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Buoyancy-generated turbulence in a fluid with large density fluctuations is studied by 
direct numerical simulation [Sandoval (1995)l. The flow is incompressible so that acoustic waves are 
decoupled from the problem, and implying that density is not a thermodynamic variable. The density 
variations are large such that the Boussinesq approximation is inappropriate and changes in density 
occur due to molecular mixing. The velocity field is, in general, divergent, and there is no net 
volumetric flux of velocity. The results of numerical simulations are compared with variable-density 
model predictions. Both a one-point (engineering) model and a two-point (spectral) model are tested 
against the numerical data. Some deficiencies in these variable-density models are discussed and 
modifications are suggested. 

We shall restrict our attention to the turbulent interactions of two miscible, 
incompressible Newtonian fluids of different densities. By the terminology incommessible fluid we 
mean a fluid whose compressibility coefficient and thermal expansion coefficient are both zero. This 
decouples acoustic waves from the problem, implying an infinite sound speed and that density is no 
longer a thermodynamic variable and therefore not a function of the pressure. For a flow to be 
incompressible, the main criterion is that the Mach number be low, M + 0. In our study, the Mach 
number is assumed to be zero. It has been illustrated by Joseph (1990) that the velocity field for the 
mixing of two miscible, incompressible fluids is not in general divergence free, i.e., V ii = 0. Herein, 
we refer to the flow in this study as being incompressible due to the low Mach number criterion but not 
that the divergence of the velocity field is zero. The conservation of mass is 
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The equations for the conservation of momentum are the Navier-Stokes equations, here given as 

with the viscous stress tensor defined by 
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Here p(x i , t ) ,  p ( x i , t )  and ui(xi,t) are the density, pressure and velocity fields, respectively, dependent 
on the spatial coordinate xi and on time t ,  gi is an acceleration (e.g., gravity), and p the fluid 

viscosity, assumed constant. Fick‘s law [see, e.g., Bird, Stewart and Lightfoot (1960)l for the diffusion 
of two species of different densities gives 

Comparison of the conservation of mass equation with diffusion equation leads to the following result 
for the divergence of the velocity field: 
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These equations with periodic boundaries, are solved by a pseudo-spectral algorithm for 1283 
grid points. Initial conditions are based on the method of Eswaran and Pope (1988). A condition for a 
mean pressure gradient is also required to correctly specify the problem of a variable-density fluid 
subjected to an acceleration. This pressure gradient condition ensures zero volumetric flux in the “lab“ 
reference frame. The most common approach to study variable-density flows is to use the Boussinesq 
approximation [see, e.g., Phillips (19’77)l. This approximation is valid when the actual density and 
pressure fluctuations vary only slightly from their respective means, the vertical scale of motion is 
small compared with the scale height, and the Mach number of the flow is low. 

Departures from the limits of validity of the Boussinesq approximation are examined. 
An important parameter that characterizes buoyancy driven flow is the initial value of the ratio of the 
rms density fluctuations to the mean density, 0, = p’p’1’21r=o / iY. Two simulations are studied, both 
with a Schmidt number equal to one. The initial density fluctuations are scaled such that 0, = 0.04 for 
one case and 0, = 0.52 for the other. If this quantity is less than approximately 0.1 then the resulting 
buoyancy-driven flow is within the Boussinesq approximation. It is observed in this buoyancy- 
generated problem that the triple correlation, p u p i ,  which is initially nearly zero, grows to negative 
values. This reflects the fact that the largest velocities are associated with the negative density 
fluctuations, and is a result of conservation of momentum. The probability density function (PDF) of 
the density field, which is initially bimodal, develops a skew to the negative of the mean density due to 
entrainment behavior. Figure 1 shows the time history of the PDF for the case with 0, =0.52. The 
Boussinesq approximation for this flow predicts symmetric evolution of the PDF because both positive 
and negative density fluctuations receive the same acceleration. This PDF behavior is seen in the study 
of isotropic decay [Sandoval (19931 and occurs only when p‘u,’.,’ is nonzero. 
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A consequence of the Boussinesq approximation is that the mean pressure gradient is 
constant in time and its value is j7gi Le., the hydrostatic pressure gradient. This approximation is good 



only in the limit of small density fluctuations but, as the initial density fluctuations increase, the mean 
pressure gradient becomes variable in time. The equation for the mean pressure gradient is 

where v = 1 / p  is the specific volume. In the limit as the density fluctuations tend to zero, this equation 
gives the Boussinesq approximation for the mean pressure gradient, i.e., the hydrostatic balance. Figure 
2 shows the time evolution of the mean pressure gradient normalized by the hydrostatic value for the 
cases with eo = 0.04 and eo = 0.52. For the case with eo = 0.04 , the mean pressure gradient is nearly 

constant in time with its value corresponding to the hydrostatic balance. At the instant an acceleration 
is applied and prior to the development of fluid motion, the mean pressure gradient is 

-=- ?F 1{ g i - v -  T}, 
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Here, the correlation between the fluctuating specific volume and the fluctuating pressure gradient 
produces a departure from the simple hydrostatic pressure gradient. This correlation increases with 
increasing initial density fluctuations, and impedes the growth of the turbulent mass flux, 
a, = -p'u,! / p. This term responds instantaneously to the applied acceleration. Figure 3 shows this 
correlation plotted as a function of the mass flux for the case with eo = 0.52. At early times, this 
correlation is proportional to the mean pressure. As the flow develops and the density fluctuations 
decay, this correlation becomes proportional to the mass flux. 
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The results of the buoyancy-generated turbulence are compared with variable-density 
model predictions. Both a one-point (engineering) model Pesnard, Harlow, Rauenzahn and Zemach 
(1992)l and a two-point (spectral) model [Clark and Spitz (1994)l are tested against the numerical data. 
Some deficiencies in these variable-density models are discussed. In particular, it has been speculated 
by modelers that the correlation between the fluctuating specific volume and the gradient of the 
fluctuating pressure is proportional to the mass flux. This speculation is correct within the Boussinesq 
limit. However, the numerical results show that this speculation, in the limit of large density variations, 
is incorrect during the early stages of flow development. Modifications to this variable-density model 
to take into account this behavior are made. Comparison between the model and the numerical results 
show the inadequacy of the equilibrium assumptions inherent in one-point models as this buoyancy- 
generated flow is far from equilibrium. Using a two-point (spectral) model, which makes no 
equilibrium assumption, the one-point statistics of the flow are captured more accurately. Though the 
one-point statistics from the spectral model are in good qualitative agreement with the numerical data, 
the spectra from the DNS of the correlation between the fluctuating specific volume and the gradient of 
the fluctuating pressure do not agree with the spectral model of this quantity. 
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Figure 1: PDF evolution, for T=O.O to 
1.75 by 0.125, for the case with 
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Figure 2: Mean pressure gradient histories 
for the cases with eo = 0.04 and eo = 0.52. 

eo = 0.52. 

Figure 3: Correlation between the fluctuating specific volume 
and gradient of the fluctuating pressure as a function of mass 
flux in nondimensional form for the case with 0, = 0.52. 
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