
l? U d f i 960 #)6 3 0- J

PREPRINT
UCRL-JC-123339

Status of ParaDyn: DYNA3D for Parallel Computing

G. L. Goudreau
C G. Hoover
A. J. DeGroot
P. J. Raboin

This paper was prepared for submittal to the
Workshop on Recent Advances in Computational Structural Dynamics

and High Performance Computing
Vicksburg, Mississippi

April 24-26,1996

April 17,1996

Thisisapreprintofapaperintendedforpublicationina journalorproceedinga Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLATMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United states Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
d i s d d , or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. "he views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the university of W o m b , and shall not be used for advertising
or product endorsement purposes.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Status of ParaDyn: DYNA3D for Parallel Computing

Lawrence Livermore National Laboratory
G. L. Goudreau, C. G. Hoover, A. J. De Groot, and P. J. Raboin,

The evolution of DYNA3D from a vector supercomputer code into a parallel
code is reviewed. Current status and target applications are suggested,
especially those of interest to the Department of Defense.

It was no coincidence that the development and success of the Livermore
nonlinear solid and structural mechanics codes DYNA (Goudreau and
Hallquist, 1982, Whirley, 1993) and NIKE (Maker et al, 1991) occurred during
the rise and preeminence of the vector supercomputers epitomized by Cray
Research, from the first Cray-1 installed here in 1976 through the current C-90
megalith. The tremendous vector programming efficiencies achieved in a
single processor by element chmking, (Goudreau, 1982) as well as
optimization of direct linear equation solvers in NIKE, have masked the fact
that for most of the last fifteen years those Cray machines have been multi-
pipe (or parallel) machines with large (fast but expensive) shared memory.
However, in a production environment, with several hundred users
demanding equal access, and often with multiple jobs to be executed per user,
computer system managers have found it optimal to discourage individual
codes from using multiple pipes for parallel applications, and have instead
optimized the system parameters to timeshare the multiple single processor
jobs. The National Energy Research Supercomputer Center (N E W) has had
more of a computing research environment, and multitasking of Cray
applications has been available for moderate numbers of processors from
eight to sixteen. These days much more cost-effective, high-end workstations
coming from other vendors are attempting this programming class for one to
two orders of magnitude lower cost.

The heavy cost of large shared memory, at least as much as diminishing
returns on development of expensive single processor pipes, has led the
industry (even Cray) into distributed memory massively parallel machines.
Intel, with its Paragon seems the only major vendor headed toward
thousands of processors. The failure of Thinking Machines Corporation and
its CM-5, and even the corporate difficulties of Meiko and its CS-2 investment
here at Livermore show the pitfalls of this very high end, primarily capability
based machine market. Cray, after its recent acquisition by Silicon Graphics
Incorporated, is probably strong enough to cover its investment in the T3D
(and presumably the T3E to come). The last five years have seen a moderate
investment in parallelism in DYNA (Hoover et al, 1994,1995). The ParaDyn
project was launched by joint funding by institutional R&D and the weapons
engineering program. This has required close cooperation between the small
team developing the new DYNA prototype, without getting too out of touch

with the main production serial-vector team. Repository control within each
team, with periodic merging of the two repositories, has been essential.

Our first experiment was the complete conversion of DYNAZD to parallel
FORTRAN (CM90) on the CM-5 at the Army's High Performance Computing
Center at the University of Minnesota. While an interesting experience in
the data parallel programming model, the serious departure from the norm
of engineering computing software, the poor success of Thinking Machines in
making this machine work for finite element (or unstructured grid)
applications, and the lack of sufficient vendors seriously pursuing the data
parallel programming model led to our decision to not attempt a data parallel
version of DYNA3D. HPF had not yet arrived, and the alternative message
passing strategy is more heavily supported by others, both hardware vendors
and applications programs.

Four years into this paradigm shift, the ParaDyn team reports that both
DYNA3D and NIKE3D (with their basic vector organization), are well suited
to the modular insertion of message passing protocols to communicate
between processors, leaving the vendors to compete on optimal
implementation of common standards (e.g. PVM and MPI). While much
remains to be done on the mechanics side of code organization, especially on
the implicit NIKE side, more serious challenges remain on the infrastructure
issues of extending mesh generation beyond the million zone problem,
including the domain decomposition algorithms, the parallel composition of
graphic output, and long term data storage and retrieval.

Current massively parallel computers consist of a set of processors connected
with a high speed network. The DYNA3D parallel algorithms are designed to
divide the problem mesh into sub domains and to execute the full DYNA3D
program on a sub domain in each processor. Solutions on sub domains are
connected together by communicating data across processors along the
boundaries of the sub domains. Algorithms assign elements (continuum,
shell, and beam) to one processor uniquely, and nodes to any processor
owning a connected element. Consequently, nodes on processor boundaries,
shared nodes, are stored in more than one processor. Boundary node lists are
grouped by target processor so only one send per processor time step need be
executed for each other processor with which a given processor interacts. The
decoupled time integration for the nodal coordinates is duplicated for the
shared nodes. The motion for shared nodes is duplicated identically by
adding a communication step after the nodal forces are calculated. For
example, the force on a shared node due to internal deformations of the
elements is a sum of the partial force calculated from connected elements in
the same processor and connected elements in other processors. In the more
general case, the total nodal force is a s u m of contributions from applied
loads, element deformations, contact-restoring forces, and other boundary
conditions. Duplicate nodal motion calculations also requires

communicating partial mass accumulation corresponding to partial force
accumulation. But in a Lagrangian code, mass is conserved, and a partial-
mass communication step occurs only at initialization, or after rezoning. The
additive force contributions allow separate parallel treatment for the element
deformation mechanics, contact algorithms, and boundary forces.

The finite element method has long popularized the ideal of a global-local
hierarchy. One is used to localization of global quantities (e.g. motions) to an
element, processing an element, then distributing (scattering) forces to global
lists. In this same sense, the processors' set of elements can be thought of as a
super element, with all degrees of freedom considered internal except those
on processor boundaries. The exception here is that since boundary nodes are
duplicated on each processor occurrence, the gather step of bringing global
quantities to the processor is omitted. The interprocessor communication
activity is done once in scattering the partial forces of boundary nodes to each
duplicate node on other processors. Of course, the global minimum timestep
selection is across all processors, and contact is the major exception.

One challenge in parallel algorithm development is the subdivision of a
mesh to satisfy two requirements: (1) the processors should have roughly an
equal amount of computational work and (2) the communication of data
between processors should be minimized. Several methods for subdividing
meshes have been developed recently using algorithms evolving from graph
theory, grid refinement methods, spectral methods, and inertial-based
methods. A large collection of mesh partitioning methods have been
developed and collected by Hendrickson and Leeland and provided with the
software package, CHACO (Hendrickson and Leeland, 1993). Preprocessing
software has been designed at LLNL for mesh subdivision which uses the
CHACO software product (Procassini et al, 1994). The finite element mesh, a
list of nodes and the element-to-node connectivity, must be transformed into
a list of element-to-element connections, the dual mesh, for partitioning
algorithms. O(number of elements) algorithms have been developed here to
produce the dual mesh for CHACO input. The result from CHACO
algorithms is a list with elements assigned to processors. This data is used in
a third preprocessing step to generate nodal assignments to processors, and
the list of shared nodes in each processor. Figure 1 illustrates the geometrical
partitioning of an automobile mesh composed of 125 materials and a mixture
of solid, shell, and beam elements. While CHACO has been extremely
valuable to getting an operational capability, and to evaluate seven different
decomposition schemes, this task is currently done on a single off-line
processor with very large memory, most algorithms are so memory intensive
as not to scale well, even to a million elements. The RSB (Recursive Spectral
Bisection) method of decomposition has received the most work at LLNL,
across multiple groups, and will probably lead to the first decomposition
algorithm widely shared among developers here for very large (greater than
one million element) applications.

Contact has always been one of the strong points for DYNA3D (Hallquist and
Goudreau, 1985). Contact algorithms are designed to provide an interface
pressure to prevent surface nodes of a material (shell or solid) from
penetrating through the surface of an adjacent material (shell or solid). This
requires, (1) for each node on the surface, find the closest node in the
remaining set of surface nodes; (2) for pairs of closest nodes, look up the
element surface patches for one, and determine if the other node has
penetrated; and (3) for a penetrated node, calculate the restoring forces
determined by a penalty on the penetrating gap. A parallel contact method
must localize the search step in order to avoid the communication associated
with a global search. The partitioning for contact calculations is based on the
geometry of the surfaces rather than the element volumes. An optimal
partitioning for the contact surfaces is usually different than that for
elements. For primarily local contact applications, ParaDyn uses a rather
straight forward parallelization of DYNA's suite of contact algorithms.
Arbitrary contact is implemented in DYNA3D by the algorithm of Whirley
and Engelmann (1993). Bucket sorts impose a geometric grid of buckets over
the surface node positions. In the parallel algorithm (Schauer,l990) the
buckets along the boundary of processors are duplicated. The partitioning for
contact assumes processors are arranged along a line in one direction on the
mesh, usually the longest direction (like that logically orthogonal to which
bandwidth is minimized for a direct equation solver). Surface node
coordinates along this direction are sorted and evenly allocated to the
processors. At each time step, the nodal positions and velocities are sent from
the element partition to the contact partition and after the contact is
calculated, the nodal contact forces are communicated back to the element
partition. For arbitrary contact, the contact surfaces can be repartitioned as
needed based on the dynamics of the contact surfaces. The extra overhead of
these two concurrent decompositions explains why crash dynamics is the one
application of DYNA3D, that while suitable for parallel computing, has not
scaled well enough to be a true candidate for MPP, much like the direct
equation solvers of NIKEi3D.

The conference presentation will review a broader suite of applications.
Attached here in Figure 2 is a gray-scale rendition of a one million zone
quadrant of a hexagonally spaced set of buried explosive charges directing
their combined effect on a more deeply buried cavity. This problem has been
successfully decomposed, and run on 32,64, and 128 processors of our Meiko
CS-2, and just this week on the Cray T3D. It also fits in the 8GB shared
memory of our DEC Symmetric Multiprocessor (SMP). The 32 processor
Meiko took about an hour vs six hours on the DEC. The decomposition took
one hour on the DEC, and is not yet fully optimized for memory or
performance. The decomposition software currently is the memory limiting
operation. The problem execution scaled exceptionally well for the 64 and 128
processor runs, this being the more stringent scaling test of fixed problem size

over a range of processors. For 32,64, and 128 T3D processors, problem times
were 5700,3000, and 1700 seconds, respectively. This problem has no
slidesurfaces, and is representative of what is maximally efficient at this time.

In the last few years the crashdynamics of automobiles for design and
regulatory barrier and multivehicle interaction has been a major emphasis,
including parallel contact-impact. But currently the emphasis is returning to
nuclear weapon safety, and conventional weapons effects. Thus the port of
DYNA3D to new DOD high performance computing platforms, and the
applicability of earth and armor penetration, as part of a general interest in
large deformation inelastic mechanics, is a current priority. Inelastic response
of buried structures will exercise concrete models developed as part of our
nonlinear earthquake studies (Govindjee,lW5), and (McCallen,1993).

References:

Goudreau, G. L., and Hallquist, J. 0. (1982). "Recent developments in large
scale finite element lagrangian hydrocode technology." Computer Methods
in Applied Mechanics and Engineering, V 33, N1-3,72!5-757.

Govindjee, S., Kay, G.J., and Simo, J.C., (1995). "Anisotropic Modelling and
Numerical Simulation of Brittle Damage in Concrete," International Journal
for Numerical Methods in Engineering, V 38,3611-3633

Hallquist, J. O., and Goudreau, G. L. (1985). "Sliding interfaces with contact-
impact in large-scale lagrangian computations." Computer Methods in
Applied Mechanas and Engineering, V 51, N1/3,107-137.

Hendrickson, B., and Leland, R. Technical Reports SAND92-1460 (1992) and
SAND 93-2339 (1993), Sandia National Laboratories, Albuquerque, New
Mexico.

Hoover, C. G., De Groot, A. J., Maltby, J. D., and Whirley, R. G. (1994).
"ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively
Parallel Processors". Engineering Research, Development and Technology
FY93, Lawrence Livermore National Laboratory, UCRL 53868-93.

Hoover, C. G., De Groot, A. J., Maltby, J. D., and Procassini, R J. (1995).
"ParaDyn - DYNA3D for Massively Parallel Computers." Engineering
Research, Development and Technology FY94, Lawrence Livermore National
Laboratory, UCRL 53868-94.

Logan, R. (1993). "Crashworthiness: planes, trains, and automobiles." Energy
and Technology Review, Computational Mechanics at Lawrence Livermore
National Laboratory, G. Goudreau, ed.

Maker, 8. N., Ferencz, R M., and Hallquist, J. 0. (1991). "NIKE3D: A
nonlinear, implicit, three dimensional, finite element code for solid and
structural mechanics." Lawrence Livermore National Laboratory, Livermore,
California, UCRL-MA-105268.

McCallen, D. B., iind Goudreau, G. L. (1993). 'large-scale computations in
analysis of structures." Lawrence Livermore National Laboratory, Livermore,
CA, UCRL- JC-115223.

Procassini, R J., De Groot, A. J., and Maltby, J. D. (1994). "PARTMESH
partitioning unstructured finite element meshes for solution on a massively
parallel processor." User Manual, Lawrence Livermore National Laboratory,
Livermore, California UCRL-MA-118774.

Schauer, D. A., Hoover, C. G., Kay, G. J., Lee, A. S., and De Groot, A. J. (1996).
"Crashworthiness simulations with DYNA3D." Proceedings of the
Transportation Research Board 75th Annual Meeting, Washington D.C.

Whirley, R G., and Engelmann, B. E. (1993). "DYNA3D: a nonlinear, explicit,
three dimensional finite element code for solid and structural mechanics."
Users manual, Lawrence Livermore National Laboratory, Livermore,
California, UCRL-MA-107254, Rev. 1.

Whirley, R. G. and Engelmann, B. E. (1993). "Automatic contact in DYNA3D
for vehicle crashworthiness." Lawrence Livermore National Laboratory,
Livermore, California, UCRL-53868-03, 2-29.

*This work was performed under the auspices of the U.S. Department o f Energy
by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Figure 2:

One milIion zone model of underground effects blast calculation of
hexagonally spaced buried charges propagating through homogeneous tuff
toward a more deeply buried cavity. Problem run on DEC alpha SMP single
processor, and 32,64, and I28 processors of the Meiko CS-2 and Cray T3D,

