
1. Introduction

In the study of solar-terrestrial physics there is frequently a requirement to combine
and compare data from different instruments, of either the same type or of different types
(e.g., riometers and magnetometers). Studies may take one of several forms. Global studies
examine data from one or more instrument types and from many stations. Case studies
require data from many different instrument types, while the main aspect of a statistical
study is the analysis of large volumes of data. To enable efficient analysis of the many dif-
ferent datasets it is highly desirable that a software tool exists to allow the datasets to be
processed and presented in a common way.

The recently proposed Global Riometer Array (GloRiA) aims to link riometer data
from around the world. The hundred-plus instruments are united in measuring trans-iono-
spheric absorption of cosmic radio waves. However, variations in their construction (e.g.,
the number and type of antennas, data recording format, and for imaging riometers, the
design of the beam-forming network) result in over 20 different variations. Amalgamating
data from such a varied collection of instruments illustrates the need for a flexible software
tool which can accommodate their differences, but highlight their similarities.

There are a number of software tools for the processing and visualisation of specific

Research note

A Multi-Instrument Data Analysis toolbox

Steve R. Marple and Farideh Honary

Department of Communication Systems, Lancaster University,
Lancaster, LA1 4YR, U.K.

(Received December 20, 2003; Accepted March 24, 2004)

Abstract: In the study of solar-terrestrial physics there is frequently a requirement to
combine and compare data from different instruments, of either the same type or of differ-
ent types. This paper presents a Multi-Instrument Analysis (MIA) toolbox for Matlab. By
using object-oriented programming techniques it is shown that the same tools can be
applied to data from different instruments, or even instruments of different types. A coher-
ent structure enables MIA to display image plots, keograms and movies for all imaging
instruments, regardless of type. Data files are joined automatically so that file boundaries
do not interrupt data processing. Although a graphical user interface is available all opera-
tions can be performed by scripts, thereby permitting automated data processing. By sim-
plifying data processing MIA aids the creation of new data products such as energy maps
and event databases. MIA currently supports riometers and imaging riometers, magne-
tometers and all-sky cameras.

key words: data processing, data visualisation, software

Adv. Polar Upper Atmos. Res., 18, 120–130, 2004
� 2004 National Institute of Polar Research

120

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/71154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

data types. For EISCAT data the most notable is GUISDAP (Lehtinen and Huuskonen,
1996). In the SuperDARN community Go (S. Milan, Private communication) is widely
used. Although Go can visualise data from other instruments such as magnetometers and
all-sky cameras neither of these software tools address the issue of coherent, generalised
data processing from different instrument types. Progress in this area has been made with
the “Solar-Terrestrial Data Analysis and Reference System” (STARS) (Murata, 2002).
STARS was not available at the time and no existing software was found to be suitable for
our purposes. This paper describes an implementation created by the authors, the Multi-
Instrument Analysis toolbox (MIA).

We begin by describing the design goals for the project. The implementation section
describes the structure of MIA and how it is used to ensure generalised data processing and
visualisation procedures. In the results section we describe the common operations which
can be performed by MIA, and also some operations for specific data types. Some examples
of studies carried out using MIA are also given.

2. Design goals

At the beginning of the project a number of design goals were set in order that the
completed software would fulfill our requirements. Some of our users prefer the Microsoft
Windows environment, while for automated data analysis others prefer Unix or Linux, so a
multi-platform solution was preferred. A modular approach was needed so that additional
instrument types could be included when required. An extensible system was necessary so
that additional functionality could be added without requiring the modification of existing
program code. It was specified that important metadata (start and end times, temporal reso-
lution of the data, creator, creation time) should be kept with the data. Plotting and other
visualisation procedures must fully document the data, which requires knowledge of basic
information such as the start and end times of the data. For data quality purposes it is essen-
tial to know when the data was created so that if programming bugs are discovered it is pos-
sible to identify which data may have been affected. A log of any significant or non-stan-
dard processing procedures should also be kept so that it is possible to perform the same
processing steps on other datasets. We also wished to log data usage to an external data-
base, which is a requirement for the funding of some instruments.

To maximise the usefulness of the software it is important that as many instruments as
possible (for a given type) be supported, which necessitated investigation of the ways in
which the instruments varied. For example, in the case of riometers this meant that a fixed
number of beams could not be assumed, the number can vary from one wide beam to over
800 imaging beams (Little and Leinbach, 1958; Nielsen and Hagfors, 1997). Further infor-
mation about the features specific to each instrument type is given in the results section.

One of the major concepts was that different data types should look as similar as possi-
ble, emphasising their common features yet preserving their differences. All types of scalar
data (e.g., magnetometer data or riometer beam data) should behave in a similar way and be
able to be processed with the same tools. This approach, for instance, allows data to be fil-
tered for Pc5 oscillations, regardless of whether the data source was a magnetometer or a
riometer. Similarly, image data types such as riometer images and all-sky camera images
should also behave in a similar way to enable common image processing and visualisation

121A Multi-Instrument Data Analysis toolbox

tools. The use of common tools is important not only to minimise the effort of writing and
maintaining software but also to ensure that exactly the same procedures are applied.

The ability to perform statistical analysis was particularly important. A graphical user
interface (GUI) was planned from the beginning of the project. However, enforced use of a
GUI is not conducive to studies where large volumes of data must be analysed. For such
studies a programmatic method is necessary, which can be accomplished by ensuring that
the GUI functions act as wrappers–processing user-input and calling other functions to do
actual data processing.

Previous experience had indicated the need for users to be able to customise the pro-
gram behaviour without requiring their own installations of the software or by modifying
the standard installation. It was also recognised that site-level customisation would be
required when MIA is used at other institutions.

3. Implementation

Matlab was chosen for the programming language for a number of reasons. It is multi-
platform. It has good support for data visualisation (e.g., line plots, surfaces, images, and
contour plots, in both two and three-dimensional forms). It also includes functions to create
complex graphical user interfaces. Toolboxes exist which provide signal-processing func-
tionality, wavelet analysis and geographical mapping. These toolboxes have been used
extensively as they are well-tested, fully documented and reduced the time and effort in
writing and maintaining MIA.

User-defined functions can be created either by writing Matlab code (“.m files”) or by
linking to external functions written in C, C++ or Fortran (“MEX files”). The majority of
MIA code is written as “.m files”, which are interpreted by Matlab. Thus MIA requires the
Matlab runtime environment.

With version 5, Matlab introduced object-oriented programming (OOP) features:
classes, inheritance, function overloading, and operator overloading. When discussing the
OOP features we will follow the vocabulary used for C++ (Stroustrup, 1997). The OOP fea-
tures of Matlab were used as they provide the ideal means to emphasise the common fea-
tures between different datasets whilst preserving the important differences. There are two
main types of classes within MIA, data classes, which store instrument data, and instrument
classes, which hold the details about an instrument. Inheritance is used to ensure each type
provides the appropriate behaviour.

3.1. Instrument classes
All instrument classes in MIA are derived from a common base class, (mia_

instrument_base). The base class provides a formal mechanism to guarantee that all
that instruments contain a common set of metadata: location (place name, country, geo-
graphic coordinates), abbreviation (e.g., “KIL” for Kilpisjärvi), and serial number (to distin-
guish multiple instruments of the same type and abbreviation). The base class also provides
a common set of member functions to perform tasks such as plotting the instrument loca-
tions on geographic maps. Thus all instrument classes inherit the common behaviour
defined by mia_instrument_base.

122 S. R. Marple and F. Honary

Unlike C++ Matlab does not have a formal mechanism to declare abstract classes* so
we have used the convention of appending “_base” to all class names which should be
considered to be an abstract base class. From this base class are derived classes for riome-
ters, magnetometers, cameras and radars. The class hierarchy for instrument classes in
shown in Fig. 1. The boxes represent classes. The first panel of each box contains the class
name, the second panel lists important member variables and their types while a third panel
lists any important member functions. Lines between boxes indicate inheritance. It is
important to note that derived classes contain the data from their inherited classes. There-
fore member functions are also available to any derived classes.

It was decided that to include all individual metadata associated with an instrument
was not convenient or extensible. For example, in the case of riometers that approach would
have required the antenna radiation pattern to be calculated and stored, consuming both
CPU time and memory storage. Instead a set of info functions were provided so that such
information could be requested at a later time, if and when required.

Within MIA there are instrument classes for which no data classes yet exist, notable
examples are the is_radar and cs_radar classes. Corresponding data classes may be
added at a later date. The inclusion of those instrument classes allows MIA to be aware of
radars such as EISCAT and CUTLASS, which is useful when constructing geographic maps
of instrument locations.

3.2. Data classes
All of the data classes are derived from a common abstract base class (mia_base)

which stores crucial metadata including start time, end time, temporal resolution, instru-
ment, and data units, in addition to storing the data matrix itself. The base class therefore
satisfies the requirement of emphasising the similar aspects of the data, regardless of its
source. The additional metadata and functional requirements of the various instrument types
are provided by derived classes. For instance, a dedicated class is derived to store riometer

123A Multi-Instrument Data Analysis toolbox

Fig. 1. Simplified instrument class hierarchy.

* Abstract classes are building blocks for derived classes and should not be used directly.

beam numbers, while another dedicated class is derived to store the magnetometer compo-
nent names. A simplified version of the data class hierarchy is shown in Fig. 2. The data
classes represent the internal data structure used within MIA and do not require a new file
format. Loading of stored data is most easily accomplished if data is stored as data class
objects in Matlab data files though this is not a requirement.

Data sets which can be considered as images in some coordinate system have addition-
al metadata requirements: the coordinate system type (e.g., geographic or geomagnetic),
location of the pixel centres along the X and Y axes, and possibly an assumed projection
height. The image metadata is stored within another abstract class.

From Fig. 2 it can be seen that separate classes have been used for riometer received
power (rio_power), quiet day curves (rio_qdc), and absorption data (rio_abs). This
is necessary to implement specific behaviour (member functions) for these three distinct
types of riometer data. All of these riometer classes are derived from rio_base and are
termed “beam data” since they contain independent sets of scalar values, one set per beam.
Thus data from both traditional widebeam riometers and imaging riometers can be
processed in a common way. To exploit the full potential of imaging riometers the data can
be remapped onto a rectilinear grid (in geographic or geomagnetic coordinates) and be
included as rio_image data. The first method (“beam data”) is more appropriate for
cases where spatial interpolation is not wanted, or when widebeam riometer data is needed.
The second method (“image data”) is required whenever data mapped on a rectilinear grid
is needed, such as for keograms, images and movies. The two different approaches enable a
combined analysis method for both widebeam and imaging riometers without sacrificing

124 S. R. Marple and F. Honary

Fig. 2. Simplified data class hierarchy.

the imaging capability of imaging riometers.
MIA has been carefully designed so that data can be included from a large variety of

instruments. In most cases all that is required to support an instrument is knowledge of the
basic instrument parameters. Non-Matlab data files may be accessed transparently by pro-
viding an import function to read the data file(s). The load functions are also responsible for
logging data usage. MIA will automatically join data from different files so that file bound-
aries are not an obstacle to long-duration studies. In many cases the duration of data files
has been kept short deliberately (often one hour for imaging riometers) so that joining data
across file boundaries was a common and well-tested event, not a special case.

3.3. Relationship between MIA, Matlab and external functions
Although Matlab provides many general purpose functions a major goal of MIA was

to provide an interface where different types of data could be treated in the same way, for
instance, so that the command plot(data) would work and produce meaningful results
regardless whether the data was from a magnetometer or a riometer. It was therefore neces-
sary for MIA to provide high-level functions to distinguish the necessary differences on the
user’s behalf.

MIA simplifies the visualisation of data objects by building on the Matlab plotting
functions to provide high-level visualisation routines which automatically generate a
descriptive plot header, label axes and indicate data units appropriate to the data being dis-
played. For some data classes the units may be fixed (e.g., nT for magnetometer data) or
vary according to magnitude (e.g., Rayleighs or kilo-Rayleighs for all-sky camera data).
Universal times are always indicated with hours, minutes and seconds as appropriate, with
the markers placed at sensible values (for instance, on the hour), even if the plot did not
begin at the start of a day, hour or minute. These high-level plotting routines require the
structured class layout in order to interrogate the data class about its own display prefer-
ences, e.g., the units to use and what multiplier to use for them.

For the geographic mapping the free m_map mapping toolbox is used, allowing high-
resolution maps to be produced from published coastline datasets. On top of this toolbox
MIA provides convenient methods to plot instrument locations and instrument fields of
view. For riometers the beam projection can also be plotted. Data can also be plotted onto
geographic maps. If necessary MIA will automatically convert between different coordinate
systems (e.g., geographic and geomagnetic) using the GEOCGM Fortran library, linked as a
MEX file.

3.4. Filters
An important concept in any data-processing system is the ability to filter data. In MIA

the term filtering is applied loosely, it can include the classical filter algorithms such as But-
terworth or Chebyshev yet it also includes sliding-mean and sliding-median filters. Filters
are used throughout MIA but they present a special problem: each filter has its own configu-
ration parameters (e.g., bandwidth and number of poles for a Butterworth filter, window
size for a sliding mean filter). If MIA implemented filtering by calling a specific function
then every function employing filtering would need to be familiar with every possible filter
algorithm, a situation completely at odds with the aim of producing a modular and extensi-
ble system. To illustrate the problem consider there are m functions which make use of fil-

125A Multi-Instrument Data Analysis toolbox

tering, and n different filter algorithms. If a new filter algorithm is implemented then all m
functions require editing in order to be able to make use of the new algorithm. If many pro-
grammers create new functions which use filtering and new filter algorithms the software
quickly becomes impossible to maintain. Fortunately an object-oriented programming tech-
nique called functors (or function objects) (Stroustrup, 1997, pp. 514–515) overcomes this
problem. For each filter algorithm a separate filter class is created with its own configure
and filter functions. Filters are then simply objects of the appropriate class, with every
filter object containing its own filter parameters. For automated programming the filter
objects are created with the correct parameters; when using the GUI the user can interac-
tively configure each filter by using the class-specific configure function. Filtering is
now easily accomplished: the only parameters required are the filter object and the data
object. All the filter parameters are stored inside the filter object, and as the different filters
types are objects of different classes they each call their own filter function. Thus any
function inside MIA can implement filtering without requiring any knowledge of the possi-
ble filter operations or the parameters it requires.

3.5. Customisation
Matlab uses a search path to determine which instance of a function to execute. By

including user and installation-specific directories at the start of the search path it is possi-
ble to customise all MIA functions. Careful design of the instrument info functions
enables users to add their own instrument definitions, and if necessary provide additional or
alternative information about each instrument. Thus, by design, there is not a central reposi-
tory responsible for assigning instrument definitions, a decision taken to ease adoption of
MIA by other institutions.

3.6. Other classes
One of the problems regularly encountered was the computation of quantities involv-

ing dates and times. Two classes were created to encapsulate the complexities of the vary-
ing number of days in a month, leap years etc. A timestamp class is used to store date
and time information, while a timespan class is used to store durations. Operator over-
loading is used so that time calculations can be written in an intuitive way using the stan-
dard symbols ＋, －, * and /. Not all operations are sensible, the subtraction of a time-
stamp from a second timestamp results in a timespan (duration), but the addition of
two timestamps is not meaningful and results in an error. Multiplication and division of a
timespan with a real number are also sensible operations and so have been implemented.

4. Results

MIA currently implements data processing and visualisation functions for riometer,
magnetometer and all-sky camera data. MIA is aware of 92 different riometers and can load
data from 52 of those (data formats for the remainder are unknown). Supported riometers
include those belonging to the University of Lancaster, National Institute of Polar Research
(Japan), Communications Research Laboratory (Japan), Solar-Terrestrial Environment Lab-
oratory (Japan), CANOPUS, University of Maryland, Sodankylä Geophysical Observatory
(Finland), British Antarctic Survey, Arctic and Antarctic Research Institute (Russia), and

126 S. R. Marple and F. Honary

the Australian Antarctic Division. The success of the Global Riometer Array will depend on
the practicality of combining data from the many varied riometers around the world, a task
MIA is able to accomplish.

For all riometer data types (received power, quiet day curve (QDC) and absorption)
visualisation methods include line plots, keograms, images and movies. Absorption data
can either be calculated on-the-fly from received power and a quiet day curve, or by loading
absorption values directly. The exact behaviour is dependent on the riometer configuration
data. On-the-fly calculation is slower but the opportunity to substitute alternative quiet day
curves provides greater flexibility, for instance, to obtain absorption data from a period for
which a quiet day curve has not been generated. MIA contains methods for the creation and
validation of riometer QDCs. Also included are functions for the calculation of antenna
radiation patterns for both imaging and widebeam riometers. Knowledge of the radiation
pattern enables MIA to implement effective obliquity factors (Hargreaves and Detrick,
2002) to include the effect of off-axis signal contributions.

MIA can include data from 40 different magnetometers, orientated with both (H, D, Z)
and (X, Y, Z) coordinate systems. Visualisation functions include single and stacked magne-
tograms. Data processing procedures include generalised spike removal (using functors)
and the creation of quiet day curves. All image data formats can be presented as keograms,
images and movies. MIA is able to produce new data products by combining existing MIA-
compatible datasets. For example, by combining all-sky camera data from the Digital All-
Sky Imager (DASI) with riometer data from IRIS, MIA is able to calculate maps of the
characteristic energy of the precipitating particles (Kosch et al., 2001). Some examples of
studies facilitated by MIA are given.

One of the design goals of MIA was to enable automated analysis of large volumes of
data. MIA has successfully been used to perform automatic detection of riometer absorption
events, from the entire dataset of the Kilpisjärvi Imaging Riometer, IRIS (Browne et al.,
1995). Also using MIA, data from the Skibotn CCD All-Sky Imager (SCASI) was used to
create a database of cloud-free periods at Skibotn (Seviour et al., 2003). The events data-
base search engine (http://www.dcs.lancs.ac.uk/iono/event/) can perform
correlated searches of these derived datasets.

The solar proton event of the 14th July 2000 (Bastille Day) produced strong polar cap
absorption over both poles. The ionospheric effects lasted several days and were recorded
by many widebeam and imaging riometers. Data from 18 widebeam riometers and 3 imag-
ing riometers was combined to produce a global view of the PCA event. The operating fre-
quencies were in the range 29.6–38.2 MHz but the absorption values were normalised to an
operating frequency of 38.2 MHz. As it is well known that PCA events are uniform (Harg-
reaves, 1995, p. 357) interpolation was used to estimate absorption values between riometer
locations, for distances ≤ 2200 km. Figure 3 shows the northern hemisphere at 2000-07-15
09:30 UT. Circles mark the locations of the widebeam riometers, the diameter of each circle
indicates the －3 dB beamwidth when projected to an altitude of 90 km, and its colour rep-
resents the absorption at 38.2 MHz. Absorption images from the three imaging riometers
are mapped over the interpolated absorption values. (Any apparent structure shown by the
imaging riometers is in fact due to contamination of the signal by solar radio emissions.)
The figure also indicates the day/night terminator at ground level. The night-time recovery
(Bailey, 1964) for the PCA can be seen slightly to the right of the terminator.

127A Multi-Instrument Data Analysis toolbox

128 S. R. Marple and F. Honary

Fig. 3. Bastille Day polar cap absorption event.

5. Conclusions

MIA provides a coherent, generalised programming framework which facilitates the
analysis of data from a diverse range of scientific instruments. For ground-based STP
instruments it has been demonstrated that the implementation of a common data processing
and visualisation tool is entirely feasible. Indeed, MIA is actively used at Lancaster Univer-
sity, to support scientific studies, in the automatic preparation of summary plots, and to pre-
pare user-defined data/plots requested from a web form. It is also in use at institutions in
Japan and America. No attempt has been made to incorporate satellite data but no assump-
tions have been made which prevent inclusion at a later date.

In order to provide a coherent framework data and instrument classes had to contain a
number of “helper” functions, for instance to indicate the datalabel used on plots and
whether or not the data units should autoscale or be used with a fixed multiplier (e.g., nano).
The common functions for plotting and mapping had to use these functions as they are
unable to make any assumptions about the data on which they operate. For a small number
of data classes the coherent approach probably results in an increase in the total program-
ming code required. As more data classes are added the benefit of common plot routines
becomes more apparent. Had specialised routines for each data type been used the advan-
tage of a common look to the data visualisation and a common programming interface for
data processing would have been lost. The coherent framework possibly results in a small
decrease in processing speed, though this has to be balanced against time and effort to
implement and maintain the software. Improvements in computer hardware mean that it is
preferable to sacrifice processing efficiency somewhat in order to gain reductions in man-
power requirements.

OOP techniques have been used to provide relationships between different data types,
with the aim to always emphasise their similarities, yet never conceal important differences.
By using functors all MIA functions are able to filter data without prior knowledge of the
filter type or its parameters. If MIA had been implemented using the traditional function-
oriented approach then the modular and extensible filter behaviour would not have been
possible. Encapsulation was used to hide the complexities of date and time. MIA provides a
common method by which data can be loaded from disk, without concerning the user about
file formats or file boundaries.

In the future, new data and instrument types will be added as and when required. We
plan to optimise the loading of some non-Matlab data files by using C MEX functions. We
will also investigate the use of non-proprietary data formats to identify a possible alterna-
tive to Matlab’s own .mat files. The use of non-proprietary data formats (e.g., CDF,
NetCDF or HDF) will allow easier exchange of data with non-MIA users.

Acknowledgments

The authors wish to thank H. Yamagishi for encouragement, support and inviting S. R.
Marple to Japan where some of this work was carried out and presented. IRIS is operated
by Lancaster University in collaboration with the Sodankylä Geophysical Observatory, and
funded by the Particle Physics and Astronomy Research Council (PPARC). The authors
also wish to thank E. Donovan (University of Calgary) for the CANOPUS riometer data,

129A Multi-Instrument Data Analysis toolbox

T. J. Rosenberg and D. L. Detrick (University of Maryland) for the Iqaluit and Sondre
Stromfjord imaging riometer data, and J. Manninen (Sodankylä Geophysical Observatory)
for the Finnish riometer data. Matlab is a trademark of The Mathworks Inc.

The editor thanks Drs. M. Nishino and P. Stauning for their help in evaluating this
paper.

References

Bailey, D.K. (1964): Polar-cap absorption. Planet. Space Sci., 12, 495–541.
Browne, S., Hargreaves, J.K. and Honary, B. (1995): An imaging riometer for ionospheric studies. Electron. Com-

mun. Eng. J., 7 (5), 209–217.
Hargreaves, J.K. (1995): The Solar-Terrestrial Environment. Cambridge, Cambridge University Press, 420 p.

(ISBN 0-521-42737-1).
Hargreaves, J.K. and Detrick, D.L. (2002): Application of polar cap absorption events to the calibration of riometer

systems. Radio Sci., 37 (3), 7/1–7/11.
Kosch, M.J., Honary, F., del Pozo, C.F., Marple, S.R. and Hagfors, T. (2001): High-resolution maps of the charac-

teristic energy of precipitating auroral particles. J. Geophys. Res., 106 (A12), 28925–28937.
Lehtinen, M.S. and Huuskonen, A. (1996): General incoherent scatter analysis and GUISDAP. J. Atmos. Terr.

Phys., 58 (1/4), 435–452.
Little, C.G. and Leinbach, H. (1958): Some measurements of high-latitude ionospheric absorption using extrater-

restrial radio waves. Proc. IRE, 46, 334–348.
Murata, K.T. (2002): A software system designed for solar-terrestrial data analysis and reference via OMT

methodology. Today and Tomorrow of the Science and Technology Exchange between Ehime Universi-
ty-Japan and École Centrale de Nantes, France, 16–22.

Nielsen, E. and Hagfors, T. (1997): Plans for a new rio-imager experiment in Northern Scandinavia. J. Atmos.
Sol.-Terr. Phys., 59, 939–949.

Seviour, R., Kosch, M. and Honary, F. (2003): Identification of clouds and aurorae in optical data images. N. J.
Phys., 5, 6.1–6.7.

Stroustrup, B. (1997): The C++ Programming Language. 3rd ed., Addison-Wesley Publ. (ISBN 0-201-88954-4).

130 S. R. Marple and F. Honary

