
OAK RIDGE
NATIONAL

i LABORATORY

d

J Y N A G E D AND OPERATED BY
LOCKHEED MARTIN EHERGY RESEARCH CORPORATloH
FOR THE UHTED STATES
DEPARTYEM OF ENERGY

ORNL.27 (s-€q

ORNL/TM-13228

Collective Communication
Routines in PVM

J. M. Donato
G. A. Geist

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific
and Technical Information, P. 0. Box 62, Oak Ridge, TN 3783 1; prices
available from (423) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield. VA 22161.

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, cornplcteness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or servicc by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government of any agency thereof.

ORNL/TM-13228

Computer Science and Mathematics Division

Mat hematical Sciences Section

COLLECTIVE COMMUNICATION ROUTINES IN PVM

J.M. Donato and G.A. Geist

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6010

Oak Ridge, TN 37831-6414

Date Published: May 1996

Research was supported by the Mathematical, Informa-
tion, and Computational Sciences Division of the Office
of Energy Research, U.S. Depatment of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Lockheed Martin Energy Research Corporation
for the

U.S. Department of Energy
under Contract No. DEAC05-960R22464

Contents

1 Introduction/Background . 1
2 Scatter . 3
3 Gather . 4
4 Reduce . 5

4.1 PVM Reduce Implementation . 5
4.2 Specifics of PVM Reduce on the Intel Paragon 5
4.3 PVM and Intel Paragon notes . 10

5 Performance Measurements . 11
5.1 Hardware Description . 11
5.2 Performance Timing Procedure 11
5.3 Static versus Dynamic Groups . 12
5.4 Native NX versus PVM routines on Paragon 14
5.5 Comparison to a Paragon Optimized PVM 14

6 Conclusions . 16
7 References . 18
A PVM Manual Pages . 19

A.l Scatter . 19
A.2 Gather . 22
A.3 Reduce . 25

... . 111 .

List of Figures

1
2
3
4
5
6

7
8
9

Row and Column Linear Orderings of a Matrix
Scatter: The root distributes data sections to each group member
Gather: The root assembles data sections from each group member
Message flow from group members to coordinators to the root . .
Three cases on the Paragon .
Message flow on a virtual machine consisting of 2 Paragons and
another host architecture .
Times (ps) for Dynamic and Static Groups on a SPARC Classic
Times (ps) for Native NX versus Static Groups on a Paragon . . .
Comparison of NX gisum, pvmsum, and Walaker’s pvmsum for
1000 integers .

9
13
15

17

List of Tables

1
2
3
4
5
6
7

Times (ps) using Dynamic Groups on a SPARC Classic
Times (ps) using Static Groups on a SPARC Classic
Times (ps) using Dynamic Groups on a Paragon
Times (ps) using Static Groups on a Paragon
Times (ps) using Native NX gisum command
Times (ps) using Static Groups on a Paragon
Times (ps) from Walaker’s Thesis

12
12
13
13
15
15

. 16

- iv -

COLLECTIVE COMMUNICATION ROUTINES IN PVM

J.M. Donato and G.A. Geist

Abstract

The collective communication routines of scatter, gather, and reduce
are frequently implemented as part of the native library for parallel archi-
tectures. These operations have been implemented in PVM for use among
a heterogeneous system of workstations and parallel computers forming a
virtual parallel machine. In the case of the Intel Paragon machines, the
PVM implementation of the reduce operation utilizes the corresponding
native mode library routines whenever possible.

This paper describes the implementation of these collective communica-
tion routines in PVM including the utilization of the Intel Paragon native
mode operations. Performance data is also given comparing the use of the
native Intel Paragon collective routines and the PVM implementation on
top of these routines on a dedicated Intel Paragon. For our timing results
an average latency of 109 ps is incurred using PVM as compared to the
native Intel global s u m routine. This extra startup is independent of the
size of the message being sent and the number of nodes in the group. It is
demonstrated that the use of static groups is preferable in time efficiency
over the use of dynamic groups.

- v -

1. Introduction/Background

PVM (Parallel Virtual Machine)[4] is a widely used system for programming par-
allelism across a network of heterogeneous machines. This network could contain
a variety of machine architectures including massively parallel processors. Col-
lective communication routines such as scatter, gather, and reduce are frequently
implemented in some form as part of the native library for pardel machines.
Here, collective communication means communication that is performed across
a group of tasks. Each member of the group must participate by calling the
collective communication operation. Such collective communication routines and
extensions thereof are defined and extendedxpon under MPI [6].

In PVM versions 3.3.8 and higher scatter, gather, and reduce operations are
implemented for use among a heterogeneous system of workstations and parallel
computers forming a virtual parallel machine. In the case of the Intel Paragon
machines, the PVM implementation of the reduce operation utilizes the corre-
sponding native mode library routines whenever possible.

This paper describes the implementation of these collective communication
routines in PVM including the utilization of the Intel Paragon native mode op-
erations. Performance data is also given comparing the use of the native Intel
Paragon collective routines and the PVM implementation on top of these routines
on a dedicated Intel Paragon machine. The timings were performed using PVM
release 3.3.10 on the Center for Computational Science (CCS)*, XP/S 5, Intel
Paragon machine.

For our timing results an average latency of 109 ,us is incurred using PVM as
compared to the native Intel global sum routine. This extra startup is indepen-
dent of the size of the message being sent and the number of nodes in the group.
It is demonstrated that the use of static groups is preferable in time efficiency
over the use of dynamic groups.

Throughout this document the phrase “static group” actually refers to a
“frozen dynamic group” where each member of a dynamic group has executed a
pvmfreezegroup call. True static groups are to be implemented in PVM release
3.4.0.

This paper assumes basic knowledge of the PVM software system and Intel
Paragon hardware and software. For background on the Intel Paragon and its
native group operations, please see [SI. The PVM Users’ Guide[4] provides the
general background on installation, syntax and usage of the PVM software sys-
tem. For more detail on the performance of PVM on Massively Parallel systems
see reference [2] which describes the basics of the communication model of PVM
along with performance results for send and receive operations on Intel Paragon,
SP-2 and CM-5 machines.

lhttp : //m. ccs . o r n l . gov/HomePage. html

- 2 -

1,l 1,2 ... 1,N 2,l 2,2 ...

In the sections that follow, we describe the implementation of scatter, gather,
and reduce operations in the general situation of a heterogeneous network of
machines. A brief overview of the PVM syntax will be given for each command.
Please refer to the appendices for more complete specification of the syntax of the
commands and a discussion of the their usage along with example statements.

The next two sections will briefly describe the scatter and gather operations.
The Intel Paragon NX routines do not include native scatter and gather operations,
so no specific changes have been made for the Intel Paragon in the implementation
of these two routines. After scatter and gather, the reduce operation is described.
Since the NX library does provide a number of native reduction routines, these
are utilized when possible. When &nd how these are used will be described.

This paper is written from a C language point of view in terms of the indexing
of arrays. In C, multi-index arrays are arranged contiguously in memory in row
ordering with a starting index value typically 0. For Fortran multi-index (multi-
dimensional) arrays are arranged contiguously in memory in column ordering
with starting index typically being 1. See Figure 1 for an example of how a two-
dimensional M x N array (matrix) would be laid out in memory if ordered by
columns versus being ordered by rows.

M,N

--
ordered by

columns

ordered by
rows

Figure 1: Row and Column Linear Orderings of a Matrix

- 3 -

2. Scatter

A scatter operation distributes data segments from one member of the group to
the other members of the group. For example, a scatter operation can be used to
disperse rows of a matrix from one task to all the members of the group in order
to perform row operations in parallel.

The syntax of the scatter operation in PVM is as follows.

i n t info =
pvm,scatter(void *result , i n t *data, i n t count, i n t datatype,

void msgtag, char *pame, i n t root inst)

It performs a scatter of messages from the specified root member of the group to
each of the other members of the group as shown in Figure 2.

Each member of the group gname receives a message result of type datatype
and length count from the root member of the group. The root sends these
messages from a single array data which is of length, at least, M * count. Here, M
represents the number of members in the group, all of which must be participating
in the scatter operation. The values sent to the ith member of the group are taken
from the data array starting at position i * count. The root member of the group
is specified by its instance number, rootginst, in that group.

The message passing employed during the scatter operation in PVM is imple-
mented using basic PVM commands, such as pvmsend and pvmrecv. The root
member does not send to itself, rather it performs a memory to memory copy.

Figure 2: Scatter: The root distributes data sections to each group member

- 4 -

3. Gather

A gather, the inverse operation to a scatter, combines separate data segments
from each group member into a single array on the root member of the operation.

The syntax of the gather operation in PVM is as follows.

i n t info =
pvm-gather(void *result, void *data, int count, int datatype,

i n t msgtag, char *gname, i n t rootinst)

It performs a gather of messages from each member of the group to a specified
member of the group. This is shown in Figure 3.

Each member of the group gname sends a message data of type datatype and
length count to the root member of the group. The root receives these messages
into a single array result which is of length, at least: M * count. Again, M
represents the number of members in the group, all of which must be participating
in the gather operation. On the root, the values received from the ith member
of the group are placed into the result array starting at position i * count. The
root member of the group is specified by its instance number, rootginst, in that
group.

The message communication that occurs as part of the gather operation, as
with the scatter operation, is implemented using basic PVM commands, such as
pvmsend and pvmrecv. Again, the root does not send or receive a message from
itself, it performs a memory to memory copy.

node N

y n t

all nodes

I I I I I I

Figure 3: Gather: The root assembles data sections from each

root node

member

- . . . -.- _. . -I_--.-

- 5 -

4. Reduce

In a reduction operation, such as a global sum, an associative and commutative
operation is performed on corresponding data segments by each member of the
group. These global combine operations “reduce” the data segments from each
member into one data segment on the root. For further information, see [5].

The PVM syntax for the reduce operation is as follows.

i n t info =
pvm-reduce(void (*func) 0, void *data, i n t count, i n t datatype,

i n t msgtag, char *@me, i n t roo t ins t)

where

void (*func) (i n t *datatype, void *data, void *work,
i n t *nun, i n t *inf 0)

4.1. PVM Reduce Implementation

The current implementation uses a hierarchical fan-in algorithm to perform the
reduce operation. Global min, max, sum, and product reduction operations are
provided in PVM. This is done by specifying func as one of the PVM defined
functions of PvmMin, PvmMax, PvmSum, or PvmProduct, respectively. A user
written function may also be provided as the func argument. For predictable
results, it is important that such a user-defined function be associative and com-
mutative. See the appendix for the syntax and summary of these functions. The
general heterogeneous implementation is described as follows.

The reduce operation, as with the scatter and gather operations, in PVM is
implemented using basic PVM commands, such as pvmsend and pvmrecv.

For each host (a physical machine in the parallel virtual machine) a coordina-
tor is designated for that host. During the reduce operation, each group member
on a host communicates (via pvmsend) its data segment to the coordinator for
that host. The coordinators on each host are then responsible for performing
(combining or reducing) the specified function func on the data segments it has
received and then communicating (via pvmsend) the result to the root member
of ,the reduce operation. The root then performs the specified function f unc on
the data received from the coordinators.

Figure 4 gives a pictorial view of the message flow from group members on
a host to the coordinator on the same host and then to the root member of the
reduce operation. Each host can be a multitasking multiprocessor.

4.2. Specifics of PVM Reduce on the Intel Paragon

This hierarchical fan-in technique is still used if an Intel Paragon is part of the vir-
tual machine. However, the nodes on the Intel Paragon will utilize corresponding

- 6 -

- -

c

Host 1
Host 2

. . ,~ I ,

Host 3

coordinator

To root node

- - - - - -*
To coordinator

Figure 4: Message flow from group members to coordinators to the root

- 7 -

NX functions whenever possible. The Paragon is currently limited to executing
only one PVM task per node. The PVM console and the PVM group server
(pvmgs) run on the service nodes for the partition.

If all the nodes on the partition are participating in the reduce operation, then
the NX function will be executed, if one exists. In this case, there is no need for
the Intel Paragon nodes to explicitly send data to their coordinator node. This
is because the NX collective routines return the final values to each of the nodes
participating in the operation. Similarly, if all the nodes in the Paragon partition
are part of a larger group, the NX native operations will be used for the Paragon
part of the collective operation.

PVM determines which native mode NX routine to call by comparing the
func function reference (e.g. pointer to the function) in the reduce call to the
those functions for which an NX version exists. Currently, PVM recognizes that
PvmSum, PvmMin, PvmMax, and PvmProduct which correspond to gzsun,
gzmin, gzmax, gzprod, respectively.

For the NX native collective operations to be executed, the following two con-
ditions must hold:

1. all the nodes in the paragon compute partition must be participating in the
collective reduce operation, and

2. a corresponding NX collective operation must exist and be detected by PVM
for the given datatype on the Intel Paragon.

If these two conditions do not hold, the collective operation still functions
correctly, but will not use NX native operations. Instead, the nodes will send data
to their coordinator as described in the general reduce case.

The three possible basic situations are show in Figure 5. Figure 5(a) shows
via dotted lines (without arrows) that the native NX command is used and so
PVM does not define the message flow. The results of the group operation will
be communicated via NX to each of the nodes. Figure 5(b) shows the case where
not all of the nodes of the partition are part of the group and hence the native NX
function can not be used. Figure 5(c) shows the situation where, although all of
the nodes in the partition are in the group, the specified func is a user-written
function, and hence no appropriate native NX routine can be utilized.

Figure 6 gives a pictorial example of the message passing that would occur if
a partition of Paragon nodes are part of the group operation. The figure shows
two Intel Paragons, one with a 4 node partition allocated to PVM, and the other
with a 6 node partition allocated. A third host of unspecified architecture is also
pictured for variety.

Even in the case where an NX native operation is used, the overhead for the
reduce operation could still be extreme if dynamic groups are being used. In the
case of dynamic groups, a check must be made by each node to determine who is

- 8 -

Figure 5(a) : Native NX routine is used for the 6 node partition

Figure 5 (b) : Only 5 of the 6 nodes in the partition are in the group

Figure 5(c) : There is no corresponding NX collective routine

Figure 5: Three cases on the Paragon

- 9 -

Host 1
coordinator

D---O
I I
I I
I I

D---D
4 node partition on Paragon

Host 2

To coordinator
t ------

NX communication -------
To root node

Host 3
6 node partition on Paragon

Figure 6: Message flow on a virtual machine consisting of 2 Paragons md another
host architecture

- 10 -

part of the group operation. Hence, calls to the pvmgs are made by each member
of the group.

If the user has called pvmfreezegroup, to designate that the group is static,
this overhead is not incurred. The list of group members is cached to each
member.

4.3. PVM and Intel Paragon notes

In this section we remind the user of notes and caveats on the use of PVM on
the Intel Paragon. This section includes information from the PVM Readme.mp
file that accompanied the PVM 3.3.10 release along with other useful notes. For
further information and updates for new releases the reader should refer to the
Readme.mp of the release of PVM being used.

0 Tasks spawned onto the Intel Paragon run on the compute nodes by default.
Host tasks run on the service nodes and should be started from a Unix
prompt. The PVM console and group server (pvmgs) also run on the service
nodes.

0 By default PVM spawns tasks in your default partition. You can use the NX
command-line options such as ‘-pn partitionmame’ to force it to run on a
particular partition or ‘-sz number-ofmodes’ to specify the number of nodes
you want it to use. Setting the environmental variable NXDFLTSIZE
would have the same effect. For example starting pvmd with the following
command

pvmd -pn pvm -sz 33

would force it to run on the partition ‘pvm’ using only 33 nodes (there must
be at least that many nodes in the partition).

0 The current implementation only allows one task to be spawned on each
node.

0 There is a constant TIMEOUT in the file ‘pvmmimd.h’ that controls the
frequency at which the PVM daemon probes for packets from node tasks.
If you want it to respond more quickly you can reduce this value. Currently
it is set to 10 millisecond.

0 Be aware that mixing NX message passing calls in PVM may interfere with
PVM message passing commands, such as pvmsend and pvmrecv, since
the PVM system may have utilized NX message tags. This warning also
applies to pvmreduce, pvmscatter, and pvmgather since they are imple-
mented using basic PVM commands.

- 11 -

0 PVM programs compiled for versions earlier than 3.3.8 need to be recom-
piled. A small change in data passed to group members on startup will
cause earlier programs to break.

5 . Performance Measurements

5.1. Hardware Description

The timings were performed on the Center for Computational Science (CCS)2,
xps5, Intel Paragon ma~h ine .~ At this time, the configuration of the Intel Paragon
XP/S 5 consists of 70 General Purpose (GP) compute processors arranged in
10 by 7 mesh, 4 Multi-purpose (MP) compute processors in a 2 by 2 mesh, 3
service nodes, and 6 1/0 nodes. Each GP compute node has 16MB of memory,
while each MP compute node has 128MB of memory. Five of the 1/0 nodes are
connected to 4.8 GB RAID disks, and the sixth to a 16 GB RAID disk. The
system provides a total of 40 GB of system disk space. The system is connected
to the ORNL network with an Ethernet connection and 2 HIPPI connections.
Versions of release 1.3 of the Intel Paragon OS was running at the time of these
performance tests.

5.2. Performance Timing Procedure

The program that produced the performance timing results is very straight-
forward. An integer global s u m , via gisum() or via pvmreduce using PvmSum,
was performed for three different message lengths. The times given in the tables
are an average over 100 such iterations of the gisum() or pvmreduce command.
Messages containing 1 integer, 1000 integers, and 10000 integers were used.

Elapsed time was used, rather than cpu time, since cpu time would not include
the necessarily important wait for messages from other group members. However,
initial startup overhead was not included in the timings. For example, partition
allocation, pvmd startup, pvmgs startup, spawn (or pexec) of the executable, nor
the first message passing cycles were included in the timings. All times are given
in microseconds (ps).

All of these performance timing results were produced by execution runs per-
formed on dedicated hosts. This was done to insure that there would be no
interference from other processes being run on the hosts. This helps to produce
repeatable performance results.

2http://avv. ccs .ornl.gov/HomePage.html
3http: //m. ccs . o r n l l gov/comp~eso~rces/~tel~ar/5. hdwre. html

- 1 2 -

Number of
Integers

1
1000

10000

Number of Nodes
1 2 4 8 16

21251 46783 97420 208178 430380
21147 50641 120648 247305 506010
21344 117401 259629 866073 961402

Table 1: Times (ps) using Dynamic Groups on a SPARC Classic

Number of
Integers

1
1000

10000

Number of Nodes
1 2 4 8 16

500 6947 19350 52654 90909
477 12172 34005 94000 179776
485 70043 178529 728407 832529

Table 2: Times (ps) using Static Groups on a SPARC Classic

5.3. Static versus Dynamic Groups

In this subsection we illustrate the importance of using static groups as opposed
to dynamic groups whenever possible for group operations.

Tables 1 and 2 show the results of executing the test routine on a dedicated
SPARC Classic. Table 1 gives the times for the test when dynamic groups are
being used. Table 2 gives the times for the test when static groups are used. The
timing differences are enormous, some as much as two orders of magnitude slower
for dynamic groups as compared to the analogous static group timing. Figure 7
displays these results for comparison on a semi-log plot.

On the Intel Pazagon, the difference in timings using dynamic and static
groups is even more staggering. Tables 3 and 4 show the performance results
using dynamic and static groups, respectively. The timings using dynamic groups
are typically three orders of magnitude higher than those for static groups.

From these tables of results, both on the SPARC Classic and on the Intel
Paragon, it is obvious that the efficient use of the collective communication rou-
tines in PVM relies upon using static groups directly (as will be available in PVM
release 3.4.0) or by freezing a dynamic group via the pvmfreezegroup operation.

- 13 -

SPARC Classic
1 o6 1 I 1

Integers
1

1000

io5
C
0 .-
P
Q) a -
0

'CI 3 io4:

- E
2
8 c

c

io3

1 2 4 8 16
458549 562425 858077 1483393 2988008
462391 573367 809935 1608210 2768591

..........._.
- _ _ _ _

Number of
Integers

1
1000

m frozen dynamic groups
0 dynamic groups

Number of Nodes
1 2 4 8 16

102 269 390 653 768
115 755 1382 2122 2638

2 2 10 12 14 16
2 4 6 8

10
0

number of nodes in group

Figure 7: Times (ps) for Dynamic and Static Groups on a SPARC Classic

I Number of 11 Number of Nodes I

. I I I 1

10000 11 475713 I 564680 I 807562 I 1669463 I 2848504 I
Table 3: Times (ps) using Dynamic Groups on a Paragon

,I I

10000 11 133 I 3607 I 5592 I 7320 I 8808 I
Table 4: Times (ps) using Static Groups on a Paragon

- 14 -

5.4. Native NX versus PVM routines on Paragon

In this section we examine the performance of global sum via pvmreduce with
PvmSum as compared to a test implementing the same code using only native
NX calls to gisum().

Table 5 lists the average time in microseconds (ps) t o perform a gisum() for
various length integer messages. This average is also calculated over 100 iterations
of the gisum() call. Table 6 lists the averages for performing a pvmreduce using
PvmSum on the Intel Paragon.

Suppose we use a linear equation, a + pn, to model the message communica-
tion based on latency (a), bandwidth (p) and size of data in bytes (n). For the
native NX reduce operation, we would write

msgtimq, = a + pn.
Then, the data show that on average, the message communication for the

PVM reduction operation would be

msgtimepvM M a + 109ps + pn.
For our timing results PVM added an average 109 ps latency term to the com-

munication performance. This overhead appears independent of message length
and the number of group members. Hence, communication bandwidth for the
PVM reduction is the same as for the native NX commands. For most applica-
tions, this communication overhead is a small price to pay for easy portability
of the code and for the ability to network different architectures into a single
parallel machine.

5.5. Comparison to a Paragon Optimized PVM

As part of a diploma thesis[9], Bjarte Walaker implemented a version of PVM
for the Paragon. The purpose of this work was to decrease the overhead that
PVM incurs in performing group operations. At the time of Walaker’s thesis, the
native NX changes had not been implemented in PVM.

In this thesis, a number of hypotheses are made, however, most of the im-
provement in timings on the Paragon which were achieved by Walaker were due
simply to utilizing the native NX commands.

For example, there is no need to have the root instance execute on the service
node as Walaker describes in the thesis. All the node executables can easily be ex-
ecuted on the Paragon compute nodes even on the first release of the pvmreduce
function although the first release did not utilize the native NX calls. This is done
using the “spawn” command from the PVM console.

Similarly, there is no need to force the PVM group server (pvmgs) to be
executed on one of the compute nodes of the Paragon which Walaker does. This

- 15 -

Number of Number of Nodes
Integers 1 2 4 8 16 32 64

1 6 131 249 437 576 1118 1391
1000 11 573 1172 1918 2379 2838 3375

10000 12 3369 5360 7091 8524 8959 9767

Table 5: Times (ps) using Native NX gisum command

Number of Number of Nodes
Integers 1 2 4 8 16 32 64

1 102 269 390 653 768 1250 1537
1000 115 755 1382 2122 2638 3039 3610

10000 133 3607 5592 7320 8808 9124 9888

Table 6: Times (ps) using Static Groups on a Paragon

Paragon Compute Nodes

I 10000

9000

number of nodes in group

Figure 8: Times (p) for Native NX versus Static Groups on a Paragon

- 16 -

version

Orig PVM
Walaker PVM

Number of Nodes
2 4 8 16 64

689075 768635 1208601 1680296 3798682
707 1428 2122 2847 4617

Table 7: Times (ps) from Walaker’s Thesis

can be seen by comparing the timings in Table 6 to the results given in Walaker’s
thesis. The timing data from Walaker’s thesis are presented in Table 7. For his
tests, the message is always 1000 integers in length. Again, the times are given
in microseconds (ps). It could not be determined from the thesis whether these
timings were calculated from an average number of executions or not.

Refer to Figure 9 for a comparison of the data for a message of 1000 integers
for the native NX gisum, pvmsum, and Walaker’s pvmsum. The data from
Walaker’s thesis for Walaker’s version of pvmsum are the points noted with
an #. The timings for PVM static groups and the implementation by Walaker
are comparable. The differences may be due to random timing variations.

It is important to note that Walaker admits to making the restriction that
his version of the NX based PVM can only be used on a single Intel Paragon. But
from the tables and figure we can see that PVM can be implemented just as fast
without this restriction.

The approach taken in the official PVM release gives the best combination
of performance (using static groups) and in terms of keeping the crucial PVM
feature of being able to network multiple hosts of different architectures into one
Parallel Virtual Machine.

6. Conclusions

This paper has described the implementation of scatter, gather, and reduce col-
lective communication routines in PVM as of release 3.3.10. Compared to native
functions, we have seen that it is important to use static groups whenever perfor-
mance is critical. Using direct static groups as will be implemented in PVM re-
lease 3.4.0 or making a simple change (such as, adding a call to pvmfreezegroup)
in current PVM programs using dynamic groups can increase efficiency by two
orders of magnitude when performing collective operations. Dynamic groups (not
frozen) are still needed for fault tolerant applications.

Compared to native functions, we showed that there is an 109 ps average
overhead incurred by using PVM. This overhead is independent of the number
of nodes in the group and the message size. Hence, the message bandwidth for
the PVM reduce operation is the same as the native NX routines upon which it is

- 17 -

Paragon Compute Nodes
5000 -
4500

4000

3500

i3000

2500

c
0 .-
L

0
a,

0
2
.E 2000

- - - - - m native NX gisum
............. 0 frozen dynamic groups

Walaker PVM (1000 i n k)

I I 1 1 1 I

10 20 30 40 50 60
number of nodes in group

Figure 9: Comparison of NX gisum, pvmsum, and Walaker’s pvmsum for 1000
integers

- 18 -

implemented. For most applications, the cost of this overhead in terms of time
performance is well worth the generality and flexibility of being able to use PVM
as it is intended - as a software system that allows a heterogeneous network of
machines to be used as a Parallel Virtual Machine.

7. References

[l] A. Beguelin and P.M. Papadopoulos. Process Groups for Distributed Comput-
ing. September 1994. h t t p : //m. epm. ornl . gov/"phil/procgroup . html .

[2] H. Casanova, J.J. Dongarra, and W. Jiang. The Performance of PVMon MPP
Systems. h t t p : //m .netlib. org/utk/papers/pvmmpp/pmmpp . h t m l .

[3] P.M. Papadopoulos, R.J. Manchek, G.A. Geist. Context, Name Service, Static
Groups for PVM. Proceedings 1995 PVM User's Group Meeting, Pittsburgh,
PA. May 1995. (Proceedings published on-line)

[4] G.A. Geist, A.L. Beguelin, J.J. Dongarra, W. Jiang, R.J. Manchek, and V.S.
Sunderam. PVM: A Users' Guide and Tutorial for Networked Parallel Com-
puting. MIT Press, 1994.

[5] P.K. McKinley, Y. Tsai, and D.F. Robinson. Collective Communication in
Wormhole-Routed massively Parallel Computers. Computer, Vol. 28, No. 12,
pp. 39-50, December 1995.

[6] MPI Forum. MPI: A Message-Passing Interface Standard. International Jour-
nal of Supercomputer Application, Vol. 8, No. 3/4, 165-416, 1994. See also
http://www.mcs.anl.gov/mpi/.

[7] N. Nupairoj and L.M. Ni, Benchmarking of Multicast Communica-
tion Services, Technical Report MSU-CPS-ACS-103. Department of
Computer Science, Michigan State University, 1995. Working Draft.
h t t p : / / f tp . cps .msu. edu/pub/acs/msu-cps-acs-103 .ps .Z.

[8] Paragon OSF/.l User's Guide, Intel Supercomputer Systems Division, Beaver-
ton, Oregon, April 1993.

[9] Bjarne Walaker, PVM on PARAGON. Diploma Thesis. Norwegian Institute
of Technology. Faculty of Electrical Engineering and Computer Science. Fall
1994. Available via anonymous ftp. Host: export. ssd. i n t e l . corn. Direc-
tory: pub/ISUG/PVM.

http://www.mcs.anl.gov/mpi

- 19 -

A. PVM Manual Pages
The following are the man pages for the scatter, gather and reduce operations
from the PVM 3.3.10 release.

A.1. Scatter
SCATTER(3PVM) MISC. REFERENCE MANUAL PAGES SCATTER(3PVM)

NAME
pvm-scatter - Sends t o each member of a group a
an array from a specified member of t he group.

sect ion of

SYNOPSIS
C i n t info = pvm,scatter(void *resul t , void *data,

i n t count, i n t datatype, i n t msgtag,
char *group, int rootginst)

Fortran c a l l pvmfscatter(result, data, count, datatype,
rootginst , info)

PARAMETERS
resu l t

data

count

Pointer t o the s t a r t i ng address of an array of
length count of datatype which w i l l be overwritten
by the message f romthe specified root member of the
group.

On the root t h i s is a pointer t o t h e s t a r t i n g
address of an array datatype of l oca l values which
are t o be dis t r ibuted t o t h e members of t h e group.
If n is the number of members in t h e group, then
t h i s array of datatype should be of length at l e a s t
n*count. This argument is meaningful only on t h e
root.

Integer specifying the number of elements of data-
type t o be sent t o each member of t h e group from t h e
root.

datatype
Integer specifying the type of t he en t r i e s in t h e
r e su l t and data arrays. (See below f o r defined
types. 1

- 20 -

msgtag Integer message t a g supplied by the user. msgtag
should be >= 0. It allows the user’s program t o
dis t inguish between d i f fe ren t kinds of messages.

group Character s t r i n g group name of an exis t ing group.

rootginst
Integer instance number of group member who performs
the s c a t t e r of its array t o t h e members of the
group.

info Integer s t a tus code returned by the routine. Values
less than zero indicate an e r ror .

DESCRIPTION
pw,scatter() performs a sca t t e r of data from t h e specified
root member of the group t o each of t h e members of the
group, including i tself . A l l group members must c a l l
pvm-scatter(), each receives a portion of t he data array
from t h e root i n t h e i r l oca l r e su l t array. It is as if the
root node sends t o t h e i t h member of t he group count ele-
ments from its array data s t a r t i ng at of fse t i*count from
t h e beginning of t h e data array. And, it is as i f , each
member of t h e group performs a corresponding receive of
count values of datatype i n t o its r e s u l t array. The root
t a sk is ident i f ied by i ts instance number i n the group.

C and Fortran defined datatypes are:
C datatypes FORTRAN datatypes

PVM-BYTE BYTE1
PVM-SHORT INTEGER2
PVM-INT INTEGER4
PVM-FLO AT REAL4
PVM-CPLX COMPLEX8
PVM-DOUBLE REAL8
PVM-DCPLX COMPLEX16
PVM-LONG

--------------------___________^___

I n using the scatter and gather routines, keep i n mind t h a t
C s tores multidimensional arrays i n row order, typical ly
s t a r t i n g w i t h an i n i t i a l index of 0; whereas, Fortran s tores
arrays in column order, typ ica l ly s t a r t i n g with an of fse t of
1.

- 21 -

The current algorithm is very simple and robust. A fu ture
implementation may make more e f f ic ien t use of t h e architec-
t u r e t o allow greater parallelism.

EXAMPLES
C:

info = pvm,scatter(&getmyrow, &matrix, 10, PVM-INT,
msgtag, %orkers", rootginst) ;

Fortran :
CALL PVMFSCATTER(GETMYCOLUMN, MATRIX, COUNT, INTEGER4,

& MTAG, 'workers', ROOT, INFO)

ERRORS
These e r r o r conditions can be returned by pw-scat ter

PvmNoInst
Calling task is not i n the group

PvmBadParam
The datatype specified is not appropriate

PvmSysErr
P w system er ror

- 22 -

A.2. Gather

GATHER(3PVM) MISC. REFERENCE MANUAL PAGES GATHER(3PVM)

NAME
pw-gather - A specified member of the group receives mes-
sages from each member of the group and gathers these mes-
sages i n t o a single array.

SYNOPSIS
C int info = pvm-gather(void *result , void *data,

i n t count, i n t datatype, int msgtag,
char *group, i n t rootginst)

Fortran cal l pvmfgather(result, data, count, datatype,
msgtag, group, rootginst , info)

PARAMETERS
result On the root t h i s is a pointer t o t h e s t a r t i n g

address of an array datatype of l o c a l values which
are t o be accumulated from the members of the group.
If n if the number of members i n the group, then
t h i s array of datatype should be of length at least
n*count. This argument is meaningful only on t h e
root .

data For each group member t h i s is a pointer t o t h e
s t a r t i n g address of an array of length count of
datatype which w i l l be sent t o the specified root
member of the group.

count Integer specifying the number of elements of data-
be sent by each member of the group t o t h e type t o

root .

dat atype
Integer specifying the type of the en t r ies i n t h e
r e s u l t and data arrays. (See below f o r defined
types.)

msgtag Integer message t a g supplied by the user. msgtag
should be >= 0. It allows the user’s program t o

- 23 -

distinguish between different kinds of messages.

group Character s t r ing group name of an exis t ing group.

rootginst
Integer instance number of group member who performs
the gather of t he messages from the members of t h e
group.

info Integer s t a tus code returned by the routine. Values
l e s s than zero indicate an error .

DESCRIPTION
pvm-gathero performs a send of messages from each member of
t h e group t o the specified r o o t member of t he group. A l l
group members must c a l l pvm-gathero, each sends i t s array
data of length count of datatype t o the root which accumu-
lates these messages in to its r e su l t array. It is as if t h e
root receives count elements of datatype f romthe i t h member
of t he group and places these values i n i ts result array
s t a r t i n g with of fse t i*count from t h e beginning of t h e
r e s u l t array. The root task is ident i f ied by its instance
number i n the group.

C and Fortran defined datatypes are:
C datatypes FORTRAN datatypes

PVM-BYTE BYTE1
PVM-SHORT INTEGER2
PVM-INT INTEGER4
PVM-FLOAT REAL4
PVM-CPLX COMPLEX8
PVM-DOUBLE REAL8
PVM-DCPLX COMPLEX16
PVM-LONG

In using the sca t t e r and gather routines, keep i n mind that
C s tores multidimensional arrays in row order, typ ica l ly
s t a r t i n g with an i n i t i a l index of 0; whereas, Fortran s tores
arrays i n column order, typical ly s t a r t i n g with an of fse t of
1.

Note: pvm-gathero does not block. If a t a sk c a l l s
pvm-gather and then leaves the group before t h e root has
cal led pvm-gather an e r ror may occur.

- 24 -

The current algorithm is very simple and robust. A fu tu re
implementation may make more e f f i c i en t use of the architec-
ture t o allow greater parallelism.

EXAMPLES
C:

info = pvm,gather(&getmatrix, &myrow, 10, PVM-INT,
msgtag, "workers", rootginst) ;

Fortran:
CALL PVMFGATHER(GETMATRIX, MYCOLUMN, COUNT, INTEGER4,

% MTAG, 'workers', ROOT, INFO)

ERRORS
These error conditions can be returned by pvm-gather

PvmNoInst
Calling t ask is not in the group

PvmBadParam

PvmSysErr
The datatype specified is not appropriate

Pvm system er ror

SEE ALSO
pvm-bcast (3PVM), pw-barr ier (3PVM), pvm-psend(3PVM)

- 25 -

A.3. Reduce

REDUCE (3PVM) MISC. REFERENCE MANUAL PAGES REDUCE (3PVM)

NAME
pvm-reduce - Performs a reduction operation over members
the specified group.

of

SYNOPSIS
C i n t info = pw,reduce(void (*func) 0,

void *data, i n t count, i n t datatype,
i n t msgtag, char *group, i n t rootginst)

Fortran c a l l pvmfreduce(func, data, count, datatype,
msgtag , group, rootginst , info)

PARAMETERS
func Function which defines the operation performed on

the global data. Predefined are PvmMax, PvmMin,
PvmSum, and PvmProduct. Users can define t h e i r o m
function.

SYNOPSIS f o r func
C

Fortran

void func(int *datatype, void *x, void *y,
i n t *nun, i n t *info)

c a l l func(datatype, x, y, num, info)

data Pointer t o the s ta r t ing address of an array of l o c a l
values. On return, t h e data array on t h e root n i l 1
be overwritten with t h e resu l t of t h e reduce opera-
t i o n over the group. For t h e other (non-root)
members of the group t h e values of the data array
upon return from t h e reduce operation are not
defined; the values may be different than those or i -
ginally passed t o pw-reduce.

count Integer specifying the number of elements of data-
type in the data array. The value of count should
agree betneen all members of the group.

- 26 -

datatype
Integer specifying the type of the en t r i e s i n t h e
data array. (See below f o r defined types.)

msgtag Integer message t ag supplied by the user. msgtag
should be >= 0. It allows the user’s program t o
distinguish between d i f fe ren t kinds of messages.

group Character s t r i n g group name of an exis t ing group.

rootginst
Integer instance number of group member who gets t he
r e su l t .

info Integer s t a tus code returned by the rout ine. Values
l e s s than zero indicate an error .

DESCRIPTION
pvm-reduce0 performs global operations such as max, m i n ,
sum, or a user provided operation on t he data provided by
the members of a group. All group members ca l l pvm-reduce
with t h e same s i z e loca l data array which may contain one or
more en t r ies . The root task is ident i f ied by its instance
number i n t h e group.

The inner workings of t h e pvm-reduce c a l l are implementation
dependent; however, when t h e pvm-reduce c a l l completes, t h e
root’s data array w i l l be equal t o t he specified operation
applied element-wise t o the data arrays of all t h e group
members.

A broadcast by the root can be used if t he other members
the group need the resu l tan t value(s).

of

PVM supplies t h e folloning predefined functions t h a t can be
specified i n func.

PvmMin
PvmMaX
PvmSUm
PvmProduct

PvmMax and PvmMin are implemented f o r all the datatypes
l i s t e d below. For complex values t h e minimum [maximum] is
t h a t complex pa i r with the minimum [maximum] modulus.

- 27 -

PvmSum
l i s t e d below with t h e exception of PVM-BYTE and BYTEl.

and PvmProduct a re implemented f o r all t h e datatypes

C and Fortran defined datatypes are:
C datatypes FORTRAN datatypes

PVM-BYTE BYTE1
PVM-SHORT INTEGER2
PVM-INT INTEGER4
PVM-FLOAT REAL4
PVM-CPLX COMPLEX8
PVM-DOUBLE REAL8
PVM-DCPLX COMPLEX16
PVM-LONG

...................................

A user defined function may be used i n func. The argument
func is a function with four arguments. It is the base
function used f o r the reduction operation. Both x and y are
arrays of type specified by datatype with num entr ies . The
arguments datatype and info are as specified above. The
arguments x and num correspond t o data and count above. The
argument y contains received values.

Caveat: pvm,reduce() does not block, a cal l t o pvm-barrier
may be necessary. For example, an error may occur if a task
c a l l s pvm-reduce and then leaves t h e group before t h e root
has completed i ts call t o pvm-reduce. Similarly, an e r ror
may occur if a t a s k jo ins the group after t h e root has
issued its call t o pvm-reduce. Synchronization of t h e tasks
(such as a cal l t o pvm-barrier) was not included within the
pvm-reduce implementation since t h i s overhead is unnecessary
i n many user codes (which may already synchronize the tasks
f o r other purposes).

The current algorithm is very simple and robust. A fu ture
implementation may make more e f f ic ien t use of t h e architec-
ture t o allow greater parallelism.

ILLUSTRATION
The following example i l l u s t r a t e s a call t o pvm-reduce.
Suppose you have three group members (instance numbers 0, 1,
2) with an array cal led Idata w i t h 5 values as specified:

instance t h e 5 values in t h e integer array

0
I
2

- 28 -

1, 2, 3, 4, 5
IO, 20, 30, 40, 50

100, 200, 300, 400, 500

And, suppose t h a t a call t o reduce (such as the ones follon-
ing) are issued where the root is the group member with
instance value of I :

C:
root = 1;
info = pvm,reduce(PvmSum, &Idata, 5, PnI-INT, msgtag,

"worker", root) ;
Fortran:

root = I
call pvmfreduce(PvmSum, Idata, 5, INTEGER4, msgtag,

"worker" , root, info)

Then, upon completion of the reduce call, the following w i l l
r e s u l t :

instance t h e 5 values i n the integer a r ray
0 not defined.... ...
I Ill, 222, 333, 444, 555
2 not defined

EXAMPLES
C:

info = pvm-reduce (PvmMax, h y v a l s , 10, PVM-FLOAT,
msgtag, "worker", rootginst) ;

Fortran:
CALL PVMFREDUCE(PvmMax, MYVALS, COUNT, REAL4,

8t MTAG, 'worker', ROOT, INFO)

ERRORS
These error conditions can be returned by pwm-reduce

PmNoInst
Calling task is not i n the group

PvmBadParam
The datatype specified is not appropriate f o r t h e
specified reduction function.

PvmSy s E r r
Pvm system error

- 29 -

I

SEE ALSO
pvm-bcast (3PVM1, pw-barrier (3PVM1, pm-psend(3PVM)

- 31 -

ORNL/TM-13228

INTERNAL DISTFUI3UTION

1-2. T. S. Darland

4-8. J. M. Donato
3. E. F. D’Azevedo

9. J. J. Dongarra
10-14. G. A. Geist

15. N. W. Grady
16. J. A. Kohl

17-21. M. R. Leuze
22. E. G. Ng
23. C. E. Oliver
24. P. M. Papadopoulos

25-29. S. A. Raby
30. C. H. Romine
31. T. H. Rowan
32. B. D. Semeraro
33. B. A. Shelton

34-38. R. F. Sincovec
39. Central Research Library
40. ORNL Patent Office
41. K-25 Appl Tech Library
42. Y-12 Technical Library
43. Lab Records Dept - RC

44-45. Laboratory Records Dept

EXTERNAL DISTRIBUTION

46. Steven Ashby, Lawrence Livermore National Laboratory, P.O. Box 808, L-316,

47. Edward H. Barsis Computer Science and Mathematics Sandia National laborato-

48. Roger W. Brockett, Pierce Hall 29 Oxford Street Harvard University Cambridge,

49. Tony Chan, Department of Mathematics, University of California, Los Angeles,

50. Geoffrey C. Fox, Northeast Parallel Architectures Center, 111 College Place, Syra-

51. J. Alan George, Vice President, Academic and Provost, Needles Hall, University

52. Gene H. Golub, Department of Computer Science, Stanford University, Stanford,

53. John Gustafson, Ames Laboratory, Iowa State University, Ames, IA 50011
54. Dr. Christian Halloy Asst. Director of JICS 104 South College University of

Tennessee Knoxville, T N 37996-1301
55. Sven J. Hammarling The Numerical Algorithms Group Ltd. Wilkinson House

Jordan Road Oxford OX2 8DR UNITED KINGDOM
56. Dr. Dan Hitchcock ER-31, Mathematical, Information, & Computational Sciences

Div. Office of Computational & Technology Research Office of Energy Research,
U.S. Department of Energy Washington, DC 20585

57. Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

Livermore, CA 94551

ries P.O. Box 5800 Albuquerque, NM 87185

MA 02138

405 Hilgard Avenue, Los Angeles, CA 90024

cuse University, Syracuse, NY 13244-4100

of Waterloo, Waterloo, Ontario, Canada N2L 3Gl

CA 94305

- 32 -

58. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-

59. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
60. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box

1892, Houston, TX 77001
61. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,

Livermore, CA 94550

62. Dr. David B. Nelson, Director Office of Scientific Computing ER-7 Applied Math-
ematical Sciences Office of Energy Research U.S. Dept. of Energy Washington,
DC 20585

oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

63. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

64. Robert J. Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University, Winston-Salem, NC 27109

65. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

66. Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

67. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

68. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

69. Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O.
Box 1663, MS-265, Los Alamos, NM 87545

70. Office of Assistant Manager for Energy Research and Development, Department of
Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N 37831-8600

71-72. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

. . ..

