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COLLECTIVE COMMUNICATION ROUTINES IN PVM 

J.M. Donato and G.A. Geist 

Abstract 

The collective communication routines of scatter, gather, and reduce 
are frequently implemented as part of the native library for parallel archi- 
tectures. These operations have been implemented in PVM for use among 
a heterogeneous system of workstations and parallel computers forming a 
virtual parallel machine. In the case of the Intel Paragon machines, the 
PVM implementation of the reduce operation utilizes the corresponding 
native mode library routines whenever possible. 

This paper describes the implementation of these collective communica- 
tion routines in PVM including the utilization of the Intel Paragon native 
mode operations. Performance data is also given comparing the use of the 
native Intel Paragon collective routines and the PVM implementation on 
top of these routines on a dedicated Intel Paragon. For our timing results 
an average latency of 109 ps is incurred using PVM as compared to the 
native Intel global s u m  routine. This extra startup is independent of the 
size of the message being sent and the number of nodes in the group. It is 
demonstrated that the use of static groups is preferable in time efficiency 
over the use of dynamic groups. 
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1. Introduction/Background 

PVM (Parallel Virtual Machine)[4] is a widely used system for programming par- 
allelism across a network of heterogeneous machines. This network could contain 
a variety of machine architectures including massively parallel processors. Col- 
lective communication routines such as scatter, gather, and reduce are frequently 
implemented in some form as part of the native library for pardel  machines. 
Here, collective communication means communication that is performed across 
a group of tasks. Each member of the group must participate by calling the 
collective communication operation. Such collective communication routines and 
extensions thereof are defined and extendedxpon under MPI [6]. 

In PVM versions 3.3.8 and higher scatter, gather, and reduce operations are 
implemented for use among a heterogeneous system of workstations and parallel 
computers forming a virtual parallel machine. In the case of the Intel Paragon 
machines, the PVM implementation of the reduce operation utilizes the corre- 
sponding native mode library routines whenever possible. 

This paper describes the implementation of these collective communication 
routines in PVM including the utilization of the Intel Paragon native mode op- 
erations. Performance data is also given comparing the use of the native Intel 
Paragon collective routines and the PVM implementation on top of these routines 
on a dedicated Intel Paragon machine. The timings were performed using PVM 
release 3.3.10 on the Center for Computational Science (CCS)*, XP/S 5, Intel 
Paragon machine. 

For our timing results an average latency of 109 ,us is incurred using PVM as 
compared to the native Intel global sum routine. This extra startup is indepen- 
dent of the size of the message being sent and the number of nodes in the group. 
It is demonstrated that the use of static groups is preferable in time efficiency 
over the use of dynamic groups. 

Throughout this document the phrase “static group” actually refers to a 
“frozen dynamic group” where each member of a dynamic group has executed a 
pvmfreezegroup call. True static groups are to be implemented in PVM release 
3.4.0. 

This paper assumes basic knowledge of the PVM software system and Intel 
Paragon hardware and software. For background on the Intel Paragon and its 
native group operations, please see [SI. The PVM Users’ Guide[4] provides the 
general background on installation, syntax and usage of the PVM software sys- 
tem. For more detail on the performance of PVM on Massively Parallel systems 
see reference [2] which describes the basics of the communication model of PVM 
along with performance results for send and receive operations on Intel Paragon, 
SP-2 and CM-5 machines. 

lhttp : //m. ccs . o r n l  . gov/HomePage. html 
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1,l 1,2 ... 1,N 2,l 2,2 ... 

In the sections that follow, we describe the implementation of scatter, gather, 
and reduce operations in the general situation of a heterogeneous network of 
machines. A brief overview of the PVM syntax will be given for each command. 
Please refer to the appendices for more complete specification of the syntax of the 
commands and a discussion of the their usage along with example statements. 

The next two sections will briefly describe the scatter and gather operations. 
The Intel Paragon NX routines do not include native scatter and gather operations, 
so no specific changes have been made for the Intel Paragon in the implementation 
of these two routines. After scatter and gather, the reduce operation is described. 
Since the NX library does provide a number of native reduction routines, these 
are utilized when possible. When &nd how these are used will be described. 

This paper is written from a C language point of view in terms of the indexing 
of arrays. In C, multi-index arrays are arranged contiguously in memory in row 
ordering with a starting index value typically 0. For Fortran multi-index (multi- 
dimensional) arrays are arranged contiguously in memory in column ordering 
with starting index typically being 1. See Figure 1 for an example of how a two- 
dimensional M x N array (matrix) would be laid out in memory if ordered by 
columns versus being ordered by rows. 

M,N 

-- 
ordered by 

columns 

ordered by 
rows 

Figure 1: Row and Column Linear Orderings of a Matrix 
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2. Scatter 

A scatter operation distributes data segments from one member of the group to 
the other members of the group. For example, a scatter operation can be used to 
disperse rows of a matrix from one task to all the members of the group in order 
to perform row operations in parallel. 

The syntax of the scatter operation in PVM is as follows. 

i n t  info = 
pvm,scatter(void *result ,  i n t  *data, i n t  count, i n t  datatype, 

void msgtag, char *pame, i n t  root inst)  

It performs a scatter of messages from the specified root member of the group to 
each of the other members of the group as shown in Figure 2. 

Each member of the group gname receives a message result of type datatype 
and length count from the root member of the group. The root sends these 
messages from a single array data which is of length, at least, M * count. Here, M 
represents the number of members in the group, all of which must be participating 
in the scatter operation. The values sent to the ith member of the group are taken 
from the data array starting at position i * count. The root member of the group 
is specified by its instance number, rootginst, in that group. 

The message passing employed during the scatter operation in PVM is imple- 
mented using basic PVM commands, such as pvmsend and pvmrecv. The root 
member does not send to itself, rather it performs a memory to memory copy. 

Figure 2: Scatter: The root distributes data sections to each group member 
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3. Gather 

A gather, the inverse operation to a scatter, combines separate data segments 
from each group member into a single array on the root member of the operation. 

The syntax of the gather operation in PVM is as follows. 

i n t  info = 
pvm-gather(void *result, void *data, int count,  int datatype, 

i n t  msgtag, char *gname, i n t  rootinst) 

It performs a gather of messages from each member of the group to a specified 
member of the group. This is shown in Figure 3. 

Each member of the group gname sends a message data of type datatype and 
length count to the root member of the group. The root receives these messages 
into a single array result which is of length, at least: M * count. Again, M 
represents the number of members in the group, all of which must be participating 
in the gather operation. On the root, the values received from the ith member 
of the group are placed into the result array starting at position i * count. The 
root member of the group is specified by its instance number, rootginst, in that 
group. 

The message communication that occurs as part of the gather operation, as 
with the scatter operation, is implemented using basic PVM commands, such as 
pvmsend and pvmrecv. Again, the root does not send or receive a message from 
itself, it performs a memory to memory copy. 

node N 

y n t  

all nodes 

I I I I I I 

Figure 3: Gather: The root assembles data sections from each 

root node 

member 

- . . . -.- _. . -I_--.- 
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4. Reduce 

In a reduction operation, such as a global sum, an associative and commutative 
operation is performed on corresponding data segments by each member of the 
group. These global combine operations “reduce” the data segments from each 
member into one data segment on the root. For further information, see [5]. 

The PVM syntax for the reduce operation is as follows. 

i n t  info = 
pvm-reduce(void (*func) 0, void *data, i n t  count, i n t  datatype, 

i n t  msgtag, char *@me, i n t  roo t ins t )  

where 

void (*func) ( i n t  *datatype, void *data, void *work, 
i n t  *nun, i n t  *inf 0) 

4.1. PVM Reduce Implementation 

The current implementation uses a hierarchical fan-in algorithm to perform the 
reduce operation. Global min, max, sum, and product reduction operations are 
provided in PVM. This is done by specifying func as one of the PVM defined 
functions of PvmMin, PvmMax, PvmSum, or PvmProduct, respectively. A user 
written function may also be provided as the func argument. For predictable 
results, it is important that such a user-defined function be associative and com- 
mutative. See the appendix for the syntax and summary of these functions. The 
general heterogeneous implementation is described as follows. 

The reduce operation, as with the scatter and gather operations, in PVM is 
implemented using basic PVM commands, such as pvmsend and pvmrecv. 

For each host (a physical machine in the parallel virtual machine) a coordina- 
tor is designated for that host. During the reduce operation, each group member 
on a host communicates (via pvmsend) its data segment to the coordinator for 
that host. The coordinators on each host are then responsible for performing 
(combining or reducing) the specified function func on the data segments it has 
received and then communicating (via pvmsend) the result to the root member 
of ,the reduce operation. The root then performs the specified function f unc on 
the data received from the coordinators. 

Figure 4 gives a pictorial view of the message flow from group members on 
a host to the coordinator on the same host and then to the root member of the 
reduce operation. Each host can be a multitasking multiprocessor. 

4.2. Specifics of PVM Reduce on the Intel Paragon 

This hierarchical fan-in technique is still used if an Intel Paragon is part of the vir- 
tual machine. However, the nodes on the Intel Paragon will utilize corresponding 
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- - 
--- 

c 

Host 1 
Host 2 

. . ,~ . . .  . I  , .  . .  . 

Host 3 

coordinator 

To root node 

- - - - - -* 
To coordinator 

Figure 4: Message flow from group members to coordinators to the root 
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NX functions whenever possible. The Paragon is currently limited to executing 
only one PVM task per node. The PVM console and the PVM group server 
(pvmgs) run on the service nodes for the partition. 

If all the nodes on the partition are participating in the reduce operation, then 
the NX function will be executed, if one exists. In this case, there is no need for 
the Intel Paragon nodes to explicitly send data to their coordinator node. This 
is because the NX collective routines return the final values to each of the nodes 
participating in the operation. Similarly, if all the nodes in the Paragon partition 
are part of a larger group, the NX native operations will be used for the Paragon 
part of the collective operation. 

PVM determines which native mode NX routine to call by comparing the 
func function reference (e.g. pointer to the function) in the reduce call to the 
those functions for which an NX version exists. Currently, PVM recognizes that 
PvmSum, PvmMin, PvmMax, and PvmProduct which correspond to gzsun, 
gzmin, gzmax, gzprod, respectively. 

For the NX native collective operations to be executed, the following two con- 
ditions must hold: 

1. all the nodes in the paragon compute partition must be participating in the 
collective reduce operation, and 

2. a corresponding NX collective operation must exist and be detected by PVM 
for the given datatype on the Intel Paragon. 

If these two conditions do not hold, the collective operation still functions 
correctly, but will not use NX native operations. Instead, the nodes will send data 
to their coordinator as described in the general reduce case. 

The three possible basic situations are show in Figure 5. Figure 5(a) shows 
via dotted lines (without arrows) that the native NX command is used and so 
PVM does not define the message flow. The results of the group operation will 
be communicated via NX to each of the nodes. Figure 5(b) shows the case where 
not all of the nodes of the partition are part of the group and hence the native NX 
function can not be used. Figure 5(c) shows the situation where, although all of 
the nodes in the partition are in the group, the specified func is a user-written 
function, and hence no appropriate native NX routine can be utilized. 

Figure 6 gives a pictorial example of the message passing that would occur if 
a partition of Paragon nodes are part of the group operation. The figure shows 
two Intel Paragons, one with a 4 node partition allocated to PVM, and the other 
with a 6 node partition allocated. A third host of unspecified architecture is also 
pictured for variety. 

Even in the case where an NX native operation is used, the overhead for the 
reduce operation could still be extreme if dynamic groups are being used. In the 
case of dynamic groups, a check must be made by each node to determine who is 
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Figure 5(a) : Native NX routine is used for the 6 node partition 

Figure 5 ( b )  : Only 5 of the 6 nodes in the partition are in the group 

Figure 5(c) : There is no corresponding NX collective routine 

Figure 5: Three cases on the Paragon 
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Host 1 
coordinator 

D---O 
I I 
I I 
I I 

D---D 
4 node partition on Paragon 

Host 2 

To coordinator 
t ------ 

NX communication ------- 
To root node 

Host 3 
6 node partition on Paragon 

Figure 6: Message flow on a virtual machine consisting of 2 Paragons md another 
host architecture 
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part of the group operation. Hence, calls to the pvmgs are made by each member 
of the group. 

If the user has called pvmfreezegroup, to designate that the group is static, 
this overhead is not incurred. The list of group members is cached to each 
member. 

4.3. PVM and Intel Paragon notes 

In this section we remind the user of notes and caveats on the use of PVM on 
the Intel Paragon. This section includes information from the PVM Readme.mp 
file that accompanied the PVM 3.3.10 release along with other useful notes. For 
further information and updates for new releases the reader should refer to the 
Readme.mp of the release of PVM being used. 

0 Tasks spawned onto the Intel Paragon run on the compute nodes by default. 
Host tasks run on the service nodes and should be started from a Unix 
prompt. The PVM console and group server (pvmgs) also run on the service 
nodes. 

0 By default PVM spawns tasks in your default partition. You can use the NX 
command-line options such as ‘-pn partitionmame’ to force it to run on a 
particular partition or ‘-sz number-ofmodes’ to specify the number of nodes 
you want it to use. Setting the environmental variable NXDFLTSIZE 
would have the same effect. For example starting pvmd with the following 
command 

pvmd -pn pvm -sz 33 

would force it to run on the partition ‘pvm’ using only 33 nodes (there must 
be at least that many nodes in the partition). 

0 The current implementation only allows one task to be spawned on each 
node. 

0 There is a constant TIMEOUT in the file ‘pvmmimd.h’ that controls the 
frequency at which the PVM daemon probes for packets from node tasks. 
If you want it to respond more quickly you can reduce this value. Currently 
it is set to  10 millisecond. 

0 Be aware that mixing NX message passing calls in PVM may interfere with 
PVM message passing commands, such as pvmsend and pvmrecv, since 
the PVM system may have utilized NX message tags. This warning also 
applies to pvmreduce, pvmscatter, and pvmgather since they are imple- 
mented using basic PVM commands. 
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0 PVM programs compiled for versions earlier than 3.3.8 need to be recom- 
piled. A small change in data passed to group members on startup will 
cause earlier programs to break. 

5 .  Performance Measurements 

5.1. Hardware Description 

The timings were performed on the Center for Computational Science (CCS)2, 
xps5, Intel Paragon ma~h ine .~  At this time, the configuration of the Intel Paragon 
XP/S 5 consists of 70 General Purpose (GP) compute processors arranged in 
10 by 7 mesh, 4 Multi-purpose (MP) compute processors in a 2 by 2 mesh, 3 
service nodes, and 6 1/0 nodes. Each GP compute node has 16MB of memory, 
while each MP compute node has 128MB of memory. Five of the 1/0 nodes are 
connected to 4.8 GB RAID disks, and the sixth to a 16 GB RAID disk. The 
system provides a total of 40 GB of system disk space. The system is connected 
to the ORNL network with an Ethernet connection and 2 HIPPI connections. 
Versions of release 1.3 of the Intel Paragon OS was running at the time of these 
performance tests. 

5.2. Performance Timing Procedure 

The program that produced the performance timing results is very straight- 
forward. An integer global s u m ,  via gisum() or via pvmreduce using PvmSum, 
was performed for three different message lengths. The times given in the tables 
are an average over 100 such iterations of the gisum() or pvmreduce command. 
Messages containing 1 integer, 1000 integers, and 10000 integers were used. 

Elapsed time was used, rather than cpu time, since cpu time would not include 
the necessarily important wait for messages from other group members. However, 
initial startup overhead was not included in the timings. For example, partition 
allocation, pvmd startup, pvmgs startup, spawn (or pexec) of the executable, nor 
the first message passing cycles were included in the timings. All times are given 
in microseconds (ps). 

All of these performance timing results were produced by execution runs per- 
formed on dedicated hosts. This was done to insure that there would be no 
interference from other processes being run on the hosts. This helps to produce 
repeatable performance results. 

2http://avv. ccs .ornl.gov/HomePage.html 
3http: //m. ccs . o r n l l  gov/comp~eso~rces/~tel~ar/5. hdwre. html 
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Number of 
Integers 

1 
1000 

10000 

Number of Nodes 
1 2 4 8 16 

21251 46783 97420 208178 430380 
21147 50641 120648 247305 506010 
21344 117401 259629 866073 961402 

Table 1: Times (ps) using Dynamic Groups on a SPARC Classic 

Number of 
Integers 

1 
1000 

10000 

Number of Nodes 
1 2 4 8 16 

500 6947 19350 52654 90909 
477 12172 34005 94000 179776 
485 70043 178529 728407 832529 

Table 2: Times (ps) using Static Groups on a SPARC Classic 

5.3. Static versus Dynamic Groups 

In this subsection we illustrate the importance of using static groups as opposed 
to dynamic groups whenever possible for group operations. 

Tables 1 and 2 show the results of executing the test routine on a dedicated 
SPARC Classic. Table 1 gives the times for the test when dynamic groups are 
being used. Table 2 gives the times for the test when static groups are used. The 
timing differences are enormous, some as much as two orders of magnitude slower 
for dynamic groups as compared to the analogous static group timing. Figure 7 
displays these results for comparison on a semi-log plot. 

On the Intel Pazagon, the difference in timings using dynamic and static 
groups is even more staggering. Tables 3 and 4 show the performance results 
using dynamic and static groups, respectively. The timings using dynamic groups 
are typically three orders of magnitude higher than those for static groups. 

From these tables of results, both on the SPARC Classic and on the Intel 
Paragon, it is obvious that the efficient use of the collective communication rou- 
tines in PVM relies upon using static groups directly (as will be available in PVM 
release 3.4.0) or by freezing a dynamic group via the pvmfreezegroup operation. 



- 13 - 

SPARC Classic 
1 o6 1 I 1 

Integers 
1 

1000 

io5 
C 
0 .- 
P 
Q) a -  
0 

'CI 3 io4: 

- E 
2 
8 c 

c 

io3 

1 2 4 8 16 
458549 562425 858077 1483393 2988008 
462391 573367 809935 1608210 2768591 

..........._. 
- _ _ _ _  

Number of 
Integers 

1 
1000 

m frozen dynamic groups 
0 dynamic groups 

Number of Nodes 
1 2 4 8 16 

102 269 390 653 768 
115 755 1382 2122 2638 

2 2  10 12 14 16 
2 4 6 8 

10 
0 

number of nodes in group 

Figure 7: Times (ps) for Dynamic and Static Groups on a SPARC Classic 

I Number of 11 Number of Nodes I 

. I I I 1 

10000 11 475713 I 564680 I 807562 I 1669463 I 2848504 I 
Table 3: Times (ps) using Dynamic Groups on a Paragon 

,I I 

10000 11 133 I 3607 I 5592 I 7320 I 8808 I 
Table 4: Times (ps) using Static Groups on a Paragon 
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5.4. Native NX versus PVM routines on Paragon 

In this section we examine the performance of global sum via pvmreduce with 
PvmSum as compared to a test implementing the same code using only native 
NX calls to gisum(). 

Table 5 lists the average time in microseconds (ps)  t o  perform a gisum() for 
various length integer messages. This average is also calculated over 100 iterations 
of the gisum() call. Table 6 lists the averages for performing a pvmreduce using 
PvmSum on the Intel Paragon. 

Suppose we use a linear equation, a + pn, to model the message communica- 
tion based on latency (a), bandwidth (p) and size of data in bytes (n). For the 
native NX reduce operation, we would write 

msgtimq, = a + pn. 
Then, the data show that on average, the message communication for the 

PVM reduction operation would be 

msgtimepvM M a + 109ps + pn. 
For our timing results PVM added an average 109 ps latency term to the com- 

munication performance. This overhead appears independent of message length 
and the number of group members. Hence, communication bandwidth for the 
PVM reduction is the same as for the native NX commands. For most applica- 
tions, this communication overhead is a small price to pay for easy portability 
of the code and for the ability to network different architectures into a single 
parallel machine. 

5.5. Comparison to a Paragon Optimized PVM 

As part of a diploma thesis[9], Bjarte Walaker implemented a version of PVM 
for the Paragon. The purpose of this work was to decrease the overhead that 
PVM incurs in performing group operations. At the time of Walaker’s thesis, the 
native NX changes had not been implemented in PVM. 

In this thesis, a number of hypotheses are made, however, most of the im- 
provement in timings on the Paragon which were achieved by Walaker were due 
simply to utilizing the native NX commands. 

For example, there is no need to have the root instance execute on the service 
node as Walaker describes in the thesis. All the node executables can easily be ex- 
ecuted on the Paragon compute nodes even on the first release of the pvmreduce 
function although the first release did not utilize the native NX calls. This is done 
using the “spawn” command from the PVM console. 

Similarly, there is no need to force the PVM group server (pvmgs) to be 
executed on one of the compute nodes of the Paragon which Walaker does. This 
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Number of Number of Nodes 
Integers 1 2 4 8 16 32 64 

1 6 131 249 437 576 1118 1391 
1000 11 573 1172 1918 2379 2838 3375 

10000 12 3369 5360 7091 8524 8959 9767 

Table 5: Times (ps) using Native NX gisum command 

Number of Number of Nodes 
Integers 1 2 4 8 16 32 64 

1 102 269 390 653 768 1250 1537 
1000 115 755 1382 2122 2638 3039 3610 

10000 133 3607 5592 7320 8808 9124 9888 

Table 6: Times (ps) using Static Groups on a Paragon 

Paragon Compute Nodes 

I 10000 

9000 

number of nodes in group 

Figure 8: Times (p) for Native NX versus Static Groups on a Paragon 
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version 

Orig PVM 
Walaker PVM 

Number of Nodes 
2 4 8 16 64 

689075 768635 1208601 1680296 3798682 
707 1428 2122 2847 4617 

Table 7: Times (ps) from Walaker’s Thesis 

can be seen by comparing the timings in Table 6 to the results given in Walaker’s 
thesis. The timing data from Walaker’s thesis are presented in Table 7. For his 
tests, the message is always 1000 integers in length. Again, the times are given 
in microseconds (ps). It could not be determined from the thesis whether these 
timings were calculated from an average number of executions or not. 

Refer to Figure 9 for a comparison of the data for a message of 1000 integers 
for the native NX gisum, pvmsum, and Walaker’s pvmsum. The data from 
Walaker’s thesis for Walaker’s version of pvmsum are the points noted with 
an #. The timings for PVM static groups and the implementation by Walaker 
are comparable. The differences may be due to random timing variations. 

It is important to  note that Walaker admits to making the restriction that 
his version of the NX based PVM can only be used on a single Intel Paragon. But 
from the tables and figure we can see that PVM can be implemented just as fast 
without this restriction. 

The approach taken in the official PVM release gives the best combination 
of performance (using static groups) and in terms of keeping the crucial PVM 
feature of being able to network multiple hosts of different architectures into one 
Parallel Virtual Machine. 

6. Conclusions 

This paper has described the implementation of scatter, gather, and reduce col- 
lective communication routines in PVM as of release 3.3.10. Compared to native 
functions, we have seen that it is important to use static groups whenever perfor- 
mance is critical. Using direct static groups as will be implemented in PVM re- 
lease 3.4.0 or making a simple change (such as, adding a call to pvmfreezegroup) 
in current PVM programs using dynamic groups can increase efficiency by two 
orders of magnitude when performing collective operations. Dynamic groups (not 
frozen) are still needed for fault tolerant applications. 

Compared to native functions, we showed that there is an 109 ps average 
overhead incurred by using PVM. This overhead is independent of the number 
of nodes in the group and the message size. Hence, the message bandwidth for 
the PVM reduce operation is the same as the native NX routines upon which it is 
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Paragon Compute Nodes 
5000 - 
4500 

4000 

3500 

i3000 

2500 

c 
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.E 2000 

- - - - -  m native NX gisum 
............. 0 frozen dynamic groups 

# Walaker PVM (1000 i n k )  

I I 1 1 1 I 

10 20 30 40 50 60 
number of nodes in group 

Figure 9: Comparison of NX gisum, pvmsum, and Walaker’s pvmsum for 1000 
integers 
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implemented. For most applications, the cost of this overhead in terms of time 
performance is well worth the generality and flexibility of being able to use PVM 
as it is intended - as a software system that allows a heterogeneous network of 
machines to be used as a Parallel Virtual Machine. 
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A. PVM Manual Pages 
The following are the man pages for the scatter, gather and reduce operations 
from the PVM 3.3.10 release. 

A.1. Scatter 
SCATTER(3PVM) MISC. REFERENCE MANUAL PAGES SCATTER( 3PVM) 

NAME 
pvm-scatter - Sends t o  each member of a group a 
an array from a specified member of t he  group. 

sect ion of 

SYNOPSIS 
C i n t  info = pvm,scatter( void *resul t ,  void *data, 

i n t  count, i n t  datatype, i n t  msgtag, 
char *group, int rootginst)  

Fortran c a l l  pvmfscatter(result, data, count, datatype, 
rootginst ,  info) 

PARAMETERS 
resu l t  

data 

count 

Pointer t o  the  s t a r t i ng  address of an array of 
length count of datatype which w i l l  be overwritten 
by the  message f romthe  specified root  member of the 
group. 

On the  root t h i s  is a pointer t o  t h e  s t a r t i n g  
address of an array datatype of l oca l  values which 
are  t o  be dis t r ibuted t o  t h e  members of t h e  group. 
If n is the  number of members in  t h e  group, then 
t h i s  array of datatype should be of length at l e a s t  
n*count. This argument is meaningful only on t h e  
root.  

Integer specifying the  number of elements of data- 
type t o  be sent t o  each member of t h e  group from t h e  
root.  

datatype 
Integer specifying the  type of t he  en t r i e s  in t h e  
r e su l t  and data  arrays. (See below f o r  defined 
types. 1 
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msgtag Integer message t a g  supplied by the  user.  msgtag 
should be >= 0. It allows the  user’s program t o  
dis t inguish between d i f fe ren t  kinds of messages. 

group Character s t r i n g  group name of an exis t ing group. 

rootginst  
Integer instance number of group member who performs 
the  s c a t t e r  of its array t o  t h e  members of the  
group. 

info Integer s t a tus  code returned by the  routine.  Values 
less than zero indicate an e r ror .  

DESCRIPTION 
pw,scatter()  performs a sca t t e r  of data  from t h e  specified 
root  member of the group t o  each of t h e  members of the  
group, including i tself .  A l l  group members must c a l l  
pvm-scatter(), each receives a portion of t he  data  array 
from t h e  root  i n  t h e i r  l oca l  r e su l t  array. It is  as  if the  
root  node sends t o  t h e  i t h  member of t he  group count ele- 
ments from its array data  s t a r t i ng  at of fse t  i*count from 
t h e  beginning of t h e  data  array. And, it is as i f ,  each 
member of t h e  group performs a corresponding receive of 
count values of datatype i n t o  its r e s u l t  array. The root 
t a sk  is ident i f ied  by i ts  instance number i n  the  group. 

C and Fortran defined datatypes are: 
C datatypes FORTRAN datatypes 

PVM-BYTE BYTE1 
PVM-SHORT INTEGER2 
PVM-INT INTEGER4 
PVM-FLO AT REAL4 
PVM-CPLX COMPLEX8 
PVM-DOUBLE REAL8 
PVM-DCPLX COMPLEX16 
PVM-LONG 

--------------------___________^___ 

I n  using the  scatter and gather routines,  keep i n  mind t h a t  
C s tores  multidimensional arrays i n  row order, typical ly  
s t a r t i n g  w i t h  an i n i t i a l  index of 0; whereas, Fortran s tores  
arrays in column order, typ ica l ly  s t a r t i n g  with an of fse t  of 
1. 
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The current algorithm is very simple and robust. A fu ture  
implementation may make more e f f ic ien t  use of t h e  architec- 
t u r e  t o  allow greater  parallelism. 

EXAMPLES 
C: 

info = pvm,scatter(&getmyrow, &matrix, 10, PVM-INT, 
msgtag, %orkers", rootginst) ; 

Fortran : 
CALL PVMFSCATTER(GETMYCOLUMN, MATRIX, COUNT, INTEGER4, 

& MTAG, 'workers', ROOT, INFO) 

ERRORS 
These e r r o r  conditions can be returned by pw-scat ter  

PvmNoInst 
Calling task  is not i n  the  group 

PvmBadParam 
The datatype specified is not appropriate 

PvmSysErr 
P w  system er ror  
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A.2. Gather 

GATHER(3PVM) MISC. REFERENCE MANUAL PAGES GATHER(3PVM) 

NAME 
pw-gather - A specified member of the group receives mes- 
sages from each member of the group and gathers these mes- 
sages i n t o  a single array. 

SYNOPSIS 
C int  info = pvm-gather( void *result ,  void *data, 

i n t  count, i n t  datatype, int msgtag, 
char *group, i n t  rootginst) 

Fortran cal l  pvmfgather(result, data, count, datatype, 
msgtag, group, rootginst ,  info) 

PARAMETERS 
result On the  root t h i s  is a pointer t o  t h e  s t a r t i n g  

address of an array datatype of l o c a l  values which 
are t o  be accumulated from the  members of the  group. 
If n if the number of members i n  the  group, then 
t h i s  array of datatype should be of length at least 
n*count. This argument is  meaningful only on t h e  
root .  

data  For each group member t h i s  is a pointer t o  t h e  
s t a r t i n g  address of an array of length count of 
datatype which w i l l  be sent t o  the  specified root  
member of the group. 

count Integer specifying the  number of elements of data- 
be sent by each member of the  group t o  t h e  type t o  

root .  

dat  atype 
Integer specifying the  type of the  en t r ies  i n  t h e  
r e s u l t  and data arrays. (See below f o r  defined 
types. ) 

msgtag Integer message t a g  supplied by the  user. msgtag 
should be >= 0. It allows the user’s program t o  
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distinguish between different  kinds of messages. 

group Character s t r ing  group name of an exis t ing group. 

rootginst  
Integer instance number of group member who performs 
the  gather of t he  messages from the  members of t h e  
group. 

info Integer s t a tus  code returned by the routine.  Values 
l e s s  than zero indicate an error .  

DESCRIPTION 
pvm-gathero performs a send of messages from each member of 
t h e  group t o  the specified r o o t  member of t he  group. A l l  
group members must c a l l  pvm-gathero, each sends i t s  array 
data of length count of datatype t o  the root  which accumu- 
lates these messages in to  its r e su l t  array. It is as  if t h e  
root  receives count elements of datatype f romthe  i t h  member 
of t he  group and places these values i n  i ts  result array 
s t a r t i n g  with of fse t  i*count from t h e  beginning of t h e  
r e s u l t  array. The root task is  ident i f ied  by its instance 
number i n  the  group. 

C and Fortran defined datatypes are: 
C datatypes FORTRAN datatypes 

PVM-BYTE BYTE1 
PVM-SHORT INTEGER2 
PVM-INT INTEGER4 
PVM-FLOAT REAL4 
PVM-CPLX COMPLEX8 
PVM-DOUBLE REAL8 
PVM-DCPLX COMPLEX16 
PVM-LONG 

In using the  sca t t e r  and gather routines,  keep i n  mind that 
C s tores  multidimensional arrays in row order, typ ica l ly  
s t a r t i n g  with an i n i t i a l  index of 0; whereas, Fortran s tores  
arrays i n  column order, typical ly  s t a r t i n g  with an of fse t  of 
1. 

Note: pvm-gathero does not block. If a t a sk  c a l l s  
pvm-gather and then leaves the  group before t h e  root has 
cal led pvm-gather an e r ror  may occur. 
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The current algorithm is  very simple and robust. A fu tu re  
implementation may make more e f f i c i en t  use of the  architec- 
ture t o  allow greater  parallelism. 

EXAMPLES 
C: 

info = pvm,gather(&getmatrix, &myrow, 10, PVM-INT, 
msgtag, "workers", rootginst)  ; 

Fortran: 
CALL PVMFGATHER(GETMATRIX, MYCOLUMN, COUNT, INTEGER4, 

% MTAG, 'workers', ROOT, INFO) 

ERRORS 
These error  conditions can be returned by pvm-gather 

PvmNoInst 
Calling t ask  is not in  the group 

PvmBadParam 

PvmSysErr 
The datatype specified is  not appropriate 

Pvm system er ror  

SEE ALSO 
pvm-bcast (3PVM), pw-barr ier  (3PVM), pvm-psend(3PVM) 
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A.3. Reduce 

REDUCE (3PVM) MISC. REFERENCE MANUAL PAGES REDUCE (3PVM) 

NAME 
pvm-reduce - Performs a reduction operation over members 
the  specified group. 

of 

SYNOPSIS 
C i n t  info = pw,reduce( void (*func) 0, 

void *data, i n t  count, i n t  datatype, 
i n t  msgtag, char *group, i n t  rootginst)  

Fortran c a l l  pvmfreduce(func, data, count, datatype, 
msgtag , group, rootginst ,  info) 

PARAMETERS 
func Function which defines the  operation performed on 

the  global data. Predefined are PvmMax, PvmMin, 
PvmSum, and PvmProduct. Users can define t h e i r  o m  
function. 

SYNOPSIS f o r  func 
C 

Fortran 

void func(int *datatype, void *x, void *y, 
i n t  *nun, i n t  *info) 

c a l l  func(datatype, x, y, num, info) 

data  Pointer t o  the  s ta r t ing  address of an array of l o c a l  
values. On return, t h e  data array on t h e  root  n i l 1  
be overwritten with t h e  resu l t  of t h e  reduce opera- 
t i o n  over the group. For t h e  other (non-root) 
members of the  group t h e  values of the  data array 
upon return from t h e  reduce operation are not 
defined; the values may be different  than those or i -  
ginally passed t o  pw-reduce. 

count Integer specifying the  number of elements of data- 
type in the  data array. The value of count should 
agree betneen all members of the  group. 
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datatype 
Integer specifying the  type of the  en t r i e s  i n  t h e  
data  array. (See below f o r  defined types.) 

msgtag Integer message t ag  supplied by the  user.  msgtag 
should be >= 0. It allows the  user’s program t o  
distinguish between d i f fe ren t  kinds of messages. 

group Character s t r i n g  group name of an exis t ing group. 

rootginst  
Integer instance number of group member who gets  t he  
r e su l t .  

info Integer s t a tus  code returned by the  rout ine.  Values 
l e s s  than zero indicate  an error .  

DESCRIPTION 
pvm-reduce0 performs global operations such as  max, m i n ,  
sum, or a user provided operation on t he  data  provided by 
the  members of a group. All group members ca l l  pvm-reduce 
with t h e  same s i z e  loca l  data  array which may contain one or 
more en t r ies .  The root  task is  ident i f ied  by its instance 
number i n  t h e  group. 

The inner workings of t h e  pvm-reduce c a l l  are implementation 
dependent; however, when t h e  pvm-reduce c a l l  completes, t h e  
root’s data  array w i l l  be equal t o  t he  specified operation 
applied element-wise t o  the  data  arrays of all t h e  group 
members. 

A broadcast by the  root  can be used if t he  other  members 
the  group need the  resu l tan t  value(s).  

of 

PVM supplies t h e  folloning predefined functions t h a t  can be 
specified i n  func. 

PvmMin 
PvmMaX 
PvmSUm 
PvmProduct 

PvmMax and PvmMin are implemented f o r  all the  datatypes 
l i s t e d  below. For complex values t h e  minimum [maximum] is  
t h a t  complex pa i r  with the  minimum [maximum] modulus. 
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PvmSum 
l i s t e d  below with t h e  exception of PVM-BYTE and BYTEl. 

and PvmProduct a re  implemented f o r  all t h e  datatypes 

C and Fortran defined datatypes are: 
C datatypes FORTRAN datatypes 

PVM-BYTE BYTE1 
PVM-SHORT INTEGER2 
PVM-INT INTEGER4 
PVM-FLOAT REAL4 
PVM-CPLX COMPLEX8 
PVM-DOUBLE REAL8 
PVM-DCPLX COMPLEX16 
PVM-LONG 

................................... 

A user defined function may be used i n  func. The argument 
func is a function with four arguments. It is  the  base 
function used f o r  the  reduction operation. Both x and y are 
arrays of type specified by datatype with num entr ies .  The 
arguments datatype and info are as specified above. The 
arguments x and num correspond t o  data and count above. The 
argument y contains received values. 

Caveat: pvm,reduce() does not block, a cal l  t o  pvm-barrier 
may be necessary. For example, an error may occur if a task  
c a l l s  pvm-reduce and then leaves t h e  group before t h e  root 
has completed i ts  call t o  pvm-reduce. Similarly, an e r ror  
may occur if a t a s k  jo ins  the  group after t h e  root has 
issued its call t o  pvm-reduce. Synchronization of t h e  tasks  
(such as a cal l  t o  pvm-barrier) was not included within the  
pvm-reduce implementation since t h i s  overhead is  unnecessary 
i n  many user codes (which may already synchronize the  tasks  
f o r  other purposes). 

The current algorithm is very simple and robust. A fu ture  
implementation may make more e f f ic ien t  use of t h e  architec- 
ture t o  allow greater  parallelism. 

ILLUSTRATION 
The following example i l l u s t r a t e s  a call  t o  pvm-reduce. 
Suppose you have three group members (instance numbers 0, 1, 
2) with an array cal led Idata w i t h  5 values as specified: 

instance t h e  5 values in t h e  integer array 



0 
I 
2 
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1, 2, 3, 4, 5 
IO, 20, 30, 40, 50 

100, 200, 300, 400, 500 

And, suppose t h a t  a call  t o  reduce (such as the  ones follon- 
ing) are  issued where the root is  the group member with 
instance value of I :  

C: 
root = 1; 
info = pvm,reduce(PvmSum, &Idata, 5, PnI-INT, msgtag, 

"worker", root) ; 
Fortran: 

root = I 
call  pvmfreduce(PvmSum, Idata, 5, INTEGER4, msgtag, 

"worker" , root,  info) 

Then, upon completion of the reduce call,  the following w i l l  
r e s u l t  : 

instance t h e  5 values i n  the  integer a r ray  
0 .... not defined.... ... 
I Ill, 222, 333, 444, 555 
2 .... not defined ...... 

EXAMPLES 
C: 

info = pvm-reduce (PvmMax, h y v a l s  , 10, PVM-FLOAT, 
msgtag, "worker", rootginst) ; 

Fortran: 
CALL PVMFREDUCE(PvmMax, MYVALS, COUNT, REAL4, 

8t MTAG, 'worker', ROOT, INFO) 

ERRORS 
These error  conditions can be returned by pwm-reduce 

PmNoInst 
Calling task  is not i n  the  group 

PvmBadParam 
The datatype specified is not appropriate f o r  t h e  
specified reduction function. 
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I 

SEE ALSO 
pvm-bcast (3PVM1, pw-barrier (3PVM1, pm-psend(3PVM) 
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