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Abstract classes, and partial ordering. SEARCH identi- 
fied the class of o r d e r 4  delineable problems- 

This paper describes an application of the re- problems that  can be solved using a bounded 
cently introduced gene expression messy genetic order of relations-that can be solved efficiently. 
algorithm (GEMGA) (Kargupta, 1996) for de- SEARCH also offered an alternate perspective of 
tecting fraudulent transactions of credit cards. evolution which lead to a biologically inspired 
It  also explains the fundamental concepts under- evolutionary search technique called the gene 
lying the GEMGA in the light of the SEARCH ezpression messy genetic algorithm (GEMGA) 
(Search Envisioned AS Relation and CI~SS Hier- (Kargupta, 1996). In this paper we describe an 
archizing) (Kargupta, 1995) framework. application of the GEMGA for credit card fraud 

detection. 
Section 2 describes the problem and identifies 

1 Introduction the potential applications of search algorithms. 
In stead of applying an arbitrarily chosen algo- 

''redicting credit card frauds requires a synergy of rithm we resort to the fundamen- 
ifferent technologies from different fields such as tal issues in BBS following the SEARCH frame- 

optimization, system identification, and machine work. Section 

role in all of them. In optimization a search ab lutjonary Section 5 presents the 
gorithm is used for finding the optimal solution. GEMGA. Finally, Section 6 concludes this paper. 
In system identification a search algorithm may 
be used to find the optimal structure or optimal 
set of parameters of a model. In machine learn- 2 Credit Card Fraud Detec- 
for inducing fraud detection rules. Clearly un- 
derstanding the fundamental issues in search that card, that is, the trans- 
makes an algorithm efficient is important. action authorization procedure, represents a com- 

The SEARCH (Search Envisioned As Relation plex flow of information. In the most common 
and c1U Hierarchizi%) framework introduced scenario, the merchant sends card, purchase, and 
elsewhere (Kargupta, 1995) offered a foundation environment information to an xquiring (mer- 
of blackbox search (BBS)--search in presence Of chant acquiring) bank, this information is for- 
little domain knowledge-in terms of relations, warded through a credit card network b the issu- 

ing (credit card issuing) bank, who then makes a 'The author can be reached at, P.O. Box 1663, XCM, 
hOs National L&oratory, ~ 0 s  decision regarding the authorization of the trans- 

action. The response is transmitted back along 

accomplishes that. Section 
learning* Search Play an briefly describes the SEARCH perspective of e v e  

ing applications, a search algorithm may be used tion: A Brief Description 
A single use of a 
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Figure 1: 

these channels to the merchant. This general pro- 
cess is shown in Figure 1. The entire environment 
includes further aspects such as credit and funds 
transfer between the banks, and payment t o  the 
issuing bank by the cardholder. These aspects 
are irrelevant to the fraud scoring methodology, 
although they d o  impact qualitative aspects of 
the process implementation, e.g. methods of per- 
formance evaluation. 

At some point in the authorization request to 
the issuer, the authorization is scored with a num- 
ber correlated to probability of fraud. Credit in- 
dustry fraud scoring remains inaccurate enough 
that  the scores can only be considered as indi- 
cators of fraud rather than a conclusive classifi- 
cation. The computer-based scoring alone is not 
s::%cient evidence to conclude whether a transac- 
tion is fraudulent, and it seems unlikely that  it is 
possible to make such a system conclusive given 
the information available. Instead a fraud classi- 
fication with some degree of certainty is treated 
as a requirement to follow up personally with the 
cardholder. Performance at significant detection 
levels is in the range of 10 t o  100 times better than 
random performance, in terms of misclassification 
rates, can be achieved by computer based scoring. 
This level of performance can have a great pos- 
itive impact in the overall operations of a card 
issuer. Fraud in the credit card industry is over 
$1 billion per year. 

There are two common places in the autho- 
rization cycle to score transactions: at the issuer 
level, and at the network level. These two en- 
vironments have distinct and complementary in- 
formation. The issuer has detailed information 
about the cardholder, including credit history, 

purchase history and profiles, credit information, 
and account information, along with the informa- 
tion tha t  is passed in an authorization request. 
The network does not have access to detailed 
information about the cardholder, but does see 
d l  transactions from all merchants and acquiring 
banks. Scoring at these two levels is thus a very 
different problem, utilizing complementary infor- 
mation. Of the two problems, issuer-based scor- 
ing parhaps has richer information. Our problem 
is network-based fraud detection. 

There are several issues in the network level 
scoring tha t  make this a challenging problem. For 
example, a large network may handle as many as 
10 million authorization requests daily. This im- 
plies very large datasets to investigate, since a 
reasonable investigation may require data from 
weeks or even years. There are actually a large 
number of available raw variables at the network 
level, whose cardinality ranges from binary to 
10K or more. The preprocessing and selection of 
input variables is a very broad and difficult p r o b  
lem. Finally, as with any problem of unknown 
complexity, the best choice of techniques for a p  
plication to the problem is not clear at the outset. 

Probably the most important aspect in suc- 
cessful scoring or classification, after having good 
information in the input variables, is how this 
information is presented to a modeling or o p  
timization technique. Network-level scoring has 
the particular problem tha t  most of the available 
information is non-numeric. In the problem un- 
der investigation, the input dataset has been re- 
duced to a set of 86 normalized numeric features. 
For the purposes of this analysis, we are trying 
to find the best linear combination of these fea- 
tures. Optimum performance does not arise from 
simply minimizing the MSE to the output class 
for each example. The  true evaluation criteria 
comes from assessing operational performance on 
a real dataset. Since little domain knowledge is 
available, searching for optimal model parameters 
from the noisy dataset offers a challenging task. 

Since the fundamental problem is essentially 
a BBS, let us now focus on some theoretical is- 
sues in BBS, offered by the SEARCH framework. 
The idea is to avoid ad hoc trial of arbitrary 
search algorithms and replace the process by a 
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a sequence space of length e, there are 2' differ- 
ent  equivalence relations. The  search operators 
also define a set of relations by introducing a no- 
tion of neighborhood. For a given member in the 
search space, the search operator define a set of 
members tha t  can be reached by one or  several 
application of the operators. This introduces re- 

Relation spnce class space b p i e  space lations among the members. Heuristics identifies 
a subset of the search space as more promising 
than others often based on some domain specific 
knowledge, Clearly this can be a murce of rela- 
tions. Relations can sometimes be introduced in a 

f # ## \  ' ' O 0  
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Figure 2: Decomposition of b l d b o x  optimiza- 
tion in SEARCH. 

more direct manner. For example, Perttunen and 
d grounded theoretcially sound strategy. In 
the following section we briefly review some of the 
foundation concepts of the SEARCH framework. 

3 SEARCH: A Brief Review 
The foundation of SEARCH is laid on a de- 

composition of the blackbox search problem into 
relation, c i s ,  and sample spaces. A relation is 
a set of ordered pairs. For example, in a set of 
cubes, some white and some black, the color of 

Stuckman (1990) proposed a Bayesian optimiza- 
tion algorithm tha t  divides the search space into 
Delaunay triangles. This classification directly 
imposes a certain relation among the members of 
the search space. The same goes for interval o p  
timization (Ratschek & Voller, 1991), where the 
domain is divided into many intervals and knowl- 
edge about the problem is used to compute the 
likelihood of success in those intervals. As we 
see, relations are introduced by every search al- 
gorithm, either implicitly o r  explicitly. The role 
of relations in BBS is very fundamental and im- 

the cubes defines a relation that divides the set of portant. 
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eation constraint for different problems, different 
class comparison statistics, and different values 
of M. One relation may work for a pr t icu l iu  
case and may fail to d o  so for a different setting. 
Therefore, any algorithm that  aspires to be a p  
plicable for a reasonably general class of p r o b  
lems, must search for appropriate relations. De- 
termining whether or not a relation satisfies this 
delineation constraint requires decision making in 
absence of complete knowledge. For a given re- 
lation space !4!r, a BBS algorithm must identify 
the relations tha t  properly delineate the search 
epace with certain degree of reliability and accu- 
racy. This requires comparing one relation with 
another using a d a t i o n  comparison statistic and 
constructing a partial ordering among them. 

A BBS algorithm in SEARCH cannot be effi- 
cient if i t  needs to consider relations that  divide 
the search space in classes, with the total number 
of classes growing exponentially with the problem 
dimension. For example, in an e-bit sequence r e p  
resentation, if there is a class of problem which re- 
quires considering the equivalence relations with 
:Z - 1) fixed bits then there is a major problem. 

his relation divides the search space into 2<-’ 
imses and we cannot solve this problem in com- 
plexity polynomial in e. However, in BBS the 
ultimate objective is to identify the optimal solu- 
tion which basically defines a singleton class. The 
smaller the cardinality of the individual classes, 
the larger the index of the corresponding relation. 
So we need the higher order relations for finally 
identifying the optimal solution, but we cannot 
directly evaluate them since their index is large. 
The  solution is to limit our capability and realize 
that  we can only solve those problems which can 
be addressed using low order relations and when 
high order relations are decomposable to those 
low order relations. This means tha t  the infor- 
mation about low order relations can be used to 
evaluate the higher order relations. Consider the 
following example. Let ro be a relation tha t  is log- 
ically e q u i d e n t  to rl A r2, where rl and r2 are 
two different relations; the sign A denotes logical 
AND operation. If either of 1-1 or r2 was earlier 
found to properly delineate the search space, then 
the information about the classes tha t  are found 
to be bad earlier can be used to eliminate some 

classes in ro from further consideration. This p r e  
cess in SEARCH is called wolution. k l u t i o n  
basically evaluates the relations of higher order 
using the information gathered by direct evalua- 
tion of bounded order relations. 

The  above description gives a brief informal 
overview of tbe  SEARCH framework. As we 
saw, SEARCH addresses BBS on three distinct 
grounds: (1) relation space, (2) class space, and 
(3) sample space. Figure 2 shows this fundamen- 
tal decomposition in SEARCH. The major com- 
ponents of SEARCH can be summarized as fol- 
lows: 

1. classification of the search space using a re- 
lation 

2. sampling 

3. evaluation, ordering, and selection of better 
classes 

4. evaluation, ordering, and selection of better 
relations 

5.  resolution 

A detailed description of each of these processes 
and their analysis, leading to the development of 
a bound on sample complexity, can be found else- 
where (Kargupta, 1995). 

The SEARCH framework has clearly pointed 
out the different facets of decision making in BBS 
and explained why searching for relations is es- 
sential in BBS. This also identified the class of 
order-k delineable problems, that  can be solved 
in polynomial sample complexity in SEARCH. 
An order-k delineable problem is one that  can be 
solved using a polynomially bounded number of 
relations. The main lessons tha t  will be used in 
the coming sections are, (1) search for appropri- 
ate relations is essential for transcending the lim- 
its of random enumeration, (2) both relation and 
class spaces require correct decision making, (3) 
we can only efficiently solve problems that  need t o  
consider a bounded number of relations from the 
given relation space, i.e. the class of order-k delin- 
eable problems, (4) the  SEARCH perspective of 
implicit pamllelism (Holland, 1975)-evaluation 
of different relations from the  same sample set. 
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This sets the stage for launching an algorithm 
for solving the k-delineable problems. However, 
we shall take a detour and first establish the phys 
ical validity of the analytical findings in the con- 

evolution of life on earth. 
text of a classical BBS algorithm of nature-the 

Table 1: Counterparts of different components of 
SEARCH in natural evolution. 

In the following sec- 
tion we shall breifly examine the correspondence 
among the different components of SEARCH and 
the  computational processes in natural evolution. 
This will later lead us to the development of the 
GEMGA-a BBS algorithm for o rde r4  deline- 
able problems motivated by the alternate per- 
spective of evolutionary computation offered by 
SEARCH. 

lar sequence of amino acids can only be pro- 
duced by a certain sequence of nucleotides. 
In other words, the sequence of amino acids 

4 Evolutionary computation: 
The SEARCH perspective 

Previous sections have clearly explained the need 
for understanding the processing of relations in 
5iackbox search. In this section we take one step 
.head by drawing a one t o  one correspondence 
between the evolutionary search mechanisms and 
decomposition of BBS in SEARCH. 

e 

e 

S a m p l e  space: DNA constitute the sample 
space. Crossover and mutation generate new 
samples of DNA. A population of organisms 
defines the sample space for the evolutionary 
search. 

Class space: Base sequences of mRNA 
transcribed in a cell correspond to  only a 
part of the complete DNA. The sequence of 
amino acids in protein in turn correspond t o  
base sequence in mRNA. The genetic code 
tells us that there is a unique relationship 
between the nucleotide triplets of the DNA 
and the amino acids in the protein. There- 
fore, if we consider the DNA as a represen- 
tation defined over the evolutionary search 
space for life and different forms of life, then 
the amino acid sequence of a protein corre- 
sponds to a class of different DNA; every 
DNA in this class must have a certain se- 
quence of nucleotides tha t  can be transcribed 
t o  that  particular sequence of amino acids. 
Since the genetic code is unique, a particu- 

in a protein defines an equivalence class over 
the DNA space. 

e Rela t ion  space: Recall that  amino acid se- 
quences in protein are translated from the  
nucleotide sequences of mRNA. The con- 
struction of mRNA is basically controlled by 
the transcription process. Since an equiva- 
lence relation is an entity that defines the 
equivalence classes, the transcription regula- 
tory mechanism can be viewed as the relation 
space that defines classes in terms of the nu- 
cleotide sequences in mRNA and finally in 
terms of the amino acid sequences in  pro- 
teins. Among the different components of 
this regulatory mechanism, regulatory pro- 
teins, promoter and terminator regions play 
a major role. Regulatory proteins exist as 
a separate entity from the DNA, but the 
promoter and terminator regions are defined 
on the DNA. It appears tha t  there is a dis- 
tinct relation space comprised of the differ- 
ent regulatory agents, such as activator and 
inhibitor proteins. However, it  is quite in- 
teresting to note tha t  this space also directly 
makes use of information from the sample 
space-the DNA. Expression of genetic in- 
formation in eukaryotic organisms is more 
interesting than tha t  in prokaryotes. 

These possible relationships between the differ- 
ent spaces of SEARCH and natural evolution are 
summarized in Table 1. 
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5 The Gene Expression Messy 
GA 

The Gene Expression Messy GA (GEMGA), in- 
troduced elsewhere (Kargupta, 1996), is explicitly 
designed based on the lessons from the SEARCH 
framework, sketched in previous sections. The 
GEMGA is an O(lAlk(l + k)) sample complexity 
algorithm for order-k delineable problems in se- 
quence representation of length t and alphabet 
A. In this section we describe the algorithm and 
related issues. Section 5.1 discusses the represen- 
-€&ion in GEMGA. Section 5.2 explains the popu- 
lation sizing in GEMGA. This is followed by Sec- 
tion 5.3 tha t  describes the main operators, tran- 
scription, selection, and recombination. Section 
5.4 presents of the overall mechanisms. 

5.1 Representation 

GEMGA uses a sequence representation. Each 
sequence is called a chromosome. Every mem- 
ber of this sequence is called a gene. A gene 
is a data structure, containing the locus, uaZue, 
and weaght. The locus determines the position 
of the member in the sequence. The Iocus does 
not necessarily have to be the same as the phys- 
ical position of the gene in the chromosome. For 
example, the gene with locus i, may not be at 
the i - th  position of the chromosome. When the 
chromosome is evaluated, however the gene with 
locus i gets the i-th slot. This positional indepen- 
dence in coding was introduced elsewhere (Deb, 
1991; Goldberg, Korb, & Deb, 1989) to enforce 
the proper consideration for all relations defined 

. by the representation. GEMGA does not de- 
pend on the particular sequence of coding. For 
a given l bit representation, the genes can be 
placed in arbitrary sequence. A gene also con- 
tain the value, which determines the value of the 
gene, which could be any member of the alphabet 
set, A. The relation space is expki t ly  evaluated 
using the weights associated with each member. 
Weights take a positive real number except at the 
initial stage. All weights are initialized to -1.0. 
No two members with the same locus are allowed 
in the sequence. In other words, unlike the orig- 
inal messy GA (Deb, 1991; Goldberg, Korb, & 

Deb, 1989) no under or overspecifiction are al- 
lowed. A population in GEMGA is a collection 
of such chromosomes. 

5.2 Population sizing 
GEMGA requires at least one instance of the o p  
timal order-k class in the population. For a se- 
quence representation with alphabet A, a ran- 
domly generated population of size hk is expected 
to contain one instance of an optimal order-k 
class. The population size in GEMGA is there- 
fore, n = ellk, where c is a constant. When the 
signal from the  relation space is clear, a small 
value for c should be sufficient. However, if the 
relation comparison statistic produces a noisy sig- 
nal, this constant should statistically take care 
the sampling noise from the classes defined by any 
order-k relation. Since GEMGA uses sequence 
representation, the relation space contains total 
2' relations. However, GEMGA processes only 
those relations with order bounded by a constant, 
k. In practice, the order of delineability (Kar- 
gupta, 1995) is often unknown. Therefore, the 
choice of of population size in turn determines 
what order of relations will be processed. For a 
population size n, the  order of relations processed 
by GEMGA is, k = log(n/c)/ZoglAl. If the p r o b  
lem is order-k delineable (Kargupta, 1995) with 
respect to the chosen representation and class 
comparison statistics then GEMGA will solve the 
problem otherwise not. In tha t  case a higher pop 
ulation size should be used to consider higher or- 
der relations. 

5.3 Operators 

GEMGA has four primary operators, namely: (1) 
tmnscription, ( 2 )  class selection, (3)  string selec- 
tion, and (4) recombination. Each of them is de- 
scribed in the following. 

5.3.1 Transcript ion 

As mentioned before, the  weight space in 
GEMGA chromosomes is used to process rela- 
tions. The transcription operator detects the a p  
propriate order-k relations. Comparing relations 
require a relation comparison statistics. GEMGA 
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Figure 3: Transcription operator for minimiza- 
tion problem. For maximization problem, if 
delta< 0 absolute value of delta is taken and 
otherwise del ta  is set to 0. 

// k is the currently considered gene 
Transcription(CHROMOS0ME chrorn.int k) 
{ 

double phi ,  de l ta ,  dwt; 
int dummy ; 

dwt = chrom [kl . Weight ( ; 
if(dwt > 0 .0  OR dut == -1.0) { 

phi = chrom .Fitness (1 ; 
dummy = chrom Ck] .Value () ; 
// Change the value randomly 
chrom [k] . Perturbvalue (1 ; 
// Compute new fitness 
chromCk] .EvaluateFitnessO ; 
// Compute the change in fitness 
del ta  = chrom[kl .Fitness()  - phi; 
// For minimization problem 
if (delta < 0.0) 

del ta  = 0 . 0 ;  
// Set the weight 
i f (dut  < del ta  OR delta == 0.0) 

chrom[k] . SetWeight (delta)  ; 
// Set the value to the original value 
chrom [kl . SetValue (dummy) ; 
// Set the original fitness 
chrom [k] . SetFitness (phi) ; 

1 
1 

does not process the relations in a centralized 
global fashion; instead i t  evaluates relations lo- 
cally in a distributed manner. Every chromo- 
some tries to determine whether or not i t  has 
an  instance of a good class belonging to some 
relation. In GEMGA, the  quality of a relation 
is determined by the quality of its good classes 
distributed over the population. Again, no cen- 
tralized processing of relations is performed. The  
transcription operator is a deterministic one. It 
considers one gene at a time. The  value of the 
gene is randomly flipped to note the change in fit- 
ness. For a minimization problem, if that  change 

cause a improves the fitness (i.e. fitness de- 
creases) then the original instance of the gene cer- 
tainly do not belong to the instance of the best 
class of a relation, since fitness can be further 
improved. Transcription sets the  corresponding 
weight of the gene to zero. On the other hand if 
the fitness worsens (i.e. fitness increases) then the 
original gene may belong to a good class; at least 
tha t  observation does not say i t  otherwise. The 
corresponding weight of the gene is set to the ab- 
solute value of the change in fitness. Finally, the 
value of tha t  gene is set to the  original value and 
the fitness of the chromosome is set to the  original 
fitness. In other words, ultimately transcription 
does not change anything in a chromosome ex- 
cept the weights. For a maximization problem 
the conditions for the weight change are just  re- 
versed. The same process is continued determin- 
istically for all the l genes in every chromosome 
of the population. Figure 3 shows the pseudo- 
code for the transcription operator. For genes 
with higher cardinality alphabet set (A) this pro- 
cess is repeated for some constant C < IAI times. 
The following section describes the two kinds of 
selection operators used in GEMGA, which cor- 
respond to the selective pressures in protein and 
DNA spaces of natura1 evolution. 

5.3.2 Selection 

Once the relations are identified, selection oper- 
ator is applied to make more instances of better 
classes. GEMGA uses two kinds of selections- 
(1) class selection and (2) string selection. Each 
of them is described in the following: 

0 Class Selection: The class selection o p  
erator is responsible for selecting individual 
classes from the chromosomes. Better classes 
detected by the transcription operator are 
explicitly chosen and given more copies at 
the expense of bad classes in other chrome 
somes. Two chromosomes are randomly 
picked; the weights of the genes are com- 
pared and the  gene with higher weight over- 
writes the corresponding gene in other chro- 
mosome with lower weight. 

0 String Selection: This selection operator 
gives more copies of the  chromosomes. A 
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standard binary tournament seiection oper- 
ator (Brindle, 1981; Goldberg, Korb, & Deb, 
1989) is used. Binary tournament dec- 
tion randomly picks up two chromosomes 
from the population, compares their objec- 
tive function values, and gives one additional 
copy of the winner to the population at the 
expense of the looser chromosome. 

The following section describes the recombination 
operator in GEMGA. 

6.3.3 Recombination 

Recombination operator in GEMGA works as fol- 
lows. I t  randomly picks up two chromosomes 
from the population and considers all the genes in 
the chromosomes for possible swapping. It ran- 
domly marks one among them. If the weight of a 
gene from the marked chromosome is greater than 
that of the corresponding gene from the other 

The following section describes the overall 
.:;ornosome then i t  swaps the genes. 

mechanism of the algorithm. 

5.4 The Algorithm 

GEMGA has two distinct phases: (1) primor- 
dial stage and (2) juxtapositional stage. The pri- 
mordial stage simply applies transcription oper- 
ator for t? generations, deterministically consid- 
ering every gene in each generation. During this 
stage the population of chromosomes remains un- 
changed, except tha t  the weights of the genes 
change. This is followed by the juxtapositional 
stage, in which the selection and recombination 
operators are applied iteratively. Figure 4 shows 
the overall algorithm. The length of the juxtapo- 
sitional stage can be roughly estimated as'follows. 
If t be the total number of generations in juxta- 
positional stage, then for binary tournament se- 
lection, every chromosome of the population will 
converge to same instance of classes when 2' = n, 
i.e. t = logn/log2. Substituting n = clAlk, 
we get,t = A constant factor of t 
is recommended for actual practice. Clearly the 
number of generations in juxtapositional stage is 
O ( k ) .  Let us now compute the overall sample 
complexity of GEMGA. Since the population size - 

is O(lAIk) and the primordial stage continues for 
Ct = O(t )  generations, the overall sample com- 
plexity, 

SC = O(lAlk(l + k)) 
GEMGA is a direct realization of the lessons from 
the SEARCH framework. Following SEARCH, i t  
can be recognized tha t  the sample Complexity is 
also a function of the desired quality of the solu- 
tion and the reliability of the  process. However, 
the implementation of GEMGA through dis- 
tributed local evaluation of relations and classes 
outweighs the satisfaction of quantifying the suc- 
cess probability that  is straight forward in case of 
centralized comparison (as i t  was in SEARCH) 
from the practical perspective. Therefore, the 
reader must realize the dependence of the sample 
complexity on the desired accuracy of the  solution 
and reliability, implicit in the  above arguments. 
The following section concludes this work. 

6 Conclusion 
This paper reported an application of the 
GEMGA for credit card fraud detection. As 
noted earlier search algorithms play a universal 
role in almost every aspect of data mining. There- 
fore, the GEMGA awaits many other possible a p  
plications. If the problem is order-k delineable 
with respect to the representation and class com- 
parison statistic GEMGA will solve the problem 
in polynomial sample complexity. 
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void GEHGAO { 
POPULATION Pop; 
int i, j, k ,  C, ksrax; 

// Initialize the population at mndom 
Initialize (Pop) ; 
i = 0 ;  
// Primordial stage 
While(i < C) { // C is a constant 
j = 0; 
Repeat { 
// Identify better elations 
Transcription(Pop, j); 
// Increment genemtion counter 
j = j + l ;  

} Wntil( j == Problemlength) 
i = i + l ;  

1 
k = 0 ;  
// Juxtapositional stage 
Repeat { 
// Seiect better strings 
Select ion (Pop) ; 
// Select better classes 
Classselect ion(Pop) ; 
// Produce offspring 
Recombinat ion (Pop 1 ; 
Evaluate(Pop) ; /I Evaluate fitness 
// Increment genemtion counter 
k = k + l ;  

// k-max is of O(log(Prvb1em-length)) 
} Until ( k > kslax 1 

1 

Figure 4: Pseudecode of GEMGA. The constant 
C i IAI, where 1A1 is the cardinality of the alphabet 
set. 
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