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1. Intraduction 

Because of the importance of turbulence mixing in many applications, 
a number of turbulence mixing models have been proposed for variable- 
density flows, [see, e.g., Zeman and Lumley (1972), Andronov et al.(1982), 
Besnard et al. (1992), and C r d  (1992)) These engineering models (one- 
point statistical models) typically include the transport of the turbulent 
kinetic energy and the turbulent energy dissipation rate (i.e., k - E models). 
The model presented by Besnard, Harlow, Ftauemahn and Zemach (1992) 
(herein referred to as BHRZ) is a one-point model intended to describe 
variable-density turbulent flows. Transport equations for the Reynolds stress 
tensor, &jl and the turbulent energy dissipation rate, the density-velocity 
correlation, G, and the density-specific volume correlation, b are derived. 
This model employs techniques and concepts from incompressible, constant- 
density turbulence modeling and incorporates ideas from two-phase flow 
models. 

Clark and Spitz (1994) present a two-point model for variabldensity 
turbulence. Their derivation is based on transport equations that are based 
on two-point generalizations of & j ,  ai, and b. These equations are Fourier 
transformed with respect to the separation distance between the two points. 
Transport equations are derived for &j,  ai, b. As in the one-point model, 
this model contains many ad-hoc assumptions and unknown model mffi- 
cients that must be determined by comparison with experimental and nu- 



2 D. L. SANDOVAL ET AL. 

merical data. However, the two-point formalism requires fewer equillibrium 
assumptions then does a singlepoint model. 

Our primary concern in this paper lies in the nonlinear processes of tur- 
bulence and the influence of large density variations (not within the Boussi- 
nesq limit) on these processes. To isolate the effects of variable-density on 
the turbulence we restrict our flow to be incompressible, statistically ho- 
mogeneavs buoyancy-generated turbdence. To our knowledge there have 
not been any simulations reported for this problem. 

2. Equations af Motion 

We shall consider the turbulent mixing of, two misciblq incompressible flu- 
ids of different densities. By incompressible fluid we mean a fluid whose 
compressibility coefficient and thermal expansion coefficient are both zero. 
This decouples acoustic waves from the problem, implying an infinite sound 
speed and that density is no longer a thermodynamic variable and therefore 
not a function of the pressure or temperature. The Mach number is zero. 
The velocity field for the mixing of two miscible, incompressible fluids is 
not in general divergence free, i.e., V u’ # 0 [Joseph (199O)j. Thus the flow 
in this study is incompressible due to the low Mach number criterion but 
the divergence of the velocity field is not zero. 

The consemtion of mass is 

- 0. -+-- a~ awj 
dt axj 

The Navier-Stokes equations are 

d m  apiuj ap &ij - + - = -- 
at &j dxi &j 

with the vismus stress tensor for a Newtonian fluid dehed  by. 

+ - + Psi 

Here p, p and uj are the density, pressure and velocity fields, respectively, 
dependent on the spatial coordinate xi and on time t,  gi is an acceleration 
(e.g., gravity), and p the fluid viscosity, assumed constant. Fick’s law [see, 
e.g., Bird, Stewart and Lightfoot (1960)l for the diffusion of two species of 
different densities gives 
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Comparison of Eq. (1) with (3). leads ta the following result far incmpress- 
ible mixing flows: 

(4) 

Thus, the incompressible velocity field is divmgent. 
These equations will be solved with periodic boundry conditions and 

“random” initial conditions for density and a nearly zero initial velocity. 

3. Averaged Equations 

We examine homogeneous turbulence subjected ta an acceleration. 
a tilde denote a mass-weighted average and an overbar denate a volume 
weighted average, we have 

- If - 
ui = Vi +u: = Vi +ui.  

- 
Where, iii = p21i/P. Note that U: = ai + U: where a+ = u:. The frame of 
motion is chosen so that the mean volume-weighted velocity is zero; Di = 
0 = Vi + ai. The exact averaged equations for the subsequent correlations 

, 

are: 

and 

Where ai is the turbulent mass flux, defined above, b = is the 
density-specific volume correlation, and &j is the mass-weighted Reynolds 
stress tensor, &j = &;UT. The massweighted mean velocity, Oi = --ai is 
given by 

Then from Eqs. (6) and (8) and exploiting homogeneity; 
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Substituting (9) into (6) ,  and in the limit of small time we neglect the 
velocities; 

-= dai (-)gz-(-)v’-. Pb I 
dt  1-pb 1 - 3  &i 

The second term on the right side is madeled (e.g., in BHRZ) as a simple 
“drag” (i.e.% a destruction of ai). If this modeling is accurate, then this term 
is proportional to ai, and hence asymptotically tends to zero in the limit 
of small time. The variations in this correIation can be studied via direct 
numerical simulation of equations (1) through (3) with (9). The simulations 
are used to te; 

which may be plotted versus ai to determine the appropriateness of an 
interpretation of drag. 

4. Numerical SimuIatians 

A numerical algorithm solving Eqs. (1) through (3) and (9) was developed 
from the algorithm of McMurtry (1987). It is modified for the incmpress- 
ible mixing of miscible fluids subjected to a constant acceleration. This 
algorithm is related to the projection method but takes into account the 
fact that the velocity field is divergent. A pseudo-spectral method is used 
so that the spatial derivatives are computed in wavenumber space whereas 
the nonlinear terms are computed in physical space via the use of fast 
Fourier transforms. The aliasing errors are ameliorated by truncation of 
the Fourier fields. The temporal discretization is Adams-Bashforth and the 
fields are timeadvanced in wavenumber space. As in the work of Batchelor, 
Canuto and Chasnw (1992), the fluctuations are assumed to be periodic 
in all thre spatial directions. However, the Boussinesq appraimatian has 
not been made, Simulations used a grid size of 12@. 

4.1. NONDIMENSIONALIZATIQN 

The equations of motion are solved in nondimensional form following Batch- 
elor, et al. (1992). A statistical measure of the initial density variations is 
used; 0, is a measure of the dimensionless density variations defined as 

Where p* is the rms value of the initial density fluctuations. The length 
scale, l,, characterizes the wavelength at which the initial spectrum of p’ 
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has its maximum. That is, lo = 2 7 r / h ,  where is the wavenumber at 
which the density spectrum is a maximum. For the density fields studied 
here, ICm = 3 so that 1, = 2?r/3. 

Again, following Batchelor, et al. (1992); 

For the pressure, total density, and fluctuating density: 

Two nondimensional variables arise in the equations of motion. These are 

where R, is a measure of the drive strength and CT is the Schmidt number. 

4.2. INITIAL CONDITIONS 

The density field is initialized using the method of Eswaran and Pope 
(1988). This method creates an initial density field that approximately con- 
forms to a double-delta function probability density function (pdf), where 
the density values of the initial field corresponds closely to either the high 
density or low density value. 

The initial velocity field is set to zero, then slightly modified to account 
for the divergent velocity [eq. (4)] condition, Because the initial velocity 
field is nearly zero, density-velocity correlations are initidy nearly zero. 
An acceleration is applied in the z-directiozl and the developing flow is 
statistically axisymmetric about the z-axis. 

Figure 1 shows the evolution of the initial probability density function of 
the 3-D density fields for the two cases presented in this study. This shows 
that for the initial conditions a high probability for the density to be either 
pmm or pmin and also the "U-shaped" lower probability region in between 
the two peaks representing the premixed interface. Table 1 lists the initial 
density statistics for the simulations. Case NCD is a nearly constant-density 
case performed to provide comparisons with the fully variable-density case, 
FVD. The quantities B(t) = -/p2 and b(t)  = -p'(l/p)' are nondimen- 
sional measures of the density variations in the flow. In the limit as the 
density fluctuatians tend to zera B(C) = b(t). 
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NCD 256 7.8OOe-3 1.0 10. 1.05 0.95 1.105 0.0434 
FVD 256 8.543e-3 1.0 1.0 1.60 0.40 4.000 0.5206 

TABLE 1. List of initial statistics for buoyancy-driven cases 

Figure 1. 
case (0, = 0.04) and (b) FVD case (8, = 0.52) cases 

PDF evolution, for T=O.O to 2.0 by 0.125, of the density field for (a) NCD 

5. Numerical Results 

In the two cases considered, the initial conditions are such that Ro is the 
same in both cases but the initial density ratios are different. The initial 
velocity is nearly zero, Through the action of an acceleration, the veloc- 
ity increases rapidly and the fluid is set into motion. The energy reaches 
a maximum and begins to decrease as the density field mixes and diffuses 
towards its constant mean value, and as viscous dissipation becomes appre- 
ciable. The velocity is initially highly correlated with the density field. The 
density field corresponds to a source af potential energy which is converted 
to kinetic energy (“turbulence”) and finally into “heat” (viscous work). As 
the density field diffuses and mixes towards its mean value the source of 
potential energy decays and the remaining kinetic energy decays away. The 
kinetic energy will tend towards zero when the density field is uniformly 
mixed (there is no available potential energy) and dissipation removes the 
remaining kinetic energy. 

Figure 1 shows the evolution of the pdf of the density field for the two 
cases presented. As time evolves and the flow develops, the density field 
is mixing through convective and molecular effects, and the bimodal pdf 
evolves towards a nearly Gaussian function whose maximum is at the mean 
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Figurn 2. Evolution of the mean pressure gradient far bath cases. 

density of 1.0,. For these cases the pdf is sIightly skewed to the lower side of 
the mean density. The Boussinesq approximation for these flows predicts 
symmetric evolution of the PDF because both positive and negative den- 
sity fluctuations receive the same acceleration. Comparing Fig. (la) with 
(lb), the feature that immediately stands out is the skewed behavior of 
the pdf’s as they evolve. For the case with 6, = 0.52, the pdf is more 
strongly skewed to the negative side of the mean density of 1 than it is 
for the 6, = 0.04 case. The physical explanation for this behavior possibly 
lies in the entrainment rates of the heavy and light fluid into the mixing 
region. It has been observed [see, e.g., Dimotakis (1986)l that, in spatially 
growing shear layers, an unequal amount of fluid is entrained from each of 
the fieestreams, resulting in a mixed fluid that favors the high-speed fluid. 
The first experiments to show this were the incompressible, variable-density 
shear layer experiments of Brown and Roshko (1974). Brown (1974) showed 
that the fluid associated with the higher velocities had higher entrainment 
rates into the mixing layer. For these accelerated problems the large vebc- 
ities are associated with the low density, consistent with the entrainment 
argument. 

The mean presure gradient is obtained from eq. (9) and plotted, normal- 
ized by the hydrostatic pressure, in Fig. 2 for both cases. Far the NCD case, 
the mean pressure is close to the hydrostatic balance. As time evolves, the 
mean pressure remains at this value. For the FVD case, the mean pressure 
gradient is initially lower than the hydrostatic balance. This plot shows 
that the mean pressure gradient for case FVD varies more in time. Again, 
as the density fluctuations decay, the mean pressure gradient approaches 
the hydTost at ic balance. 

Figure 3 plots the values af each term in the equation for the mem pres- 
sure gradient [eq. (Q)]  for case FVa. In this case, in the limit as the den- 
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Figure 3, Evolution of terms in the mean pressure gradient Ieq. (9)] for FVD case 

sity variations tend to zero, the mean pressure gradient tends to the d u e  
pg = 1. Initially, the mean pressure gradient is approximately 0.75 and the 
acceleration term, g/V, is approximately 0.67. The correlation v’(dp’ldz3) 
(labeled “D”) is approximately 0.08 and represents 11 percent of the ini- 
tial mean pressure gradient. All ather- terms are initialry nearly zero. As 
the flow develops the mean pressure gradient increases to a value slightly 
larger than 1.0. At the last time Shawn it has very nearly a constant d u e  
of 1.0, which is consistant with the Boussinesq approximation. The second 
and third terms in the equation (9) for the mean pressure gradient grow 
slightly from their nonzero values and contribute only a few percent to the 
total mean pressure gradient. The correlation v’(apl/dq) remains a large 
contribution to the mean pressure gradient up to late times. 

Figure 4a shows u’(apl/az3)/g@ as a function of time for both cases. 
The magnitude of this correlation increases with initial density fluctuations. 
The nonzero value at the initial time represents a “rapid” part of this 
correlation. This correlation increases in time due to the “slow” part which 
is analogous to  a drag for the mass flux. At late times this correlation is 
decaying and represents slow part decrease in the drag for the turbulent 
mass flux (see below in this section). 

The correlation, v’(ap’/azi)/gOz, has been postulated by some modelers 
to behave as a %hag” term which impedes the growth of the turbulent mass 
flux [see, e.g., Besnard, et al., (199221. We have shown that the presence 
of this correlation impedes the gruwth of the turbulent mass flux. These 
results, however, suggest that this correlation behaves as both a “drag” or 
“slow” term and as a “rapid” term. The instant that the fluid is acceler- 
ated, this correlation immediately ((‘rapidly”) takes a nonzero value, even 
though the mass flux is zero. To understand how this correlation behaves 
as a function of the mass flux., it is plotted as a €unctio~ of the mas flux in 
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Fig. 4b. Initidy, --v‘(dp’/dz3) is approximately 0.32 for case NCD and ap- 
proximately 0.56 for case FVD. At T = 0, when the acceleration is applied, 
the dominant part of V / ( d p r / d ~ )  is the %apid” part. As the flow evolves, 
the “rapid” part vanishes as the density fluctuations decay and the “drag” 
part increases causing an increase in v’(dp’/dz3). Ultimately, at late times, 
the “drag” or “slow” part is dominant as the ‘‘rapid” part has vanished so 
that d(dp’/&3) decays nearly linearly with the mass flux. At late times in 
this buoyancy-driven turbulent flow this correlation represents a “drag” on 
turbulent mass flux. 

6. Model Comparisons 

In this section we address the efficacy of the extensions of traditional k- 
E model formulation and a heuristic two-point closure to variabledensity 
turbulence. 

6.1. MODEL OF B E S N W ,  HARLOW, FUUENSAHN AND ZEMACR 

The model of Besnard, Hmlow, Raumsahn and Zemach (herein refered to as 
the “one-point model”) is an extension of one-point k-e closures to variable- 
density turbulence. For the incompressible case, this model includes equa- 
tions for Gj, the turbulent energy dissipation rate, species concentrations, 
and correlations for the density-velocity and specific volume-density fluctu- 
ations. The higher-order unknowns in these equations are closed using typ- 
ical constant density assumptions [e.g., Launder, Reece and Rodi (1975)l 
suitably extended to account for a variety of variable-density effects. The 
details of the.mode1 can be found in Besnard et al. (1992). 

The model equations are derived for general inhomageneaus flaws at 
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high ReynoIds number. They are rewritten here for the specific case of a 
statistically homogeneous, variable-density fluid subjected to an accelera- 
tion. The evolution equation for the correlation between the specific vol- 
ume and the density fluctuations, Le., b = -plzI’, [eq. (50) in Besnard et al. 
(1992)] reduces to 

A modified turbuIent mass ffux model equation is 

(13) 
dan b aP 2PP an @ZG an 
-= dt (l-c3u)~--cla(-)-- P axn Rnn bm C l a a K 3 / 2 F .  

The details of the proposed modifications may be found in Sandoval (1995). 
Note that this model corresponds exactly to the development in BHRZ if 
ml = 0, m2 = 0, ~3~ = 0, claa = 0. (For consistency with the definitions 
used in this study, the sign of ai is the negative of that given by Besnard 
et al. (1992).) The kinetic energy equation is 

Finally, the energy dissipation equation [eq. (51)] becomes 

(15) 
a€ 2pe a7 - = CQE (-) a,- - C2f (E) E. 
at Rnn axn 

The time scales for dissipation of an and b are ‘‘constructed’’ from a time 
scale associated with the energy cascade, T N R n n / ( P E ) .  This assumption is 
based on (1) turbulence characterized by a “large” inertial range where the 
dissipation rate is independent of viscosity (or diffusivity) and (2) that this 
cascade also dominates the dissiptkm of “k” and “b”. This assumption is 
questionable for the case of initially quiescent, turbulence subjected to an 
acceleration. Thus the DNS provides a stern test of the single-point model. 

6.2. MODEL OF CLAFtK AND SPITZ 

The model of Clark and Spitz (herein referred to as the “two-point model’’) 
(1994) is a two-point (spectral) phenomenological model. The advantage of 
a two-point (spectral) formulation is that it eliminates the need for length- 
scale/dissipation equations and corollary assumptions which are employed 
in one-point modeling. The two-point model is an attempt to relieve some 
of the limitations inherent in the one-point IC+ or R.+ formalism. Details 
of the development may be found in Clark and Spitz (1994). 
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The derivation of the model gives a hierarchical structure sidar to that 
of the one-point model. The model equations (used in this study), are 

and 

where 

8A(k) = [k JZ] , 

where &p1 and pap2 are chosen to be l / b ( t ) ,  and 
00 

0 

00 

b(t)  = - / b(k , t )dk ,  ai(t) = ai (k , t )dk ,  R i j ( C )  = 1 Rij(k,t).dk. 
0 
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The original formulation by CIark and Spitz did not include Cvdp.  

6.3. RESULTS 

Comparisons are made between the DNS data (for case FVD), and the 
modified onepoint and two-point models. For this investigation the follow- 
ing one-point model coefficients are. used: Clb = 1.0, czE = 1.92, qE = 1.61, 
~3~ = 0.0, cla = 2.2, m2 = 1.0, qa = 0.0, and claa = 1-5. The initial 
values are: &,(t = 0) = 3.006(10)-*, b(t = 0) = 0.5, a(t = 0) = 0.0 and 
~ ( t  = 0) = 8.7979(10)-7. A parameter study showed that caIuations with 
this one-point model showed extreme sensitivity to the choice of e(& = 0). 
The value for ~ ( t  = 0) is chosen in order to give the correct length scale of 
b which in turn gives the correct early time traj&ory of a,. For this inves 
tigation the following two-point model coefficients are used: C ~ p l =  0.125, 

c R 2  = cam = CbRZ = 2 , / ~ ; ~ ~ ~ / 1 1 ;  all other coefficients being set to 
zero. Ck is the Kolmogorov constant, chasein to be 3/2. The initial spectra 
for b(k)  and &,(k) taken from the DNS are used for initial conditions in 
the two-point model; in addition 7 = 1 andp = = 8.543(10)-3. The com- 
parison between the two-point model and the DNS is made by examining 
one- point statistics. 

Figure 5a shows the evolution of b for the DNS and the model results. 
The modified one-point model for the decay of b is somewhat different then 
the DNS result. The initid value for E is artificially small, lea- to an in- 
adequate dissipation of b at the early times. This may represent a deficiency 
in the methodology of one-point closures and also suggest an inclusion of 
molecular diffusive and viscous effects in the one-point formulation. The 
flows studied in the DNS simulations are dominated by viscous diffusion, 
at early and late times and this is not accounted for in the one-point model. 
Thus, we can choose E to give either the correct energy dissipation, or the 
correct turbdent time-scale, or the correct length scale of b, hut not all 
three. Therefore, b does not dissipate fast enough and, as a result, the sub- 
sequent behavior of b is incorrect although the initial growth rates of a and 
hn are adequate (see Figure 5b and 5c). At late stages, the values of a 
and Rptn are overpredicted, probably due to an overpredidion of b. 

The two-point model which does include molecular viscous and diffu- 
sive effects does substantially better at predicting the evolution of b. As 
a consequence, it does better at late times for both a and &n than the 
onepoint model. This model does slightly overpredict the values of a and 
underpredicts the value of hn at their extrema; the one-point model does 
slightly better here. 

Figure 56 shows the evolution af @/&n for the DNS and the models. 

CVdp = 0.35, c-1 = CaAl = -.2424, c R 1  = CaRl = CbRl = &ci3’2/117 
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Figure 5. Evolution of (a) b, (b) a, (c) R,,n and (d) ap/Bzs for DNS case FVD and the 
one-point and two-point models 

The model comparisons show relatively good agreement with the DNS. 

7. Conclusions 

Direct numerical simulations of homogeneous variable-density turbulence 
subjected to an acceleration have been performed using a pseudo-spectral 
algorithm. The range of density fluctuations exceeds the limits of validity of 
the so-called Boussinesq approximation. The overall statistical behavior of 
the flow resembled, to some degree, that of the Boussinesq-limited calcula- 
tions of Batchelor et al., and is characterized by three phases; (1) Initially 
growing turbulence when the acceleration acts on the density variations, 
(2) a period of time when the energy and turbulence mass flux reach their 
extrema, and (3) a period of decay when the energy, and turbulent mass 
flux decrease. Because there is no source of density fluctuations in these 
homogeneous simulations, the density fluctuations decrease monotonically 
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in time. 
The results of the direct numerical simulations indicate that the correla- 

tion v’dp’/dxi can be considered the sum of a “slow part” and a “fast part”, 
in analogy with the well-known decomposition of pressurestrain correla- 
tions of constant density turbulence. This modification, among others was 
incorporated into a single-point model and a two-point model of variable 
density turbulence. Predictions of the modified models are compared to the 
DNS results, and indicate that two-point model performed slightly better 
than the one-point model. It is suggested that the one-point model should 
be extended further to account for moIecuIar effects at early times and to 
permit a length scale for the density fluctuatians that is independent of the 
length scales for the velocity fluctuations. 
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