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framework for low-level and interr5ediate-level (feature) processing. In this paper, we present 
a new form of wavelet extrema representation generalizing Mallat’s original work. The 
generalized wavelet extrema representation is a feature-based multiscale representation. For 
a particular choice of wavelet, our scheme can be interpreted as representing a signal or image 
by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be 
stable-the original signal or image can be reconstructed with very good quality. It is further 
shown that a signal or image can be modeled as piecewise monotonic, with all turning points 
between monotonic segments given by the wavelet extrema. A new projection operator is 
introduced to enforce piecewise monotonicity of a signal in its reconstruction. This leads to 
an enhancement to  previously developed algorithms in preventing artifacts in reconstructed 
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Abstract: The wavelet extrema representation originated by St6phane Mallat is a unique 
framework for low-level and intermediate-level (feature) processing. In this paper, we present 
a new form of wavelet extrema representation generalizing Mallat’s original work. The 
generalized wavelet extrema representation is a feature-based multiscale representation. For 
a particular choice of wavelet, our scheme can be interpreted as  representing a signal or image 
by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be 
stable-the original signal or image can be reconstructed with very good quality. It is further 
shown that a signal or image can be modeled as piecewise monotonic, with all turning points 
between monotonic segments given by the wavelet extrema. A new projection operator is 
introduced to enforce piecewise monotonicity of a signal in its reconstruction. This leads to 
an enhancement to  previously developed ‘algorithms in preventing artifacts in reconstructed 
signal. 
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Summary 

1. What is the original contribution of this work? 

The original contribution of our work is: (1) given a new form of signal representation 
using the local extrema of a wavelet transform, and given the representation a perceptual 
interpretation; (2) conceptualized modeling of a signal as piecewise monotonic, described an 
algorithm enforcing piecewise monotonicity, and used the concept and algorithm to improve 
the performance of signal reconstruction from the wavelet extrema. 

2. Why should this contribution be considered important? 

Edges, and peaks and valleys are important features in visual perception. Our scheme 
of signal representation in 2-D suggests essentially that these features, when observed at 
multiple scales, form a stable and accurate representation. We have a virtually reversible 
intermediate-level representation. This result is important to the understanding of the mech- 
anism of image representation in biological vision, and the design of machine vision systems. 
The concept of modeling a signal or image as piecewise monotonic and the algorithm to en- 
force piecewise monotonicity are also important; their applications can go beyond the scope 
of wavelet extrema representation to  solve problems such as image restoration and surface 
reconstruction. 

3. What i s  the most closely related work by  others and how does this work differ? 

As suggested in the title, this work is a generalization to some previous one by others, 
particularly the work by Stdphane MallatIl?]. Overall, our work is complementary to the 
existing one, offering an alternative with new interpretations and improved performance. 
Nevertheless, the use of piecewise monotonicity as a constraint to reconstruction is completely 
new. We have provided a rigorous way to prevent artifacts resulting from spurious wavelet 
extrema in the reconstructed signal. 

4. How can other researchers make .use of the results o f th i s  work? 

The wavelet extrema representation provides a framework €or signal and image processing, 
and pattern analysis. Previous work based on this framework included image coding, denois- 
ing, contrast enhancement, stereo matching, edge and pattern classifications, and transient 
detection and removal. The continuing development of these applications and new ones will 
benefit from our improved framework of wavelet extrema representation. The perceptual 
interpretation we give to the wavelet extrema representation is a!so of interest t o  researchers 
who study biological vision. 

This work has not been previously presented at or submitted to other conferences, work- 
shops, or journals. 



1 Introduction 
The wavelet extrema representation originated by Stbphane Mallat is a new framework for 
image analysis and processing. It is an intermediate-level representation built on a wavelet 
transform of an image: only local extrema of the wavelet transform, or wavelet eztrema for 
short, are kept to form a representation set. Depending on the wavelet used, the wavelet 
extrema often have some physical and perceptual meanings such as “edges” or “ridges” of 
the image. 

Mallat and his colleagues have studied particularly the wavelet maxima representation[l7] , 
a special form of the wavelet extrema representation. Their work was motivated by Marr’s 
conjecture that the edges at multiple scales may form a complete representation of an 
image[l9]. By using a wavelet similar to the derivative of a Gaussian, Mallat and Zhong[l7] 
showed that a signal or image can be represented effectively and efficiently by the wavelet 
maxima. They called it the multiscule edge representation. Meyer{20] showed that the 
multiscale edge representation is not complete in mathematical sense. However, signals and 
images reconstructed from their multiscale edges are often visually indistinguishable from the 
originals, making the multiscale edge representation, or more generally the wavelet extrema 
representation, a practical framework for signal and image analysis and processing. 

It is notable that one can reconstruct the low-level sample representation of an image 
from its wavelet extrema without significant loss of information. This makes the wavelet ex- 
trema representation different from many other intermediate-level (feature) representations 
which cannot run reversely. Indeed, the traditional process of obtaining an intermediate-level 
representation is often a bottom-up abstraction; one cannot go back to the raw samples from 
the extracted features. A particular virtue of a reversible wavelet extrema representation 
is that in addition to  the bottom-up feature extraction and analysis, one can process the 
original image by manipulating its wavelet extrema. As such, a wavelet extrema represen- 
tation is a suitable framework for both low- and intermediate-level processing. Even better, 
such a framework makes it possible to  combine low- and intermediate-level processing, with 
each benefiting from one another. Additionally, the use of wavelets enables one to extract, 
analyze, and manipulate these features at multiple scales with a computationally efficient 
wavelet transform. To date, the wavelet extrema representation has been successfully used in 
low- and intermediate-level signal and image processing. These applications include image 
coding[l8, lo], denoising[l6, 13, 111, contrast enhancement[l2], edge classification[16, 231, 
shape description[21], and transient detection and removal[4]. 

In this paper, we present a new form of the wavelet extrema representation generalizing 
Mallat’s original work. The generalized wavelet extrema representation is a feature-based 
multiscale representation. The “features” can have different physical and perceptual mean- 
ings depending on the choice of wavelet. We designed an algorithm for reconstructing a signal 
or image from the generalized wavelet extrema representation. The algorithm, based on the 
previous work developed by others, offers an improvement on the quality of reconstruction. 
In particular, our algorithm incorporates a new projection operator that provides a rigorous 
solution to the problems of inconsistency and artifacts caused by spurious wavelet extrema. 

In the presentation to follow, we will first introduce in Section 2 the basic concepts of 
wavelet extrema, and the wavelet extrema representation developed by Mallat. Some related 
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work by others on the reconstruction problem is also reviewed. In Section 3, we present our 
generalized form of wavelet extrema representation. We give some intuitive ideas motivating 
and interpreting such representation, and introduce a new way for modeling and enforcing 
data consistency with the wavelet extrema. This leads to a refined reconstruction algorithm. 
Experimental results are presented in Section 4; we demonstrate the generalized wavelet 
representation with a test 1-D signal and a 2-D image. The quality of the reconstruction is 
evaluated. Finally, Section 5 concludes our presentation. 

2 Wavelet Transform, Wavelet Extrema, and Associ- 
at ed Represent at ions 

In this section, we review the basics of wavelet transform, wavelet extrema and the associated 
representations. Because all the representations for 2-D images are generalized from those 
for 1-D signals, we will go through 1-D representations in sufficient detail. Our review is 
selective, however, with a purpose to provide a ground for the presentation in the following 
sections. References axe provided for readers who are interested in a more comprehensive 
investigation of related work. 

2.1 Finite-Scale Wavelet Transform Representation 

Let +(x) E L2(R) be an admissible dyadic wavelet and 4 ( x )  E L2(R) be a scaling function 
associated with $[20]. The dilatien of $ and 4 by s = {2i)jEz is defined as 

It is well-known that {$$ (x)}jE:z have the characteristics of bandpass filters and {g!+j (x)}jEz 
of lowpass filters. The approximations to a 1-D signal f(x) by $* and 4s are given by 

and 

where "*" denotes convolution operation. In practice, the observation of any signal is limited 
between a nonzero small (fine) scale and a finitely large (coarse) scale. Without loss of 
generality, the smallest scale can be normalized to 1; the largest scale is 25 where J is 
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determined by the size of the observation. A wavelet transform representation of f(z) on 
the finite range of scales, 1 < s < Z5, is given by 

where W is a dyadic wavelet transform operator. Q. (3) is interpreted as a multiresolution 
representation. The information lost in smoothing S23-1f(x) to Sv.f(x) is stored in Wpf(z), 
called the “detail signal”j141. The original signal f(z) can be recovered by an inverse wavelet 
transform operation W-l[14]. The W-l starts with S,~f(z) at scale 2’ and adds details 
W - f ( z )  recursively at each, increasingly finer scale. 

In two dimensions, oriented wavelets can be used to generate the wavelet transform 
representation[l5]. We are particularly interested in constructing a representation using 
two perpendicularly oriented wavelets ql[z, y), q2(z, y), and the associated scaling function 
4 ( x ,  y). To simplify the discussion, we express the two perpendicularly oriented wavelets in 
a vector form, &x,y) = [$‘(x,~),$~(z,y)]~. The dilation of the 2-D wavelet and scaling 
function are defined in a similar way to 1-D: 

and 

For an image f ( z , y )  f L2(R2), its bandpass approximations by the oriented wavelets, and 
lowpass approximation by the scaling function at scale 2j are defined by 

and 

Sv.f(., Y) = f * 4zi (5, Y). ( 5 )  

< 2’, is given A wavelet transform representation of f ( x 7  y) on a finite range of scales, 1 < 
bY 

We refer readers to  [?, 14, 15, 201 for an extensive coverage of wavelet theory and details of 
computing wavelet transforms. 
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2.2 Wavelet Extrema Represent at ion 

A wavelet extrema representation of a signal or image is built upon the wavelet transform. 
We first consider a 1-D signal in its wavelet transform representation (3). Let A9 be the set 
of the wavelet extrema at scale 2j: 

Azi [f(x)] = {[xi, W9f(cci)] : I W s f ( z )  has local extrema at x = X i } .  

- Then the collection 

(7) 

is called a wavelet extrema representation of f(z). Note that the representation set includes 
wavelet extrema at all scales plus the lowpass approximation of f(z) at the coarsest scale, 
25. ---+ 

In two dimensions, we first define the length and angle of W*f(z,y) by 

and 

The set of 2-D extrema at scale2j is 

Finally, the wavelet extrema representation of image f(x, y) is given by 

A special form of the wavelet extrema representation, called the wavelet mazima repre- 
sentation, has been studied extensively by Mallat and his colleagues[l7,16], and others[l, 201. 
Many applications have also been developed based on the wavelet maxima representation 
[16, 10, 13, 121. The representation set in a waselet maxima representation is a subset of the 
wavelet extrema set defined by (7) or (11): only local maxima of I W ~ ~ ( X ) I  or IW>(x,y)l 
are used. Mallat and Zhong designed a special family of wavelets such that 

in 1-D and 
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in 2-D. It can be shown that with these wavelets, the wavelet transform defined by (I) or 
(4) generates “multiscale gradients”fll1. Then, the wavelet maxima are the local maxima 
of the multiscale gradients along the gradient angle. The local maxima of gradients are the 
points of sharp variations in signal or image intensity; they are “edge points”. Indeed, if 
4(x) is a Gaussian, the process of obtaining the wavelet maxima is similar to  applying the 
Canny edge detector[2] at dyadic scales. This is why the wavelet maxima representation is 
also called the “multiscale edge representation” [17]. 

Although the wavelet maxima are sufficient to characterize a signal, it adds no burden 
to adopt the superset-the wavelet extrema. There are additional advantages to work with 
the extrema instead of only the maxima. In the rest of the paper, we shall address mainly 
the wavelet extrema representation. Most algorithms associated with the wavelet extrema 
representation can be used with the wavelet maxima representation with a little modification. 

2.3 Signal Reconstruction from Wavelet Extrema 

A fundamental issue in the development of the wavelet extrema representation is the accurate 
and stable reconstruction of a signal from its wavelet extrema representation (8) or (12). 
This reconstruction process can be broken down into two steps: First, the wavelet transform 
representation of the signal is reeonstructed from the wavelet extrema representation; then 
an inverse wavelet transform iscomputed. The key to the reconstruction is in the first step. 
Note that the lowpass part, S2J f, of the wavelet transform representation is retained in the 
wavelet extrema representation. Therefore, we need to reconstruct only the highpass part 
of the wavelet transform. In the l-D case, this amounts to finding a sequence of functions 
{gj(x)}lIj<J. - Then the reconstructed wavelet transform representation can be written as 

Q de’ ( ( g j ( z ) ) l g < J ,  s,Jf(z))- 

Generally speaking, two constraints can be imposed on the reconstruction. The first of 
these states that since R is a wavelet transform representation, it must be in the range space 
of the wavelet transform for a particular choide of wavelet. The second constraint imposes 
that (gj(z)}l<j<J in 51 has exactly the same extrema as A s  [f(z)llgj<J in (8). For the ease of 
cornputation,the second constraint is often further decomposed into iwo sub-constraints such 
that one imposes that (gj(z))l<j<J _ _  pass all points in A9[ f ( z ) l l< j<~  and the other requires 
these points to be the extrema, and the only extrema of (gj(z>>L<j,~. Mathematically, a 
constraint may be used to define a set consisting of all functions satisfying the constraint. 
Thus we have up to  three sets: 

V :  the range space of the wavelet transform, containing all sequences of functions {~j(z)}~<j<~ _ _  
such that vj(zc) satisfies the reproducing kernel equation for the chosen wavelet 1171; 
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I?: the set of all sequences of functions {hj(x)}lG<J - satisfying 

V(%, Wv.f(xci)) E A,.[f(x)l135J, hj(Xi) = w - 4 ( z i ) ;  (13) 

2: the set of all sequences of functions {zj(x)}l<j<J _ _  such that 

Vxi E A,. [ ~ ( Z ) ] ~ ~ ~ ~ J ,  zj(x) has local extrema at and only at x = xi. (14) 

An admissible solution {gj(x))13<J to the reconstruction problem must lie in the in- 
tersection of V ,  I?, and 2. A common way to compute the intersection of multiple sets 
is to  project alternately onto these sets. The convergence of this alternating projection is 
guaranteed if all sets are convex and closed[24]. It can be shown that both V and l? are 
closed convex sets; 2 is convex if A,.ff(x)I1g<~ - is the extrema set and nonconvex if it is 
the maxima set. 

Denote by Pv,  Pr, and P, the orthogonal projection operators to  V ,  I?, and 2, re- 
spectively. It has been shown[6] that for properly chosen synthesis wavelets, P, can be 
conveniently built as a composition of the inverse and forward wavelet transform operators, 
i.e., 

./ 

Pv=wow-? (15) 

For a sequence of functions {gj(x)}l<j<J, the orthogonal projection to set I? or 2 amounts 
to finding in I? or 2 the nearest poi& to {gj(x)}l<j<J. - -  Therefore, Pr and P, can be 
implemented as solving some minjmization problems. More specifically, in implementing 'P,, 
we solve 

where Oj(,t) is a cost functional that must be defined. In 1171, Mallat and Zhong defined a 
cost functional as 

Then, hj(x) in (16) is obtained by solving piecewisely Euler equations with boundaries 
defined by the wavelet extrema[l7, 251. In [6], CvetkoviC and Vetterli used a least-squares 
cost functional 

(18) 

Computation of hj(x) is extremely simple with Oj defined by (18): one simply modifies gj(x) 
by replacing gj(xi) with the value of the wavelet extrema in A,.[f(z)]. 

The set 2 has not been studied extensively and the implementation of P, is often ad 
hoc. This is probably because that 2 is difficult to analyze and that applying Pv and Pr 
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alone seems to  produce very good reconstruction results. Carmona[3] showed the equivalence 
between alternating projections by Pv and P, and the solution of an optimization problem, 
resulting in a noniterative reconstruction algorithm. The use of P, is for removing spurious 
extrema created in the process of projecting to  V and I’. For example, Mallat and Zhong used 
clipping to  remove spurious extrema/maxima[l7] in the reconstructed sequence (gj(x)}lGj_<J 
after each iteration of projections onto V and r. The clipping turns (gj(x)}l<j<J - _  into a new 
sequence belonging to 2. However, this new sequence is not necessarily the closest one 
to (gj(x)}lGi<J in 2. Cvetkovib and Vetterli[G] used neighborhood averaging to  remove 
spurious extrema. These authors did not consider the case that neighborhood averaging 
creates new, clustered extrema, therefore, their scheme cannot always transform (gj ( x ) } 1 9 < ~  - 
into a sequence in 2. We shall further study 2 and P, in the next section. 

In two dimensions, the three constraints and the asscoiated sets can be similarly defined. 
If we use the same notations as in 1-D, the P, in 2-D has exactly the same form as in (15). 
The implementation of P, in 2-D depends on the choice of the cost functional Oj. If (18) 
is chosen, we can use a straightforward generalization from 1-D implementation. If (17) is 
chosen, P, can be implemented by minimizing (16) along x for W&f(x,y), and along y for 
W$f(x,y). Thus we have two separate 1-D minimization problems. The Pz is often not 
considered in 2-D[ 171. 

3 Generalized Wavelet Extrema Representation 

We want to have a feature based representation where features are a sparse set of data 
extracted from the ‘%aw data” and have some physical and perceptual meanings. The set 
of wavelet extrema at some scale Zj, A9[If], is certainly a feature set. But the lowpass 
approximation of f at scale 2J, S p  f, is not a feature set because it retains every sample. 
This side information is included in the wavelet extrema representations (8) and (12) because 
they are finite-scale representation. Indeed, if J can go infinitely large, S2~If will vanishFl41, 
and (8) and (12) will contain only the wavelet extrema. In this section, we will show that it is 
possible to  replace S2= f with some other features extracted from the wavelet transform and 
arrive at an all-feature representation on a finite range of scales, called a generalized wavelet 
extrema representation (GIVER). Furthermore, we will provide a model for functions in set 
2, and the associated projection operator P,. Finally, a new reconstruction algorithm for 
GWER using P,, P,, and P, is presented. 

3.1 Generalized Wavelet Extrema and GWER 

We would like to extract some other features from the wavelet transform to replace the low- 
pass part S2J f in the wavelet extrema representation. These features should be informative, 
revealing some important characteristics of the signal; they should be restraining, providing 
sufficient constraint as Sp f does to  the reconstruction; they should have reasonable require- 
ment for data storage, preferably on the same order as that for S , J ~ .  IVe are led to  consider 
the local extrema of S s f  for 1 5 j 5 J .  
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Let us recall that S,f is the lowpass approximation of f  by 4g, and W g f  is the detail 
of the signal lost in smoothing from S9-1f to S, f. Thus S,f and W,-f are complementary 
to each other in representing and recovering 5’9-lf. The local extrema of Sgf, like those of 
W,-f, are important features characterizing f. In the 1-D case, the local extrema of S g f  are 
located between two consecutive extrema of opposite signs of W9f. If we have +(x) = %(XI, 
the locations of local extrema in Ss f are zero-crossing points in W,- f between two consecu- 
tive local extrema of opposite signs. In the 2-D case, the local extrema of Ss f are the locally 
lightest and darkest points in the image. These points are important in shading analysis and 
help characterize the shape of the image surface. Because the local extrema of S9f contain 
important information about f ,  they provide an additional constraint supplementary to that 
imposed by the local extrema of W g f  for the reconstruction. . 

We illustrate the complementary nature of the local extrema of S p j  and W,-f by an  
image f (z ,y)  in Figure 1. In this example we use the local maxima representation. Recall 
that the local maxima of Wgf(z,y) are defined by (11) as the local maxima of IWWvf(z,y)I 
along the direction of w v f ( x ,  y). In Figure 1, the local maxima of W=(z, y) and S9f(z, y) 
( j  = 1 for illustration) correspond to, respectively, the boundary and the highlight points 
of a ball. Obviously, these points are all perceptually very important in recognizing the 
shape and dimension of the object. We are hoping to be able to reconstruct the light 
intensity distribution of the ball from the information of the local maxima. If we have 
only the boundary information from the local maxima of Wgf(z,y), the reconstruction 
has tremendous uncertainty because too little information is available about shading in the 
interior. The uncertainty will be reduced considerably if we specify the highlight point in 
the interior by the local maxima of Szi f(x, y). 

c_) 

+ 

Let us define the set of local extrema of S g f ( z >  for a 1-D signal f(z) as 

B s [ f ( x ) ]  = {[xi, Ss f (x i ) ]  : I S g f ( x )  has local extrema at x = xi}. 

The collection 

is called the generalized wavelet extrema representation (GWER) of f ( x ) .  

B*[f(x,y)], the set of local extrema of S,-f(x,y) and the 2-D GIVER by 
The above definitions can be extended to 2-D in a straightforward way. We define 

and 

We note that Svf is readily available from the computation of the discrete wavelet 
transform (DIVT) using a recursive pyramid algorithrn[l?]. Therefore, compared to Mallat’s 
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wavelet extrema representation, the only additional computation required for the GWER is 
to  extract the local extrema in Su. f when the latter becomes available during the computa- 
tion of the DWT, 

3.2 Piecewise Monotonicity as a Model and Constraint 

We mentioned in $2.3 that the set 2 has not been well characterized and the implementation 
of P, is inadequate. In this section, we provide a general model for a signal of which the local 
extrema are known. This model rigorously characterizes set Z and defines a projection op- 
erator P,. Furthermore, there exists a highly efficient scheme for numerical implementation 

Let us now re-examize the set 2 defined by (14) in 52.3. The key to the establishment 
of a new model for 2 is t o  realize that any function z j (z)  in Z can be segmented in a way 
such that on each segment z j (z )  is monotonic. A point xi joining two consecutive monotonic 
segments is called a turing point of zj(x). Obviously, a turning point is where zj(x) attains 
a local extremum. Therefore, z j ( x )  can be viewed as consisting of piecewise monotonic 
segments; the turning points are the extremal points of zj(x). We have arrived at a new 
definition for set 2: 

of P,. 

2: the set of all sequences of functions { z ~ ( z ) } ~ G <  J such that zj(z)  is piecewise monotonic 
with turning points located at (xi} E AgIf(z3J. 

It can be shown that 2 is a_ convex set. The projection of an arbitrary sequence of 
functions (gj(z)} to 2 is to  fifid in 2 a closest approximation to { g j ( x ) } .  The projection 
operator PZ can be implemented as a constrained minimization solving 

min Oj(zj(x) - g j ( z ) )  for hj(z)  E Z, (23) ( ”  j=1 ) 
where the cost functional Qj(f) can be defined by either (17) or (18). Note that this min- 
imization problem can be divided into separate, independent minimization of Oj over each 
monotonic segment of z j ( x ) .  Therefore, for two consecutive extremal points xi and zi+l, we 
minimize Qj subject to  the constraint that zj(x) is monotonic on interval [ ~ ~ , x ~ + ~ ] .  We do 
the same type of minimization for every monotonic segment defined by the extremal points 
in A*{f(z)]. The extremal values at xi and xi+l will determine if zj(z) is monotonically 
increasing or decreasing on a particular segment. 

It turns out that the key to implementing Pz is to compute minimum-error monotonic 
approximation to a function. This problem has been studied in depth by Powe11[22], Cullinan 
and Powell[5], Demetriou[8], and Demetriou and Powell[S]. These authors developed efficient 
algorithms for computing best discrete monotonic approximation under el, e2, and P‘ norms. 
The p-algorithm is particularly interesting to us. It can be directly used for numerical 
implementation of P, with the cost functional defined by (17) or (18). The algorithm has 
o(n) time complexity, where n is the number of points in a monotonic segment. 
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Demetriou and Powell’s algorithm can also be used in signal reconstruction from the 
wavelet maxima representation. In the case that two consecutive wavelet maxima at xi and 
xi+l have the same sign, there exist two monotonic segments that are divided by a non- 
zero local minimum in [zi,zi+l]. Demetriou and Powell’s algorithm can be used to obtain 
a piecewise monotonic approximation. The location of the local minimum in [xi, xi+1] is an 
independent variable in the least-squares minimization and will be optimally determined. 
We refer readers to  [9] for the implementation details of Demetriou and Powell’s algorithm. 

In two dimensions, the generalization of our method would imply modeling an image 
f (z, y) as consisting of piecewise monotonic surfaces. Unfortunately, the wavelet extrema do 
not segment IWdf(x:, y)I into piecewise monotonic surfaces. We take a suboptimal approach 
by applying the I-D Pz independently to W$f(x ,  y) along x and W$f(z, y) along y. 

+ 

3.3 Outline of Reconstruction Algorithm 

The reconstruction algorithm for recovering a signal from the GWER defined by (20) is 
a modification of the schemes described in $2.3. The set I’ now contains all sequences of 
functions defined by the generalized wavelet extrema, including the local extrema of both 

and (S~~(Z))~~~J. The projection to  set 2 by Pz described in $3.2 is also 
incorporated in the reconstruction process. We summarize the steps of our reconstruction 
algorithm €or obtaining an estimate p(z). 

Reconstruction Algorithm - 
1 Set initial values of (W;f(x)),<j<~ - -  and (Syf(x))l<j<~ _ _  to zero for all 5. 

2 For j from J decrementing to 1, do recursively: 

2.1 Apply Pr: Update WTf(z) and Syf(z) by computing (16) 

2.2 Apply P,: Update Wyf(x) and STf(z) by computing (23) 

2.3 Update S 2 z f ( x )  by computing a one-step inverse wavelet transform from W~f(z) 
h 

and Syf(x). 

At the end of Step 2, we obtain an estimate gf(x) = f^ (x ) .  

3 Apply wavelet transform (W) to f(x) to obtain an new estimate of (WTf(x))~sjs~ 
and (S;f(4)Kjg- 

4 Repeat Steps 2 and 3 for a number of iterations. The final estimate of f(z) is given at 
the end of Step 2 of the last iteration. 

The above algorithm can be directly used in two dimensions with slight modifications 
in Steps 2.1 and 2.2. In Step 2.1, we must use the cost functional Oj defined by (18). In 
Step 2.2, we compute (23) €or rows of W&f(x, y), columns of W$f(z, y), and both rows and 
columns of S,jf(x, y). 
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4 Experiments 

We have tested GWER with a large number of 1-D signals and 2-D images. We present 
two cases here. In both cases, we used a cubic spline wavelet. This wavelet is among a 
family of wavelet multiscale edge detectors designed by Mallat and Zhong[17]. Therefore, the 
generalized wavelet extrema can be interpreted as edges, and peaks and valleys at multiple 
scales. 

Figure 2 shows a 1-D test signal and a reconstruction of the signal from its GWER. The 
signal consists of different edge profiles (step, ramp, and exponential) embedded in Gaussian 
white noise. The number of samples is 256, therefore, the largest scale J = log,(256) = 
8. The GWER of the signal is shown in Figure 3. The reconstructed signal shown was 
obtained with 50 iterations, reaching a SNR of 33.9 dB. The dependency of the reconstruction 
performance on the number of iterations is shown in Figure 4. In general, 20 iterations seem 
to be sufficient for most applications. In Figure 4, we also compared the performance of 
reconstructions with and without using P,. We found the quality of reconstruction using 
P, is consistently better, by a margin of about 1.5 dB over that without using P,. This 
confirms the effectiveness of P,. 

Figure 5 is a 2-D case. The original image is a 128 x 128 x 8 Lenna. Its GWER is shown 
for J = 7 dyadic scales. Note that W*f is vector-valued, so are its local extrema. In Figure 
5, the magnitude of the local extrema of {W~f)l~<7 is shown on the first column, the angle 
on the second column. The local extrema of {S2if)llj5, are shown on the third column. A 
reconstructed image, obtained with 20 iterations and shown on the upper right, has a SNR 
of 29.0 dB. - 

Our results from other test’signals and images are consistent with the results shown 
here. These results suggests that the GWER is a stable representation; signals and images 
can be reconstructed from their GWER with sufficient quality for practical applications. In 
fact, the reconstructed signals and images are visually indistinguishable from the originals. 
We also observed that the number of wavelet extrema decreases rapidly as scale becomes 
coarse. This suggests that a GWER using fewer scales ( J  < log,(N)) may suffice in many 
applications. 

* 

+ 
__j 

5 Conclusion 
We have presented a new form of wavelet extrema representation for 1-D signals and 2-D 
images. We illustrate that the local extrema of S,j in a wavelet transform are important 
features and can be used to replace S,,f in the previously developed schemes of wavelet 
extrema representation. This leads to a generalized multiscale feature representation. For a 
particular choice of uTavelet, the GWER in 2-D has an interpretation of representing an image 
by its edges, and peaks and valleys at multiple scales. Our experimental results suggest that 
the GWER is a stable representation. The quality of signals and images reconstructed from 
their GWER is sufficiently good for practical applications; we have a virtually reversible 
intermediate-level (feature) representation. We also developed a new projection operator 
that has further enhanced the reconstruction quality. T h i s  work was performed under 
the auspices of the U.S.  Dept. of Energy at LLNL under Contract No. W-7405- 
Eng-48. 11 
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Figure 1: A synthetic image and its wavelet maxima at scale 2l. (a) An image of a ball; (b) 
the local maxima of W>, which are the edges of the-ball; only the magnitude of the local 
maxima is shown; (c) the local maxima of 521 f, which are the highlight points of the ball. 
Obviously, the local maxima of W~ f and S~ f are both important features in perception. 
The combination of them is a special form of our generalized wavelet extrema representation. 

+ 

Figure 2: Reconstruction of a 1-D signal from its GWER. (a) the original signal (256 sam- 
ples); (b) a reconstruction from the GWER with 50 iterations; S N R  = 33.9dB. The GWER 
of the signal is shown in Figure 3. 
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Figure 3: The GIVER of the signal in Figure 2(a). The local extrema of (Wv.f)lljlg and 
(S2if)ls<8 - are shown on left and right columns, respectively. 
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Figure 4: Reconstruction performance vs. number of iterations in the reconstruction of the 
signal in Figure 2. A comparison is made between reconstructions with and without using 
P Z  - 
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(Continued on next page) 

Figure 5: Representation and reconstruction of an image from its generalized wavelet ex- 
trema. The first image on the top row is the original, Lenna, 128 x 128 x 8; the second 
is a reconstruction from the GIVER which is shown by rows 2-8. The first column of the 

GWER shows the magnitude images of the local extrema of {IVpf)l<ji7; the second col- ~ 

umn shows the angle images; the third column shows the local extremaof (S$ f}lgs7. The 
reconstructed image, obtained with 20 iterations, has a SNR of 29.0 dB. 
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