several modest sized 
parts. The code would pass the database 
through each part of the physics. The 



modified data would overwrite the old 
data. There was a lot of I/O between 
memory. 

database 

Figure 4. Old Code Architecture 

We are going to a different code 
architecture for hierarchical memory 
computers. We break the data base into 
parts and keep the physics chunks as 
large a possible. We want to read some 
of the database into cache and perform 
as much of the physics as possible before 
writing it back out to main memory. 
Therefore, most of the CPU’s I70 is to 
the cache rather than to main memory. 
I 

I 
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Figure 5. New Code Architecture 

4. Algorithm Research 

4.1. I Arbitrary-Lagrangian-Eulerian 
Adaptive Algorithms 

Our ALEGRA code uses an arbitrary- 
Lagrangian-Eulerian (ALE) mesh. A part 
of the mesh can move with the material 

(Lagrangian), be fixed in space 
(Eulerian) or anything in between 
(arbitrary). This allows us to run part of 
the mesh Eulerian and another part 
Lagrangian. We can also change the 
mesh from Eulerian to Lagrangian 
depending on the phenomena. The ALE 
capabilities allow the code to adapt the 
solution scheme to improve its accuracy. 

4.1.2 Finite-Element Methods 

ALEGRA use finite element rather than 
finite-difference or finite-volume 
algorithms. This allows us to use the 
large body of finite element technology. 
Finite element numerical techniques are 
also widely believed to give the best 
resolution of transient phenomena. 

ALEGRA also uses arbitrary 
connectivity finite-element meshes. This 
allows us to use a body-fitted, finite- 
element mesh where the mesh 
boundaries coincide with the material 
interfaces. We can run the calculation 
Lagrangian or single-material ALE. A 
single-material ALE calculation has no 
multi-material element and requires the 
material interfaces remain Lagrangian 
but the material’s interior can be non- 
Lagrangian. We can also use a fully 
multi-material mesh as in an Eulerian 
code. This gives us tremendous 
flexibility in modeling the behavior of 
complex three-dimensional structures. 

4.1.3 H-Adaptive Methods 

We are developing h-adaptive meshing 
schemes for ALEGRA. An h-adaptive 
mesh can subdivide an element into 
several elements to better resolve 
phenomena. We will use an error 
estimator to identify the elements with 
the largest error and refine those 
elements. For example, we may want to 



refine the mesh in the neighborhood of a 
shock to get 1 mm zoning and coarsen 
the mesh to a 1 cm mesh for the smooth 
flow behind the shock. 

Figure 6. H-Adaptive Mesh 

One of the biggest challenges is 
implementing h-adaptive methods on 
massively parallel computers. Static 
mesh decomposition techniques will not 
work as the mesh refines. A single 
element may transform into hundreds of 
elements. We will have to migrate work 
among compute nodes to keep the work 
load balanced and avoid exhausting the 
memory on the node. 

5. Summary 
We want a predictive, 3D modeling 
capability. The h-method will provide an 
adaptive algorithm that will use the 
computer resources to minimize the 
global error in the calculation. The MP 
computers will provide enough compute 
power and memory to effectively use h- 
adaptive methods on complex three- 
dimensional problems. The biggest 
challenges to achieving our goal are 
understanding the physics and 
understanding how to effectively use 
hierarchical memory computers. 
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