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Summary 

Parallel programmers do not use software tools, in spite of the fact that parallel application 
development is a difficult and time-consuming task that could benefit from tool support. It has become 
increasingly clear that the simple availability of elegant, powerful software tools employing the latest 
technology is not enough. Usability is the real key to success; users simply do not adopt tools that fail 
to respond to their needs. 

Research in the area of usability engineering indicates that five design principles can have 
significant impact on parallel tool usability: 

tools must be based on demonstrable user requirements 
actively involve users throughout tool design 
minimize tool complexity to reduce the learning curve 
support the tool across multiple machine platforms to amortize the user’s investment 
employ iterative refinement techniques to improve tool usability 

Those principles served as the starting point for a Parallel Tools Consortium project to develop a tool that 
will help users determine the final state of a program that crashes or is terminated forcibly. Carried out 
over a period of ten months, the project involved the collaboration of tool researchers, and implementors, 
and users. This report describes how user-centered design techniques were applied to ensure that the tool 
would provide simple, intuitive support for the programmer’s task. 

Users were recruited for the project working group so that they could have direct input to design 
decisions, even in the earliest sets of user trials. Additional feedback was acquired from a broader user 
base, in three distinct phases. These were spaced out over a period of six months so that feedback could 
be analyzed, then applied to refine the tool before the next trial. In some cases, user input kept us from 
investing substantial effort in features that would not have been used or appreciated. In others, feedback 
showed us where our conceptions of usefulness did not quite align with those of the user community. 

There is no doubt that the LCB tool, as it exists today, is dramatically different from the initial 
design conception. According to the users who have experimented with it, those differences have greatly 
improved its usability. 



Introduction 

Although the "build it and they will come" mentality has dominated the design of scientific 
software for some time, it is increasingly clear that this attitude is responsible for the failure of many 
software systems [28]. Software users are no longer willing to put up with products that are difficult to 
learn or use [lo]. This is a positive direction. As William Howell, Executive Director of Science for the 
American Psychological Association writes, "Much of the improvement in software is attributable to 
research and knowledge supplied by research in human cognition and behavior, expertise that the computer 
scientists who designed the earlier systems never realized they needed until consumer discontent became 
impossible to ignore" [ 1 11. 

Creating an elegant, powerful piece of software does not guarantee that it will be used. Usability, 
the ultimate key to software adoption, encompasses a variety of factors, including how easy the software 
is to learn, its efficiency for advanced users, how easy it is to remember even for infrequent users, its 
"forgiveness" of user errors, and how pleasant it is to use. These are human-oriented factors, requiring 
that the software interface designer know and understand the target users, the set of tasks they will want 
to perform, and the logical models they will use in applying the software to those tasks [23, 21, 31. The 
central tenet is "know and involve the users" -- with emphasis on the plurality, heterogeneity, and even 
cultural diversity of users [17, 221. 

Unfortunately, very few computer scientists have any formal training or expertise in cognitive 
psychology, ethnology, or even the subdiscipline of computer science known as HCI (human-computer 
interaction). One consequence is that only software targeted at mass markets like home computing shows 
real evidence of being designed to please the consumer. For example, metaphors and symbols offer a 
powerful means of conveying relationships and actions to users of varying levels of expertise. Users are 
familiar with the rectangular desktop as a symbol for a workspace, or a trashcan to represent the delete 
function; similarly, a rolodex or a file folder conveys meaning without added clutter in an environment 
based on a desktop metaphor. Most metaphors, symbols, and icons have been developed for a general 
home or business environment, however. No comprehensive metaphors have been developed for dealing 
with the scientific research community; in fact, there are few success stories even in the more 
long-standing, data-oriented disciplines, such as library science [32]. 

2 



The current reality is that there is remarkably little understanding of human factors requirements 
for software, particularly software targeted at scientists [7, 91. The problem is glaring in the area of tool 
support for parallel programming [29, 301, and it has had serious repercussions on tool usability. 

Current State of Tool (Dis)Use 

When tool developers were brought together with tool users at the 1993 DARPANSF Workshop 
on Parallel Computing Systems, they concluded that “A lot of smart people are developing parallel tools 
that smart users just won’t use.” Surveys and interviews have found that most users prefer hand-coded 
instrumentation over current parallel tool offerings. Kuehn estimated that some 99% of the technical 
programmers at his institution rely on PRINT statements in spite of the availability of debuggers and 
performance tools [14]. Our studies have revealed rates almost as high in a variety of research and 
industrial settings [3 11. Even within so-called “tool-disposed” groups, some 40% avoid parallel tools [25]. 
Among people who do use tools, a surprisingly large number develop in-house or personal tools rather 
than use those that are available commercially or in the public domain [25, 311. 

Parallel tools have the potential for greatly assisting the application development process, and are 
probably more important to parallel than to serial programmers [29, 18, 311. Hand-coded instrumentation 
is a reliable (albeit tedious) method for gathering the information needed to debug or tune serial programs, 
but I/O in the parallel environment can seriously perturb timing relationships, masking errors and 
performance bottlenecks or provoking new ones. Technological factors, such as the time delay involved 
in offloading the contents of I/O buffers and problems in obtaining reliable global timestamps, can result 
in improperly ordered or lossy information. The complexity of parallel computers and their susceptibility 
to small variations in the run-time environment also suggest that mechanisms for gathering information 
need to be of an accuracy and efficiency beyond the scope of most application programmers. 

Why, then, are parallel tools so under-utilized? It can be argued that there is some tradition of 
antipathy to tools, and that these are unpopular among serial programmers, too. However, a recent survey 
contrasted tool use among comparable populations of parallel and serial users. Serial programmers were 
found to be significantly more likely to employ tools than were parallel programmers, while almost 80% 
of those with vector programming experience reported tool use 141. In a number of recent workshops 
sponsored by such diverse groups as ARPA, NSF, ONR, NASA, ACM, and HPCCI, users have 
complained that tool developers are more concerned with conducting interesting research or adding “bells- 
and-whistles” than with creating tools that will actually be used. Although this attitude is unnecessarily 
cynical, it does reflect the current perception that parallel tools are developed under supply-push rather 
than demand-pull economics [26]. That is, tools are not being designed to match user requirements and 
user strategies for developing parallel applications. 
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Tool developers do not ask users the “right“ questions. If a tool designed for a particular 
programming task isn’t applied to that activity, the developer asks the user why it’s not 
being used. What needs to be asked instead is how the user does go about the task, why 
it is performed in that way, and what he/she does to simplify or streamline the effort 
[ 25 :40]. 

The dominant motivation for current tool design appears to be the exposing of available technology, whose 
intrinsic value is obvious to tool researchers and implementors. Unfortunately, it is not clear to the user 
community that such technology can be applied easily or effectively to their program development 
strategies. For the most part, they decline to make the attempt. 

How can technical programmers be encouraged to use parallel tools? This is largely a human 
factors issue. Scientists and engineers are interested in software tools to the extent that they contribute 
to scientific research activities, not as an end in themselves. If a tool requires a lengthy training period, 
is the source of repeated frustration, or fails to yield useful results, it simply will not be used. Yet this 
is precisely the situation with parallel tools. Studies indicate that 

[Parallel] tool information often is presented in a fashion that reflects the tool’s 
organization, rather than the logical patterns employed by users. The information sought 
by the user may be available only indirectly, via multiple operations or through 
assimilation from multiple sources. At best, the tool is considered clumsy and hard to 
learn; at worst, the user assumes it cannot provide the desired information .... [Tlhe 
audience for parallel tools is made up of scientists, engineers, and other technical 
programmers. They do not approach programming in the same way as their computer 
science counterparts, nor are they tolerant of tools that are complicated or non-intuitive 
[25:40]. 

Today’s tools may be technologically sophisticated, but they lack the critical ingredient: usability 

The Basis for Tool Usability 

The concept that usability should be the driving factor in software design and implementation is 
not particularly new; it has appeared in the literature under the guises of usability engineering, user- 
centered design, and iterative design [23, 17, 24, 21. Definitions of usability vary, but typically involve 
the notion that usability is some combined function involving both the operative aspects of the software 
itself, and the training or expertise embodied in the user (e.g., [l]). There is no firm consensus on what 
methodology is most appropriate for achieving usability, nor on the frequency with which users should 
be involved in design decisions (cf. [12, 131). What is clear is that usability can only be accomplished 
with the active participation of actual users. 

It is instructive to apply the lessons from experimental usability engineering to the subject of 
parallel tools. First and foremost is the notion that meaningful, useful software is driven by concrete 
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needs. Such requirements can be identified only by soliciting input directly from the user community. 
Specifically, a tool will not be useful unless it facilitates tasks that the user already does, and that are time- 
consuming, tedious, or error-prone when performed manually. If, instead, a tool’s design is driven by the 
kinds of support that tool developers are ready or able to provide, it will miss the mark. 

Ease-of-learning is a key factor for attracting users. The time a user invests to learn a tool will 
not be warranted unless it can be amortized across many applications of the tool. In addition, lack of 
regular use may force the user to re-learn a tool many times over. Tool complexity is therefore a dis- 
incentive, not just for new users, but also for those who have not used the tool for a period of time. The 
short lifespan of most parallel computers exacerbates this problem. Like it or not, most parallel 
programmers will end up migrating their applications across several machine platforms over the course 
of time. The investment in learning a tool will probably not be warranted unless the tool is supported on 
more than one platform, and behaves in a consistent way across platforms. 

Once a tool is familiar to the user, other usability factors begin to dominate. An important 
concept of user-centered design is that usefulness and ease-of-use can be ensured only if users are actively 
incorporated into the software design cycle. Since the implicit goal of any tool is to increase user 
productivity, throughput is also important. This measure reflects the time and effort required to 
accomplish the specific tasks to which the user applies the tool, and includes the negative influence of 
frequent errors or the difficulty of making corrections. Tool users are the only ones who will have the 
insight needed to accurately identify features which represent potential sources of confusion. 

The tradition of soliciting user feedback only during the very early and very late stages of 
development is not adequate for assessing and improving usability. During early stages, the design is too 
amorphous for a user to grasp completely, while during late phases such as alpha testing, the software 
structure has already been solidified in ways that may impede usability. Different types of usability 
problems will be caught and corrected at different points in the design cycle. Moreover, it is important 
to observe at least some users on a sustained basis. The introduction of any computerized tool does more 
than replace a sequence of manual operations by automated ones [15, 20, 81. Only by observing and 
analyzing how users interact with the tool as they become familiar with it can designers confront the 
anthropological and sociological issues at stake. 

In summary, the basis for tool usability lies in how well and how easily a tool responds to user 
needs --- something that can only be determined with the help of actual users. 

Involving Users in Design 

The most accepted way of involving users in the design of software is through a process of 
iterative refinement [lo, 221. As shown in Figure 1 ,  representative groups of users are exposed to the 
software at various stages in development, in a variety of testing and interviewing situations. The user 
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feedback obtained is then used to refine the design, with the result serving as input to the next iteration 
of the design process. This allows the developer to tune and tailor the tool in response to user reactions. 

tool users Q 
knowledge of what problems are, 

strategies for attack 1 dge of what problems are, 
strategies for attack 

ideas fur new techniques, expertise in building efficient, 
profotyping capabilities robusf fools 

tool researchers ool implementors tool researchers CY tool implementors D 
Figure 1. Usability engineering applied to tool design 

The last few years have yielded considerable progress in tool technology and in efforts to define 
standards for parallel languages and operating environments. At the same time, the user community has 
accumulated a considerable experience base in parallel programming. If tool developers and users 
collaborate, it should be possible to leverage these results in order to arrive at tools that not only do things 
users want to do, but also are implementable across a range of parallel and clustered systems. The parallel 
tools community is a varied one [26]. The largest concentration of tool researchers is currently at 
academic institutions, although some will be found in federally funded and industry research centers. 
Implementors of tool products typically work in the industrial sector. Users, on the other hand, tend to 
be clustered in the national laboratories, with increasing numbers in the in technical areas of industry, such 
as seismic imaging, pharmaceutical engineering, and aerospace or automotive engineering. 

Forging a collaboration between such diverse and professionally segregated groups is not a simple 
task. Yet each group brings expertise that is not duplicated in the others. Historically, tool researchers 
have provided the impetus for technological advances, yielding new theories, paradigms, techniques, and 
representational models. The implementor group is the repository of most expertise in developing robust, 
efficient implementations for specific real-world parallel computers. The third group, users, forms the 
customer base for parallel tools and thereby establishes the basic requirements. They also embody more 
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There has been virtually no research in user interface requirements among scientific programmers 
[29, 301, so we did not have a pool of information upon which to draw. However, a recent analysis of 
network usage in the oceanography community [9] underscored the fact that a generic "scientist user" 
model is too simple to describe requirements for network software. More attention should be paid to how 
scientists in the disciplines actually work -- what their social structure looks like and what kinds of access 
they need to access what kinds of resources. Choices should be based on grounded knowledge of patterns 
within specific disciplines. With that in mind, the original working group members solicited the 
participation of other user organizations, including the National Center for Atmospheric Research, 
BioNumerik Pharmaceuticals, the U. S. Navy's Ocean Surveillance Center, and the San Diego 
Supercomputing Center. Each of these turned out to be instrumental in identifying particular problem 
areas. Furthermore, the group relied on the evidence that one participant had gathered, in a series of 
earlier surveys and user-site interviews [3 11, concerning the patterns with which parallel applications are 
developed by scientific programmers. 

How the Lightweight Corefile Browser Addresses Usability Requirements 

The Lightweight Corefile Browser (LCB) was one of the first collaborative projects adopted by 
the Parallel Tools Consortium. The idea for LCB originated among the user community. In a number 
of discussion sessions (some organized by us on behalf of HPC vendors, but others in open forums such 
as Supercomputing '93 and Intel User Group meetings), users complained that their chief concern was the 
fact that there is no current support for answering a simple -- and crucial -- question: 

Why did my program crash? 

They emphasized that, in particular, they need help in answering this question without the need to execute 
their program again (as would be the case, for example, with most interactive debuggers). 

In sessions where users were asked to prioritize the urgency of their needs for tool support, they 
ranked this requirement as number one. They elaborated on the need, revealing that they wanted to be 
able to answer a range of more specific questions, including: 

Which process was the culprit? 
Why did the culprit fail? 
How far did the culprit get before it failed? 
How did the culprit arrive at that point? 
Was the culprit the only process executing that routine? If not, which others did? 
How deeply into the source program had each process executed? 
Which other routines were actively executing when the program terminated? 

They also indicated that the answers needed to be phrased in terms of source code routine names and line 
numbers, rather than machine addresses. 
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In one session (a roundtable discussion at Supercomputing '93), it was pointed out by an industry 
developer from the audience that such information was already available, embedded in corefiles. Users 
made it clear that corefile mechanisms were inadequate, for several reasons. First, corefiles are not 
available on all systems; even when available, they aren't always produced (for example, when the user 
forcibly terminates a program that appears to be deadlocked or caught in a loop). Second, the corefile 
mechanism varies widely, sometimes generating data for just the failing processor, sometimes for a subset 
of processors, sometimes for all processors. Third, corefiles are wasteful of storage space, occupying as 
much as several Gigabytes for a full core image of numerous processors. This seems totally unnecessary 
to users, who want access to only a small amount of key information: the current value of the program 
counter, the contents of invocation stack frames, and an error or reason code. Fourth, it is difficult or 
impossible for a user to extract the information desired from corefiles. Moreover, the user has no real 
alternative. Hand-coded instrumentation, in particular, fails, since the user is unable to predict the point 
of failure, and since the data most needed is often left in the buffers rather than being flushed to disk files. 

The Ptools project addressed these issues by proposing a graphical tool. It was designed to 
provide a simple and convenient way of examining the final state of a parallel program that terminates 
abruptly (e.g., one that crashes, or that the user is forced to terminate when it appears to hang or to behave 
in some undesirable way). The goal was to furnish the programmer with a global, high-level view of the 
program's dynamic calling structure. Such a view could be constructed from a minimal amount of data 
recorded by the operating system or some other run-time monitor (e.g., an interactive debugger). That 
data is referred to as a "lightweight corefile," but it need not be stored in a physical file.' An implicit 
god  of the effort was to demonstrate that collaborations of users with developers would in fact yield tools 
that are more responsive to user needs. Our institution, Oregon State, was charged with coordinating that 
collaboration. The remainder of this report discusses how we sought input from user, applied that input 
to the design process, and verified the tool's usability. 

One of our first contributions to the project was to define the basic requirements described above; 
this was carried out primarily in the user sessions that gave rise to the project concept. For our own 
guidance, we also established and prioritized specific objectives associated with each of the four usability 
factors outlined previously. Table 1 presents the objectives that were identified as important if the tool 
was to be adopted quickly and widely. Since there are no existing tools of this nature, it was absolutely 
essential that our solution be easy to learn. We interpreted that as meaning the conceptual model 
presented to the user should encapsulate an intuitive notion of what it means to say that a parallel program 
is at a specific point in its execution. Any names or messages we used to report that state should be 
consistent with user terminology, rather than computer science terminology (e.g., "call graph" rather than 
"stack frame records"). 

Information on how LCB is designed to interact with the underlying system is provided elsewhere, 1 

together with a user guide for the tool [LCB]. 
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The second priority was ease-of-use. Since debugging activities tend to be concentrated in 
sporadic intervals [30, 31, 141, we could not rely on learned familiarity. Essentially, we must assume that 
users would not retain knowledge of tool operations from one invocation to another. This also meant that 
user errors would be likely, and that we must provide mechanisms for allowing the user to recover from 
any mistakes [16]. 

Factor 

Ease of learning 

Objectives 

provide intuitive conceptual model 
make terminology and operations consistent 

Ease of use ll 
_____ 

Usefulness 

allow infrequent users to return to tool without re-learning 
fast recoverability from any possible user errors 

help user understand how to apply tool to new task scenarios 

Throughput I1 reduce likely frequency of errors 
tool must be efficient enough to increase user productivity 

Table 1. Prioritization of usability objectives for LCB project 

Usefulness was established as being of somewhat less priority, since users had already made it 
clear that they felt in desperate need of tool support of this type. We felt that the most important 
consideration for this factor was that users be able to understand how to apply the tool to a new task. For 
example, if a user understood how to invoke LCB to see which process caused a program crash, it should 
be simply for h i d h e r  to apply the tool to a different problem, such as determining where a deadlock had 
occurred. . 

Finally, throughput was relegated to the lowest priority of the four factors. It was still important, 
however, that the tool itself not detract from user throughput by being error-prone. We also stipulated 
that efficiency -- in terms of the amount of time required to invoke the tool and apply it to a task -- must 
be reasonable, or the tool would not be used. 

Applying User-Centered Techniques in Designing a Parallel Tool 

In the early stages of design, the primary activity was to identify an appropriate conceptual model 
(representation) that would map well to the user’s mental model of the dynamic structure of a parallel 

10 



program. Our previous work in this area had established that scientific programmers relied heavily on the 
concept of a "call graph" in conceptualizing both static and dynamic program structure [27]. That research 
had culminated in the development of a graphical representation, the Program Phase Tree (PPT), for 
animating the progress of parallel program execution. A PPT was created using a graph editing tool [5] 
so that the user could modify a simple call graph to reflect hidher logical model of program structure. 
Users seemed to immediately understand the tree-like representation, and they commented favorably on 
the ability to observe the program state in terms of familiar program names and relationships. We 
ultimately dropped the project, however, because users did not favor having to learn a graph editing tool 
simply as a preparatory step for what they really wanted to see: information on the program's dynamic 
behavior. Furthermore, the PPT representation relied on colored lines to portray the activity of each 
process, a technique which did not scale well beyond sixteen processes. 

LCB project personnel also reviewed a variety of other tools to observe existing methods of 
representing dynamic structure. Summarized in [19], these were found to consist largely of stack 
tracebacks that employed precisely the type of cryptic hexadecimal notations users had complained about. 
After discussing the possibilities informally among the working group, it was decided to prepare an initial 
"paper prototype" that was based on the PPT, but attempted to overcome its problems with scalability and 
the user effort required to define the structure. 

The pre-prototype design, drafted at Oregon State, was presented publicly at the Paraliel 
Tools Consortium General Meeting in June of 1994. A breakout session devoted to LCB was attended 
by some 30 persons, most of them representing the user community. First, we went over the user 
requirements on which the project was based. In response to issues raised by some of the tool developers 
active in the working group, users were asked to verify that source routine name and line number were 
enough data to identify the location of a process. Users confirmed that they did not need to see 
information on data storage, argument values, loop counters, or anything else as they made a "first cut" 
at determining why the program had malfunctioned. They wanted to know the reason for failure and the 
reIative location of processes, but nothing more. 

Users were then asked to look at pictures of the prototype design, discuss what the representation 
conveyed to them, what types of operations they would expect to carry out, what changes would make 
the information more obvious to them, and so forth. The first reaction was startling in its simplicity: in 
many cases of program failure, there's really no need for anything as complex as a graphical display. 
Users were firm in stating that for many errors, simply knowing the location where the culprit process 
faulted is sufficient for them to correct the problem. This idea had not occurred to any of us on the 
working group, but it clearly had profound implications for ease-of-use and throughput. 

Further discussion elicited the fact that it was imperative we provide a text-based, command-line 
version of the tool in addition to a graphical version. There were several reasons for this. First was the 
consideration of efficiency and simplicity; why spend the time bringing up a graphical tool, when a 
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command-line tool could return a small amount of key data in just a fraction of that time? Second, in 
some situations -- such as dial-up access from home or a hotel -- graphics capabilities are simply not 
available, but a command-line is. Finally, it was pointed out that many users simply do not like graphical 
tools, and if we insisted on graphics we would lose that potential audience. 

The call graph display was generally received with favor, but users questioned the ability of a 
display labeled with textual routine names to scale up to hundreds of nodes. They suggested that we also 
provide some sort of zoomed-out version that would make it possible to capture the entire calling structure 
(or most of it) within the visible portion of the window. It should be possible to zoom in and out quickly, 
though, so that the user could examine details, check the general surroundings, then look at another 
detailed area. Another suggestion was that we make the overview graph the initial display as the tool was 
first invoked. Our initial design specified that the culprit display (showing the calling sequence for the 
routine where failure occurred) be the default, assuming that the user was most concerned with this 
information. The reasoning was that user want to see the overall state of the whole program when the 
tool comes up, not just the small portion of state attributable to the culprit process. Also, a culprit need 
not be present; in such cases, it only makes sense to show the overview. 

We also used the opportunity to informally canvas users on issues that have impact on the design 
of other displays. The terms (notably "culprit process", "reason for failure", "call graph", and "lightweight 
corefile") did not appear to present any problems of ambiguity or obscurity. In fact, users were much less 
concerned than the developers about one issue.. On different systems, the "culprit" might be known as a 
node, a processor, a process, a task, a thread, or some combination thereof. Where we felt it would be 
confusing for different incarnations of the tool to show "0:O" (for node/process ID), "34657" (task ID), 
"1534 t l "  (process/task ID), etc., users were indifferent because they (a) typically use just one system at 
a time, and (b) are already used to its method of representing execution. The use of color-coded "buckets" 
to represent relative level of activity in each routine (e.g., one color for routines where 1-4 processors are 
active, another for 5-10) also turned out to be less complex that we had anticipated; users commented that 
an approximate notion of relative activity was more than sufficient, and they understood that they would 
be able to see the exact count on demand. 

All in all, the session was useful on several counts. First, it confirmed that we had correctly 
interpreted user requirements for the tool, in terms of what kind of information it should present. It 
underscored the importance of presenting data at more than one level of detail (call graph vs. overview). 
It also revealed that our notions of default/principal views was not necessarily that of our users. It 
eliminated work that we had expected to be difficult (e.g., ways to normalize variations in the ways that 
process- IDS are represented, chromographic display of precise count on process activity). Finally, we 
walked away knowing that we were on track, and understanding what our next steps should be. We had 
also managed to enlist promises of support from several of the user organizations, who joined the working 
group. The next two months were spent implementing the command-line version and a prototype of the 
graphical version, incorporating all of the recommendations from the first round of interactions with users. 
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Prototypes of the command-line and graphical interfaces were tested at the National Center 
for Atmospheric Research in August of 1994. The availability of a prototype with which users could 
interact, but which was still easy to modify, proved to be of inestimable value. We prepared users' for 
the trials by explaining that the tool was intended to be invoked after a program had crashed or been 
terminated explicitly by the programmer, and that the act of terminating the program had "resulted in a 
minimal-sized corefile, which must be named as input file on the command line." Each user was then 
asked to apply the tool to determine where and why the program had crashed, verbalizing what he/she 
thought was going on (a procedure known as protocol analysis [6]) .  We observed their interaction, took 
notes, and questioned them only for purposes of clarification. 

Other than a few simple suggestions about format, the users were satisfied with the command-line 
version. In fact, virtually all of them made a point of complimenting us on providing this simple, fast 
procedure for obtaining the most rudimentary information. One tester confessed that he would probably 
use the command-line version in preference to the graphical one, even if the latter could give him more 
information. 

For the graphical version, the first reaction was to the layout of the call graph itself. For both the 
overview and call graph displays, we had opted to display the tree horizontally (i.e., with the root, or main 
procedure of the program, at the left-hand side of the window). Users liked the ability to change the 
orientation back and forth from horizontal to vertical, but they uniformly recommended that we make 
vertical layout the default because it offered a more intuitive reflection of a call graph ("that's the way 
we draw it"). 

One issue that had preoccupied us during the prototype implementation was the fact that a given 
program routine might occur multiple times in the graph. Although we collapse call chains containing 
precisely the same sequence of routines (or common prefixes), a routine that has been invoked from two 
different locations will appear as two nodes. This was a reflection of the graph display software, which 
requires acyclic graphs. We were particularly concerned with the possibility of deeply nested recursions, 
which would result in long repeated strings of nodes -- as opposed to, say, a node with an arrow indicating 
a cycle. The response of the users was surprising. First, they simply assumed that routines would be 
repeated and did not necessarily understand that there was any alternative for this. Second, when they 
comprehended how this point would effect the representation of recursive invocations, they stated that they 
actually preferred to see a long chain (even if it were 50 nodes long!) because that visually reinforced the 
idea that the routine had deep recursion (which was likely to be an error). 

Users also commented favorably on the fact that the cursor changed shape whenever it entered 
a window (the overview, culprit view, and call graph view) where things could be selected. All of them 

' These included several "meta-users" (former users who now help other users enable their 
applications) from NCAR, as well as one user from an industrial site. 
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noticed the fact that the message area instructed them to click on a node for more information. They liked 
this mechanism for indicating that additional operations were possible. 

Another feature they commented on was the fact that the message area presented them with "hints" 
about the node the cursor was positioned over. In the overview, for example, the message indicated 
precisely how many processes were active in that routine. In the culprit view, the message changes to 
indicate the line number where the corresponding procedure call occurred. Users seemed to have no 
trouble at all interpreting the purpose or the meaning, and they liked the context-sensitive nature of the 
messages. 

Interestingly, they objected most vocally to some of the Motif-conforming aspects of the prototype. 
For example, they found the quit-confirmation dialog to be extremely annoying. In general, they objected 
to any time that Motif policies dictated the addition of an extra dialog or keystroke. 

As on the previous occasion, we took advantage of the opportunity to query users about planned 
additions to the prototype. We had developed a skeletal window for the routine-search capability, but had 
not yet implemented the feature. Users were asked what they thought would happen when the tool 
searched for the occurrence of a name, and they clearly agreed that this would cause the display to warp 
to the next node corresponding to that routine. They also confirmed our idea that the search should be 
circular (Le., when the last occurrence is found, search cycles back to the first occurrence). 

We specifically requested user input on the list sorting algorithms. For the routine search dialog, 
they confirmed that the routine name list should be ordered alphabetically, with file names visible only 
when absolutely necessary to disambiguate source routines with shared names. We also questioned the 
order that would be most appropriate for the popup windows, associated with each node, listing the IDS 
of each active process and the line number at which it halted. Recognizing the fact that the process IDS 
themselves were arbitrary in the sense that the programmer cannot control them, we had intended to list 
the entries in numerical order by line number, so that scrolling through the list would reflect scrolling 
through source locations. Users suggested a significant modification: entries should appear grouped by 
line number, in descending order of frequency (i.e., most active locations first). However, they imposed 
the exception that if the culprit were active in this routine, that item should appear first, regardless of how 
many other locations were more active. This was an unanticipated strategy, but it reflected an interesting 
logic similar to that shown by the users in navigating through the displays. They seem to prefer to look 
at the most active locations first, then proceed to those of lesser activity. 

Finally, we asked users under what circumstances they would want to be able to switch to another 
None of them felt this was a lightweight corefile during a single session with the browser tool. 

worthwhile feature. 
It was particularly gratifying to hear several users state that they were amazed to find that we had 

managed to keep the tool really simple -- and that although they were not normally tool users, they 
thought they would find this one useful. As in the early case, we applied the feedback from the trials to 
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streamline the design, then completed the prototype and began refining it into an alpha release for 
distribution to other user sites. 

Alpha versions of the tool were tested at Supercomputing '94, Intel, Meiko, Livermore 
National Laboratory, and San Diego Supercomputing Center in October-November of 1994. The 
alpha trials essentially reaffirmed the design decisions. Users of a variety of experience levels all 
interacted easily with the tool, with little or no guidance. In fact, they were able to suggest some 
strategies for extending LCB's usefulness. 

One suggestion was that we allow the color "buckets" to vary according to user needs. Our 
reaction was to over-complicate what users were asking for. We interpreted their request as meaning that 
they wanted some interactive feature for setting the number of buckets and the bounds for each. After 
more discussion, however, we found that they did not want nearly that much flexibility, and they became 
worried we might make the tool too complex by adding "bells and whistles". Since the user knows how 
many processes were involved in the execution, and since this is likely to be a similar quantity for 
successive program executions, all they really need is a static way of indicating in advance the bucket 
bounds. A simple resource setting would suffice to indicate, for example, that instead of assigning buckets 
to 1-25, 26-50, 51-75, and 76-100 processes, the user would rather see 1-4, 5-10, 11-20, and 21-100. 

At this stage, it also became apparent that we had under-estimated some of the possible 
applications for the call graph representation. John May of LLNL hooked LCB into the Totalview 
interactive debugger, as an alternative way of showing program state at any arbitrary break in program 
execution. Although there is no "culprit" in this case, the features for observing relative degree of activity 
or navigating through the call graph are certainly applicable. Since his initial effort, several of the 
industrial members of Ptools have expressed interest in using the LCB visualization for situations calling 
for displays of global program state. This has resulted in a new requirement that is currently being 
implemented: addition of redrawing capabilities so that the visual representation can be changed (in 
response to updated state information) without the user having to dismiss the window and re-invoke it. 

Conclusions 

There is no doubt that LCB, as it exists today, is dramatically different from the initial design 
conception. Most of the ideas for change were suggested by users, and have been reaffirmed in later trials 
with other users. In some cases, user input kept us from investing substantial effort in features that would 
not have been used or appreciated. In others, feedback showed us where our conceptions of usefulness 
did not quite align with those of the user community. 

Of the lessons we learned, the most important is that tool developers should take it very seriously 
when users ask for simple support. Since developers since a more flexible, more complex system, we tend 
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to be ready to interpret requests as complicated, when in fact they are for very crude or rudimentary 
information. Simplicity offers a widwin situation: easier for users to learn and apply, and easier for 
developers to implement. Tool designers must be careful not to let opportunities for simplicity escape our 
notice. 

Second, it is important to involve users from the very outset of tool design. If the developer can 
furnish them with realistic estimates of the level of effort required to implement certain types of features, 
users can be quite adept at prioritizing their needs. Even more important, they can furnish specifics on 
exactly what and how much information they require to perform the target tasks. This allows the 
developer to focus on how to make key information available, rather than on discovering what information 
might be key. 

I -  

~ 

I Third, no decision whatsoever should be considered final until users have reaffirmed its importance 
l and appropriateness. If user feedback is contradictory, either the population sampled has been too small 

or a new solution needs to be devised that incorporates features from the opposing parties. Developing 
and showing multiple iterations of tools to the users is positive in several ways -- not the least of which 
is that it reinforces their contribution and is the best way to motivate continued user involvement. What 

l 

I 

, 
I 
I 

users don't appreciate is telling a developer that something is very hard to use, then seeing that feature 

I remain unchanged. 
~ Last but not least, developers should be careful to question themselves at every step. Is this 

feature really wanted by the users, or am I getting carried away? So-called "bells and whistles" will turn 
away testers as well as the end users. Hugh Caffey of BioNumerik Pharmaceuticals expressed it 

succinctly: 
Have you ever heard a user complain because a tool is too simple? 
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