
c

Author(s):

Submitted to:

The Data Embedding Method

Maxwell T. Sandford, NIS-9
Jonathan N. Bradley, CIC-3
Theordore G. Handel, NIS-9

DOE Office of Scientific and Technical
Information (OSTI)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof. _ -

. . -. . . .

Los Alamos
N A T I O N A L L A B O R A T O R Y

Los Ahmos National Laboratory, an affirmative actiordequal opporlunhy employer, Is operated by the University of Callomh for the US. DepattmM Of
Energy under contrad W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive. royalty-
free l i i to publish or reproduce the puMihed form of this contribution. or to allow others to do so. for U.S. Government purposes. The LOS Ahmos
Natbnal Labwatory requests that the publisher identii this article as work performed under the auspices of the U.S. Department of Energy.

F m No. 836 R5
ST26291Wl

..

The data embedding method

Maxwell T. Sandford 11, Jonathan N. Bradley, and Theodore G. Handel
Los Alamos National Laboratory, MS-12
P.O. Box 1663, Los Alamos, NM 87545

ABSTRACT

Data embedding is a new steganographic method for combining digital information sets. This paper describes
the data embedding method and gives examples of its application using software Written in the C-programming language.
Sandford and W e € ' produced a computer program (BMPEMBED, Ver. 1.51 written for IBM W A T or compatible,
MS/DOS Ver. 3.3 or later) that implements data embedding in an appiication for digital imagery. Information is
embedded into, and extracted from, Truecolor or color-pallet images in MicrosofVB bitmap (.BMP) format.

temied 'steganography.' Data embedding differs markedly from conventional steganography, because it uses the noise
component of the host to insen information with few or no modifications to the host data values or their statisticai
properties. Consequently, the entropy of the host data is afkted little by using data embedding to add information. The
data embedding method applies to host data compressed with transform, or 'lossy' compression algorithms, as for
example ones based on discrete cosine transform and wavelet functions.

combined data. The key is stored easily in the combined data. Images without the key cannot be processed to omad the
embedded information. To provide security for the embedded data, one can remove the key from the combined data and
manage it separately. The image key can be encrypted and stored in the combined data or transmitted sqameiy as a
ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is
derived fiom the orieinal host data bv an analvsis al~orithm.

Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is

Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the

Keywords: data embedding, steganography, bandwidth expansion, auxiliary data, communication channel, covert
communication, cipher

1. INTRODUCTION
Data embedding is a steganographic process for combining digital information sets. Data containing stochastic,

or random, noise are used as a carrier or host for additional, unrelated information. Embedding manipulates the
stochastic noise component of the host data. The stochastic noise is replaced with pseudo-random noise during the
embedding process. Digital information separate from the host data are not correlated with the stochastic noise
component, and are therefore a suitable source of pseudo-random variations. Thus, the noise component intrinsic to the
host data becomes a channel for information transfer.

Data embedding utilizes two data properties common to nearly all data representing measurements made from
nature. Redundancy and noise are properties present in many digital data sets. Data are redundant because the same
values OCN more than once in the s k of numerical values representing the information. Noise is found in any data
produced by sensors. The numerical vaiues are uncertain to within some value. The uncertainty is measured by the ratio
of signai S to noise N. Thus, on average, the measured quantity represented by the numerical data value is S+N. The
data embedding method consists of identifying and manipulating numerical vaiues that are redundant to within the noise
limit ofthe data set ~ o s t data sets permit embedding about (SM)" additional information fraaioa ~ h u s for s/N = 10,
about 10% of the carrier data can be replaced with embedded information. Data having no intrinsic mise component,
computer instructions for example, are not usable as a carrier of embedded information. Most data result from si@
sampling, and are therefore usable as hosts for embedded information.

. 2

2. APPLICATION OF METHOD
2.1 Analysis of gnyscrrle-format image host data

The embedding process is conducted in two parts. First, an estimate of the noise component of the host data is
used in combination with an analysis of the histogram of numerical values to identify pairs of data elements redundant or
identical in value, and occurring with about the same statistical frequency. Second, the position of occurrence of the
values found is adjusted to embed the bit-stream of another information set.

The principle of data embedding is re-arrangement of the host data values in order to encude the values of the
data in a separate information set. The host data values are not changed by data embedding. Data embedding does not
change lowader bits or create data values that are not found in the original host data.

As exampie consider host data represented by 8 bits of binary infannation. The values range between 0 and 256
for each host data sample. Assume the noise value for signal S is N = f 910, or approximately 10% ofthe signal value.
For many data, the noise value can be approximated by assigning a constant vaiue, and for the example following we take
N = f 10. Two values in the host data 4 and d, are within the noise value if

E I N .

The fresucncy doccumnce of the value 4 is f(4). Data values meeting the Criteria in eq. (1). and Occuning in the host

Thevalucsdi and clj constitutes pairofdatavalues, fi. The pnsenceof one member of the pair is takcnto repnsentan
embedded O-bit, and the other, a l-bit. There are k = OJ.2 ,... N,, such pairs in the host data set giving a total number of
embedding bits for each pair

data with frequency jf(d+fld,)l< 6, where 6 is the tolerance imposed for statistical equality, are CaDdidatCs for anhrAdin g.

i i

where the summations for i and j run to the limits of the number of pairs found in the host data set.

2.2 Anrlysir of color pallet-format host image data
To illustrate the determination of the pair values in eq. (l), we use an example from our demonstration program

for embedding data into digital image. The values 4 and dj are the pixel values in the image. These 8-bit values are
interpreted as indices in the color-pallet table. The comparison indicated in eq. (1) is therefore one between colors in the
pallet. Entries in the color @et are Red, Green, and Blue (RGB) colorcomponent values. Additional information on
the format used for Bitmap images $an be found in the book by Levine2 and in the article by Luse3.

1den-g tbe pair values is'illustrated by the code in Listing 1 (extracted from the BMPEMBED.~ program).
The code fiagment begh with a loop running over the number of colors in the pallet (256, for an image having %-bits per
pixel). The loop index i is used to test each pallet colors against all the other entries, in sequence, to identi@ pairs of
color entries meeting the criteria in eq. (1). Each color in the i-loop is tested against all other colors in the pallet by a
second loop using kkxj, starting at line 16. Line 5 provides a modification for images hrrving a @et for gnyscale
instead ofcolors. For these images, the RGB components are identical for each pallet entry, although some formats
include a 16oolor table as well3.

* The cornparison indicated in equation (1) is made by converting the Red, Green, and Blue (RGB) color
component values to corresponding Hue, Saturation, and Intensity (HSI) color components. Line 12 uses a separate
routine rgbhsio to e f h t this conversion. Line 20 converts RGB coior component values in the j-loop to HSI data-

,-
2. APPLICATION OF METHOD

2.1 Analysis of greyscabformat image host data
The embedding process is conducted in two parts. First, an estimate of the noise component of the host data is

used in combination with an analysis of the histogram of numerical values to idenw pairs of data elements redundant or
identical in value, and occurring with about the same statistical frequency. Second, the position of occurrence of the
values found is adjusted to embed the bit-stream of another information set.

The principle of data embedding is re-arrangement of the host data values in order to encode the values of the
data in a separate information set. The host data values are not changed by data embedding. Data embedding does not
change lowader bits or create data values that are not found in the original host data.

As example consider host data represented by 8 bits of binary information. The values range between 0 and 256
for each host data sample. Assume the noise value for signal S is N = f =IO, or appro-Iy 10% afthe signal value.
For many data, the noise value can be approximated by assigning a constant value, and for the example following we take
N = f 10. Two values in the host data 4 and dj are within the noise value if

Idf - d i = E I N .

The fhquency af occurrence of the value 4 is f(&). Data values meeting the criteria in eq. (I), and occurring in the host
8 data with fresuency md,)-fldj)l< 6, where 6 is the tolerance imposed for statistical equality, are candidates for embcddin

Thevalues4 and dj constitutcapair of datavalues, pk. The presence ofone member ofthe pair is takcnto v a n
embedded O-bit, and the other, a l-bit. There are k = 0,1,2, ... Np such pairs in the host data set giving a total number of
embedding bits for each pair

where the summations for i and j run to the limits of the number of pairs found in the host data set.

2.2 Analysis of color pallet-format host image data
To illustrate the determination of the pair values in eq. (l), we use an example from our demonstr;tion program

for embedding data into digital image. The values 4 and dj are the pixel values in the image. These 8-bit values are
interpreted as indices in the color-pallet table. The comparison indicated in eq. (1) is therefore one between colors in the
pallet. Entries in the color pailet are Red, Green, and Blue (RGB) colorcomponent values. Additional information on
the format used for Bitmap images can be found in the book by Levine' and in the article by Luse3.

Identifying the pair values i;illustrated by the code in Listing 1 (extracted from the BMPEM3ED.C program).
The code fragment b q h with a loop running over the number of colors in the pallet (256, for an image having 8-bits per
pixel). The loop index i is used to test each pallet colors against all the other entries, in sequence, to identifl pairs of
color entries mceting the criteria in eq. (1). Each color in the i-loop is tested against all other colors in the pallet by a
second loop using index j, starting at line 16. Line 5 provides a modification for images having a pallet for greyscaie
instead of colors. For these images, the RGB components are identical for each pallet entry, although some formats
include a 16color table as well3.

* The comparison indicated in equation (1) is made by converting the Red, Green, and Blue (RGB) color
component values to comsponding Hue, Saturation, and Intensity (HSI) color components. Line 12 uses a separate
routine rgbhsio to dkct this conversion. Line 20 converts RGB color component values in the j-loop to HSI data-

3

structure components, and the following line calculates the color difference in the HSI system. Line 24 impiements the
test required by eq. (1) above. If the color difference is less than a fixed noise value (COLOR-NOISE = 10 in this
example), the intensity difference is tested to see if the two pallet entries differ by less than the noise value
(INTEN-NOISE = 10 in this example). Two additional constraints are imposed before accepting the entries as candidate
pair values. The difference in color is required to be the smallest color difference between the test (i-loop) value and all
the other (j-loop) values. The number of pairs selected (k) must be less than half the number of columns in a row of pixels
in the image. The last constraint is algorithmic and is not required by the embedding process. It is imposed in order for
the BMPEMJ3ED program to store the pair values in a single row in the picture.

occurrence, h&. If the image is a greyscale pallet, the test at line 35 is used to force comparing only the intensity of the
two pallet entries. Greyscale images do not require the RGB-HSI conversion made for color pallets. The BMPEMBED
algorithm ignores differences in the saturation component of color pallet entries, because saturation is ordinarily not
noticeable in a color image. The Hue and Intensity components are constrained within fixed noise limits to determine the
pallet pair values. In this example, for pallet-color images, the constraint for statistical equality of the pair members is
ignored.

A data-structure array pair[] is used to hold the values of candidate pairs (ij) and their total frequency of

Listing 1
line 1 fw(i = 0; i (int)bh.cdors; i++) (

int avg;

if(i % 10 == o)rprintf(Stderr:.");

cl .red = cd0rmapIil.r;

c l .grn = col0rmapm.g;
c l .blu = coi0mmm.b;

line 7 if(grayscalh) (
avg = (int)(cl .red + cl .gm + cl MU)/^;

if(avg==O)continw;

if(avgl=cf .red 11 avgl=cl.gm 11 avg!=ccf.Mu)continue;

1
line 12 (void)rgbhsi(8c11 8dl); r convert to HSI components *I

if((int)dl .inten == 255)unused++;
old-diff = 0.r;
if((int)dl .lnten==O 11 (int)dl .Inten==(int)bh.~)continw;

line 16 for(j=i+l; j (int)bh.dom; J++) {

c2.red = c0lormapm.r;
c2.grn = cokrmapfi1.g;

c2.M~ = cokrmapm.b;
line 20 (V0id)rgGW P convert to HSI components */

cokr-diff = d 2 . b - dl .hue;
/' hw 8 Msn. difference must bed<*/

~(!grayScak) {
line 24 if((abs((ht)colw-diff) < COLOR-NOISE)\

8& (colorediff dd-diff)\

88 ((int)fabs((double)(d2.intendl .inten)) c INTEN-NOISE)) {

Listing 1, continued
if(b(int)bh.cols/2 -1)break;

pair(k1.i = i;
paiflk1.j = j;
paiflk].count = 0;

k++;

okf-diff = cdor-diff;

1
1

im 36 &(
avg = (ii)(c2.red + c2.gm + c2.Mu)B;

if(avg==O)continw;

if(avgl=c2.red 11 avg!=c2.gm 11 avg!=c2.blu)continw;

if((int)fabs((douMe)(d2.inten-d1 .inten)) < INTEN-NOISE 88

(int)fabs((double)(d2.inten-d1 .inten)) !=O) {
if(k(int)bh.cds/2 -1)break;

pair[kj.i = i;

PairF1.i = i;
pairfk].cwnt = 0;

k++;

1
1

1 Pjkw.1
ifp(int)bh.coW -1)break;

} P i loop */
ihe 61 nogairs = k;

Pair values found by the code described above include generally redundant values. The same index value i can be
found in several different pair combinations. Because multiple pairs can contain the same pallet entry, it is necessary to
eliminate some pairs ensuring that Unique combinations of pallet indices are used for embedding data bits. The number of
pairs located by applying the criterion in eq. (1) is stored in the variable no-, in line 5 1 above.

histogram of the image is used to calculate the total number of occurrences in each pair (eq. 2). Line 1 below starts the
loop used to calculate the value lb& for each pair. Next, the pairs are sorted according to decreasing order of the
pair[J.count data-stmctm member(hne 5, listing 2). The elimination of duplicates in the following line retains the pairs
& having the largest total number of frequency values %. Line 10 and the following lines calculate the total number of
bytes that can be embedded into the host data using the Unique pairs found by the algoritlun.

The code fragment in Listing 2 illustrates how duplicate pairs are eliminated by a separate routine. First the

5

Listing 2
line I for(i=O;i<k;i++) {

pair[il.count += (hist-values(pair[i].i] + hist-values[pair[i].j]);

if(pair[i].i==O (1 pairfi].j==O)pair[i].count 0;

1
line 6 p_sort(peir, k);

n o g a h = duplicate (k, pair);

total = 0;

for(i=O;l~nogairs;i++)

total += paifli].count;

line 10 total P 8;

MIIX (R0at)tOtal- (float)NCOLS;

if(value * 0.0 fprintf(stderr,"lsl%.lf Kb embedding space located", valw/lOOO.f);

if(value == O.f)fprinU(stde~~,"hNo embedding space available in this image");

if(vaIue 0.0 fprintf(stderr,"hlnsufficient embedding space");

2.3 Analysis of Truecolor-format host image data

frequency of occurrence. In listing 3, for Truecolor images2, we enforce the constraint on the frequency of occurrence
that minimizes the efFect of embedding on the host data histogram. Truecolor images consist of three individual 8-bit
greyscale images, one each for the R, G, and B-image components. The combination of the three %-bit components gives
approximately 16 million colors. The BMPEMBED algorithm embeds data into Truecolor images by treating each RGB
colorcomponent image separately, The pixel values are used directly as components in the embedding pairs, because no
pallet exists. The effect of embedding on the image color is therefore within the noise value of the individual intensity
components.

occurrence of each numerical value (0 through 255) is given in the array hist-values[], with the color plane histograms
offset by the quantity ip*256 (see line 7 in listing 3). The variable fvaluefl holds the floating point histogram for color-
component ip. Line 11 begins a loop to constrain the pairs selected to equal frequency of occunence. Pixel intensities
within the noise limit RANGE are selected for comparison of statistical frequency. The tolerance 6 for statistical
agreement is ked at 5% in line 17. After all the possible values are tested for the constraints of noise and statistical
frequency, the pairs found are sorted (line 27), duplicates removed, the starting index is incremented (line 3 l), and the
search continues. A maximum number of pairs is set by the constraint that the i and j pair values be less than the numkr
of pixels in an image row, taken as 256 for the example.

Listing 3

The algorithm described for pallet-format images manipulates pixel values without regard to the individual

In listing 3, the ip-loop starting in line 2 refers to the color plane (ip = 0,1,2 for R,G,B). The freguency of

-
line 1 /' Find hiatognm point-pairs mthin RANGE counts. within 10% in number *I

for(iP=o;~pQ;ip++) (
intnstart;

long li;

fprintf(stderr,"\nAnaiyzing intensity h&ogram for plane %d", ip);

line 6 for (i=O;i<256;i++) (

fval~=(f loat)hist-~p*Z56+il; 1
} I

6

Listing 3, continued

line 12

line 17

line 27 P- Wpair, k);
nogairs = duplicate (k, pair);

k = nopirs;

if(verbore)f@ntf(stdafr."%M pairsV', k);
ine 31 nstart = i;

} /*endofwhilebop'/

Applying the statistical constraint minimizes the ef€m of embedding data into the host data. If the tolerance 6
= 0, each pair chosen will contain data values less than the noise value in separation and Occuning with exactly the same
statistical j-equency. If random bits are embedded, the pair values wil l on average OCCUT with the same statistical
fiequenq after the embedding process, but in Merent sequence in the image. However, few if any pairs might be found
having exactly the same frequency of occurrence. The statistical fiequenq tolerance of 5% used in the algorithm shown
in listing 3 gives more pairs that are close in frequenq, and presemes most of the statistics of the original host data.

3. THE DATA EMBEDDING ALGORITHM
3.1 Embedding into pdkt-color imiges

Embedding data into host information consists of re-arranging the order of occurrence of redundant numerical
values. The positions ofthe host data value pair-mmponents found by analysis encode the bit-stream into the host. The
values used are the ones Occurring in the host. Embedding does not change the numerical values in the host data.

The nature of the embedded information has little effect on the embedding result, except for the obvious
recognition that embedding a repetitive bit pattern modulates the host data noise component so it might become

noticeablet . Encrypting or compressing the auxilary data prior to embedding randomizes the bit stream sufficiently that
embedded data are not distiguishable easily from the originai stochastic noise. A variant of embedding (Section V) can be
used to impress a removable digital watermark on the host data.

In the BMPEMBED algorithm, the host data are processed sequentially. The first pass through the data
examines each value and tests for a match with the values in an embedding pair. Matching values in the host data are
initialized to the data-structure value pair[k].i, for k = 0,1,2, ... N,. A second pass through the data compares the
sequential bits of the data to be embedded and sets the value of the host data element to the value i or j, according to the
bit value to be embedded. If the bit-stream being embedded is random, the host data values i and j occur with equal
frequency after the embedding process is completed.

considerable housekeeping necessary to manipulate the data in the bit-stream and host data fiies. Line 1 and the lines
following to line 12 allocate memory and initialize variables. The bit-steam data to be embedded are denoted the "data-
image," and stored in the array data-rowfl. The host data are denoted the "imagedata," and are stored in the array
image-rowu.

The index li is used in a loop beginning at line 12 to count the position byte in the data-image. The loop begins
with li = -512 because a fixed amount of header information (5 12 bytes) is embedded before the data-image bits. Line 14
contains the test for loading data-row[] with the header information. Line 20 contains the test for loading data-row0
with bytes from the data-image file, tap&.

Line 30 in listing 4 starts a loop for the bits within a data-image byte. The variable bitindex = (0,1,2, ...7) counts
the bit position within the data-image byte data-row[d-inrow], indexed by the variable d-inrow. The variable lj indexes
the byte (pixel) in the imagedata. Another variable, inrow, indexes the position within the imagedata buffer
image-mw[inrow]. Line 32 tests for output of embedded data (a completed row of pixels) to the imagedata file, and line
40 tests for completion of a pass through the imagedata. In this example, one pass through the imagedata is made for
each ofthe pixel pairs, pair[k], k = 0,1,2 ,.... N,.

working values of the host data pixels being used for embedding. Line 60 provides for refieshing the imagedata buf€er,
image-row. The embedding test is made at line 72. If the image-row[inrow] content equals the pair value representing
a data-image bit of zero, no change is made in the imagedata. However, if the bit-stream value is one, the imagedata
value is changed to equal pvducj. Line 84 treats the case for imagedata values not equal to the embedding pair value.
The bitindex variable is decremented, becaw the data-image bit is not yet accounted, and the imagedata indices are
incremented to examine the next host data value.

Listing 4 shows code from the BMPEMBED program that performs the actual embedding. Listing 4 includes

In line 57, the pair index is incremented. A temporary pair data-structure named pvalue is used to hold the

Listing 4
r EMBEDDING CODE *I
r

!i* indexoverpkds in the imagedata
mmw, index within the imagedata row buffer
nrow, row number in the imagedata
fi, index OMI pixels in the data-image
d-inmw, within the data-image row buffer
k index Within the PAIRS structure amy
mexvrd, no.ofbitsembedded
bihka, bit posirion within the daQimage byte
bybphce, positim for readkrite in tape6 file

data-mw = (unsigned char o)maUoc((she-t)NCOLS);
#(data-w-NULL) {

pm_error("Data row data allocation failed!");
retum(1);

*I
line 1

I 1
_ _ ~ ~

Increasing the complexity of the algorithm can randomize a repetitive pattern. For example, the host image pixel locations can be
processed in random, rather than sequential order. Random pixel ordering am be seeded from the noise pattern in the original host.

8

Listing 4, continued
m l = bitglace-index.maxw1;
d-inmw = bitglace-index.d-inrow;
bitglace-index.li += d-inrow;
lj = (l0ng)krow;
k =O;
nrow=-1;

line 12 for(li=bit~-index.li; li&ngth-NCOLS; li++) {
bitglace-index.li = li;

if(li == 5 1 2L) { P header information ' I

date_rowfd_inrowl='(byt~~-inrow);

byteptr=(wwigned char 'pdata-headar;
for(d-inmwPo;d-insizeof(data-header);d-inrw+)

d-inmw = 0:
1

ina 14

ine 20

ine 30

ina 32

if(0i >= OL88 (li % (bng)NCOLS) == OL) 11 reread f = 0)

j = fread(data-row, 1, (sLe-t)NCOLS, taw);
if(!reread) (

j = fgetpos(tawmwp);

for(i=O;icj;i++) checksum += data-rwi];
d-inrow = 0;
b&$ace-index.dJnrow = 0;
1

{ P next row of data-image '/

reread = 0; P turn off flag for re-read on next Truecdor plane V
1
 bit^^^^ - bitindex;

for (b i t M e x = M ~ & ~ ~ - i n d e x . ~ : bitindex<NO-BITS; bitindex++) {

if((lj-krow) % (kns)(BYTES-lN-ROW) == OL) {

inrow = fseek(tape6, byteplace, SEEK-SET);
inrow = fvdte(irnage_row,l ,(stw,t)(BYTES-lN_ROw),tspa6);
byteplace += i n w
byteplace += pad; P skip pad bytes *I
inrow=krow;
1

if(nmw >= 0) { P mite only after you read ' I

[ne 40 if(lj/(long)OFFSET == OL 11
(li+(BYTES-IN-ROW+pad))/(BYTES-lN-ROW+pad) (unsigned \

kng)bh.-) I
if(baii()) { P end of image-data-user termination ' I

ir i ;
goto QUIT;
1

if(k==nogairs)goto PLANE; P nexl plana of image */
lj=krow; Ppicknextpairandstartover'l
pvdue.i=(unsigned int)paim].i; Pzero'l
pva1ue.j =(unsigned int)pa@].j; P one *I
if(Verb0sa 88 k>o) fprintf(stderr: %Id
pvalue.count = OL;
$(verbose) fprintf(stderr,"\rEmbing Pair %2d\
(%3d.%3d)",\

", pvalue.count);

k, pva1ue.i. pva1ue.j);
eke fprintf(stderr,".");
k++;
bytepbce = bh.pixeIoM;
1

ne 47

'.
ne 60 nmw = (int)((li-laowy[(long)BYTES-lN-ROW+pad)); P read next row 'I

inmw = fseek(tape6, byteplace, SEEK-SET);
inmw = fread@nage~~~,l ,(sire,t)BMES-lN_ROW,tapes);
inrow = laow;
} P end new row (lj) test ' I

P Embedonebyte'l
if(ip>=O 8& pair[k-l].count==O) { P finished a pair *I

lj +=OFFSET;
inrow += OFFSET;
bitindex-;
continue;

9

Listing 4, continued
I

line 72 ir((int)image-r~inrow]==pMlw.i) { r find a zero value ' I
if(test((int)nrw],b~index)) irnage-row$nrow]=(unsigned char)pvalw.j;

-I++;
if(pair[k-I].cwnt==O) {

prn-m(%Pair count error!");
i = l ;
goto QUIT;
I

pair[k-l].count-:
pValW.COUnt++;

1
i f (M i ~ = N O - B l T S - l) B t J k - k & X . ~ = 0;

line 84 ISO OM-; r h a ~ ~ g o t t h i b a y a t v

) in of bit index^'/

lj+=OFFSET;
inrow+= OFFSET;

d-lnrow++;
) P end of li (data index) loop ' I

3.2 Embedding greyscale and Truecolor host data

intensity, or brightness values for each of the three color planes, and &reyscale images contain a single intensity value for
each pixel. Testing the color and hue is not necessary for Truecolor images, because each color plane is an indeqe&nt
monochromatic greysCaie image. The noise analysis is done separately for each color plane in a Truecolor image, and
three independent keys are generated For greysde images, only one key is needed.

With the key known for the color plane, the embedding is accomplished as was done for pallet-format images.
The key values specify pairs of pixel values that are interchanged as necesary to encode the bits of the embedded data.
Modifying the pair values in a greyscale or Truecolor image can significantly alter the statistical properties of the image
histogram. Therefore, the analysis to determine the key applies an additional constraint on the pair values requiring the
overall frequency of OcCuTrence of each of the values to be similar. For example, if the values 150 and 151 are selected as
a candidate key pair, because they are within the noise limit (eq. l), the pair must also meet the constraint on frequency of
occurrence If(di) - f(d,)l < 6. Ignoring this constraint affects the entropy of the combined image. For the example given,
one key value, say 150, might occur many times in the image and the other, 151, only a few times. After embedding
random bits, the two values will OCCUT with about the same statistical fiquency, and the combined image wil l respond
differently to compression than before embedding. By enforcing the statistid frequency constraint for greyscale and
Truecolor images, the entropy of the combined image differs M e from the original host.

Greyscale and Truecolor images contain intensity values at the pixel locationst . Truecolor images contain

4. EXTRACTION AND SECURITY
4.1 General principles

analysis of the embedded imagedata set reveals the candidate pairs for extractionfor only the case where the individual
statistica1)Fequencies are unchanged by the embedding algorithm. In the BMF'EMBED example, the statistical
frequencies are changed by the embedding process. The pair table used for embedding can be re-created by analysis of the
original imagedata, or by comparing the image containing embedded data with the original host. However, the pair table
cannot generally be recovered &om the embedded imagedata.

Extracting embedded data isjone by reversing the process used to encode the data-image bit-stream. An

&eyscale pallet-fomut images contain pointers to the pallet entry. Because the pallet may not be ordered according to intensity
value, the pixel values do not correlate generally with brightness in the image. Grqtscale images Contain intensity v d w , and no
pallet is used.

10

The pairs selected for embedding constitute a “key” to extract the data-image from the image-data. The
BMPEMBED algorithm sorts the pixel-pair values meeting the constraints of eqs. 1 and 2, in order of decreasing total
number & to create! a list of pairs. The BMPEMl3ED.EXE versions later than Ver. 1.33 randomize the ordering of the
pair list. Thus, data embedding reduces the statistical properties of the host data to a list containing pairs of numerical
values. The pair components take their values from the pixel information. Each pair element is a unique value found in
the image data. Therefore, the ensemble of pair values (a byte string of length 2Np) is a key for a symmetric stream
encryption algorithm4. If the bit-stream encrypts using the frequency of occurrence of the pair values in the host image,
ciphertext could be produced similar to one-time pad encryption. Data embedding M e r s from encryption, because the
host data retains its information content even though the modified host data contain the ciphertext generated from the bit-
stream. Data embedding is therefore a means to produce invisible ciphertext.

4.2 Relation to Cryptography

embedded data &cause the former messages reside within the separate ciphertext of a digital signature. In host data
containing embedded information, the cipertext resides entirely in the noise component of the data. Because it is not
possible to separate the noise with certainty, the cipertext is invisible and undetectable without the key information.

Scbneier4 discusses subliminal messages in the context of digital signatures. Subliminal messages differ from

The key bytes describe the noise characteristics of the host data (eqs. 1 and 2). After the embedding process is
completed, the key bytes cannot be recovered exactly from the data, because embedding preseverves the statistical
properties of the host data in ensemble, but not in detail. Clearly the key-pairs or their equivalent, the original host data,
provide the embedding security.

The key is generated by applying the algorithm to original, unmodified host data. The key M e n for each host
data set, and in principle, access to the embedding algorithm is i d c i e n t to reaeate a key. However, data embedding
as implemented in the Bh4PEMBED.EXE demonstration has somewhat less security, because many key bytes can be
recovered with high probability by analyzing the image containing the embedded information.

The demonstration algorithm intentionally preserves most of the statistical propedes of the host data by selecting
as embedding pairs those having nearly identical fresuency of occurrence. Thus, depending on the statistical properties of
the bit-stream embedded into the host, the modified-host data contain values having about the same frequency of
OcCutTence as the unmodified host data. Security for the BMPEMBED.EXE demonstration program remains high,
however, because analysis of the embedded image data does not reveal the ordering of the key bytes for versions after
Ver. 1.33. If an image is used once for embedding data, and it is unavailable to an attacker, a chosen plaintext attack is
not possible.

-

If the key is destroyed after embedding, the process resembles one-time-pad encryption. Data embedding
therefore possesses potentially high security. Obviously, many of the key byte-values can be found with near certainty by
comparing the original and embedded data images. Because the key may use some bytes having infrequent occurrence, as
few as one or two values in the entire host data, comparing original and embedded data hosts is never certain to reveal all
the key pair values. Protecting the original host data is an important operational consideration. Key and host-data
management determines the security of the embedded data..

Data embedding resembles most a stream cipher4 operating in the counter mode, with a block algorithm. The
internal state of the encryption algorithm is driven by the key values (the pixel pairs), according to the sequence of the
pixel locations in the host image. The output function is the algorithm for manipulating the pixels in the host image. In
the example given, pixels are interchanged as required to represent bit values. A more complex output function might use
a table constructed from the pixel values to represent bit patterns. For example, eight equivalent pixel values could
represent entries in an octal embedding scheme. Highly redundant host data favors a complicated output funaion.

It is possible to modify the data embedding internal state with feedback from the output function, in the manner
of a cipher-feedback mode. For example, modifying the sequence of processing the host pixels, as suggested earlier, could
be driven by the number of bits embedded in a row or a column, or by some other property of the manipulated pixels. A
f-k modification can mitigate the error propagation inherent in the data embedding process.

In the BWEMBED example, synchronization of the extraction process requires perfect fidelity of the image
data. Modifying the image in a manner that changes pixel pair values unequally prevents data extractiont . In the
example algorithm, a defect in a digital image prevents extraction of any information beyond the defect location.
Modifying the embedding algorithm to embed blocks of data permits re-synchronizing the extraction scheme after
processing corrupted pixels. One or more blocks may be lost owing to the defect, but the unmodified pixels extract
correctly. We leave investigating the potential of cipher-feedback to maintain syncronization for future work.

4.3 Equivalent key length

maximum size of the key is the set of combinations of all pixel values taken by pairs. Thus, if the pixel element value is
2', the largest number of pairs is

The key size depends on the statistical character of the data, and its length is not fixed by the algorithm. The

and the keylength in bits is

L = 2Np . (4)
Determining the key for embedded data by a direct plaintext attack requires 2L combinations. For 8 = 8 (1- pixel
size), Np = 128, L = 2048. A plaintext attack, known or chosen, is lengthy owing to the large number of possible key
values provided by highly redundant host data. Any of the various plaintext attacks are restricted severely by one-time use
embedding and the generally inaccessible original host image. Unlike convention& cryptanalysis, an attack swcesfd for
one host data set gives no idormation useful for attacking any other example of embedded data.

With the pair table known, extracting embedded data consists of sequentially testing the pixel values to re-create
the-output bit-stream for the data-image. In the BMPEMBED algorithm, the pair table is inserted into the bottom row of
the embedded imagedata, where it is available for the extraction program. An option in the program permits removing
the pair key and storing it in a separate file. Typically, the pair key ranges from a two to perhaps a hundred bytes in size.
For the minimum case, L = 16, the security of data embedding results from the time-consuming process of data extraction
as compared with standard encryption schemes, and from the difficulty of recognizing extracted data as plaintext, Indeed,
for the most secure protocol, the embedded information is stochastic, because it is ciphertext data encrypted from an
original plaintext.

We note, for the BMPEMBED algorithm, a ciphertext-only attack is always possible, because the first block of
data embedded is a header containing a "magic number" signature. Embedding with an algorithm that omits or encrypts
the header information precludes recognizing the extracted data. Therefore, we believe the embedded data are secure if
the original imagedata or the pair key are not known. If the key is destroyed after embedding, the method gives security
from the protocol of a one-time pad encryption method.

Another way of protecting the pair table is to remove the key and encrypt it using public-key or other encryption.
The encrypted key can be replaced in embedded image-data preventing extraction by unauthorized persons. The presence
of an encrypted key givcs no more iiiformaton than the absence of a key, and even with a known plaintext attack against
the magic number signam, the Security is high owing to a long key length and a complicated extraction algorithm.

Embedding data into a host slightly changes the statistical frequency of occurrence of the values used for
encoding the bit-stream. Compressed or encrypted bit-stream data serve admirably as pseudo-random bit-streams.
Consequently, embedding pseudo-random data minimizes changes in the average frequency of occumna of the values in

Modifying pallet-format images to vary color balance, contrast, or brightness does not &at the embedded information, because the
embedding is done with pointers ratha than values. Even if the pallet entries become identical, for example by satUrating their color
components, the pointers to the pallet remain distinct and continue to convey the embedded information.

12

the embedding pairs. The existence of embedded data is not detected easily by analyzing the imagedata. Indeed, we
believe it may be impossible to detect embedded information with certainty.

4.4 Data embedding protocols

data-image bit-stream embedded into the host image represents plaintext although it may well be encrypted before it is
embedded. The combination of the host and embedded data constitutes the ciphertext. Using stenography, the existence
of ciphertext is not evident, because the content and meaning of the host information is preserved by the embedding
process. We regard data embedding as distinct from encryption because no obvious ciphertext ispmduced

protocol. Alice and Bob share a common library of original host images. M e r embedding a message to Bob, Alice
destroys the key and her copy of the original host image. Bob determines which of his original images to use when he
receives the image from Alice, and he generates the key pair-values from his copy of the host image. Bob cannot extract
the data with the generated key, because the pair values were randomized by Alice before they were used to embed the
data. Thus, Bob must determine the proper sequence of the key pairs, perhaps by trying all the combinations, or Alice
must communicate to Bob the random seed.

the seed for randomizing the key pairs. A separate algorithm generates a random seed from the noise signature in the
original host image. The image containing embedded data differs slightly from the original, and the seed cannot be
generated from it by the algorithm. In this protocol, Alice and Bob use two public algorithms. Both work on the original,
u n m a e d host image, and the security of the protocol depends on protecting this image.

Alice creates a unique image, for example by scanning a film negative or digitizing a television signal. The key is created
by analysis of the noise component, and Alice embeds the secret message. Alice encrypts the key with a standard
enuyption method, for example a public-key encryption protocol, and sends it to Bob. If Alice destroys the original image
after Using it to embed data, the security rests on the protection of the key sequencet .

A third variation permits Alice and Bob to use a public image for their host data. In a public-image protocol,
Alice and Bob agree on a series of image-processing manipulations that a f f e c t the noise character of a host image. To
communicate with Bob, Alice acquires a public image from a convenient data source, for example an image extracted
from a Worldwide Web homepage, or from a commercial image library. Alice processes the image to create a new image
that differs from the public copy, and that cannot be re-created easily, owing to the complexity of the secret processing
algorithm. Possible processing methods follow from manipulations in the frequency space afforded by an image
transform, and from non-linear warping.

Bob receives the image from Alice and obtains a copy of the proper public image. The public image is processed
with the algorithm used by Alice, and the key is generated by analysis, permitting Bob to extract the data Bob and Alice
communicate only through the image that is exchanged, having agreed in advance on the source for their public images.
When Alice and Bob communicate with a public image, security shifts to the protected algorithm used to process the
public image. The advantage of this protocol is the reduction of the communication between Bob and Alice, and the
reduced data storage of an algorithxp, as compared to an image I i b d .

Ixnage data are used as e&ples in this discussion, but the method is not restricted to such data. Alice and Bob
can use any sort of real-word data containing a noise component. Tables of floating point values, spread-sheets or data-
bases, digital audio and video, etc. are materials suitable for data embedding protocols.

Unlike standard ciphers4, data embedding combines the bit-stream into the covertext of separate imagedata. The

Communication protocols for data embedding vary with the application. The most secure is a one-time data

To simplify matters, Bob and Alice can agree to use d u e s drawn from the original image noise component as

Somewhat less secure is the keyed-image protocol, in which Alice generates the image and its embedding key.

+e example algorithm determines the size of the key by a checksum value. The key pair-values can be padded to the maximum size
with random bytes, and encrypted to ensure an attacker always faces with the maximum key length.

* The processing algorithm can be script commands for public software.

5. DATA EMBEDDING FOR TWO-COLOR FACSIMILE @'AX) HOST DATA

5.1 Image characteristics

numerical values of the pixel data, or in the values of the colors in a pallet. This section examines facsimile (fax) images,
using the same principles as above, with a view toward exploiting redundancy in the image. Fax images consist of black
and white bitmap data, i.e. the data for image pixels are binary (0,l) values representing black or white, respectively. We
denote a black and white bitmap image as a 2-color bitmap. The standard office fax machine combines the scanner and
the digital hardware and so- required to transmit the image via the telephone connection. Fax images are
transmitted using a special modem protocol. Characteristics of the fax modem standards are given in many sources. One
example, the User's Manual for the EXP modem', describes a Wdata modem designed for use in laptop computers. Fax
transmissions made between computers are digital communications and the data are therefore suited to data embedding.

In application to greyscale and color-pallet host data, the noise component originates from uncertainty in the

As used above, the embedding process is conducted in two parts: analysis and embedding. For a fax Zcolor
bitmap, image noise can add or subtract black pixels from the image. Thus, the length of runs of consecutive like-pixels
varies. An example demonstrates the principle. The scanning process represents a black line in the source copy by a run
of consecutive black pixels in the Zcolor bitmap image. The number of pixels in the run is uncertain by at least f 1
owing to the scanner resolution. Black and white images are redundant because run lengths Wering by one convey the
same information.

Applying data embedding to 2color bitmap data therefore consists of analyzing the bitmap to determine the
statistical frequency of occurrence of runs of consecutive pixels. The embedding process varies the length of runs by f 1
pixel according to the content of the bit-stream in the data image. Host data for embedding are any 2color bitpmap
image suitable for fax transnu 'ssion. Hardcopy can be scanned to generate the 2color bitmap, or the image can be crated
by using fax printerdriver software in a computer. We use as an example, an image created by Microsofia Word6 and
converted to a 2color f8x bitmap by BitFax software'.
5.2 Rumlength Analysis

Code to analyze the lengths of runs in a row of pixels in a 2color bitmap image is given in Listing 5. The
arguments to the routine rowsWs0 are a pointer to the pixel data in the row (one byte per pixel, containing zefo or one in
value), a pointer to an array of statistical hquencies, the number of columns (pixels) in the data row, and a flag for
internal routine options. The options flag is the size of blocks, or packets, of the bit-stream to be embedded. The options
flag is tested in line 9, and the routine packet-colo is used for a positive option flag. The packet-colo routine is given
in listing 6, and its purpose is to ensure the first pixel in the data row starts in an even column number. The location of
the first pixel in the row flags the start of a the data packets (cf: Section 5.3 for details).

Line 12 begins a loop to examine the runs of pixels in the data row. Runs between the defined values MINRW
and MAXRUN are examined by the loop. The j-loop and the test at line 15 locates a run of pixels, and sets the variable k
to the index of the start of the run. The test at line 2 1 selects only blocks of pixels having length i, less than the length of
the row. The loop in line 22 moves the pixel run to temporary storage in the array blockn.

Listing 5
line 1 int mwbts(uns@nd char 'data-row, kng 'histogram, int ncols, int packet-size) { ..

M 1, I. k, 1;
i n t m P return value */
int cwnt; Pno.ofpixelsintherun*/
char letter = 'A':

unsigned char Moc~WRUN+3]: P a Mock containing the run being emmined */

P bop counters ' I

P starting coda for flagging rum m the row */

P find first bit in the row 8 adjust as a packet flag */

14

Listing 5, continued
if(packe-size >=O) {

line 0

line 12

line 16

ine 21

ine 22

ine 24

ine 2s

ine 31

inc 33

ine 36

j = packet-d(data-row, packet-size, ncois);

1 if(nc0is <zO) return(-1);

for(i=MINRUN;ic=MAXRUN;i+=2) { P i is the runiength being searched ' I

for(j=l;j<ncols;j++) { P NOTE: data-row[O] is assumed to be zeroll ' I
if(data-rov$i]==(unsigned char)ONE) {

if(data-row(j-l]! =(unsigned char)ZERO) continue;

k = j; P a block start */

I
e b continue;

P find a Mock of data ending with a zero pixel*/

if(k+i+2 > mob) break;

for(l=k;lck+i+3;l++) M m] = data-rwu;
l= j ;

if(blockpl] I = (unsigned char)ZERO) goto NEXT;

if(bloclqi+2] > (unsigned char)ONE) goto NEXT;

r examine Mock for pixei count *I

count-0;

for(l=O;l4;l++) { P all but W bit in Mock must = 1 *I

if(-==(unsigned char)ONE) count++;

1
count++;

1 = j+l;

if(c0unt == i+l) { r set all but last pixei in run to flag value */

if(histogram != NULL)histograrn[i]++;

runs++;
for(l=j;l<j+count-l ;I++) data-rwu = letter;

I++;

}

NEXT: for(j=l+l ;J<NCOLS;J++) if(data-rw]==(unsigned char)ZERO)braak;

) P md of row (jj kdp3
k?tW++;

} Pendofrun(I)bop*/

retum(runs);

k = 0:

. The two tests at lines 24 and 25 reject blocks having run lengths other than the one required by the current value
of the i-loop. The embedding scheme selects blocks of length i, for embedding by adding a pixel to make the length i+l.
Thus the run will contain either i or i+l non-zero pixel values, according to the bit-stream of the embedded data. If the

15

run store in the blockfl array does not end in at least two zeroes, it is not acceptable as a run of length i, and the code
branches to NEXT, to examine the next run found.

Line 28 begins a loop to count the number of pixels in the runi . The number found is incremented by one in line
3 1 to account for the pixel added to make the run length equal i+ 1. Line 3 3 contains a test ensuring that the run selected
has the correct length. The histogramfl array for the run-length index i is incremented to tally the statistical fresuency of
the run. The data row bytes for the run are flagged by the loop in line 36, with a character to distinguish the runs located.
The flagging technique permits the embedding code to iden* easily the runs to be used for embedding the bit-stream.
On exit from this routine, the data row bytes contain runs flagged with letter codes to indicate the usable pixel positions
for embedding the bit-stream. The return value is the number of runs located in the data row. A return of zero indicates
no runs within the defined limits MINRUN and MAXRUN were located.
5.3 Embedding twocolor (FAX) host data

Fax modem protocols emphasize speed and they therefore do not include errorarmtion. Thus, fax
transmissions are subject to drop-outs and to lost data, depending on the quality of the telephone line and the speed of the
transmission. A successfd embedding algorithm must account for corruption of some portion of the image data. In the
application code we wrote for fax images, we used a variation of modem block-protocols to embed the data. Treating the
2 a l o r image as a transmission medium, we embed the data in blocks, or packets, and provide for start and stop flags,
and parity checks.

number of bits contained in the block are extracted or, in the case of a corrupted packet, when a start-packet flag is located
in a line. A checksum for parity and a packet sequence number are embedded with the data in a packet. Using this
method, errors in the fax transmission result in the loss of some, but not all of the embedded data. The fax embedding
method is always useful for ASCII text transmissions, but embedded binary files require an error-fk fax transmission.

row in the 2color image contains a non-zero value beginning in an even column (packet start) or in an odd column
(packet continuation).

The start of a packet is signaled by an image row having a pixel in an even column. The packet ends when the

Listing 6 gives the simple algorithm for initializing the 2 a l o r bitmap lines to flag the start of the packets. Each

Listing 6

I int packet-col(unsigned char 'data_row, int packet-size, int ncots) {

int i;
P find first bit in the row 8 adjust a s a packet flag ' I

line 4 for(i=l;i<ncols;i++) {

line 6 if(datz-r~~==(unsigned char)ZERO) {

if(pcke-skw0) break;

if(P=W&e*) (P first bit set to an even column */
ifti962 == 0)break;

iatm-m = (unsigned -)ONE;

line 11
1

eke { P first bit set to an odd cdumn ' I

if(i%2 I= 0)break;

data-m = (unsigned char)ONE;

~

Owing to the convention for fix-fomt images, the NI~S examined are whitespore rum instead of black, image pixel runs.

16

Listing 6, continued

I
I

lint 17 if(i==cds)retum(-1); P no black pixels in the row */

P index of the first Mack pixel ‘I
r if(packet-size==-l) return odd ‘I

if(packe-ske=O) retum(i);
if(i%2) retum(1);
else retum(0); r retum B V B ~ */

Line 4 in listing 6 starts a loop over the number of pixels in a data row. In fax images, a zero pixel value
indicates black space and a 1-value indicates white space. Line 5 locates the first black space in the data for the row. If
the variable packet-size is positive, the column index is tested to be even and the pixel is forced to white space. If the
packet-size variable is negative, the routine returns an indicator of the data row flag. If packet-size is greater than
zero, the first data row element is flagged as white space. Line 11 treats the case for packet-size = 0, indicating a
continuation row. For a continuation row, the first data row element is forced to black space.

and flagged with letter- to indicate the run lengths. The code fragment in listing 7 shows the embedding process for
2color bitmaps. Lines 1 through 49 complete a loop (not shown) Over the index ij, in the 2color bitmap image. Lines 1
through 26 contain code to read one line of pixels from the 2color bitmap. The row number in the image is stored in the
variable nmw, in line 1. Data are read by bytes from the image file in the loop beginning at line 12. The bits are decoded
and expanded into the image-rowfl array. The image-rowu array contains the pixel values stored as one value (0 or 1)
per byte.

Line 28 uses the packet-colo routine to return the packet-index for the row. If the return value j in line 28 is 0,
the-row is a packet-start row, and if j is 1 the row is a continuation row. Line 29 uses the mwstats0 routine to assign
run-length letter flags to the pixels in the row buffer. The return value, i, gives the number of runs located in the image
row. Consistency tests are made at lines 31,37, and 41. The index kp gives the line number within a data packet. If kp
is 0, the line must be a packet-start index, and if kp > 0, the line must be a continuation line. Line 49 completes the code
segment to read and pre-process a line of Zcolor image data.

The data-structure array pair0 contains the run length for (i), the augmented run length (i+l), and the total
number of runs in the 2color bitmap image. The index k in the loop starting at line 5 1 is the index for the run length
being embedded. The index inrow counts pixels within the image row buffer, and the variable bitinder is the bit-position
index in the bit-stream byte.

Line 57 sets the value of the run-length letter-flag in the variable testltr. The value of an image pixel is tested against the
letter flag in line 58. Ifthe test letter-flag is located, line 60 advances the index in the row to the end of the pixel run
being used for embedding. The test function in line 62 checks the bit value for the bit index in the bit-stream packet byte.
If the value is one, the last pixel in the run is set to one. Otherwise, the last pixel in the run is set to 0. The number of
bits embedded is rewrded in the variable maxvd.

Data embedding is accomplished by code that examines the contents of the data row d e r it has been analyzed

Listing 7 ..
1 line 1 READLINE: m = (ii)(lj/((long)bh.cols)); r read data from next row *I

if(-) {
if(nrow==O)fprinlf(stdtden,”\n”);

fpriM(stdW,”lrow %4d”, m);

I
else motion(stden); I

ina 12

Ina 28

in6 28

in+ 31

ine 37

ine 41

Listing 7, continued
bit-count = 0;

image-rMO] = 0;

if(verbose==2 a& nrow *=61)fprintf(tape9,"\nnrow byteplace %d %Id", nrow,byteplace);

inrow = fseek(tape6, byteplace, SEEK-SET);

writeplace = byteplace;

for(j = 1 ; j (int)bh.cds+l ; j++) (

P row buffer always starts with a zero ' I

int pix:

if@iit-cOwd e= 0) (P need andher byte ' I

bit_cocmt = 8:

bit-store = pbm_setr=@WW);

byt@-++;

1
bit-count = bh.bitsparpbei;

pix = (bit-stm *> bi-cx?unt) 8 mask,

image-rmi = (unsigned char)pix;

#ifdef INSERT-KEY

P key row set tozero to hold key pairs ' I
if(nrow == KEYLINE)image-rmj = (unsigned char)ZERO;

#endif

J P c d S ' l

byteplace += pad;
j = packet-cd(imasc_row,-l ,(int)bh.cds);

i = rowstats(image-row,NULL,(int)bh.cots+i ,-1); P flag tha embeddii pocak? */
if(- -=2) fptintf(tape9,"h nrow,i j: %d %d %d", nrow,i,j);

if(j<O 11 i==O) { P a row of white pixels or no pix& for embedding */

if(nrow+l<(int)bh.rows) (

lj += bh.cols;

goto READLINE;

1
1

ir(j==l 88 kp==O) (

-. fprintf(stderr,%Paket start-index error, packet %d", packet-0-1);

goto QUIT;

1
if(j==o 88 kp > 0) (

fprintf(stderr,"\nContinuath packet-index error, packet %d", packet-mi);

goto QUIT;

1
inrow- 1;

if(kp==O 88 verb~se==2)

18

Listing 7, continued
fprintf(tape9,"hPacket start-row %d, bits found %d",nrow,i);

kP++;
} P end new row (lj) test 4 line 48

P Embed one byte, use all pairs for each row */
line 61 for(k=O;ksnopirs;k++) (

if(pai~k].cwntcO) (

pm-enorpnPair count error!");
i = l ;

goto QUIT;

1
line 67 testltr = (unsigned char)(letter+(unsigned char)pair[k].il;! -1); rnagietterv

if(iige~r~nrow]==testltr) (P find a flagged run *I

if(verbose==2 && nrOw==60) fprintf(tape9,"iirow %d", inrow);
inrow += (unsigned int)pair[k].j;

lj += paW1.j;

line 60

line 62 i f (t e s t ((i n t) p n ~ ~ - r o w J , b i t i n d) image-row$il]=l:

else image-r~irow-l]=O;

1
Setting the value of the pixel trailing a run implements the embedding in the 2color bitmap images by

intioducing noise corresponding to the pseudo-random bit-stream in the packet data. The letter-flag values written into
the row buffer by the call to rowstat@ in listing 7 are reset to unit (1) value before the image-rowfl array data are
packed and written back to the .BMP format file. "'his code is not shown in listing 7.

5.4 Data extraction from two-color (FAX) host data

by a computer.. The image data are stored by the receiving computer in a file format (usually a faxcompressed format,
see Levine' for details) permitting processing to extract the embedding data. Fax data sent to a standard office machine
are not amenable to data extraction, because the printed image is generally not of suflicient quality to scan for recovery of
the embedded data.
5.5 Two-color embedding keys

lengths are not changed from the original (i, i+l) values. The order in which the values are used depends on the
frequency of occurrence in the image. As in the example for palletcolor images, the values of the pairs used for
embedding is inserted into the fax to provide a key for extraction. However, the key is not strictly required, because in
principle, knowledge ofthe defined values MINRUN and MAXRUN permits re-caldating the run-length statistics from
the received image. In more complicated algorithms, the key is required. Thus, while somewhat less secure than for
palletalor images, the 200lor bitmap algorithm can be implemented still as a one-time pad cryptographic protocol.

Data embedded into a 200lor bitmap fax image can be extracted easily, ifthe transmission of the fm is received

The key for 200lor image embedding can be recovered by analyzing the embedded image, because the run

6. DIGITAL WATERMARKING
6.1 Watermarking concept

distribute images rely on reduced-resolution samples, or encryption. A means of impressing a removable digital
Images presented in digital form are readily copied and edited for use in publications. Common methods to

watermark facilitates distributing image products. Images are distributed with overiay patterns that prevent their use, but
require these require obtaining a separate copy of the image for use without the pattern overlay.

Data embedding techniques provide a means of distributing images with removable watermarks. The algorithm
given here is implemented in BMPEMBED.EXE Ver. 1.50 and later. An overlay mask, or pattern, is defined in a data
file. The watermarking of the host image follows the scalable mask data. Briefly, each pixel in the host image is tested to
determine if it is located within the scaled mask. If the pixel lies outside the watermark mask data, no action is taken. If
the pixel is within the watermark, its value is written to a data file and the host file is modified by replacing the pixel with
new information. AAer completing the watermarking process, the data file of the pixels removed from the watermarking
region is embedded into the watermarked image.

Removing the watermark requires the embedding key to extract the pixel data file. The overlay mask, or pattern
file, or a pattern algorithm is also required. The process described above is reversed to remove the watermark. A host
pixel found to be within the watermark pattern is replaced with the original value taken from the pixel data file.

6.2 Watermarking algorithm description

executing this fragment from the routine waterBMP0, the host image has been analyzed for data embedding potential.
The key pairs have been selected and the header information is available.

In line 1 of Listing 8, the index for color plane, ip, is incremented if the host image is in Truecolor format. Line
4 initializes the key-pair data for Truecolor images. If the image is in m e t color format, the pair values are initialized by
the analysis process executed in previous routines. Line 10 begins the watermarking code. The host data are located in
the file pointed to by the handle “in,” and the watermarked data wil l be written to the file pointed to by the handle
“tapd.“ The pixel data begin at the affset location stored in the bitnap fommt header structure member bh.pixeloffset.

watermarking process is performed by code that operates on the pixels within an individual row. The file is positioned in
line 18, and a row ofpixels is read (line 19). The pixel byte values for the row are available in the memory array
image-row. The index i intersped in code within the loops will be discussed below. The loop using the j index,
beginning in line 22 steps the calculation across the pixels in a row. The variable krow provides an offset in the loop for
Truecoior images. Truecolor images interleave the RGB color plane values and krow

Listing 8

The code fiagment in Listing 8 shows the code used to impress the watermark on the host image. Prior to

Lines 15 through 51 fall within a loop over the index mow, the row number in the host image. The

the j index appropriately.

line 1 if(bh.bitsperpixel == TRUECOLOR) {

if0PWP = tam;
nogain = tcgair(ip].nogaim;

line 4 for(i=O;i~no~;i++) {

paifli1.i = (cokr~ak[ip]+i)-+i;

pairI4.i = (wgairli~l+i>+J;

1 m

pairIi].count = (colorgair[ip]+i)-+cnt;

1
line 10 reWind(in1;

-(taPe61;
byteplace = bh.pkdoffset;

i=o:
if(vsrboQe)rprirltf(&defrtr(stderr,”\n”);

line 15 for(nrow=0;nrowc(int)bh.rows;nrow++) (
if(wrbose)fprintf(stderr,tr(stden,“row W , n r o w) ;

20

Listing 8, continued

ina 21

ine 22

ine 36

ine 41

ine 26

ine 28

ine 27

else if(nrow%lO == O)fprintf(stden,".*);

j = fseek(fp,byteplace,SEEK-SET);
j = fread((vW)image-row,l ,(size-t)(BYTES-IN-ROW),fp);
i++;

if(i==nogairs)i = 0;

for(j=krow;j<(int)(BYTES-lN-ROW):j+=(int)OFFSET) {
if(nrow-=O) image-rowfj] = 0; P zero the last row for pair key */

k = patmask(nrowjj;

#(k) {

data-rowjd-inrow] = irnage-rowti];

checksum += (unsigned long)data-r~d_inrow];

d-inrow++;

maxVal++;

if(d-inrow == NCOLS) {

k = Me((v0id ')data-row, 1 ,(&e-t)(NCOLS),tape5);

d-inrow = 0;

1
beta = rando; r Watermark the pael with a pair value */

#(beta > RAND_MAWZ) image-rw] = (unsigned char)pair[i].i;

else image-rq = (unsigned char)pair[il.j;

1

waacect;.
Pad++;
1

/'nrowbop*/
W(ip < 2)goto START; ina 62 P loop for TtueCdor image planes */

Line 26 performs the test to determine if the pixel is within the watermark pattern. The rem value k directs
execution to the next pixel if the current one is outside the watermark, or into code that replaces the pixel with new
information ifthe current one is inside the watermark. Pixels within the watermark mask are saved in the memory array

Listing 9, continued

22

line 1

line 4

line 6

line 10

line 11

line 16

ine 22

unsigned char xtmp;

unsigned short dart=SEED_VALUE; P starting seed for sand() */

int ij;

float x-frac,y-frac;

FILE *newlO;

P copy header horn .HSI raw format file to a temporary mask file ' I

fprintf(stderr,"hThinning watermark pattern...");

rewind(tapel0);

thinfile = -ternpnam(l."."thii");

strcat(thinfile,".raw");

newlo = fopen(thinfile."w+b");

for(i=O;iwater-tile-pos;i++) (

j = fread(&pixel-value,l ,l ,tapelo);

j = fwite(&pixd-valUe,l.l ,new1 0);

1
P read 8 randomly thin the pattern mask, writing to file newlo */
srand(start); r seed the random no. generator 'I

x-hc = (fioat)(i I mask_factor);

pixel_brdex = hd_headef.width;

no-pat-pixels = OL;

r percentage of mask to retain */

pbd-index *= hsi-headerhiiht;

for(ij=O;ij<pixel-index;ij++) (

i = head(&pixel-value,l,l Japelo);

if(i I= 1) {

fprintf(stderr,"\nTHINPAT.C: VO errof);

r repction sampling to scale pattern size to ernbeddi space */

dmp = pixe)-mlue;

if(!pkei-mlue) {

y-frac = (fbat)rando/(noat)RAND-MAX;

if(y-fmc x-frac)xtrnp = 0x01; P reject the mask pixel */
else no-ptJixels++;

1
j = fwrite(&xtmp,l ,l ,newlo);

1
fckse(tapel0);

tape10 = NULL:

fWW 0);
fpfintf(stdem,'%ld pattern bytes",nogatgixels);

newlo = fopen(thinfile,"r+b");

23

Listing 9, continued

I rstwn newlo; I
The routine takes as argument the file handle for the watermark mask. The routine thins this pattern and creates

a new mask, or pattern file, The handle to the new file is returned to the calling program. Lines 1-4 define the data files
used. The loop starting at line 5 copies the header information from the user-supplied pattern file to the new file. The
watermark file is in a binary format defined by Handmade Software, Inc.*

Line 10 seeds the random number generator with a starting value stored in a global variable. The seed value
used for the random number generator is stored in the header of the data file embedded into the watermarked file,
ensuring that the identical random number sequence is generated when the watermark is removed

example, if mask-factor = 3.0, the user-supplied mask has been determined to be three times larger than the number of
pixels that can be embedded into the image. The fraction of pattern pixels to retain is therefore 1/3.

value per byte, and a non-zero byte indicates white space. A zero pixel value indicates information within the
watermarking pattern. Lines 22 through 26 consititute code for rejection sampling the pixels in the mask file.
Statistically, the fraction x-frac of the userdefined pixels is retained. The new file contains a pattern that resembles the
original watermark, thinned by missing pixels.

Removing the watermark requires that the mask file be thinned identically, as in the marking process. The
watermark is therefore secured additionally in images having relatively small embedding space. Typically, in pallet
format images, about 5% of the image space is usable for embedding and this permits a modest logo or text string to be
used for watermarking. In Truecolor images, the embedding space is typically so large that considerable space is available
and no thinning is required.

In line 11, the fraction of the mask pixels to retain is calculated using the global variable mask-factor. For

Line 15 starts a loop over the total number of pixels in the pixel mask file. The mask file contains one pixel

7. COMPRESSION EMBEDDING
7.1 Lossy Compression

are required. Transmissions of digital television, for example, use complicated data compression methods to accomplish
this minimization. A class of these methods is termed “lossy compression.” The class is termed ‘lossy’ because the
compression methods reduce slightly the quality of the original data. Multi-media computing applications use lossy
compression of image and audio data to improve performance and reduce data storage requirements. Most lossy
compression methods depend on a transform from image pixel values to caeflicients ofa series expansion.

Redundancy and uncertainty are intrinsic to lossy compression methods. Two examples of lossy compression are
the Joint Photographic Experts Group (PEG) standard, and the Wavelet scalar Quantization (WSQ) algorithm that has
been adopted by the Federal Bureau of Investigation for the electronic interchange of digital fingerprint information. The
P E G algorithm is based on the Di-te .Cosine Transform @CT) representation of the host data The WSQ method is
based on a representation of the host data in terms of wavelet functions. In both methods, the host data representation
exists in an intermediate stage as a sequence of integer values referred to as ‘indices.’

Data embedding principles appear at first incompatible with lossy compression, because the loss modifies the
noise component and degrades slightly the fidelity of the original host data. This loss in fidelity destroys any information
which has been embedded into the noise component of the host data. However, it is possible to W e an embedding
algorithm in the transform of the image, in the space of coefficients.

When it is necessary to transmit large amounts of data, innovative methods to minimize the communication time

At the intermediate stage, loss of fidelity has occurred because the transform coefficients representing the data
are quantized to a finite number of integer representations. Redundancy occurs in lossy compression methods because an
integer value is uncertain by typically one unit in value. Thus, although adjacent integers OCCUT many times in the
compression sequence of indices, they often contribute equally to the reconstructed data. Uncertainty occurs in the integer
representation because the uncertainty in the original host data carries through to its transform representation. The
integer representation values are individually uncertain by at least f l unit of value, and this redundancy can be exploited
in fashion similar to that used for embedding into black and white images.

The JPEG algorithm is used to demonstrate compression embedding. The method is given in an article by
Gregory K. Wallace9. The JPEG algorithm is used primarily for compressing digital images. A somewhat less technical,
more leisurely introduction to JPEG can be found in the book by Mark Nelson”. Pennebaker and Mitchell” published a
detailed textbook about JPEG. The JPEG format is represented by IS0 standards DIS 10918-1 and DIS 10918-2. The
Independent JPEG-Group’s C-language source code is available electronically from flp.uu.net (Internet address 137.39.1.9
or 192.48.96.9). The most recent released version can always be found there in directow graphicdjpeg.

The WSQ method as applied to compressing digital fingerprint images was given by Bradley and Brislawn”, and
by Bradley, Brislawn, and Hopper”. Documentation for WSQ compression is available through J 0 ~ t . b N. Bradley, Los
Alamos National Laboratory, P. 0. Box 1663, MS-B265, Los Alamos, NM 87545, and electronically from the Internet
FT’P site “flp.c3.lanl.gov” in directory lpUWWSQ.
7.2 Compression embedding concept

The actual embedding of the auxiliary data into the compressed representation of integer indices is a three-part
process. First the indices, representing the transform coefficients, are examined to identify pairs of the integer indices
having values that occur with approximately the same statistical frequency, and that differ in value by only one unit.
Second, the order of the integer indices pair values is randomized to generate a unique key sequence that cannot be
duplicated by an unauthorized person. Third, the pairs of indices identified in the compressed integer representation are
used to reader the indices in the compressed representation in accordance with the bit values in the sequence of auxiliary
data bits. The key sequence is optionally appended to the compressed data file.

compressed data file, or it is supplied as information separate from the compressed data. The key specifies the pair-values
of indices differing by one unit in value. With the pair values known, the extraction consists of recreating the auxiliary
data according to the sequence of occurrence of the indices in the cornpressed representation. The key data are used first
to extract header information. The header information specifies the length and the file name of the auxiliary data, and
serves to validate the key. If the compressed file contains no embedded information, or if the incorrect key sequence is
used, the header information will not extract correctly. However, swcesfd extraction exactly recreates the auxiliary data
in an output file.
7.3 Analysis of Compression Indices

Extracting embedded data inverts this process. The key sequence of pairs of index values is recovered fkom the

. The JPEG method compresses the host image in pixel blocks specified to the algorithm at the time the indices
are calculated. The WSQ method compresses the host image by passing it through a series of multirate filters. In both the
PEG and WSQ algorithms, the image host data exist in an intermediate stage as a sequence of integer (16-bit) indices.
The indices represent an image o r i w l y presented in a standard digital format.

The charactenstl * ‘c of lossy compression that makes compression embedding possible is redundancy owing to
uncertainty in the index values. Each integer index occurs typically many times in the compressed representation, and
each index is uncertain in value due to uncertainty in the host data. The analysis algorithm creates a histogram of the
integer indices in the compressed representation. This histogram shows the probability density of the integer values in the
representation, and plots the number of times a particular value occurs versus the value. For JPEG compression, values in
the range f1024 are M c i e n t to demonstrate the method, and for WSQ compression we use values in the range f4096.
A particular distribution of values depends on the image content, but both compression methods concentrate the values in
a Nttern symmetrical about 0.

http://flp.uu.net

25

Figure 1 is a reproduction of the greyscale image example. Compression embedding works equally well with
color images, because the chroma, hue, and luminance are separated by a merent algorithm, before the expansion to
integer indices. Details of color image handling M e r among the respective lossy compression algorithms. Thus, the
grey scale image example in Fig. 1 does not represent a limit to the application of the embedding method. The grey scale
example image is reproduced in Fig. 1 at reduced scale and quality to facilitate printing. The reproduction in Fig. 1
demonstrates only the nature of the image example, and the figure does not convey a representation of the image quality
appropriate to evaluate the performance of the data embedding example. Images expanded from compression
representations containing embedded data are visually identical to those expanded from unmodified compressed images.

Histograms of the indices for the image example in Figure I are shown in Figures 2 and 3, for JPEG and WSQ
compression respectively. Fig. 2 shows the histogram for the JPEG compression representation, for the image sample
shown in Fig. 1, and compression ratio about 12:l. The file size for the PEG version of Fig. 1 is 42953 bytes. Analysis
of this image according to the algorithm used for this example identifies 50 pairs of values in the histogram, totalling
3573 bytes of embedding space, slightly less than 10%.

Figure 3. shows the histogram for the WSQ coefficient representation of the image sample shown in Fig. 1, and
compression ratio about 20: 1. Analysis of these coefficients identifies 37 pairs of values in the histogram, totalling 471
bytes of embedding space. The WSQ histogram contains fewer coefficients than produced by the PEG method owing to
the larger compression ratio, but their redundancy nevertheless permits embedding some information into the compressed
representation.

order to encode the values of the extra data which is to be added. For the purpose of illustration, consider the compression
representation consists of a continuous sequence of integer values or indices. Further assume that any intermediate index
value is uncertain by *I unit in value. The frequency of occurrence or histogram value of a certain index i is f(i).

Compression embedding involves the rearrangement of certain values in a lossy compression representation in

Two values i and j in the table of indices are candidates as embedding pairs if:

Ii-11 = 1 (5)

For compression embedding, j = i+l. Index values meeting the criterion of Eq. 5, and Occurring also in the representation
with f(i) - f(j) < 6, where f(i) and f(i) are the probability of occurrence of adjacent intermediate index values, and 6 is the
tolerance imposed for statistical equality, are candidates for embedding use. The values i and j meeting this constraint
constitute a pair of index values pk. There are k=o, 1,2,.* .Np such pairs in the compression representation, giving a total
number M of embedding bits:

M= Z i (d)+ C Ad)
The sum mat^ 'ons over L of i and j run over a limited range of the intermediate indices. In the example given here, the
summation limits are spenfied at f1024.

In listing 10, the loop beginning at line 3 processes the histogram table to identify pairs of indices meeting the
speciftcations above. The table values are stored in the variable hist-table, having H-TAB=-SIZE entries. Figures 2
and 3 show the histogram data for sample JPEG and WSQ compression representations, The code in line 8 compares the
absolute difference of the frequency of OcCuTrence f(i) and f(i) with the average value of the two occurzence frequencies.
Pairs differing by less than the aver&$ value are accepted in this example. This simple selection scheme prevents an
artificially large modification to the indices in the compression representation. For example, iff(i)=IOOO and f(i)=SOO,
the absolute difference is 500 and the average is 750. This pair will be rejected as an embedding candidate. However, if
f(i)=lOOO and f(jP750, the absolute difference and the average are 250 and 875, respectively, and this pair will be
accepted. This, or a similar scheme for selecting pairs for approximate equality of their component's frequency of
occurrence minimizes perceptible differences in the image expanded from the compressed representation containing
embedded data.

26

Listing 10
Process histogram to select embedding pairs ' I r

line 3

line a

line i a

j = o ;

for(i=O;i<H_TABLE_SIZE;i++) {
lsum = histJable[i]+hist-tableji+ 1 1;

Miff = histJabbpJhiiJable(i+i];
kliff = labs(ldiff);

if(ldiff bvg) (P Difference less than avg. for pair */

lay = IsurnL;

paimj.i = i+(int)minvai;
paifl1.j = i+(int)minval+l;
j++;
i+=2;

if(j==MAXPAIRS)break;

1
1

bum = OL;
nogain = dupliite(j.pair);
for (i=O;i<m>irs;i++) (

if(paifl&i==pair(i].j)break;
printf(%paifl%3dl%4d %4d %5W, i,\

pair[i].i, pair[i].j, paifl@ount);
lsum += pair[il.cwnt;

1
nogairs = i;
printf(%%d pairs lccated. %M total embedding bits., nogain, lsum):

aimj. wnt = (unsigned long)lsum;

The pairs selected from the histogram are stored in the data structure array element pairti] in lines 9,10, and 11.
In the example in listing 10, the data structure permits MAXPAW3 pairs to be selected, The structure element
pair~J.count contains the total number of occurrences of the (id) values in the histogram table. Line 18 uses the routine
duplicate0 to remove duplications from the pair table. Code starting in line 19 calculates the total number of pairs,
nogairs, and Isum, the total number of bits that can be embedded into the compression indices. h4, in Eq. 6 defines the
calculation performed in the loop starting at line 19.

The embedding process ignores completely the contribution the individual index values make to the compression
representation. In PEG compression, the values represent the d c i e n t s in a discrete cosine transform performed over
pixels in a square block of the image data. Usually, 8 x 8 pixel blocks are used, but the details of the transform and the
tiling of the image data are irrelevantfor embedding purposes. In WSQ compression, the indices are determined by
quantizing the discrete wavelet transform coefficients which are calculated by repeated applications of a multirate filter
bank. Again, details of the wavelet calculations and the sampling size are ignored in the selection and use of the
embedding pairs.

values. The same index value i, is found perhaps in several Werent pair combinations. Because multiple pairs cannot
contain the same index entry, due to each pair combination of index values having to be unique, it is necessary to
eliminate some pairs. The number of pairs located by applying the criterion of Eq. 5 is stored in the variable j, in line 18.

Depending on the details of the selection algorithm, the index pairs found can include generally redundant

27

The security of the embedded data is increased sigruficantly if the pair values are arranged into a random order.
Randomizing the order of the pair values is an important part of data embedding, and we illustrate it in Listing 1 1.
Randomizing is accomplished by rearranging the pair values according to a randomly ordered data structure. The
structure named inderqts contains elements indexqts[k].i, k=O, 1,2, ..., aogairs; and indexqts[k].gamma,
Yl ,...,yk,..,y m y , where the ykvdues are uniformly random on (0,l). The standard library routine qsorto is used to sort
the data strucwe inderqts(1. Putting the random element values into ascending order randomizes the index element of
the structure. The random index values are used with the paw structure elements calculated and sorted as indicated above,
to re-order the table to give random pair ordering.

Listing 11
p m t . o o - o . . ~ o t . o o o . o - ~ o o ~ o ~ r n o o o ~ o ~ . o ~ " - o m o o * ~ o o o o n ~ o o

JUMBLE.C: Routine to jumble a table of indices using pseudwandom

INPUT:

. numben seeded fromtha PC clock
index, pointer to a table of jumbled integers
npts, integerno.ofentriesinthehdextabb

RETURN: nothing
OUTPUT:
AUTHOR:

return a jumbled table of integers
M. T. Sandford 11, 5 Oct. 1994, fdkwing tha method

preferred by T. Handel .
I .o.-Hoooot.to..oo.o.oo.ooo~ooo"-o-oo*-om--.~--

void jumble(int 'index, int npts) (
int i;
float fi;
structPOlNTS {

ficat gamma;
int i;
1 *-gts;

indexgts = malroc(sizeof(struct P0INTS)'nindex~b);
far (i=O;i<nindex$s;i++) (

indexgaj4.i = i;
index~fi.gamma = (tloat)rando/(float)RAND-MAX;
1

qsort((void ')indexgts, (size-t)nindexMs, sbeof(struct POINTS),

for(i=Qi4ndex>;i++) {
index-compare);

i w = indexgtsm.i;

r printf(-w,m w w, i, w; 01

if(indeIqO]==o) {
1

- I

ti = (fk&)rand()/(fk&)RAND_MAX;
fi '= (fbat)(nindexgtbl)+l .Or,

indeNO] = indM(int)fiJ;

W(int)fil= 0;
1

free(index9);

1

28

Listing 11, continued
r comparison routine for sorting points structure values */

int index-compare(const void 'pi, const void 'p2) {

if((rl0at *)pl > (float *)p2)retum(l);
if((R0a *)pl== (float ')p2)return(O);
else return(-1);

1
7.4 Compression embedding

The actual embedding of auxiliary data into a compression representation consists of rearranging the order of
OccUITence of the redundant indices. The pairs selected for embedding contain the index values to be used in the
rearrangement. It is important to realize that the numerical values used for embedding data are the index values already
Occurring in the compression representation. The embedding process alters the entropy in the DCT or WSQ coefficients
slightly, but the efficiency of compression is largely unaffected by embedding additional data into the indices values.

In the embedding process illustrated here, the coefficients calculated by the compression algorithm are
manipulated in the order of the compression scheme used to generate the representation, PEG and WSQ for the examples
herein. The embedding process flows concurrently through the sequence of auxiliary data bits and the compression
indices. Upon identifying a compression index matching one of the pair table values, the bit in the sequence of auxiliary
data is examined to determine if the index is set to the pair[k].i value (embedding a 0), or set to the pairF1.j value
(embedding a 1). The pair table is processed sequentially, in the order found after it was randomized by the code in
Listing 11.

Listing 12 illusvates the code fragment that performs the actual embedding. The routine embed-data-block0
embeds data into the block of data passed by the unsigned character pointer variable block The loop index j increments
by 2 each pass through the loop starting at line 20 in listing 12. The block pointer is used to extract the 16-bit integer
into the variable index in line 21. Line 22 begins the loop index k, searching the values of the pairfl data structure.
When a pair element is found to match the index value, embedding is permitted. The auxiliary data bit to be embedded is
returned by the external routine aux-bit@ For a one bit, the index variable is set to pair[k].j and for a zero bit, the index
variable is set to pair(k1.i M e r setting the index variable, the proper two bytes in the block data array are loaded with
the index variable value. The embedding praceeds as the index j strides through the compression representation indices.

0 mbed-data-bloclc Routine to embed data into a Mock of integefs using

INPUT:
the pairs in the structure pair.

* buffer, pointer to the Mock of integers
i, integer no. of integers in the Mock
pair, pointer to index pair structures
nogairs, number of pair structures - 1

RETURN:nathing
AUTHOR:

void embed-data-block(unsigned char 'buffer,int i,struct PAIRS 'pair,int nogairs) (
short im
ini j;
int k;

29

Listing 12, continued
float test

for(j*J<i:j+=2) (

memcpy(&index,buffer+j,2);
foc(k=O;k<nogairs:k++) {

if(index==paim].i 11 index==paim].j) (
embed_count++;

if(aw-bB0) { P aux. bit b a t *I

index = PaW1.j;
1

- I Paux.bitisaO*/
index = pairtk1.i;

1
memcpy(buffer+j,Bii,2);

I
1

1
-;

1

7.5' Extracting compression-embedded data

The extraction of embedded data is accomplished by reversing the process used to embed the auxiliary bit stream.
A histogram analysis of the compression representation containing embedded data wil l reveai the candidate pairs for
extraction for only the case where the individual statistical frequencies of occurrence ofthe index values are unchanged by
the embedding process. For most data, this is unlikely, and the pair value table reawered by an analysis is different from
the one used for embedding.

secure against unauthorized extraction from the compression representation. Indeed, detecting the presence of embedded
data is difllcult, if not impossible, because the only metric to use for such detection is a statistical analysis of the
compression representation indices. Embedding affects the statistical properties only slightly and leaves no characteristic
signature revealing the presence of embedded information.

With the pair table known, extraction consists of sequentially testing the index values to recreate the output bit-
stream for the header information, and the auxiliary data. In the present invention, the pair table is inserted into the
compressed image file header, or appended to the file end, where it is available for the extraction process. Typically, the
pair table ranges fim a few to perhaps hundreds of index values in size. The maximum pair table size permitted depends
upon the compression representation. For PEG compression, Fig. 2 shows the index values concentrate near the origin
and 50 to 100 pair dues are adequate. For WSQ compressions of digital fingerprints, the index values spread over a
large spectnun and more pairs are required.

Owing to the uncertainty introduced by randomizing the order of the pair table, the embedded data are more

30

7.6 Improving lossy compression with data embedding
Embedding auxiliary data into the compression representation slightly changes the statistical frequency of

occurrence of the index values. If the auxiliary bit sequence is pseudo-random, the frequencies of occurrence for the index
pairs i and j are nearly equal after embedding. Intentionally equalizing the histogram reduces entropy somewhat, and the
entropy coding portion of the compression algorithm is found to operate with slightly greater efficiency, increasing the
effectiveness of the lossy compression method. Thus, even if no auxiliary information is to be embedded, equalizing the
statistical properties of the histogram pairs improves the compression ratio for lossy methods.

Because the expansion of the compressed data returns an approximation to the original information, the
efficiency of the lossy compression is unaBected by embedding the additional information. The embedded information
can be extracted to a parallel channel by hardware or software added to the compression expansion algorithm. The
embedding of information in this manner does not increase the bandwidth required for the transmission of the compressed
data because the embedded data reside in the coefficients chosen originally to represent the input data.

8. CONCLUSIONS
Digital data containing a noise component are common in consumer products, military systems, and in scientific

and technical applications. Because modifying data containing embedded information prevents extracting all the
information correctly, the embedding process can serve as an invisible signature, or validation for digital data. A variant
of data embedding permits placing a digital watermark in electronic images. Thus7 digital images can be authenticated
using the embedding method. For forensic applications, invisible embedded information can provide a chain of evidence
that normally requires extensive paper trails.

Numerous electronic communication applications are possible. Ciphertext evident in a communication channel
signifies protected information, but the same information can be embedded into routine digital data without noticeable
effect. Thus, with data embedding, communications through public networks where encryption is not permitted resist
analysis and monitoring. Previously open communications links have new potential for secure, covert communications.

easily contain embedded targeting information and overlays of battle order. The amount of information requiring
protection is reduced in volume by data embedding, because only the unique key bytes must be protected. Indeed, maps
can be released to, or even entrusted for transmission by commercial communication channels without compromise of
their additional, embedded data.

Digital images can be watermarked using data embedding. A mask, or pattern, is followed to modify the content
of selected pixels in the image. The modified pixels watermark the data, permitting commercial distribution without
encryption or scrambling. Data embedding provides the means to restore the original image, because the pixels modified
by watermarking are embedded into the noise component of the image. Using the embedding key and the mask, or
pattern algorithm, the embedded information is extracted and the pixels in the watermark restored to their original
content. Distribution of protected commercial imagery is reduced to key management without the need for additional
media or image transmissions.

Data embedding can be used to convey information subject to Privacy Act controls. Patient identification and
medical history can be embedded into'a digital X-ray. Embedding medical information into digital X-rays, EKG, EEG, or
MRI data provides a simple, easy way to bind privileged information with patient data and, sirnuitanmusly to provide
authentication of the data Commerciai medical instruments can use data embedding, in combination with public-key
encryption of the embedding key, to generate data that can be examined by anyone, yet extracted for privileged
information by proper authorities. Data embedding is primarily a sofhvare application and it can therefore be
implemented in many different types of existing hardware simply by modifying the programs used to process the data
Alternatively, the data embedding algorithm can be implemented in custom circuitry.

Maps generated for military applications can be sent in digital form through open communications Iines, but can

9. ACKNOWLEDGMENTS
We thank J. N. Stewart for his assistance in improving the coding of the two-color bitmap data embedding

algorithms beyond the forms given in this paper. Dr. S. S. Hecker, Director of the Los Alamos National Laboratory,
provided much needed support to pursue our investigations of data embedding algorithms. Mr. Milton Wyrick schooled
us in the importance and methods of patenting software. Ms. Joyce Capeli provided the opportunity to present our
methods.

10. REFERENCES
1. M. T. Sandford XI and T. G. Handel, “BMPEMBED: A Data Embedding Demonstration Application Program, Ver.
1.51,” privateiy publ. software: Univ. of Calif. LANL, May 1994.

2. J. M e , Programming for Graphics Files, publ. J. Wiley & Sons: New York, NY, 1994.

3. M. Luse, “The BMP Format,7’ Dr. Dobb’s J., 19, 18, 1994.

4. B. Schneier, Applied Cryptography Protocols, Algorithms, and Source Code in C , publ. J. Wiley & Sons:New York,
NY, 1994.

5, EXP Computer Corp., User’s Manual for EXP FadDataModem , 1.1 Edition, publ. EXP Computer, Inc.: Syosset, NY,
1993.

6. Microsofl Corp., User’s Guide, Microsoft Word, Ver. 6.0, publ. Microsoft Press: Redmond, WA, 1994.

7. Bit Software, he., BITFAX for Windows User’s Guide, 2d ed., publ. Bit Software, Inc.: Fremont, CA, 1993.

8. Handmade Software, Inc., Image Alchemy User‘sManual, Ver. 1.8, publ. Handmade Software, Inc.: Los Gatos, CA,
1995.

9. G. K. Wallace, “The PEG Still Picture Compression Standard,“ Comm. ofthe ACM, 34 no. 4, pp. 3044,1991.

10. M. Nelson, The Data Compression Book, publ. M&T Books: Redwood City, CA, ISBN 1-55851-216-0,1991.

11. W. B. Pennebalter and J. L. Mitchell, JPEG Still Image Data Compression Standard, publ.Van Nostrand Reinhold:

12. J. N. Bradley and C. M. Brislawn, “The wavelet/scalar quantization standard for digitaI fingerprint images,” Proc. of
the 1994 IEEE Intern. S’p. on Circuits and Systems, 3, pp. 205-208, 1994.

13. J. N. Bradley, C. M. Brislawn, and T. E. Hopper, “The FBI wavelet/scalar quantization standard for gray-scale
fingerprint image compression,” Proc, PIE , 1961, pp. 293-304, April, 1993.

NY, ISBN 0-442-01272-1, 1993.

.
32

FIGURE 1 Greyscale photograph

Frequency of
250 5 I P O

0
N
rp

I
0

N
r

Occurrence
D 1000

34

WSQ Histog

c*s s s
ctrz
eo
Q16

0 c -66 - - I -17 i

Histogram
03 132

Index

FIGURE 3 Wavelet indices histogram of photograph

