
l? U d f i  960 #)6 3 0- J 

PREPRINT 
UCRL-JC-123339 

Status of ParaDyn: DYNA3D for Parallel Computing 

G. L. Goudreau 
C G. Hoover 
A. J. DeGroot 
P. J. Raboin 

This paper was prepared for submittal to the 
Workshop on Recent Advances in Computational Structural Dynamics 

and High Performance Computing 
Vicksburg, Mississippi 

April 24-26,1996 

April 17,1996 

Thisisapreprintofapaperintendedforpublicationina journalorproceedinga Since 
changes may be made before publication, this preprint is made available with the 
understanding that it will not be cited or reproduced without the permission of the 
author. 



DISCLATMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United states Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
d i s d d ,  or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. "he views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the university of W o m b ,  and shall not be used for advertising 
or product endorsement purposes. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



Status of ParaDyn: DYNA3D for Parallel Computing 

Lawrence Livermore National Laboratory 
G. L. Goudreau, C. G. Hoover, A. J. De Groot, and P. J. Raboin, 

The evolution of DYNA3D from a vector supercomputer code into a parallel 
code is reviewed. Current status and target applications are suggested, 
especially those of interest to the Department of Defense. 

It was no coincidence that the development and success of the Livermore 
nonlinear solid and structural mechanics codes DYNA (Goudreau and 
Hallquist, 1982, Whirley, 1993) and NIKE (Maker et al, 1991) occurred during 
the rise and preeminence of the vector supercomputers epitomized by Cray 
Research, from the first Cray-1 installed here in 1976 through the current C-90 
megalith. The tremendous vector programming efficiencies achieved in a 
single processor by element chmking, (Goudreau, 1982) as well as 
optimization of direct linear equation solvers in NIKE, have masked the fact 
that for most of the last fifteen years those Cray machines have been multi- 
pipe (or parallel) machines with large (fast but expensive) shared memory. 
However, in a production environment, with several hundred users 
demanding equal access, and often with multiple jobs to be executed per user, 
computer system managers have found it optimal to discourage individual 
codes from using multiple pipes for parallel applications, and have instead 
optimized the system parameters to timeshare the multiple single processor 
jobs. The National Energy Research Supercomputer Center ( N E W )  has had 
more of a computing research environment, and multitasking of Cray 
applications has been available for moderate numbers of processors from 
eight to sixteen. These days much more cost-effective, high-end workstations 
coming from other vendors are attempting this programming class for one to 
two orders of magnitude lower cost. 

The heavy cost of large shared memory, at least as much as diminishing 
returns on development of expensive single processor pipes, has led the 
industry (even Cray) into distributed memory massively parallel machines. 
Intel, with its Paragon seems the only major vendor headed toward 
thousands of processors. The failure of Thinking Machines Corporation and 
its CM-5, and even the corporate difficulties of Meiko and its CS-2 investment 
here at Livermore show the pitfalls of this very high end, primarily capability 
based machine market. Cray, after its recent acquisition by Silicon Graphics 
Incorporated, is probably strong enough to cover its investment in the T3D 
(and presumably the T3E to come). The last five years have seen a moderate 
investment in parallelism in DYNA (Hoover et al, 1994,1995). The ParaDyn 
project was launched by joint funding by institutional R&D and the weapons 
engineering program. This has required close cooperation between the small 
team developing the new DYNA prototype, without getting too out of touch 



with the main production serial-vector team. Repository control within each 
team, with periodic merging of the two repositories, has been essential. 

Our first experiment was the complete conversion of DYNAZD to parallel 
FORTRAN (CM90) on the CM-5 at the Army's High Performance Computing 
Center at the University of Minnesota. While an interesting experience in 
the data parallel programming model, the serious departure from the norm 
of engineering computing software, the poor success of Thinking Machines in 
making this machine work for finite element (or unstructured grid) 
applications, and the lack of sufficient vendors seriously pursuing the data 
parallel programming model led to our decision to not attempt a data parallel 
version of DYNA3D. HPF had not yet arrived, and the alternative message 
passing strategy is more heavily supported by others, both hardware vendors 
and applications programs. 

Four years into this paradigm shift, the ParaDyn team reports that both 
DYNA3D and NIKE3D (with their basic vector organization), are well suited 
to the modular insertion of message passing protocols to communicate 
between processors, leaving the vendors to compete on optimal 
implementation of common standards (e.g. PVM and MPI). While much 
remains to be done on the mechanics side of code organization, especially on 
the implicit NIKE side, more serious challenges remain on the infrastructure 
issues of extending mesh generation beyond the million zone problem, 
including the domain decomposition algorithms, the parallel composition of 
graphic output, and long term data storage and retrieval. 

Current massively parallel computers consist of a set of processors connected 
with a high speed network. The DYNA3D parallel algorithms are designed to 
divide the problem mesh into sub domains and to execute the full DYNA3D 
program on a sub domain in each processor. Solutions on sub domains are 
connected together by communicating data across processors along the 
boundaries of the sub domains. Algorithms assign elements (continuum, 
shell, and beam) to one processor uniquely, and nodes to any processor 
owning a connected element. Consequently, nodes on processor boundaries, 
shared nodes, are stored in more than one processor. Boundary node lists are 
grouped by target processor so only one send per processor time step need be 
executed for each other processor with which a given processor interacts. The 
decoupled time integration for the nodal coordinates is duplicated for the 
shared nodes. The motion for shared nodes is duplicated identically by 
adding a communication step after the nodal forces are calculated. For 
example, the force on a shared node due to internal deformations of the 
elements is a sum of the partial force calculated from connected elements in 
the same processor and connected elements in other processors. In the more 
general case, the total nodal force is a s u m  of contributions from applied 
loads, element deformations, contact-restoring forces, and other boundary 
conditions. Duplicate nodal motion calculations also requires 



communicating partial mass accumulation corresponding to partial force 
accumulation. But in a Lagrangian code, mass is conserved, and a partial- 
mass communication step occurs only at initialization, or after rezoning. The 
additive force contributions allow separate parallel treatment for the element 
deformation mechanics, contact algorithms, and boundary forces. 

The finite element method has long popularized the ideal of a global-local 
hierarchy. One is used to localization of global quantities (e.g. motions) to an 
element, processing an element, then distributing (scattering) forces to global 
lists. In this same sense, the processors' set of elements can be thought of as a 
super element, with all degrees of freedom considered internal except those 
on processor boundaries. The exception here is that since boundary nodes are 
duplicated on each processor occurrence, the gather step of bringing global 
quantities to the processor is omitted. The interprocessor communication 
activity is done once in scattering the partial forces of boundary nodes to each 
duplicate node on other processors. Of course, the global minimum timestep 
selection is across all processors, and contact is the major exception. 

One challenge in parallel algorithm development is the subdivision of a 
mesh to satisfy two requirements: (1) the processors should have roughly an 
equal amount of computational work and (2) the communication of data 
between processors should be minimized. Several methods for subdividing 
meshes have been developed recently using algorithms evolving from graph 
theory, grid refinement methods, spectral methods, and inertial-based 
methods. A large collection of mesh partitioning methods have been 
developed and collected by Hendrickson and Leeland and provided with the 
software package, CHACO (Hendrickson and Leeland, 1993). Preprocessing 
software has been designed at LLNL for mesh subdivision which uses the 
CHACO software product (Procassini et al, 1994). The finite element mesh, a 
list of nodes and the element-to-node connectivity, must be transformed into 
a list of element-to-element connections, the dual mesh, for partitioning 
algorithms. O(number of elements) algorithms have been developed here to 
produce the dual mesh for CHACO input. The result from CHACO 
algorithms is a list with elements assigned to processors. This data is used in 
a third preprocessing step to generate nodal assignments to processors, and 
the list of shared nodes in each processor. Figure 1 illustrates the geometrical 
partitioning of an automobile mesh composed of 125 materials and a mixture 
of solid, shell, and beam elements. While CHACO has been extremely 
valuable to getting an operational capability, and to evaluate seven different 
decomposition schemes, this task is currently done on a single off-line 
processor with very large memory, most algorithms are so memory intensive 
as not to scale well, even to a million elements. The RSB (Recursive Spectral 
Bisection) method of decomposition has received the most work at LLNL, 
across multiple groups, and will probably lead to the first decomposition 
algorithm widely shared among developers here for very large (greater than 
one million element) applications. 



Contact has always been one of the strong points for DYNA3D (Hallquist and 
Goudreau, 1985). Contact algorithms are designed to provide an interface 
pressure to prevent surface nodes of a material (shell or solid) from 
penetrating through the surface of an adjacent material (shell or solid). This 
requires, (1) for each node on the surface, find the closest node in the 
remaining set of surface nodes; (2) for pairs of closest nodes, look up the 
element surface patches for one, and determine if the other node has 
penetrated; and (3) for a penetrated node, calculate the restoring forces 
determined by a penalty on the penetrating gap. A parallel contact method 
must localize the search step in order to avoid the communication associated 
with a global search. The partitioning for contact calculations is based on the 
geometry of the surfaces rather than the element volumes. An optimal 
partitioning for the contact surfaces is usually different than that for 
elements. For primarily local contact applications, ParaDyn uses a rather 
straight forward parallelization of DYNA's suite of contact algorithms. 
Arbitrary contact is implemented in DYNA3D by the algorithm of Whirley 
and Engelmann (1993). Bucket sorts impose a geometric grid of buckets over 
the surface node positions. In the parallel algorithm (Schauer,l990) the 
buckets along the boundary of processors are duplicated. The partitioning for 
contact assumes processors are arranged along a line in one direction on the 
mesh, usually the longest direction (like that logically orthogonal to which 
bandwidth is minimized for a direct equation solver). Surface node 
coordinates along this direction are sorted and evenly allocated to the 
processors. At each time step, the nodal positions and velocities are sent from 
the element partition to the contact partition and after the contact is 
calculated, the nodal contact forces are communicated back to the element 
partition. For arbitrary contact, the contact surfaces can be repartitioned as 
needed based on the dynamics of the contact surfaces. The extra overhead of 
these two concurrent decompositions explains why crash dynamics is the one 
application of DYNA3D, that while suitable for parallel computing, has not 
scaled well enough to be a true candidate for MPP, much like the direct 
equation solvers of NIKEi3D. 

The conference presentation will review a broader suite of applications. 
Attached here in Figure 2 is a gray-scale rendition of a one million zone 
quadrant of a hexagonally spaced set of buried explosive charges directing 
their combined effect on a more deeply buried cavity. This problem has been 
successfully decomposed, and run on 32,64, and 128 processors of our Meiko 
CS-2, and just this week on the Cray T3D. It also fits in the 8GB shared 
memory of our DEC Symmetric Multiprocessor (SMP). The 32 processor 
Meiko took about an hour vs six hours on the DEC. The decomposition took 
one hour on the DEC, and is not yet fully optimized for memory or 
performance. The decomposition software currently is the memory limiting 
operation. The problem execution scaled exceptionally well for the 64 and 128 
processor runs, this being the more stringent scaling test of fixed problem size 



over a range of processors. For 32,64, and 128 T3D processors, problem times 
were 5700,3000, and 1700 seconds, respectively. This problem has no 
slidesurfaces, and is representative of what is maximally efficient at this time. 

In the last few years the crashdynamics of automobiles for design and 
regulatory barrier and multivehicle interaction has been a major emphasis, 
including parallel contact-impact. But currently the emphasis is returning to 
nuclear weapon safety, and conventional weapons effects. Thus the port of 
DYNA3D to new DOD high performance computing platforms, and the 
applicability of earth and armor penetration, as part of a general interest in 
large deformation inelastic mechanics, is a current priority. Inelastic response 
of buried structures will exercise concrete models developed as part of our 
nonlinear earthquake studies (Govindjee,lW5), and (McCallen,1993). 
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Figure 2: 

One milIion zone model of underground effects blast calculation of 
hexagonally spaced buried charges propagating through homogeneous tuff 
toward a more deeply buried cavity. Problem run on DEC alpha SMP single 
processor, and 32,64, and I28 processors of the Meiko CS-2 and Cray T3D, 




