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Abstract 
This paper makes an effort to project. the tlieoret.ica1 
lessons of the SEARCH (Search Envisioned .4s Rela- 
tion and Class Hierarchizing) framework int.roduced 
elsewhere (Kargupta, 1995b) in the contest of nat.u- 
ral evolution and introduce the gene expression messy 
genetic algorithm (GEMG.4)-a new generation of 
messy GAS that directly search for relations among 
the members of the search space. The GEhlGA is 
an O(lAlk(l+ k)) sample comp1esit.y algorithn for the 
class of order-k delineable problems (Kargupta, 199.5,) 
(problems that can be solved by considering no higher 
than order-b relations) i n  sequence representation of 
length and alphabet set A, Unlike the traditional 
evolutionary search algorithms, t.he GEkIGA empha- 
sizes the computational role of gene espression and 
uses a transcription operator t.o detect appropriate re- 
lations. Theoretical conclusions are also subst.ant.iat.ed 
by experimental resu1t.s for large multiniodal problems 
with bounded inappropriatness of represent at.ion. 

1 Introduction 
The SEARCH (Search Envisioned As Relation and 
Class Hierarchizing) frameivork int.rocluced elsewliere 
(Kargupta, 1995a) offered an alt.ernate perspective of 
blackbox search (BBS) in terms of relations, classes 
and partial ordering. SEARCH is primarily motivated 
by the observation that. searching for optimal solut.ion 
in a BBS is essentially an inductive process (hIichal- 
ski, 1983) and in absence of any relation among the 
members of the search space, induction is no betker 
than enumeration (Watanabe, 1969). SEARCI-I cle- 
composed BBS into three spaces: (1) relation, (2) 
class, and (3) sample spaces. SEARCH also identified 
tlic importance of searching for appropriate relat,ions 
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in BBS. No BBS algorithm can efficiently solve a rea- 
sonably general class of problems unless it searches 
for relations. Kargupta (1995a) also showed that the 
class of order-k delineable problems can be solved in 
SEARCH with sample complexity polynomial in prob- 
lem size, desired quality and reliability of the solution. 

In this paper, I use the SEARCH framework to pro- 
pose an alternate computational perspective of natu- 
ral evolution. This perspective emphasizes the role 
of gene ezpression (DNA+RNA+Protein) in nata- 
ral evolution and identifies gene regulatory mecha- 
nism, proteins, and DNA in terms of relation, class, 
and sample space respectively. This decomposi- 
tion of evolutionary search process, backed by the 
SEARCH framework leads to the development of a 
new O(lAlk(t+ k ) )  BBS algorithm called gene expres- 
sion messy GA (GEMGA) for order-k delineable prob- 
lems in sequence representation of length C with alpha- 
bet A. 

Long before the development SEAR.CH framework, 
Goldberg and his students (Deb, 1991; Goldberg, 
Korb, & Deb, 1989; Goldberg, Deb, Kargupta, & 
Harik, 1993; Kargupta, 1995a) realized the impor- 
t.ance of detecting appr0priat.e relat,ions and proposed 
a unique class of algorithms known as messy genetic ai- 
gorithms. Different versions of messy GAS studied dif- 
ferent aspects of BBS by decomposing blackbos search 
along different dimensions. These investigations have 
directly influenced the development of SEARCH and 
the design of the GEMGA. Undoubtedly, the authors 
of the original version of messy GA (Goldberg, Korb, 
St Deb, 1989) deserve the credit for first realizing the 
importance of detecting appropriate relations among 
the inembers of the search space. 

Section 2 briefly reviews tlic SEARCI-I framework. 
Section 3 discusses the information flow i n  natural evo- 
lution from the SEARCH perspective. Section 4 coni- 
bines the ideas developed in pre\fious sections and in- 
troduces GEMGA. This is follo\\ved by Section 5 which 
presents the test results for large multimodal, order- 
k delineable problems. Finally, Section ?? concludes 
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main specific knowledge. Clearly this can be a source 
of relations. Relations can sometimes be introduced 
in a more direct manner. For example, Perttunen and 
Stuckman (1990) proposed a Bayesian optimization 
algorithm that. divides the search space into Delaunay 
triangles. This classification directly imposes a cer- 
tain relation among the members of the search space. 
The same goes for int,erval optimization (Ratschek & 
\roller, 1991), where the domain is divided into many 
intervals and knowledge about the problem is used to 
c0mput.e the likelihood of success in those intervals. 
As we see, relations are introduced by every search 
algorithm, either implicitly or explicitly. The role of 
relations in BBS is very fundamental and important. 

Figure 1: Decomposition of blackbox optimization in 
SEA RCN . 

this paper. 

2 SEARCH: A Brief Review 
The foiindation of SEARCH is laid on a decompo- 

sition of tlie blackbos search problem into relation, 
class, and sample spaces. A relation is a set of or- 
dered pairs. For esaniple, in a set of cubes, some white 
and sonic black, the color of the cubes defines a rela- 
tion that. divides the set of cubes into two subsets- 
set. of white cubes and set. of black cubes. Consider 
a 4-bit I inary  sequence. There are 24 such binary 
sequences. Tliis set can be divided into two classes 
using the equivalence relation' f###, where f de- 
notes position of equivalence; the # character matches 
with any binary value. This equivalence relation di- 
vides up the complete set. int,o two equivalence classes, 
1### and O###. The class 1### contains all the 
sequences with 1 i n  the leftniost position and O### 
contains those with a 0 in that position. The total 
number of classes defined by a relation is called its 
indes. The order of a relation is tlie logarithm of its 
indes with some chosen base. In a BBS problem, rela- 
tions among the search space members are often intro- 
duced tlirough different means, such as representation, 
operators, heuristics, and others. The above exam- 
ple of relations in  binary sequence can be viewed as 
an esample of relation in the sequence representation. 
In a sequence space of length e, there are 2' different, 
equivalence relations. The search operators also define 
a set of relations by introducing a notion of neighbor- 
hood. For a given member in the search space, the 
search operator define a set of members that can be 
reached by one or several application of the opera- 
tors. This introduces relations among the members. 
Heuristics iclentifies a subset. of the search space as 
more promising than others often based on some do- 

' A n  ecjiiivaleiice relation is a relation that is reflexive, sym- 
metric. and transitive. 

Relations divide the search space into different 
classes and the objective of sampling based BBS is 
to detect those classes that are most likely to contain 
the optimal solutions. To do so requires constrtfcting 
a partial ordering amoiig the classes defined by a re- 
lation. The classes are evaluated using samples from 
tlie search domain and a class comparison statistic is 
used for comparing different classes. For a given class 
comparison statistic <T and some number M ,  a rela- 
tion is said to properly delineute the search space if the 
class containing the optimal solution is within the top 
A{ classes, when the set. of all classes defined by the 
relation are ordered using ST. This basically means 
that if a relation satisfies the delineation constraint 
t.lien, given sufficient samples, the relation will pick 
up  the class containing the optimal solution within 
the top i1.I ranked classes. If a relation does not sat- 
isfy this, then the relation leads to wrong decision and 
as  a result success in  finding the optimal solution is 
very unlikely. 

A particular relation may not satisfy the delineation 
constraint for differelit. problems, different class com- 
parison st.at.ist.ics, and different values of M. One re- 
lation may work for a particular case and may fail to 
do so for a different set.ting. Therefore, any algorithm 
t.liat aspires t.0 be applicable for a reasonably general 
class of problems. must. search for appropriate rela- 
tions. Determining whether or not a relation satisfies 
this delineation constraint. requires decision making in 
absence of complete knowledge. For a given relation 
space qf,., a BBS algorithm must identify the relations 
that properly delilieate the search space with certain 
degree of reliability and accuracy. This requires com- 
paring one relat.ion wi th  another using a relation corn- 
purison slut istic and constructing a partial ordering 
among them. 

A BBS algorithm i n  SEARCH cannot be efficient 
if i t  needs t.o consider relations that divide the search 
space i n  classes, wi th  the total number of classes grow- 
ing esponentially with the problem dimension. For 
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example, in an &bit sequence representation, if there 
is a class of problem which requires considering the 
equivalence relations with ( E -  1) fised bit.s then there 
is a major problem. This relation divides the search 
space into 2t-1 classes and we cannot solve this prob- 
lem in complexity polynoniial in  C. However, in BBS 
the ultimate objective is t.o iclentify tlie optimal so- 
lution which basically defines a singlet.on class. The 
smaller the cardinality of the indi\*idual classes, t.lie 
larger the index of the corresponding relation. So we 
need the higher order relat,ions for finally identifying 
the optimal solution, but we cannot directly evaluate 
them since their index is large. Tlie solution is to limit 
our capability and realize that we can only solve those 
problems which can be addressed using low order rela- 
tions and when high order relat.ions are decomposable 
to those low order relations. This means t.hat. the in- 
formation about low order relations can be used to 
evaluate the higher order relations. Consicler the fol- 
lowing example. Let 7’0 be a relation that. is logically 
equivalent to  rl A 7-2, where 1’1 and 1’2 are two different 
relations; the sign A denotes logical AND operation. 
If either of r1 or r:! was earlier found to properly delin- 
eate the search space, then the information about. the 
classes that are found to be bad earlier can be used 
to eliminate some classes i n  1’0 from further consider- 
ation. This process in SEARCH is called resolution. 
Resolution basically evaluat.es the relations of higher 
order using the information gat.lwred by direct. evalu- 
ation of bounded order relations. 

The above description givcs a brief informal 
overview of the SEARCH f r a n l ~ o r k .  As we saw, 
SEARCH addresses BBS on three distinct, grounds: 
(1) relation space, ( 2 )  class space, and (3) sample 
space. Figure 1 shows this fit ndament a1 decomposi- 
tion in SEARCH. The inajor components of SEARCH 
can be summarized as follows: 

1. classification of the search space using a relation 

2. sampling 

3. evaluation, ordering. atid select ion of betker 
classes 

4. evaluation, ordering. and d e c [  ion of bet.t.er rela- 
tions 

5. resolution 

A detailed description of each of these processes and 
their analysis, leading to the devrlopment. of a bound 
on sample complesi ty, can be fou ntl elsewhere (Kar- 
gupta, 1995a). 

The SEARCH framework has clearly pointed out 
the different facets of decision making i n  BBS and 
esplained why searching for relations is essential in  

BBS. This also identified the class of order-k delineable 
problems, that can be solved in polynomial sample 
comp1exit.y in SEARCH. An order-A- delineable prob- 
lem is one that can be solved using a polynomially 
bounded number of relations. Tlie main lessons that 
will be used in the coming sections are, (1) search for 
appropriaQe relations is essent-ial for tmnscendi ng the 
limits of random enumeration, ( 2 )  both relation and 
class spaces require correct decision making, (3) we 
can only efficiently solve problems that need to con- 
sider a bounded number of relat,ions from tlie given 
relation space, i.e. the class of order-k delineable prob- 
lems, (4) the SEARCH perspective of implicit paml-  
lelism (Holland, 1975)-evaluation of different rela- 
tions from the same sample set. 

This sets the stage for launching an algorithm for 
solving the k-delineable problems. However, we shall 
t-ake adetour and first establish the physical validity of 
the analytical findings in the cont.est of a classical BBS 
algorithm of nature-the evolution of life on earth. In 
the following section we shall examine the computa- 
tional processes in natural evo1ut.ion and demonstrat,e 
that the lessons of SEARCH remains valid and even 
opens up some new dimensions in the biological con- 
text. 

3 SEARCH And Natural Evo- 
lution 

Natural evolution has evolved fitt.er organisms dur- 
ing the course of time; some species became estinct 
and some flourished. The development of functionally 
comples but efficient organisms like liuman beings has 
taken place in about 2 billion years. EIuinaii genome is 
comprised of around 2.9 x lo8 base pairs, which essen- 
tially means that search space is est.remely large and 
it is very unlikely that at the beginning of evolution 
there existed any prior domain knowledge about this 
search space. Clearly we evolved in a relatively shorter 
period of time and that really makes the evolutionary 
search very impressive. 

Tlie objective of this section is to develop a conipre- 
hensive perspective toward evolutionary computation 
using the lessons from the SEARCH -framework. In 
order to do that we first need to cstablisli a compu- 
tat.iona1 perspective of gene espression i n  evolution, 
largely ignored by the existing computational mod- 
els of evolution. Once we do that. t.he argumcnt.s of 
SEARCH can be easily interpreted i n  the biological 
context. 

Section 3.1 briefly discusses the flow of informa- 
tion in natural evolution. Section 3.2 points out the 
main problem of tlie existing models of evolutionary 



computation-lack of emphasis on gene expression. 
Section 3.3 raises some additional questions about 
tlie natural evolutionary search. Finally, Section 3.4 
draws the correspondence between SEARCH and evo- 
lution and presents an alternate perspective. Section 
3.5 revisits the questions raised in Section 3.3 and pro- 
poses some answers. The possibility of constructing 
richer representation transformation in eukaryotes is 
pointed out in Section 3.6. Transcription Replication 

3.1 Iiiforiiiatioii flow in evolution 

Information flow in evolution is primarily divided into 
two kinds: 

0 extra-cellular flow: storage, exploration, and 
transmission of genetic information from genera- 
tion to generation; 

intra-cellular flow: espression of genetic infor- 
mat ion within t.he body of a n  organism. 

Each of tliese will be discussed in the following two 
paragraphs. 

The estra-cellular flow involves replication, muta- 
tion, recombination, and transmission of DNA (de- 
osyribonucleic acid) from parents to offspring. A DNA 
molecule consists of two long complementary chains 
held together by base pairs. DNA consists of four 
kinds of bases joined to a sugar-phosp1iat.e backbone. 
The four bases i n  DNA are adenine (A), guanine ( G ) ,  
thytizinc (T) and cytosine (C). Chromosomes are made 
of DNA double helices. For more detailed descrip- 
tion, the reader should refer to Alberts, Bray, Lewis, 
RafT', Roberts, and \Vatson (1994, Stryer (1988). Eu- 
karyotes (most of the developed organisms) have two 
cliroiiiosonies in their cell nucleus, and tlius called 
dtpfotd organisins. On the other hand, in prokaryotes, 
such as single-celled bacteria, only one chromosome 
is present. These are called hopfoid organisms. The 
DNA sequence is changed by mutation. Crossing over 
and subsequent recombination result in exchange of 
base pairs between the parent DNA sequences. These 
processes result in  generation of new DNA sequences. 
D N A  is then transmitted from the parents to the off- 
spring. The DNA is responsible for defining the plie- 
iiotype of organism and thereby controls the suitabil- 
ity of tlie organism in  the environment. This suit- 
abi1it.y determines the selective pressure on tlie organ- 
ism. Fit.ler organisms survive, and tlie rest do not. 
However, the computation of tlie phenotype from the 
DNA-gene espression-is an interesting process in 
itself, The following paragraph briefly describes the 
main steps of gene espression, that define the intra- 
cell u I ar flow of evoli~ tion ary i n  form a tion. 
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Figure 2: Intra-cellular flow of genetic information. 

Espression of genetic information coded in DNA 
int.0 the proteins is called tlie gene expression. Expres- 
sion of genetic information takes place through several 
complicated steps. However, tlie major distinct pliases 
are identified as 

0 transcription: formation of mRNA (ribonucleic 
acid) from DNA 

0 translation: formation of protein from mRNA 

Figure 2 shows tlie different. steps of gene expression. 
Each of them is briefly described in the following. 

Transcript ion synthesizes messenger RNA (mRNA) 
from part of the DNA. RNA (ribonucleic acid) con- 
sists of four t.ypes of bases joined to a ribose-sugar- 
pliospliodiester backbone. Transcription basically 
constructs a sequence of bases from another sequence 
of bases-the DNA. Transcription is initiated by some 
particular sequences of bases in DNA. They are known 
as  promoter regions. For esample, in many prokary- 
otes, t.lie Pribnoui box sequence TATAAT is a com- 
mon pronioter region. Transcription continues until 
it reaclies some particular kind of sequences of bases, 
known as a fer-inindot. region. RNA polymerase tran- 
scribes tlie portion of DNA between the promoter and 
terniinator regions. Regulatory proteins of a cell can 
directly control the transcription of DNA sequences. 
There ate two kinds of regulat.ory proteins: 

0 gene activator protein, which enhances transcrip- 
tion of a gene, wherever it binds. - 

0 gene repressor protein, \i~hicIi inhibits transcrip 
t.ion of a gene. 

These proteins usually bind t.0 specific sequences of 
DN.4 and drtermine wlietlier or not the corresponding' 
gene will be t r.anscribet1. Translation synthesizes pro- 
teins from (.he mR.Nt" sequences. Proteins are again 
sequence of amino acids, joined by peptide bonds. 

Most of the esisting models of evolutionary com- 
putation do not provicle any understanding about the 



computational role of tlie intra-cellular flow of genetic 
information. The following section gives an account. 
of that. 

3.2 A major probleim of existing mod- 
els of evolutionary computat ion 

Unfortunately, many of the esisting coinputational 
models of evolution address only the extracellular flow 
of genetic information. Simple genetic algorit.hms 
(De Jong, 1975; Goldberg, 1980b; Holland, I975), 
evolutionary strategie (Rechenberg, 1073), and evolu- 
tionary algorithms (Fogel, Owens, Cr: \Valsh, 1966) are 
some examples. These esisting perspectives of evolu- 
tionary computation do not assign any computational 
role to the nonlinear mechanism for transforming the 
information in DNA into proteins. The same DN.4 is 
used for different kinds of prot.eins in  different, cells of 
living beings. The development of different. expression 
control mechanisms and their evolut.ionary objectives 
are hardly addressed in these models. They primarily 
emphasize the extra-cellular flow. The main cliffer- 
ence among these models seems to be the emphasis 
on crossover compared to mutation or rice versa. 

Although gene expression is not. emphasized very 
much in most of the popular inoclels of e\~olutionary 
computation, several researchers realized its impor- 
tance. The importance of tlie computational role of 
gene expression was first realized by Molland. He de- 
scribed (Holland, 1975) the dominance operator a s  a 
possible way to model the effect of gene espression in 
diploid chromosomes. He also noted tlie importance 
of the process of protein synt.liesis from DNA in  the 
computational model of evolut.ion. Des1)it.e t,lie fact. 
that traditionally dominance maps are  explained from 
tlie Mendelian perspective, Hollaticl inaclc an int.erest- 
ing leap by connecting i t  to t . 1 ~  syntlicsis of probein 
by gene signals, which t.oday is uniwrsaily recognized 
as gene expression. He realized t.he relation bet.ween 
the dominance operator with the ”operon” model of 
tlie functioning of tlie chromosome (Jacob ,C: Monod, 
1961) in evolution and pointed out the possible com- 
putational role of gene signaling i n  evolution (Holland, 
1975). 

Several other efforts have bccn ma& t.o moclel 
some aspects of gene expression. Diploidy and do~n-  
inance have also been used elsewliere (Bagley, 1967:. 
Brindle, 1981; Hollstieii, 19i l ;  Rosetiberg. 19Gi; 
Smith, 1988). Most of them t.ook tlwir inspiration 
from the Mendelian view of genrlirs. The under- 
specification and over-specification tlrcocling operator 
of messy GA has been viewed as a mechanism sim- 
ilar to gene signaling in Goldberg. Iiorb. and Deb 
(1989). Dasgupta and AlIcGregor (109’2) proposed the 
so-called structured genetic algoritlim, which uses a 
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structure( hierarchical representation in which genes 
are collectively switched on and off. This implemen- 
tation also gathered its primary motivation from gene 
espression. An interesting effort was made by Ack- 
ley (1987). He proposed a connectionist paradigm for 
iterative genetic hillclimbing (SIGH) and introduced 
a relation space through weights. Although, SIGH 
was not, really motivated by gene expression, rather 
by connectionist computation, the computational ob- 
jectives of SIGH shared similar philosophy. 

ICauffman (1993) offered an interesting perspect.ive 
of the natural evolution that realizes the importance 
for gene expression. However, Kauffman’s w0r.k does 
not explain the process in basic comput.at.iona1 terms 
011 analytical grounds and does not relate the issue to 
the complexity of search process. 

As we see, the computational role of gene expression 
has mostly ‘been unrecognized. Even when duly rec- 
ognized, little argument has been made to esplain its 
role in making search efficient. In tlie coming sections 
an effort. will be made to  fill in this lacuna using the 
lessons from the SEARCH framework in  pure compu- 
tational terms. However, first let us set the premise 
properly by asking some relevant questions. 

3.3 

Tlie problems of our existing computat.iona1 under- 
standing of evolutionary search will become more clear 
when we ask some hard questions and demand answers 
in rigorous computationa1 terms. The objective of this 
sect.ion is to do so and demonstrate the neecl for the 
a1t.ernat.e perspective of evolution bhat. SE.4RC:II of- 
fers. 

First. in Section 3.3.1 I discuss tlie issue of “ade- 
quate t h e ”  (Kauffinan, 1993) in evolution and argue 
that evolution is efficient because it directly searches 
for relations during gene expression. Section 3.3.2 in- 
vestigates the possible computational rolc of genetic 
recombination. 

Evolution of life: Some  questions 

3.3.1 Tlie problem of “adequate t ime” 

The evolution of living organisms, comprised of a 
large nuniber of mutually interacting components with 
amazing degree of coordination is ulldou bt.edly im- 
pressive. This naturally lead us to think about the 
time that. might. have been needed to evolve such or- 
ganisms from primitive ingredienk. Sonic Iiologists 
think t.liat. there was  enough time for evolutioii t.o suc- 
ceed (ICauffman, 1993) and some of them (Sliapiro, 
1986; Hoyle & Wickramasinghe, 1981) do not. This is 
the classical question of “adequate time” in evolution. 

Holland (1976) came to an interesting conclusion. 
Using the so called &-universe model, he argued that 



emergence of life on eart.11 i n  strcli a short time is only 
possible if evolutionary search could detect tlie appro- 
priate equivalence classes or schemata. This was an 
important argument; unfortunately, this line of argu- 
ment was largely neglected by the biologists and the 
debate continued primarily because of the lack of an- 
alytical result support,ing Holland’s argument. 

Those who Iielieve in inadequate time theory, de- 
pend on the observat,ion t,liat the search space is too 
large to deal with by random enumeration. Two bil- 
lion years may be a “long t.inie” coinpared to our Iife- 
time, it may not be quit.eso compared to the size of tlie 
evolutionary search space. IVald (1954) conjectured 
that 2 billion years of t.ime is sufficient and sampling 
different organisms during tlie course of this “long” 
time made evolution successful. He even concluded 
“Time is in fact the hero of the plot”. Sliapiro (1986) 
criticized Walcl’s perspective and presented convinc- 
ing argument dcnionst.rating that there was not suffi- 
cient time for evolution t.o succeed. Shapiro estimated 
the total nuniber of samples tlia t evolution could have 
taken during the last. two billion years. Ile then coni- 
puted a conservative bound on the joint. probability 
of finding t.he set of functional enzymes of a prinii- 
tive bacterium from this set of samples and showed 
that success probabi1it.J. is extremely low. The joint. 
success probabi1it.y is so low t.hat. it has been coni- 
pared elsewhere Iloyle and \Vickraniasinghe (1981) 
with tlie chance of “a tornado sweeping though a junk 
yard might assemble a Boeing i 4 i  from tlie materials 
therein”. Tlie fountlation of this line of argument is 
based on tlie assunipt ion that. evolution searches by 
random enumeration. Once we accept this premise 
their argument makcs sense. 

Goldberg ( 1989a) iiiclirectly addressed this question 
on computational grounds following I-Iolland’s idea 
of schema processing. Although his argunients were 
primarily clircct.ed toward computational limitations 
of evolutionary algoritlims such as GAS, their im- 
plications on biological contest. were equally inipor- 
tant. He introducccl (Goldberg. 1987) order4 decep- 
tive functions which essentially admit.t.ed that. a black- 
box search algorithm can only efficiently solve prob- 
lems with certain degree of decomposability. 

Kauffman (1993) offered a different. way of answer- 
ing this question. He argued against (.lie idea of com- 
puting joint SIICS~:SS probability for all the different. 
enzymes of liviiig bciiigs. He irrit.es .‘We should in- 
stead be concerncd with the probability of finding any 
one of possibly w r y  many properly coupled Sets of 
enzymatic activities wliicli might. constitut-e a living 
proto-organism” . klc proposes that the development. 
of tlie individual component.s i n  tlie RNA and pro- 
tein spaces lead to the emergence of tlie whole i n  

a time shorter than t.1iat. corresponding to the joint 
probability coniput.ec1 by Sliapiro (1986). This is an 
interesting break. Al t  liougli Iiauffnian presents his ar- 
guments in t e r m  of phase transitions, autocatalysis, 
and percolat.ion principles, i n  my opinion his argu- 
ments against coniputing the joint. probability make 
sense only when tlie protein space is decomposable. 
Although tlie search problem in DNA space may not 
be decomposable, the DNA+RNA+Protein transfor- 
mation may convert the problem into a decomposable 
one. 

As we see, tlie argiiments in favor of adequate 
time are three folds: (1)  Holland’s idea of equii~alence 
class processing (2) Goldberg’s argument about prob- 
lem decomposability, and (3) Kauffman’s emphasis on 
gene expression. However, none of them alone de- 
scribes the complete picture about tlie computational 
processes in natural evolut.ion. In the coming sections 
we shall put them together i n  the light of SEARCH 
to offer a more coniplet,e picture of the efficiency in 
evolutionary search. Before that, let u s  consider an- 
other important. fact or i n  evolut<ion-t.lie natural se- 
lection and see whether or not the esisting models of 
evolutionary computation does capture the complete 
picture. 

3.3.2 Natural selection: Some ques t ions  

Tlie role of natural selection in evolution is almost 
universally acknou-leclged. Natural selection has been 
identified as one of the main fact.or defining the evolu- 
tion and self-organization i n  many coniples systems. 

An immediate question that. may come to our mind 
is-What does nat ural selection select.? Clearly liv- 
ing organisms have DNA space and tlie protein space. 
The DNA sequence defines tlie set. of proteins in an 
organism. Tlie proteins are in  turn responsible for tlie 
phenotypic features oft  he organism. Tlie performance 
of an organism in it.s environment may act as an in- 
dex of tlie selective pressure. However, tlie question 
is how does tlie selective pressure effect the organism? 
As we know, both DNA space and the gene regula- 
tory mechanisms evolved during the course of evo- 
lution (Alberts, Bray, Lewis. Raff, Roberts, & Wat- 
son, 1994). I n  order to take place that, there must lie 
some dist.ribut.ion of selective pressure In  each of these 
spaces. 

Unfortunately, existing euoiut.ionary algorithms do 
not consider the apport ionnient ofselective pressure in  
these two dilferent spaces. As we saw earlier, evolu- 
tionary search algoritlinis remains contend with selec- 
tion in the sample space, corresponding to tlie effect 
of iiatural selection i n  the DNA space. Clearly, the 
lack of consitlerat.ion of the selective pressure i n  gene 
expression is a missing feature from tlie modeling per- 



spective. The questioli is \\het.licr it. affecbs even the 
computational modeling of evolul.ionary search? The 
answer is yes. However, let. u s  again resist. ourselves 
from explaining the answer until we discuss another 
puzzle of natural evolut,ion that. appears from the role 
of genetic recombinatioll and crossing-o\*er. 

3.3.3 Recombination of what? 

Recombination among homologous pair of cliromo- 
somes results in eschanging set. of gcnes among tlie 
parent chromosomes and produces offspring wi th  new 
chromosomes. A good deal of cont rouersg esists about 
the utility of recombination. In fact, the field of evo- 
lutionary computation appears t.0 lie cli\rided into two 
camps one supporting tlie uti1it.y of recombination and 
other dismissing that. The basic question that we need 
to ask first is that recombine wliat? I f  we consider the 
parent chromosome together as a tuple. theii recombi- 
nation is nothing but. a permut.ation operator among 
tlie 2t genes. There are (.re)! ways to permute t.liat. 
tuple of 2 l  genes. Therefore. scar(-hiiig iisiiig recoinbi- 
nation is no more efficient. t.liaii niutativc scarcli. 

However, recombination is good if i re  know what to 
exchange. If we know what. relatioil.’; are good then 
we only need to eschange the classes that belong to 
those relations. In an order4 deliiieable represel1t.a- 
tion recombination can be used to conibine (.lie classes 
to produce classes of higher order relat.ions. 

In natural evolution, recombinat.ion process is con- 
trolled by different proteins. For esample i n  E. coli, 
recombination is mediat,ed by products of ITC genes 
(Stryer, 1988). After the single-stralltled DNA is cre- 
ated by recBCD protein, the r.ec.4 protein directly coil- 
trols the process of binding the cliiples DNA. base 
pairing, and tlie exchange of st r a w k  Clearly tlie 
working of recombinat ion tlepeiids 011 t.liese ixoteins 
and recombination will reduce to be a raiicloiii permu- 
tation operator in .absence of tllese proteins. There- 
fore, the evolution of right. prot,eiiis appears to be im- 
portant for the efficient. working of recoinbination. 

Unfortunately, most. of the esist ing evolu t.ionary al- 
gorithms do not recogiiize this. Oiic a d  multi-point. 
crossover (De Jong, 1975; Hollaiitl. i 9 i 5 ) .  uniform 
crossover (Syswerda, 1989) are soiiic (.samples of ar1.i- 
ficial crossovers widely used i l l  geiier i c .  algori t.1ims. In  
one and multi-point. crossovers I Iic point of crossing- 
overs are randomly clioseii. I n  uiiiforrii crossover in- 
dividual gene swapping is decided raiicloml~. Clearly 
none of them has any controllilig fc.aturc. An inter- 
esting efforts was made elsedicrr (Srhaffer k hlor- 
ishima, 1987). They suggested I Iic use of adaptive 
crossover that gradually biases toward bet.t.er classes. 
Maini, Mehrotra, Molian, and Ranka ( 1994) proposed 
using domain knowledge-based nonuniform cro: +mer. 

Other efforts on adaptive crossovers can be found else- 
where (Jog, Suh, k Van Guclit, 1989; 1Vliit.e Sr. O p  
paclier, 1994). 

3.4 Evolutionary computation: The 
SEARCH perspective 

Previous sections have clearly explained the need for 
understanding the processing of relations i n  natural 
evolution. In this section we take one step ahead 
by drawing a one to one correspondence between tlie 
evolutionary search mechanisms and deconiposition of 
BBS in SEARCH. 

0 Sample space: DNA constitute the sample 
space. Crossover and mutation generate new 
samples of DNA. A population of organisms de- 
fines the sample space for the evolutionary search. 

0 Class space: Base sequences of mRNA tran- 
scribed in a cell correspond to only a part. of 
tlie complete DN.4. The sequence of ainiiio acids 
in prot,ein in turn correspond t.o base sequence 
i n  niRNA. The genetic code tells u s  that there 
is a unique relationship between the nucleotkle 
triplets of the DNA and the amino acids in the 
protein. Therefore, if we consider the DNA as 
a representation defined over the evolutionary 
search space for life and different. forms of life, 
then the amino acid sequence of a protein corre- 
sponds to a class of different DNA; every DNA 
in this class must have a certain sequence of nu- 
cleotides that can be trailscribed to that partic- 
ular sequence of amino acids. Since the genetic 
code is unique, a particular sequence of aiiiino 
acids can only be produced by a certain sequence 
of nucleotides. In other words, the sequence of 
amino acids in a protein defines an equivalence 
class over the DN.4 space. 

0 Relation space: Recall that amino acid se- 
quences in protein are translated from the nu- 
cleotide sequences of mRNA. The construction of 
niRNA is basically controlled by the transcription 
process. Since an equivalence relation is an en- 
tit.y t-liat defines the equivalence classes. tlie tran- 
scription regulatory mechanism cgn be viewed as 
tlie relation space that defines classes i n  terms 
of the nucleotide seqiiences i n  mRNX a i d  finally 
in terms of tlie amino acid sequences io proteins. 
Among the different components of this regula- 
tory mechanism, regulatory prot.eins, promoter 
and terniinator regions play a major role. Reg- 
ulatory proteins esist as a separate entity from 
the DNA, but tlie promoter and terminator re- 
gions are defined on the DNA. It  appears that 

7 



Table 1: Counterparts of different components of 
SEARCII i n  nat.ura1 e\~olution. 

Sanit)le space DNA space 

there is a distinct relation space comprised of tlie 
, different regulatory agents, such as activator and 
inhibitor proteins. However, it. is quite interest- 
ing to n0t.e that h is  space also directly makes 
use of information from the sample space-the 
DNA. Expression of genetic information in eu- 
karyot.ic organisms is inore interesting than that 
in prokaryotes. 

These possil>le relationships I)et\i-een the diflerent 
spaces of SEARCI-I and natural evolut.ion are summa- 
rized i n  Talile 1. No\\. t.liat, we have drawn a corre- 
spondence between the different comgonent.s of nat- 
ural evolution and the SEARCI-I framework, we are 
ready for ans\vering the quest.ions raised earlier in  sec- 
tion 3.3. 

3.5 Evolution of life: Soiiie answers 
In this sect.iori \w sliall revisit tlie questions raised i n  
section 3.3 i n  t lit. light. of SEARCI-I and present. some 
possible esplal1iit ions, 

3.5.1 

As we saw earlier. the argument,s favoring tlie ade- 
quate time t.heory arc three folcls: (1) 1-Iolland’s idea of 
equivalence class processing (2) Goldberg’s argument 
about problem tleconiposabiIit.~;. aid (3) Kauffman’s 
argument favoritig the import.ance on evolution in tlie 
protein space. Kow if we look at the adequate time 
problem and t hesc arguments i n  the light. of SEARCH 
we can conie 1.0 an interesting conclusion-all of them 
are correct \\*lien we put. them together. When we 
do so, the IiypotJiesis appears as follows: euolution 
cun be successjlrl in such u shorl period of time if and 
only if it serrrrhrs 101- uppropi-iote eguioalence classes 
cfefincd by  Ilrc l .~:lJ~~..~eiltC~tlol~ und the seurch problem 
was eithcr orrgiiially decomposable or trcrnsforiited to 
u deconi,po.stihli. or)(- 111 the protein space. The follow- 
ing part of this sect.ioti corroborates this hypothesis 
on the analyt ical grou ncls offered by SEARCH. 

First of all, SEA 1iCJ-l proved that. polynomial com- 
plexity blackbos search is not possible unless some 
relations among the members of the search space is 

The issiic of adequate t i m e  

exploited. Relations define classes and exploiting re- 
lations requires processing classes. Therefore, evolu- 
tionary search cannot be of polynomial complesity ( 
i.e. efficient) uriless i t  processes classes defined over 
tlie genetic represent at ion. The second point is about 
decomposability. \Vas the evolutionary search prob- 
lem decomposable in tlie init.ia1 genetic representation. 
No one knows, but it. is unlikely. The genetic r e p  
resentation and blie espressioii of genetic information 
(a representational I ransformation) evolved during the 
course of evolution. If the evolutionary search land- 
scape were really decomposable and solvable in an ef- 
ficient manner even at. t.lie early stage, such evolution 
and transforination of representation was not required. 
I t  seems t.1iat. nature had to search for an appropriate 
transformation \i-liich expressed the genetic expression 
in such a \ray that the search problem becomes decom- 
posable at. a certain level. The need for problem de- 
composability and the possible mechanism of gene ex- 
pression for accoinplishing such deconiposability can 
again be corroborated using SEARCH. The SEARCH 
framework proved that a blackbox search algorithm 
can only solve problenis that need considerations of 
relations up t.o a boi!ncled order-the class of order- 
k delineable problems. I n  other words there must be 
some degree of clecomposability i n  the relation space. 
If the given relation space is not order-em k deline- 
able, the relat.ion space. qf,. must be transformed to 
introduce tlelineability. Evolutionary search in nature 
uses a sequence represent ation. DNA sequence defines 
the primary representation. Expression of this infor- 
mation using the DSX+RXX+Protein defines a new 
relation space. Searcliiiig for appropriate regulatory 
mechanism can be viewd as tlie search for tlie right 
relation space that makes the problem order-k deline- 
able. Clearly all the I hrce coniponent.s of hypothesis 
supporthg aclecpte timc theory can be put in proper 
perspective i n  the liglit of the analytical foundation 
offered by SEA R CI-I . 

The following sect ion revisits tlie issue regarding tlie 
coinputat ional need for accoiiuting the effect of natu- 
ral selection i n  the DK.4. protein, and the regulatory 
mechanism spaces. 

3.5.2 Apportioiimcmt of select ian pressure 

Section 3.4 identified t l i ~  DY.4 space as the sample 
space, the protein space ;IS tlie explicit class space and 
the gene regulatory cotit rot inecliaiiisms as t-lie relation 
space. SE.4RC.I-1 clearly p0itit.s out. that. no algorithm 
can surpass the l i m i t s  of random enumerative search 
if it guides itself by applying selection in the sample 
space. Therefore, evolutionary search in nature can- 
not surpass this coinpiit ntiotial limit by simply apply- 
ing the selective pressure in tlie DNA space. Effect 



of natural selection must. also be distributed i n  the 
relation and class spaces of evoIut.ionary search. In 
other words the effect of natural selection must. show 
up in tlie evaluation of parts of DNA seqiiences into 
proteins in different cells of an organisins and also the 
gene regulatory meclianism space. 

The following section revisits t lie c:omputational 
aspects of genetic recombinat.ion i n  (.he light. of 
SEARCH. 

3.5.3 Recombina t ion  of classes 

From the SEARCH perspective, reconil)inat~ion serves 
the purpose of resolution. Once the right relations are 
detected the corresponding bet.ter classes can be re- 
soloed using a recombination like operator. Therefore, 
tlie purpose of recombination i n  natural evolut.ion is 
not at all clear unless we iiitrotlitcc t l i c r  relations as 
possible controlling agents. 

The following section clrscri Iws a I I  i tit erest.ing 
possibility-construction of new reprcscn~ at.ion i i i  tiat- 
ural evolution. 

3.6 Representation construction 

Evolution of gene regulat.ory mechanism means coil- 
struction of new represent.ation. Eitl;aryot ic organisms 
have a richer way to construct ne\r  represenr.at.ion. 
Most of the eukaryotic organisins arc diploid. A t  a 
particular gene one allele is recessive awl the other is 
dominant,. The expression of a cloniittati~ gcnc takes 
place during trailscription ant1 translation. \\'lien a 
diploid chroniosonie is viewed as  a scqitcnce of clomi- 
nant and recessive tuples, thc set of clominant allele5 
can be interpreted as a new represent at ion for I hc set. 
of recessive alleles. The gene regulatory control mecli- 
anism determines what get.s espressecl i n  a part iciilar 
cell. The evolution of this regulatory control mecha- 
nism is computationally equiwlcnt to (:onst ritcf ion of 
new relation space. There is exist'ing biological evi- 
dence that these settings for the i n t  ra-c-l4lular esprcs- 
sion of genetic information evolvcrl di irt i ig  t Iic coitrse 
of evolution (Alberts, Bray. Lewis. Hnlr. I<obcrts. Sr 
Watson, 1994). As noted in S13.-\IIc'l I. sitcli txaitsfor- 
mation is needed when the original relilt ioti spacc is 
not, order-b delineable. Therefore. 0 1 1 1 -  o f  t lie reason 
that eukaryotic organisms Im-ami. i i i o r c ~  zitcccssfitl i n  
the evolutionary race could Iw llic alilily 1 0  constriicf 
new representation. On t h  0 t . h  Iiaiirl prokaryotes 
are primarily haploid (i.e. otic ~ ~ l ~ ~ l l 1 ~ J ~ ~ l l l c ?  only) and 
are deprived of this capability. Tlle followi ttg sect.ion 
presents the GEMGA. The folloiritig sccrtioii iclentifics 
an one to one correspondencc I~c.[~rccii rliffcrettt com- 
potients of natural evolutioo atid Sl2.4 H( ' I  I .  

4 The Gene Expression Messy 
GA 

In the earlier sections of this paper, we noted the es- 
sent,ial ingradients of efficient, general BBS algorit h i s  
and identified a class of BBS problems h a t  can be 
solved efficiently. We also observed these conclusions 
i n  the light. of natural evolutionary search. Now i t  is 
t.he t.ime to put. them together and propose a realiza- 
tion of the theoretical observations along witli biolog- 
ical plausibility. 

In this section I introduce Gene Expression Messy 
GA (GER1GA)-an O(lAl'((C+ b)) sample complexity 
algorithm for order-b delineable problems in sequence 
representation of length t and alphabet A.  Design 
of GEhlGA is based on the alternate perspective of 
evolution, developed by SEARCH that. emphasize the 
computational role of gene expression. 

Section 4.1 discusses the representation i n  C; UkIGil. 
Section 4.2 explains the population sizing in C; EMGA. 
This is followed by Section 4.3 that describes h e  main 
operators, transcription, selecbion, and reconibinat.ion. 
Section 4.4 presents of the overall mechanisms. 

4.1 Representation 

GEhlGA uses a sequence representation. Each se- 
quence will be called a chromosotnc. Every inember 
of this sequence is called a gene. .4 gene is a data 
st.ruct,ure, containing the locus, oafue, and u ~ g h t .  The 
locus tIet.ermins the position of the member i i t  I l ie se- 
quence. The locus does not necessarily have to be 
the same as the physical position of tlie gene in  the 
chroniosonie. For example, the gene wit.li locus i. may 
not be at the i-th position of the chroniosonie. \\'hen 
the chromosome is evaluated, however the gene with 
locus d gets the i-th slot. This positional indepen- 
dence in coding was introduced elsewhere (Deb, 1991; 
Goltlberg, Korb, & Deb, 1989) to enforce the proper 
consideration for all relations defined by tlie represen- 
tation. GEkIGA does not depend on tlie particular 
sequelice of coding. For a given e bit representation, 
the genes can be placed in arbitrary sequence. A g e m  
also contain the trafue. which determines the value of 
the gene. which could be any member of tlie alpliabct 
set, A .  The relat.ion space is explicitly cvaluatccl us- 
ing the weights associated with each inember. \\!eights 
t.ake a posiaive real number except at the initial stage. 
AI1 weights are initialized to -1.0. No tire mernbcrs 
with t.he same locus are allo\\~ed in the seqirence. I n  
ot.Iier wordsJ unlike tlie original messy CIA (lleb, 1991; 
Goltlberg. liorb, & Deb, 1989) no under or owrspeci- 
fict.ion are allowed. A population in GEhlGA is a 
collcct.ion of such chromosomes. 
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4. Pop u 1 at i o 11 si z i ng 
GEMG.4 requires at. Irast, one instaiice of the optimal 
order-k class in  the population. For a sequence repre- 
sentation with alphabet A, a randomly generated pop- 
ulation of size Ak is espected to contain one instance 
of an optimal order-k class. The population size in 
GEMGA is therefore, ti = cAk, where c is a constant. 
When the signal from the relation space is clear, a 
small value for c shoulcl be sufficient. Ilowever, if the 
relation coinparison statistic produces a noisy signal, 
this constant should st.atist.ically take care the sam- 
pling noise from the classes defined by any order-b re- 
lation. Since GERlG.4 uses sequence representation, 
the relation space contains total 2' relations. HOW- 
ever, GEMGA processes only those relations with or- 
der bounded by a const.ant, b. In practice, the order 
of delineability (1iargupt.a. 1995a) is often unknown. 
Therefore, the choice of of populatio~~ size in t.urn de- 
termines what order of relat.ioris will be processed. For 
a population size t i .  the order of relations processed 
by GEMGA is, k = log( i i /c ) / /oglAl .  If t.he problem is 
order-k delineablc (liargupt.a, 199.5a) with respect to 
the chosen represent at ion and class comparison statis- 
tics then G EhIG.4 will solve t.lie problem otherwise 
not. In that case a higher population size should be 
used to consider higher order relations. 

4.3 Operators 
GEh1C;A has four primary operators, namely: (1) 
transcription. ( 2 )  class selection, ( 3 )  string selection, 
and (4) i*ecottibrria/iort. Each of them is described in 
the following. 

4.3.1 Transcr ipt ion 

As ineiit.iotied Idorc.  tlie weight. space i n  GERlGA 
chromosomes is rtsccl to process relat.ioiis. The tran- 
scription operator det,ect.s the appropriate order-b re- 
lations. Comparing relations require a relation COIII- 

parison statistics. GERIG.4 does not. process the rela- 
tions in  a cciitralizecl global fashion; instead it evalu- 
ates relations locally i n  a distributecl manner. Every 
chromosomr tries to clet.ermine whether or not it. has 
an inst.ancr of a goocl class belonging t.0 some rela- 
tion. I n  GEI\IC;:\, tlir quality of a relation is deter- 
minecl by tlie clitality of its good classes distributed 
over the poptilatioil. Again, no ceiitralizecl processing 
of relations is prrforiiied. 1 lie transcript ioii opera- 
tor is a deLcrniinistic one. It .  consiclers one gene at. a 
time. The valur of tlir gene is randomly flipped t.o 1iot.e 
the change i n  fitness. For a ~niniinizatior~ pr-obleni, if 
that change cause a improves t.lie fitness (i.e. fitness 
decreases) tlieti t lie original instance of the gene cer- 
tainly do not. 1)rlong to the instance of the best. class of 

,. 

10 

// pick is the curnetilly considered gene 
Transcription(CHROMOS0ME chrom, int pick) 

double phi, delta; 
int dummy; 
double dwt; 

{ 

dwt = chromCpick] .Weight 0 ; 
if(dwt > 0.0 OR dwt == -1.0) { 
phi = chrom.Fitness0; 
dummy = chrom [pick] .Value () ; 
// Chnnge the value randomly 
chrom [pick] . Perturbvalue () ; . 
// Compute ne 11' fitness 
chrom[pick].EvaluateFitness~); 
// Compiite the change in fitness 
delta = chrom[pick] .Fitness() - phi; 
// For 111 iiiimization problem 
if (delta < 0.0) 
delta = 0.0; 

// Set the weight 
if(dwt < delta OR delta == 0.0) 

chromCpick] . Setweight (delta) ; 
// Set the ifalitlr to the original value 
chromCpick1 .SetValue(dummy) ; 

chrom[pick] .SetFitness(phi) ; 
// Set t lw ot.rgll,cll f i lness 

1 

Figure 3: Transcript ion operator for ininiinization 
problem. For tnasimizat ion problem, if delta< 0 ab- 
solute value of delta is taIieti and ot.herwise delta is 
set. to 0. 

a relation. since fitness caii be further i m p r o d .  Tran- 
scription sets the correspoiicling weight of the gene to 
zero. On the other hand i f  the fitness worsens (Le. 
fitness increases) then t.lic original gene may belong to 
a good class; a t  least that observation does not say 
it otherwise. The corr~sponding weight of the gene 
is set. to the absolute value of the change in fitness. 
Finally, tlie value of t h a t  gene is set to the original 
value and t i le fitncss of tlie chromosome is set to the 
original fitness. 111 ot Iicr words, ultimately transcrip- 
tion does not change anytliing i n  a chromosomeescept 
the weiglits. For a titasililization problein the condi- 
tions for the wight cliatigc are just reversed. The 
same process is coiitinuccl det.ermitiisticaIIy for ail the 

4 =ure C genes in every chromosome of the population. ri, 
3 shows the pseudo-code for the transcription opera- 
tor. For genes with higher cardinality alphabet set 
( A )  this process is repeated for some const.ant C < 1A1 



CHROMOSOME chroml, chrom2; 

i n t  i ;  

for( i=O; i<Problemlength;  i++)  { 
i f  (chromlCi1 .Weight0 > 

chrom2 ci l  . Weight ( ) 
chrom2 C i ]  = chroml Cil ; 

else i f  (chrom2 [i] .Weight ( ) > 
chroml [i] .Weight (1  

chroml Ci3 = chrom2 Cil ; 
1 

Figure 4: Class selection operator in  GEhlG.4. X con- 
sistent coding (where chronal[i] and c ~ ? * o I J J ~ [ ~ ]  has 
common locus) is used in place of niessy coding for 
the sake of illustration. 

times The following section descrilws tltc 1n-0 kinds 
of selection operators used in GEhlG.4. ir.hic11 corre- 
spond to the selective pressures i n  pro(ein and 11XA 
spaces of natural evolution. 

4.3.2 Selection 

Once tlie relations are identified, select ion operator 
is applied t,o make more instances of better classes. 
GEMGA uses two kinds of selections-( 1 )  class selec- 
tion and (2) string selection. Each of t hem is described 
in the following: 

0 Class Selection: The class select.ioii operator is 
responsible for selecting indi\~iclual dasses from 
the chroniosomes. Better classes tlct wted by (he 
txanscription operator are esplicit ly clioseti and 
given more copies a t  the espense of bad classc..~ i n  
other chromosomes. Figure 4 describes I he oper- 
ator. Two chromosomes are randonil\: pickcd: I lie 
weights of the genes are comparccl arid f.hc gene 
with higher weight overwrites the cbrrc>spontling 
gene in other chromosome wit ti loirrr \reight. 

0 St r ing  Selection: This select ion operator give> 
more copies of tlie chromosomcs. .A st antlartl 
binary tournament selection opwat or (13riiitllc. 
1981; Goldberg, Korb, k Ileb. I W 9 )  is iisc.cl., 
Binary tournament selectioii raiitloiiily pick> I I ~  

two chroniosotnes from the popiilat ion. coniparcs 
their objective function values, and giws o w  ad- 
ditional copy of the winner t.0 I l ie popiilal ion at 
the expense of the looser chromosotne. 

The following section describes the recoml~ination op- 
erator i n  GEMGA. 
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Recombination( chroml, chrom2, pcg) 
CHROMOSOME chroml, chrom2; 
double pcg; 

i n t  i ;  
GENE dummy; 

{ 

for(i=O; i<Problemlength;  i++) { 
i f  (chroml Cil .Weight (1 >= 

chrom2 [ i] . Weight () 
AND Randorno < pcg) { 

dummy = chroml C i l  ; 
chroml C i ]  = chrorn2Cil; 
chrom2 C i ]  = dummy ; 

Figure .5: Recombination operator in GERIIGA. .-\ coli- 
sistent coding (where chromi C i ]  and chrom2Cil has 
cotiiinoii locus) is used in place of messy coding for 
the sake of illustration. Randorno generates a random 
number in  between 0 and 1; pcg is a number between 
0 and 1. 

4.3.3 Recoinhination 

Figure 5 shows tlie mechanism of the recombination 
operator in  GEMGA. It randomly picks up two chro- 
mosomes from the population and considers all the 
genes i n  the chromosomes for possible swapping. It 
randomly marks one among them. If the weight of a 
gene from the marked chromosome is great.er than that 
of the corresponding gene from the other chroniosonie 
t,lien it. swaps the genes. 

The following section describes the overall mecha- 
nism of the algorithm. 

4.4 The Algorithm 
GEhIGA has two distinct phases: (1) primordial 

stage and (2) justapositional stage. The primordial 
stage simply applies transcription operator for C gen- 
era t.ions, deterministically considering every gene in  
each generation. During this stage t h e  populatioti 
of cliromosotnes remains unchanged, escept. t.hat the 
weiglits of the genes change. This is followed by tlir 
.jiist.aposit.ional stage, i n  which the select.ioii and rc- 
combination operat.ors are applied iteratively. Figure 
6 shows the overall algorithm. The length of the justa- 
posit.iona1 stage can be roughly estimated as follows. I f  
I be bhe total number of generations in justapositional 
stage, then for binary tournament selection, every 
chroniosome of the population will converge to sanie 



void GEMGAO { 
POPULATION Pop; 
i n t  i, j, k ,  C, kmax; 

// Initidize the popdolroir 01 iandoi i t  

I n i t i a l i z e  (Pop) ; 
i = 0 ;  
// Primordial stage 
Whi le ( i  < C )  { // c is o coiistciiit 

j = 0; 
Repeat { 
// Identify better rclatioiis 
Transcr ipt ion(Pop,  j) ; 
// Increment geiierdroii coimtei. 
j = j + i ;  

} U n t i l ( j  == Problemlength)  
i = i + l ;  

1 
k = 0 ;  
// Juxtapositionol stuge 

Repeat { 
// Select better striiigs 
Select ion(Pop);  
// Select better clossts 
ClassSelection(Pop) ; 
// Produce oflspriiy 
Recombinat ion (Pop) ; 
Evaluate(Pop) ; // Eiwlualc f i l t i ew 
// IiiciwneiiL gcncrutroii corrrilcr 
k = k + i ;  

// k-niux is of O(log(Piobl~iii_l~ingtlt)) 
} Unt i l  ( k > kmax 

Figure G: Pseudo-code of GEhIC;.L\. The constatit. C: i 
[AI, where 1A1 is the cardinality of the alpltabel. set. 

instance of classes when '2' = 11. i.e. I = log i t /  log2. 

constant factor of t is recommcnclccl for actual jmc- 
tice. Clearly the number of generations i n  justaposi- 
tional stage is O(k) .  Let tis now compute the overall 
sample complesity of GEMGA. Since [.lie popula(.ion 
size is O(lAlk) and the primordial stage conthues for 
Cl = O(e) generations, the overall satnj)lc complesit.y. 

l W C + k l O S , 1 . \ 1 .  -4 Substituting 11 = clAlk, we get.f = log 2 

sc = O(l:I\l"(c+ k)) 

GEh4GA is a direct realizat.ioii of thr lessotts froiii I I I C  
SEARCH framework. Following SEAR(.'II. i t  Can Iw 
recognized that tlie sample cotnplcsicy is also a fiinc- 
tion of the desired qualit,y of the solutioti and !lie r d i -  
ability of the process. However, the itiiplemcn~.a~.ioii of 
GEMGA through distribut.ed local evaluation of rela- 
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t.ions and classes outweighs the satisfaction of q1taot.i- 
fying the success probability that is straight. forivard i n  
case of centralized comparison (as it was in  SE.4RCl-I) 
from the practical perspective. Therefore, the reader 
must. realize the dependence of the sample complesity 
on the desired accuracy of the solution and reliabilitx, 
implicit in the above arguments. The following section 
presents the test results. 

5 Test Results 
Designing a t.est set up requires careful consideration. 
An ideal set up should contain problems with differ- 
ent dimensions of probleiii difficulty, such as niulti- 
modalit;\:, bounded inappropriateness of relation space 
(BIRS), problem size, scaling, noise. The GEAIGA 
has been t.est.ed agaiiist problems with all of these .di- 
mensions of difficulties (I<argupta, 1996). However, 
because of limited space, in this section, we present tlic 
performance of GEAlGA for problems with only mas- 
sive niultimodality and controlled amount of BIRS. 

For all functions the average number of funct.ion 
evaluat.ions per success (AFPS) is ineastred. ]:or 
ever): function we choose the desired solution value 
(DSV) a priori. We say tlie algorithm was successfiill 
if it reaches the DSV. 

Deceptive trap functions (Ackley, 1087) are used as 
basic building blocks for designing this t,est suite. ti 

trap fitnct.ion can be defined as follows: 

f ( t )  = C if ti = I? 
= E' - 1 - 1i otherwise, 

where 11 is the number of l-s in the string t and C' is 
the length of the sequence used for representing the 
variable 2. Goldberg, Deb, and Clark (1092) sliowcl 
that such deceptive problems can be used to design 
probletns of bounded difficulty. In a trap function de- 
fined over a sequence of length E' tlie order of clclin- 
eahi1it.y is E' with respect to the class average com- 
parison statistics. .4lthough GEMGA does not work 
using the class average comparison statistic (i.e. wlien 
classes are compared with respect to the distrihut ion 
means) this gives us a simple way to capture the niain 
essence. When multiple number of such functions arc 
concat.enated with each other a problem defined over 
a sequence of length l with order-l' cielitieability can 
be designed. Since the order of delineability directly 
controls the BIRS, such concatenated functions can Ijc 
effectively used for designing problems with BI RS l y  
controlling the e'. Such functions have only f/C' proper 
relations among the (:,) order-5 relations that must. be 
detected in order to find tlie global solution. ' h r e -  
fore, searching for blie appropriate relations is not a 
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Figure 7: Grorr7th of the number of funct.ion evalua- 
tions with problem size. Tlie population size for all 
problem sizes was 300. All the results are average of 
five independent. runs. 

trivial job i n  this class of problems. .4part from I3IRS. 
such functions also offer mult.imoda1it.y. If we carefully 
observe, we shall note that a trap function has t ivo  
peaks. One of t.11en1 corresponds to the string with all 
I-s and the other is the string with ail 0-s. If we tlr- 
sign a problem by concat.enating 1))  sucli functions. i I  
will have a total of 2"' local optima and among 1.11em 
only one will be t.lie globally optimal solution.ClearIy 
tliis class of problems are massively mult~itiiodal ancl 
has bounded inappropriateness of the relat.ion space, 
defined by the representation. 

For testing the GEAlGA, a test function is con- 
structed I>g coticat.eaat.ing multiple numbers of trap 
firnctions. each with C' = 5. Therefore tlie order of cle- 
lineability is five. As we increase tlie number of fiinc- 
tions, in ot.lier words tlie overall probIetn 1engt.h C, t lie 
degree of BIRS remains constant, but the degree of 
mult.imodality increases esponentially. For C = 200. 
the overall function cont.ains 40 subfiinctions; tlierr- 
fore, an order-5 IioundetI 2OO-bit problem has '2"" local 
oplinia, ancl ainong tliem, only one is globally opt iiiial. 

Tlie GEMG.4 is tested against. order-5 clecepl.ivc 
problems of different sizes. Table 2 shows the GE3IG.A 
parameters used for all of them. Figure 7 sho\r.s tlie 
average number of funct.ion evaluat.ions from five i t ) -  
dependent runs  needed to find t.lie DSV for difkrrwt. 

problem sizes. For all problems, the DSV is set to tlie 
glol>ally optimal solution, which is equal to probleiii 
size: C. The population size is chosen as described ear- 
lier i n  tliis paper. The chosen population size for all 
t he problems was 300. The sample complexity clearly 
g row linearly and t.he population size is constant. 

Figure 8 and 9 show the gradual detection of the 
reIat.ions during the priniordial and juxtapositional 
st ages for a 30-bit order-5 deceptive problem. Each 
figure represent. the relation space of the whole popu- 
latioti at. a certain generation. The x-axis denotes the 
weiglits i n  t.he genes, ordered on the basis of the locus 
of the gene. In other words the values along tlie x-axis 
correspond t.0 tlie actual value of the locus of a gene in 
a cliromosome. The y-asis corresponds to the differ- 
ent members in tlie population. The z-axis, perpen- 
dicular to t.lie page denotes the real valued weights of 
the corresponding gene in tlie corresponding chromo- 
some. Since t lie t.es( function is comprised of order-5 
trap fu tdons ,  for any particular gene in a chromo- 
sonic, tlicre are only 4 other genes that are related 
wit ti it.. The complete relation space has a cardinality 
of 23'. .-~niong ( g o )  order-fj relations there are only 
(5 relations t.hat. correctly correspond to the actual de- 
pentlcncies clcfined by the problem. GEMGA needs to 
detect. the relations that relate genes with loci rang- 
ing from 0 to 4 together, from 5 to 9 together and so 
on. Figure 8 show that these relations are gradually 
clct ectccl i n  clifCerent chromosomes that contain good 
classes from those relat.ions. Finally, at. the end of 
priinorclial stage (Figure 9 (top)) all tlie relations are 
clctcciccl. Figure S(micIclle), (bottom) shows the pro- 
ccssiiig of classes during justapositional stage. More 
i tist a ticss of good classes are produced by selection and 
I hey are esclianged aniong diffrent st.rings to create 
highrr  order relat.ions that. finally lead to the optiinal 
soIut.ioti. The following section concludes this paper. 

6 Conclusion 
This paper makes an effort, t.0 design BBS algorithms 
i t i  a const.ructive manner following the lessons of 
SEA RCI-I. I t  iclentified different decision makings in 
r$BS and  realized the class of problems efficiently. Af- 
IPI' verifying the arguments i n  the the light of natural 
evolution. the GEhlGA is introduced. GEMGA does 
IIOI  const nict new rcpresenfation, alt.lioug1i it is one 
among the immediat.e future possibilities. If the prob- 
leiit is order-k delineable with respect to the repre- 
scttt at ion ancl class comparison statistic GEMGA will 
solvt? the prol>lem in  polynoinial sample complesity. 
'I'PSI resu1t.s for large problems with milions of local 
0pt.i nia ancl boiinded inappropriateness of the repre- 
scut a t  ion confirms this conclusion. 
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The GEMGA eliminat.es many problems of the pre- 
vious versions of messy GAS. The main improvements 
are (1) explicit processing of relations and classes, (2) 
eliminating the need for a template solution, (3) reduc- 
ing the popula.t.ion size from O((A('L') to O(IA1') for 
order-b deliiieable problem in sequence representation 
of length e, (4) eliminating the t.hreshoIding sche'cluling 
problem of the fmGA (Goldberg, Deb, ICargupta, S: 
Harik, 1993), and (4) reducing the running time by a 
large factor. Hopefully, this paper will take the messy 
GAS one step closer to being a reasonably general pur- 
pose optimization algorithm for practical problems. 
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