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Abstract 

Boundary Element Methods (BEM) have been established as useful and 
powerful tools in a wide range of engineering applications, e.g. Brebbia et 
a1.l In this paper, we report a particular three dimensional implementation 
of a direct boundary integral equation (BIE) formulation and its applica- 
tion to numerical simulations of practical polymer processing operations. In 
particular, we will focus on the application of the present boundary element 
technology to simulate an inverse problem in plastics processing by extru- 
sion. The task is to design profile extrusion dies for plastics. The problem 
is highly non-linear due to material viscoelastic behaviours as well as un- 
known free surface conditions. As an example, the technique is shown to be 
effective in obtaining the die profiles corresponding to a square viscoelastic 
extrudate under different processing conditions. To further illustrate the 
capability of the method, examples of other non-trivial extrudate profiles 
and processing conditions are also given. 

1 Introduction 

Polymer extrusion is an important industrial technology with applications 
vary from consumer plastics products to rocket motors. The complex phe- 
nomenon of extrudate swell has kept die design and development largely 
an empirical and trial and error procedure2 with associated high costs. An 
analytical or numerical solution to the inverse problems, i.e., the design of 
extrusion dies for a given extrudate profile, is highly desirable in reducing 
the cost. However, as reviewed by Tran-Cong and Phan-Thien3, solutions 
to this problem are rare, partly because the extrudate shape is highly de- 



Figure 1: The die and extrudate shape for Wi = 0.24. The die consists of 
three portions. An uniform entry portion, a tapering transional portion and 
an uniform portion of the die near the exit, which is called the die length 1. 
In this case I = 1.4. 

pendent on the viscoelasticity of the melt.4 It appears that the pioneering 
numerical simulation of die design problem is one based on BEM5. The 
effects of viscoelasticity and relaxation methods on the convergence char- 
acteristics of BEM solutions have been discussed previ~usly.~ In this paper, 
we review the formulation and the implementation of the present BEM for 
the inverse die design problem for a viscoelastic fluid of the Oldroyd variety. 
The die design for a square extrudate is reported, with special emphasis on 
the effects of die geometry on the convergence characteristics of the method. 
We also report some results for a more complex profile extrudate. 

2 Governing equations 

The steady state, isothermal and creeping flow of incompressible viscoelastic 
fluids is considered. The momentum balance and continuity equations are 

V*a=0, (1) 

v * u = o ,  (2) 
where c is the total stress tensor and u is the velocity vector. 

In addition to the above field equations, the constitutive equation of the 
particular fluid is needed. This work is concerned with viscoelastic fluids 
with a single relaxation time of the Oldroyd variety where the stress tensor 



Figure 2: A short die problem. The uniform portion of the die near the exit 
is called the die length 1. In this case I = 0.14. 

can be written as 
u = -PI + 2qsD + T ,  (3) 

where p is the hydrostatic pressure which arises due to the incompresibility 
constraint (2), 1 is the unit tensor, vs is the solvent viscosity, D is the rate- 
of-strain tensor, r is the extra stress tensor which is governed by constitutive 
equations of the Maxwell type 

AT 
At X-+R=O, 

in which X is the relaxation time, R is model dependent, and 

AT d r  
At 
--- = dt + U-VT - L~ - T ~ T  

(4) 

t 5 )  

is the upper-convected derivative of the extra stress tensor, where L is the 
velocity gradient tensor and LT denotes its transpose. 

3 Integral equation formulation 

In the present method, Eq. (3) in conjunction with Eq. (4) is rewritten as 

u = -PI + 2qpD + E ,  (6 )  

where 2ypD represents a linear part of the stress tensor and .s the remaining. 
The linear part can be chosen arbitrarily, but a good choice would be either 



the solvent stress, or the total Newtonian stress (the extra stress in the limit 
of slow flow). Then the set of governing equations (l), (2) and (6) is recast 
in integral form, following Bush and Tanner,‘ 

cij(x>uj(x) = J u:j(x, y)tj(y)dr(y) - J,, t:j(x7 ~)uj(y)dr(y) 
8, 

where D is the open domain with connected bounding surface dD, x, y E D, 
uj(y) is the j-velocity component at y, tj(y) is the j-component of bound- 
ary traction at y, ~jk(y) is the jlc-component of s at y, u*.(x,y) is the 
i-component of velocity field at x due to a “Stokeslet” in j-direction at y 
and trj(x,y) is its associated traction. Cij(x) depends on local geometry, 
Cij(x) = S;j if x E D and Cjj(x) = $8, if x E dD and dD is a smooth 
surface. Details of u:~(x, y) and tij.(x, y) for three dimensional problems are 
given elsewhere (e.g., Tran-Cong and Phan-Thien7). 

‘3. 

4 Boundary Element solution of extrusion problems 

The application of equation (7) to solve a number of direct problems is 
described in detail previously by Tran-Cong and Phan-Thien778 where the 
corner traction resolution problem has been solved. Here the procedure is 
briefly recaptured and extended for the inverse problem. Essentially, the 
problem is solved numerically by decoupling the non-linear effects, which 
are treated as small perturbations in an otherwise linear solution. In this 
method, the last integral on the right hand side of Eq. (7), Le., 

is considered as a pseudo-body-force in a linear problem. Hence for a given 
stress field, Eq. (8) is evaluated and Equation (7) is discretised over the 
boundary dD to yield a system of linear algebraic equation of the form 

where { t } ,  {u} ,  {b} are the global nodal traction, velocity and body force 
vectors respectively. The unknown boundary tractions t and velocity u in 
Eq. (9) are rearranged and the system is solved by standard Gauss elimi- 
nation. Equation (7) is then reapplied to evaluate the velocity field in D. 
The last step in the iterative procedure is to compute the stress field and 
the whole procedure described above is repeated until a convergence (or the 
lack of) is obtained. A pseudo-time “marching?’ technique is employed to 
obtain the extra stress field. The constitutive Eq. (4) governing the extra 
stress is written as 



Figure 3: An orifice die with an entrance angle of 180" (Newtonian Fluid) 

Given an initial guess of the solution, the iterative procedure consists of 
the following steps: 

1. For a given stress field, Eq. (8) is evaluated, and Eq. (9) is assembled 
and solved for the unknown boundary tractions and velocities; 

2. The free surface is computed by a path-line method7 according to the 
boundary velocities obtained; 

3. The difference in the cross section of the extrudate found in step 
2 and the required one is then computed and all the pathlines are 
translated by the corresponding amount to make the final cross section 
of the extrudate the required and the die profile is modified 
correspondingly; 

4. Eq. (7) is reapplied to compute the velocity field in the domain D; 

5. The kinematics are kept constant while the stresses are marched using 
Eq. (10) according to a chosen scheme. In this study a first order Euler 
scheme is used, i.e., 

r" + At f", (11) 7n+l = 

where is the extra stress at  step (n  + l), r", f" is the extra stress 
and its partial time derivative given by Eq. (10) at step n, At is the 
pseudo-time step. n is increased until little change is observed (in this 
study, At = O.OlX,  where X is the relaxation time of the fluid, and the 



Figure 4: An orifice die with an entrance angle of 53" (Newtonian fluid) 

tolerance for the extra stresses is Other higher-order Runge- 
Kutta schemes, including some fully implicit schemes have been used,g 
yielding essentially 

A global convergence 

CM 

the same results, but with larger time steps. 

measure (CM) in the kinematics is defined by 

where u; is the i-velocity component at a node, N is the total number 
of nodes, n is the iteration number. The computation is stopped when the 
convergence measure is less than The above technique gives a solution 
to the problem with a given set of parameters and boundary conditions 
(viscosity, elasticity, processing speed . . . ). In order to obtain a solution 
for arbitrary set of parameters, it is necessary to have a reasonably close 
guess to avoid divergence. For example, to investigate the viscoelastic effect, 
which is the case in this paper, the Weissenberg number (fi'i, defined in a 
later section) is increased at small discrete steps such that the Newtonian 
solution can be used as the first guess for a solution corresponding to the 
smallest Wi. Subsequent solutions use the previous solution corresponding 
to the previously smaller Wi as the first guess at the beginning of the 
iterative cycle. 

5 Numerical results for a square viscoelastic extrudate 

5.1 Definition of a design problem 



We now consider an illustrative problem of designing a die to produce a 
square extrudate. Owing to symmetry, only one eighth of the flow do- 
main need be discretised. Then the discretised mesh contains a total of 
156 nodes and 38 boundary elements (8-node quadratic quadrilaterals and 
6-node quadratic trilaterals). The total die length is 5 and the extrudate 
length is 4. Figure 1 shows an isometric view of a final mesh. The experience 
with Newtonian profile extrusion’ suggests that a “taper” design is more 
appropriate. In this approach, the entry profile is chosen such that the best 
possible approximation to the velocity boundary condition can be found. 
The entire length of the die is obtained by blending the entry section with 
the required exit section. Thus only the transitional and the exit lip region 
are changing in the design process. The customary no slip boundary condi- 
tions at the wall and the traction free extrudate surface are assumed in all 
cases. The choice of Newtonian inlet velocity profile is justified a posteriorz’ 
when fully developed flow is observed at some distance downstream of the 
inlet. At the downstream section of the discretized flow domain, the plug 
flow condition is specified, i.e., zero traction in the flow direction and zero 
radial velocity components. 

5.2 A model viscoelatic material 

The method discussed above is implemented and tested for a square extru- 
date profile using a model viscoelastic material. In the following discussion, 
the characteristic length, a ,  is half the side of the die entry cross section; 
the characteristic speed, U ,  is the centreline (maximum) speed at the in- 
let; the characteristic time, A, is the constant relaxation time; qo is the zero 
shear rate viscosity; qm is the polymer contributed viscosity. For the MPTT 
model, R (in Eq. (4)) is given by10311J2 

R = gr + X((D7 + r D T )  - 2qrn(+)D, (13) 
where 

in which E ,  [, n are dimensionless parameters and r is a time constant. The 
dimensionless variables are given by 

I t  t x  t u  I r I rim t = -  x = - ,  u = -  7 =-  U t  7 7 = - ,  A ’  a U’  770 770 + 77s 
where t is time, x is the position vector, u is the velocity vector, r is the 
extra stress tensor and q is the viscosity. 

In this study, [ = 0 and n = 1 were chosen. Then the constitutive 
Eq. (4) is given in dimensionless form by (dropping the primes) 

- (2qD - 97) - Wi(u - V r  - L r  - r L T ) ,  (14) 
d r  
at 
-- 



Wi 
Wi,  
xj(%) 

xC(%) 

where g = 1 + E Wi tr(T), and Wi = XU/a is the Weissenberg number. 

5.3 Discussion of results 

0 0.05 0.10 0.15 0.2 0.22 0.24 0.245 
0 0.11 0.22 0.34 0.45 0.495 0.539 0.551 
-18.4 - 19.3 -21.0 -23.8 -27.6 -29.5 -30.4 -30.6 
$2.6 +1.9 $0.8 -1.3 -6.1 -7.6 -10.8 -11.7 

The only dimensionless parameter to be varied in this study is the Weis- 
senberg number, Wi, defined above. In this study the inlet velocity is kept 
constant and Wi is increased by increasing the relaxation time A. How- 
ever, if the Weissenberg number was based on a wall shear rate at a point 
far upstream, Wi, say, as is often the case reported in the literature, the 
computed wall shear rate +w = 4- at the mid-point of a flat face 
of the die at the inlet shows that Wi, M 2.25 Wi. Both Wi and Wi, are 
presented for comparison. Table 1 shows two representative measures of the 
final die profile for the indicated Wi number. Note that x's are defined as 
the percentage difference, in the radial direction, between the die and the 
extrudate geometry relative to the extrudate geometry (a positive value of 
x represents a swelling, and negative value, a shrinkage). Here is the 
maximum value of x measured at the middle of the flat face of the extrudate 
(always negative at all Weissenberg numbers), and xc is the minimum value 
of x measured at the corner of the extrudate (which can be positive at low 
Wi). On a DEC3000 M800, one iteration takes approximately 30 minutes 
and convergence at Wi = 0.22 requires about 40 iterations. 

5.4 Further examples 

To further demonstrate the capability of the present method, the problem 
of shortdie and orifice die is also attempted. It is found that short dies 
severely limit the range of achievable Wi numbers. The limiting Wi number 
decreases from 0.245 (die length I = 1.4, Figure 1) to 0.2 (I = 0.77) and 
0.01 (I = 0.14, Figure 2). 

Figures 3 and 4 depict the results of orifice die design for a Newtonian 
fluid with different entrance angles and a contraction ratio of 2 to 1. It is 
found that xf = -6.1%, xc = 1.3% for the entrance angle of 180", Xj = 
-9.6%) xc = -0.2% for the entrance angle of 53" and Xj = -10.2%, xc = 



Figure 5:  Die design for a complex extrudate profile. The hollow extrudate 
has an outer square profile and an inner circular profile. 

-0.2% for the entrance angle of 40". 
Finally, Figure 5 depicts a complex hollow Newtonian extrudate with 

a square outer profile and a circular inner profile. The simulation shows 
that drastic swelling has occurred. The die core takes an oval shape with 
swelling varying from -75.8% to -80.8% and the outer die wall experiences 
swelling of xj = -28.1% and xc = -10.1%. 

6 Concluding remarks 

A useful numerical tool based on BEM is developed to simulate plastics ex- 
trusion processes. Important trends in the extrudate behaviour are revealed 
as a result of simulations by BEM. It is demonstrated that die design for 
complex extrudate shape is achieved by the present technique. Trial and 
error die cutting process could be significantly minimised. Thus the die 
design and development cost could be significantly reduced. 
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